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Abstract

We propose a new score-driven model to capture the time-varying volatility and tail

behavior of realized kernels. We assume realized kernels follow an F distribution with

two time-varying degrees-of-freedom parameters, accounting for the Vol-of-Vol and

the tail shape of the realized kernel distribution. The resulting score-driven dynamics

imply that the influence of large (outlying) realized kernels on future volatilities and

tail-shapes is mitigated. We apply our model to 30 stocks from the S&P 500 index

over the period 2001-2014. The results show that tail shapes vary over time, even after

correcting for the time-varying mean and Vol-of-Vol of the realized kernels. The model

outperforms a number of recent competitors, both in-sample and out-of-sample. In

particular, accounting for time-varying tail shapes matters for both density forecasts

and forecasts of volatility risk quantiles.

Keywords: realized kernel; heavy tails; F distribution; time-varying shape-parameter;

Vol-of-Vol, score-driven dynamics.
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1 Introduction

Volatility is a key ingredient for option pricing and volatility trading; see for instance Sinclair

(2013). Therefore, volatility related risk measures such as the ‘Volatility at Risk’ (VolaR)

(Caporin et al., 2017) have been put forward to estimate the upper quantiles of the realized

volatility distribution. Good estimates of the volatility distribution and the VolaR are crucial

for managing the risk of volatility-based trading strategies, such as portfolios containing

volatility indices or options.

Due to the availability of High-Frequency (HF) data, volatility measurement, modeling

and forecasting has improved significantly over the past two decades (Andersen et al., 2003).

In many modern volatility models, ex-post (direct) measurements of the daily volatility are

used, ranging from the Realized Variance (Andersen and Bollerslev, 1998) to the Realized

Kernel of Barndorff-Nielsen et al. (2008). Older volatility models focus more on modeling

the latent volatility via the distribution of observed returns. The current literature, however,

has shifted towards modeling the ex-post realized volatility measures directly, such as the

HAR model of Corsi (2009), the MEM model of Engle and Gallo (2006), or the multivariate

CAW model of Golosnoy et al. (2012), among others. Also hybrid models based on both

returns and realized measures have been put forward, such as the univariate and multivariate

HEAVY models of Shephard and Sheppard (2010) and Noureldin et al. (2012).

As a stylized fact, realized measures are typically fat-tailed and right-skewed. This can be

attributed to turbulent market periods and price jumps, even within the day (e.g. the Flash

Crash in May 2011). Only very few studies take into account the fat-tailedness of realized

measures. Examples include Caporin et al. (2017) and Opschoor et al. (2018). Caporin

et al. (2017) extend the MEM model of Engle and Gallo (2006) by including jumps under

the assumption of a mixture of Gamma distributions for the realized variance to capture the

skewed right tail of the volatility density. Opschoor et al. (2018) on the other hand propose

an matrix F distribution for realized covariance matrices, which is a continuous mixture

of Wishart distributions. Neither of these models, however, allows the Vol-of-Vol and tail
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shape to vary over time.

This paper develops a new model for the dynamics of realized kernels, allowing for time-

variation in the mean volatility level, in the Vol-of-Vol, and in the tail-behavior of realized

kernel volatility simultaneously. Intuitively, the tail of realized kernels might be relatively

larger during crisis periods (e.g. the Internet bubble, the Global Financial Crisis or the

Sovereign debt crisis) than during calm periods. Time-varying tail shapes have been studied

before by for instance Gerlach et al. (2013) and Lucas and Zhang (2016), but both studies

only focus on the return distribution. The dynamics in our new model are score-driven

(see Creal et al., 2013). Earlier successful models for capturing the dynamics of parameters

under possibly non-standard distributions include volatility and location modeling (Harvey,

2013; Harvey and Luati, 2014), credit risk modeling (Creal et al., 2014), and systemic risk

modeling (Lucas et al., 2014; Oh and Patton, 2018). The availability of a closed-form

expression for the likelihood function allows for straightforward estimation by maximum

likelihood. Combined with the optimality results for score-driven steps of Blasques et al.

(2015), the score-driven framework is attractive for modeling time-varying parameters of

the conditional distribution of realized kernels.

We account for fat-tails of the realized kernels by assuming an F distribution, where

we impose score-driven dynamics for the time-varying mean and for the two degrees of

freedom (DoF) parameters of the F distribution. The (matrix) F distribution was recently

introduced in financial econometrics by Opschoor et al. (2018) and appears to fit well to

realized (covariance)kernels. Although higher moments such as the variance and skewness

of the F distribution depend on both DoF parameters of the F , we show that the second

DoF parameter has the most impact on the tail shape (skewness) of the distribution, while

the first DoF mostly affects the dispersion (or variance) of the distribution. This dispersion

or Vol-of-Vol might be time-varying as well, see for instance Corsi et al. (2008).

In our empirical application, we use the new model to describe daily realized kernels

of 30 constituents of the S&P 500 index over the period January 2001 to December 2014.

In-sample, the statistical fit increases significantly when allowing for time-varying DoF pa-
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rameters compared to benchmarks such as the MEM model of Engle and Gallo (2006) and

the univariate GAS F model with HAR dynamics of Opschoor et al. (2018).

Out-of-sample, we assess the economic significance of our results by considering 1-step

ahead Volatility-at-Risk (VolaR) predictions and density forecasts. The results strongly

indicate that it is crucial to allow for a time-varying shape parameter: it produces signif-

icantly better VolaR predictions than all competing models. Moreover, we also show that

a score-driven model (with a time varying ‘Vol-of-Vol’ parameter) for the logarithm of the

realized kernel does not produce accurate VolaR predictions. Our model also performs well

in terms of density forecasts. In particular it outperforms benchmarks such as the MEM

model with Gamma distributions. Moreover, in 24 out of 30 stocks the average log score

of our new model with time-varying shape and Vol-of-Vol parameters exceeds the log score

of our benchmark score-driven model. In 50% of the cases this difference is statistically

significant at a 10 % level.

The rest of this paper is set up as follows. In Section 2, we introduce the new score-driven

models for the dynamic shape parameters of the realized kernel distribution. In Section 3,

we give a brief overview of the data used. Section 4 covers the empirical application. We

conclude in Section 5.

2 Score driven models for the realized kernel

2.1 The HEAVY GAS HAR F model

Let RKt ∈ R denote the realized kernel on day t, t = 1, . . . , T , where RKt is computed

following Barndorff-Nielsen et al. (2009). Guided by the literature (see for instance Op-

schoor et al., 2018)), we assume that RKt is fat-tailed and follows an F distribution. The
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conditional density for RKt then reads

p(RKt|µt,Ft−1; ν1, ν2) =
Γ((ν1 + ν2)/2)

Γ(ν1/2)Γ(ν2/2)

RK
(ν1−2)/2
t

 ν1

µt(ν2 − 2)


ν1/2

1 +
ν1

ν2 − 2

RKt

µt


(ν1+ν2)/2

, (1)

where Ft−1 denotes the information set containing all realized kernels up to and including

time t − 1, µt contains the time-varying mean of RKt, and ν1 and ν2 are the degrees of

freedom (DoF) parameters. We assume that ν2 > 2, such that the mean of RKt exists,

where E[RKt|Ft−1] = µt. When ν2 →∞, the F distribution collapses to the χ2 or Wishart

distribution. By an appropriate choice of µt, this also covers the Gamma distribution used

by Engle and Gallo (2006) and Caporin et al. (2017), among others.

The corresponding (conditional) variance and skewness of the F distribution are given

by

Var[RKt|Ft−1] = 2
(ν1 + ν2 − 2)

ν1(ν2 − 4)
µ2
t , (2)

Skew[RKt|Ft−1] =
(ν2 − 2)3(2ν1 + ν2 − 2)

√
8(ν2 − 4)

ν32(ν2 − 6)
√
ν1(ν1 + ν2 − 2)

µ3
t , (3)

where the conditional variance and skewness exist if ν2 > 4 and ν2 > 6 respectively. Both

the variance and skewness of the F distribution depend on ν1 and ν2. It is therefore

not immediately clear how these parameters affect each of these quantities separately. To

disentangle these effects, Figure 1 shows a surface plot for the variance and skewness for

different combinations of ν1 and ν2. We obtain two important insights. First, the variance

is decreasing in ν2 and ν1. However, if both values become small, the variance increases

relatively more due to ν1 compared to ν2. Second, the skewness is decreasing in both ν2

and ν1, but for small values of ν1 and ν2 the impact of ν2 on the skewness is larger than the

impact of ν1. We therefore label ν2 as the ‘tail shape’ or ‘skewness’ parameter and ν1 as the
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Figure 1: Variance and Skewness of the F distribution.
This figure shows the variance and skewness of an F distributed random variable with unit mean as a
function of ν1 and ν2.

’dispersion’ or ‘Vol-of-Vol’ parameter.

Our modeling framework starts with the univariate version of the multivariate HEAVY

GAS model of Opschoor et al. (2018) with HAR dynamics. The dynamics of the volatil-

ity process µt follow the generalized autoregressive score (GAS) framework of Creal et al.

(2013), augmented with HAR dynamics to accommodate for long-memory type persistence

of the variance. Allowing for long-memory type persistence is empirically important, see

for instance Corsi (2009). Using the score-driven dynamics, it is easy to derive a closed-

form expression for the likelihood function, which facilitates easy parameter estimation and

inference. Using Opschoor et al., the GAS HAR dynamics for µt are given by

RKt = µtεt εt ∼ F (1, ν1, ν2), (4)

µt+1 = ω0 + α0 sµ,t + βl µl1,t + β2 µl2,t + β3 µl3,t, (5)

sµ,t = St∇t = St
∂ log p(RKt|µt,Ft−1; ν1, ν2)

∂µt
(6)

=
ν1

ν1 + 1

(
ν1+ν2
ν2−2

RKt

(1 + ν1
ν2−2

RKt

µt
)
− µt

)
,

where ∂ log pRK(RKt|µt,Ft−1; ν1, ν2)/∂µt denotes the score with respect to µt, St is a scaling

factor, µl,t = l−1
∑l

i=1 µt−i, and l1 = 1, l2 = 12, and l3 = 60. We follow Opschoor et al. (2018)

and scale the score by 2µ2
t/(ν1+1) to account for the curvature of log pRK(RKt|µt,Ft−1; ν1, ν2)

with respect to µt. It is proportional to the inverse conditional Fisher information with re-
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Figure 2: Score of the F distribution with respect to µt
This figure shows the score of the F distribution (given in (6)) with respect to µt for various values of RK.
The score is computed by setting ν1 = 18, ν2 = 10 and µt to 7.

spect to µt. In the remainder of this paper, we label this model the GAS HAR model.

The scaled score (6) has an appealing interpretation for the dynamics of µt. It is the

difference between a weighted value of RKt and µt, where the weight accounts for the fat-

tailedness of RKt. That is, large values of RKt imply a low weight such that the impact

of a large RKt on µt+1 will be limited. Figure 2 visualizes this property of the score of a

fat-tailed distribution. If RKt increases, the score increases as well but the increase levels

off and becomes flat for large values of RKt, refraining µt+1 from exploding if ν2 is finite.

2.2 GAS model for the DoF parameters

The flexibility of the GAS framework is that we can easily handle time-variation in other

parameters than µt. This includes parameters describing the higher moments of εt. Time-

variation in parameters like ν1 and/or ν2 might be expected. For instance, during crisis

periods the tail shape might become relatively fat, while in calm periods εt might have

lighter tails, implying time-variation in ν2.
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We consider the following two time-varying parameter models for the DoF parameters.

In the first model, we allow for a time-varying dispersion parameter ν1,t,

f1,t+1 = ω1 + α1sν1,t + β1f1,t, ν1,t = 2 + exp(f1,t), (7a)

sν1,t =
∂ log p(RKt|µt,Ft−1; ν1,t, ν2)

∂ν1,t

∂ν1,t
∂f1,t

=

[
1

2
ψ

(
ν1,t + ν2

2

)
− 1

2
ψ
(ν1,t

2

)
+

1

2

(
log

(
ν1,t
ν2 − 1

)
+ 1

)
+

1

2
log

(
RKt

µt

)
−

1

2
log

(
1 +

ν1,t
ν2 − 2

RKt

µt

)
− ν1,t + ν2

2

1
ν2−2

RKt

µt

(1 + ν1,t
ν2−2

RKt

µt
)

]
(ν1,t − 2), (7b)

where ψ denotes the digamma function ψ(x) = ∂ log Γ(x)/∂x. We label this the GAS HAR

ν1 model. As we have seen before, this model focuses on modeling the Vol-of-Vol (see also

Corsi et al., 2008). In the second model, we consider time-variation in the tail shape via

the parameter ν2. We have

f2,t+1 = ω2 + α2sν2,t + β2f2,t, ν2,t = 2 + exp(f2,t), (8a)

sν2,t =
∂ log p(RKt|µt,Ft−1; ν1, ν2,t)

∂ν2,t

∂ν2,t
∂f2,t

=

[
1

2
ψ

(
ν1 + ν2,t

2

)
− 1

2
ψ
(ν2,t

2

)
− 1

2

ν1
ν2,t − 1

− 1

2
log

(
1 +

ν1
ν2,t − 2

RKt

µt

)
+

ν1 + ν2,t
2

ν1
(ν2,t−2)2

RKt

µt

(1 + ν1
ν2,t−2

RKt

µt
)

]
(ν2,t − 2). (8b)

The parameterization ν2,t = 2 + exp(f2,t) ensures that ν2,t > 2 for all f2,t ∈ R, such that

the mean of RKt always exists. We label this model the GAS HAR ν2. Note that we can

easily combine models (7a)–(7b) and (8a)–(8b) into a model with both time-varying mean,

Vol-of-Vol, and tail shape. We call this combined model the GAS HAR ν12 model.

Even though ν1 and ν2 relate to the higher order moments of the conditional distribution,

the score expressions in equations (7b) and (8b) show that the dynamics of f1,t and f2,t are

not driven by high order powers of RKt such as RKk
t for k ≥ 3. A similar result is found

by Lucas and Zhang (2016), who model the tails of asset returns by varying the degrees of
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Figure 3: Score of the F distribution with respect to ν1 and ν2
This figure shows the score of the F distribution (given in (8b)) with respect to ν1 (blue line) and ν2 (red
line) for various values of RK. The former (latter) score is computed by setting ν1 = 17(19), ν2,t = 13(17)
and µt to 7.

freedom parameter of a (skewed) t distribution. Figure 3 visualizes the impact of the score

on both ν1,t and ν2,t by varying RKt. The figure clearly shows that when RK becomes large,

both scores become more negative, and hence the values of ν1,t and ν2,t decrease. Note that

the impact of large values of the realized kernel on ν2,t is much larger than for ν1,t. This

is in line with Figure 1, which confirms our finding that ν2,t is more related to the tail of

the distribution and changes more than the Vol-of-Vol related parameter ν1,t for large RKt.

However, the rate of change is much more moderate than compared to a power RKk
t of

RKt for k ≥ 3. This robustness feature is very important for the time-series dynamics of

ν1,t and ν2,t, which will react much less violently to incidental outliers. Figure 1 also shows

that small values (near zero) of RK result in lower values of ν1,t and ν2,t. The reason is that

for low values of these parameters the F distribution also exhibits more leptokurtosis, i.e.,

a higher peak near zero, coinciding with more realizations of RKt close to zero.

A direct extension of the current models would be to allow the dynamics of µt and/or
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ν1,t to spill over into those of ν2,t, or vice versa. The updating mechanism for such a model

is given by


µt+1

f1,t+1

f2,t+1

 =


ω1

ω2

ω3

+


α11 α12 α13

α21 α22 α23

α31 α32 α33



sµ,t

sν1,t

sν2,t

+


β11 β12 β13

β21 β22 β23

β31 β32 β33



µt

f1,t

f2,t

 , (9)

For instance, the coefficients α31 and α32 now allow for a possible spillover effect of the

score of the mean and Vol-of-Vol to the tail shape parameter. Similarly, βij enables for a

spillover effect of the current level of the mean, volatility, and tail shape parameter to the

other parameters in the next period. In our empirical application, such spillovers did not

result in substantial model improvements. In other settings, however, such spillovers might

be relevant.

The static parameters in all models can be estimated by maximum likelihood using

a standard prediction error decomposition. We first estimate the GAS model with time-

varying µt only as our benchmark. Next, we make ν1,t and/or ν2,t time-varying. We parame-

terize the intercept ω for the GAS HAR models as (1−β) · f̄ , where f̄ denotes unconditional

mean of the time-varying parameter ft, and estimate f̄ rather than ω.

3 Data

The data consist of daily realized kernels of 30 U.S. equities from January 2, 2001 until

December 31, 2014 and contains T = 3521 trading days. We retrieve consolidated trades

(transaction prices) from the Trade and Quote (TAQ) database from 9:30 until 16:00 with

a time-stamp precision of one second. After cleaning the high-frequency data following the

guidelines of Barndorff-Nielsen et al. (2009) and Brownlees and Gallo (2006), we construct

realized kernels based on 5-minute returns following again Barndorff-Nielsen et al. (2009).

Table 1 provides summary statistics of the data. All realized kernels are multiplied

by a factor 10,000 and are thus denominated in basis points. The ‘skew’ column shows
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Table 1: Summary statistics of realized kernels(in basis points) of 30 assets from
the S&P 500 index
This table shows summary statistics of daily realized kernels of 30 stocks from the S&P 500 index. All
realized kernels are multiplied by 10,000 and are thus in terms of basis points. We show per company
the ticker symbol, the mean, standard deviation, minimum, maximum and the skewness. A bold number
indicates that the time series has been winsorized (upper tail) using the 99.75% quantile. The sample covers
the period January 2, 2001 until December 31 2014 and contains 3521 observations.

Ticker mean std. min max skew Ticker mean std. min max skew
AES 9.42 25.42 0.14 291 7.20 LLY 1.88 3.40 0.07 120 15.86
AIG 8.46 30.84 0.13 391 8.80 MCO 3.65 6.48 0.07 139 6.80
BAC 5.54 16.00 0.08 171 6.70 MDT 1.97 3.63 0.13 143 19.66
BXP 2.97 7.18 0.03 147 7.26 MMC 2.60 5.09 0.08 118 10.42
C 6.48 19.61 0.10 240 8.03 MO 1.74 3.11 0.09 55 7.70
CNX 8.06 15.69 0.14 339 9.13 MS 7.62 24.07 0.23 360 10.73
CSC 3.16 5.17 0.06 129 8.19 MTB 3.03 6.96 0.05 127 7.04
EQR 3.39 7.70 0.04 120 6.17 NLY 3.41 9.36 0.06 181 9.85
FLR 4.91 8.74 0.09 159 7.35 POT 4.41 9.57 0.06 207 9.99
GS 4.21 13.85 0.16 429 18.78 PXD 5.53 8.22 0.28 191 8.02
HAL 6.23 11.89 0.27 295 13.43 SU 3.97 7.86 0.08 200 11.24
HON 3.08 5.93 0.09 191 13.01 TV 3.18 5.28 0.09 167 13.19
JCP 6.70 8.35 0.31 187 6.08 USB 4.10 11.47 0.09 351 12.90
KEY 6.81 19.82 0.13 240 7.35 WMB 8.17 21.76 0.18 274 7.97
KO 1.39 2.54 0.05 89 15.02 XL 6.71 22.56 0.06 269 7.57

the huge positive skewness of each time series, which motivates the use of the fat-tailed F

distribution. Figure 4 shows the evolution of RKt for four random companies: Fluor Corp,

KeyCorp, Boston Properties INC, and Consol Energy Inc. For all stocks, there are quite

some peaks (outliers) in the data, especially during the 2007 Global Financial Crisis (GFC).

This can also be seen in Table 1, as the maxima of most time series are large. For example,

we have a maximum value of 159 for Fluor Corp. (FLR), implying a daily volatility of about

12.6%, which is large. Such high values may disrupt the estimated dynamic pattern of the

realized kernel and therefore require careful handling. For some stocks, the maximum RKt

becomes unrealistically large, such that we first winsorize the data using an upper tail level

of 99.75%. Despite this, the use of the F distribution will still turn out to be empirically

highly relevant.
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Figure 4: Realized kernel time series
This figure shows the time series of the realized kernels (RK) of Fluor Corp, KeyCorp, Boston Properties
INC, and Consol Energy Inc. For visual purposes, the vertical axes has been capped. The sample covers
the period January 2, 2001 until December 31 2014 and contains 3521 observations.

4 Empirical application

In this section, we first provide an in-sample analysis by estimating our models using the

whole sample to assess the possibly time-varying tail-behavior of the realized kernels. We

then show the forecasting power of the newly introduced score-driven model against some

benchmarks by computing 1-step-ahead Volatility-at-Risk (VolaR) forecasts and density

forecasts.

4.1 Benchmark models

We use two benchmark models in both the in-sample and out-of-sample analysis. First,

we compare the GAS HAR model with dynamic DoF parameters against the GAS HAR F

model (5) with static Vol-of-Vol and tail shape behavior. Second, we consider the MEM

model of Engle and Gallo (2006) to assess the value-added of a fat-tailed F distribution

12



against the thinner-tailed Gamma distribution for the realized kernel. The MEM model is

given by

RKt = µtεt, εt ∼ Gamma(1, νM), µt+1 = ωM + αMRKt + βMµt. (10)

Third, we benchmark our GAS model out-of-sample against a model for the logarithm of

RKt. A model for the log volatility using a more standard normal or Student’s t density

for the innovations could arguably be labeled as a simpler alternative to a model for RKt

directly using the more non-standard F distribution. To endow the model for log volatility

with sufficient dynamic flexibility, we use a score-driven time-varying mean and Vol-of-Vol,

following Corsi et al. (2008). The model is given by

logRKt = µt + σtεt, εt ∼ t(0, 1, ν0), (11a)

µt+1 = ω1 + α1sµ,t + β1µt, σ2
t+1 = ω2 + α2sσ2,t + β2σ

2
t , (11b)

sµ,t = Sµ
∂ log p(logRKt|µt,Ft−1; ν0)

∂µt
=

(ν0 + 1)εt
(ν0 − 2)σ2 + ε2t

− µt, (11c)

sσ2,t = Sσ2

∂ log p(logRKt|µt, σ2,Ft−1; ν0)

∂σ2
t

=

 ν0 + 1

(ν0 − 2) +
ε2t
σ2
t

 ε2t − σ2
t , (11d)

where σ2
t denotes the Vol-of-Vol. We also estimate a restricted version of this model by

setting σ2
t = σ2. Fat-tails are incorporated in this model by assuming a Student’s t distri-

bution for logRKt. Note that this model implies no integer moments exist for RKt itself.

This may qualify as an undesirable feature of benchmark model (11a), which we label as

the GAS t (Vol-of-Vol) model. All benchmark models are again estimated by Maximum

Likelihood.

4.2 In-sample results

Table 2 shows summary statistics of the estimated parameters using all observations for all

30 individual stocks from the S&P 500 index. We report the means, standard deviations,

13



and the 5th and 95th quantiles across the all assets.

The table shows the well-known high persistence in volatility, which is measured by the

sum of αvol and βvol in case of the MEM model, and by
∑3

j=1 βj,vol in case of the GAS HAR

models. There is also persistence in the time-varying ν1,t and ν2,t processes, although the

Vol-of-Vol time series ν1,t appears to be overall less persistent than the time series of the

‘shape’ parameter ν2,t: the 5% quantile (across all assets) of βν1 of the GAS H ν1 model

equals 0.540, while the 5% quantile of βν2 of the GAS H ν2 model equals 0.954. The same

pattern is apparent for the GAS H ν12 model.

Figure 5 shows differences in the maximized log-likelihood versus a MEM (upper panel)

or GAS HAR F (lower panel) benchmark for all 30 stocks. The stocks are ordered in

alphabetical order as in Table 1. The high values in the upper graph clearly suggests that

the conditional F distribution of the GAS HAR model fits the Realized Kernel considerably

better than the Gamma distribution of the MEM model. The bottom figure shows that

allowing for a time-varying Vol-of-Vol or shape further increases the statistical fit for each

stock. Note that two times the log-likelihood difference always exceeds the values 5.99

and 9.48, i.e., the 95% critical values χ2 distribution with two or four degrees of freedom,

respectively. Hence the increase in the likelihood of the models with a time-varying shape

or Vol-of-Vol is statistically significant w.r.t. the benchmark GAS H model. Allowing for

both time-varying DoFs at the same time again increases the fit, but less strong.

Figure 6 shows the implied standardized conditional skewness and variance of εt in (4)

for three specific stocks: WMB, BXP and AIG. Note that we exclude the effect of µt on

the skewness and Vol-of-Vol by dividing by µ3
t and µ2

t , respectively. The graphs for all three

stocks show the same picture: allowing only for a time-varying Vol-of-Vol parameter ν1,t

indeed produces a time-varying Vol-of-Vol, but hardly results in any time-variation in the

skewness. By contrast, allowing for a time-varying shape parameter ν2,t has a relatively

huge impact on the skewness, but also produces time-variation in the Vol-of-Vol graphs.

The skewness is particularly high during turbulent periods, such as the 2001 U.S. recession,

the 2007-2008 Global Financial Crisis and/or the 2013 Sovereign Debt Crisis. If only ν2,t

14
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Figure 5: Differences in maximized log-likelihood values
This figure shows the differences in the maximized log-likelihood between several score-driven models and
a benchmark model to model the dynamics of RKt. The upper figure shows the difference between the
log-likelihood of the GAS HAR model and the MEM model. The lower figure shows the differences between
the maximized log-likelihood values of the GAS HAR ν1, GAS HAR ν2, and GAS HAR ν12 models vis-á-vis
the GAS HAR model. The sample covers the period January 2, 2001 until December 31 2014 and contains
3521 observations.

varies and ν1 is kept constant, ν2,t also tries to capture the empirical variation in the Vol-of-

Vol. This causes excessive variation in estimated skewness from time to time, which appears

attributable to Vol-of-Vol increases (see WMB in 2001-2003 and AIG in 2009-2010) rather

than to genuine variation in the skewness itself. These effects disappear if we let both the

Vol-of-Vol (ν1,t) and tail shape (ν2,t) parameters vary over time. In that case, we obtain less

excessive variation in skewness than if only ν2 varies, but substantially more than if only
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Figure 6: Estimated Vol-of-Vol (ν1,t) and skewness (ν2,t)
This figure shows time series of the estimated Vol-of-Vol (variance) and skewness of εt in (4) associated with
the stocks WMB, BXP and AIG according to four models: the GAS HAR (blue line), GAS HAR ν1 (red
line), GAS HAR ν2 (yellow line), and the GAS HAR ν12 model (purple line). The sample covers the period
January 2, 2001 until December 31 2014 and contains 3521 observations.

ν1 varies. Allowing both parameters to vary thus appears empirically important. The next

section investigates the possible implications of these patterns in an out-of-sample analysis.

Based on the full-sample analysis, we conclude that the Vol-of-Vol and tail-shape pa-

rameters of the distribution of the realized kernel series vary through time. Allowing for

this time-variation improves the fit of the conditional distribution. The following subsection

investigates whether allowing for time-varying DoF parameters also improves the forecasting
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power of the distribution of RKt.

4.3 Out-of-sample results

We assess the short-term forecasting performance of the models in an economic setting by

predicting the 1-step ahead Volatility-at-Risk. As indicated by Caporin et al. (2017), the

VolaR is important for volatility traders and hedgers. Similar to the in-sample analysis of

the previous subsection, we consider the GAS HAR type models and the MEM model. In

addition to the MEM benchmark, we also consider the GAS t model for the logarithm of the

realized kernel in (11a)–(11d) as a further benchmark model. We use a recursive estimation

approach starting from an initial sample period of 1500 observations. This covers the period

2001–2006, just before the start of the global financial crisis, and therefore constitutes a

strong test on the forecasting performance of all models. We update the recursive estimates

roughly every two months (50 observations).

The VolaR computes the risk of extremely high volatility. The q% VolaR is defined as

the q-quantile of the distribution of the realized kernel,

P [RKt+1 > V olaRq
t+1|Ft] = q, (12)

where q is set to 5 percent. Note that the probability depends on the shape of the distribution

modeled by the (time-varying) degrees of freedom parameters, as well as the forecast of µt.

We backtest our predicted V olaR using the unconditional coverage (UC) test proposed by

Christoffersen (1998), which tests whether the number of violations, i.e. the number of times

RKt+1 > µt+1, is equal to the unconditional coverage probability q.

Table 3 shows the results. The upper part of the table gives the mean violation rates.

Both the MEM and the GAS models with fixed tail shape fail in at least 12 out of the 30

cases at a 1% significance level (bolded entries). The GAS HAR ν2 model, by contrast,

only fails in 3 out of 30 cases. Hence accounting for a time-varying shape results on average

in considerably better Volatility-at-Risk forecasts, even if one accounts for a time-varying

18



Table 3: 1-step ahead Volatility-at-Risk predictions
This table reports results on 1-step ahead 95% Volatility-at-Risk predictions, using the MEM, GAS HAR,
GAS HAR ν1, GAS HAR ν2 and the GAS HAR ν12 models, applied to daily realized kernels of 30 stocks
from the S&P 500 index. In addition, we consider the GAS t (denoted as GAS t1), GAS t2 Vol-of-Vol
(denoted as GAS t2) applied on the logarithm of the realized kernel. We use an expanding window where
the first window contains 1500 observations. The first part of the table lists the violation rate, i.e. the
fraction of predictedd VolaR violations by the realized RKt at time t. A bold number indicates that the
null-hypothesis of the unconditional coverage of Christoffersen (1998) is rejected at a 1% significance level.
The second part of the table summarizes the number of times the p-value of the test is below 10, 5 or 1%.
The out-of-sample period is from December 20, 2006 until December 31 2014 and contains 2021 observations.

Ticker logRKt RKt

GAS t1 GAS t2 MEM GAS GAS ν1 GAS ν2 GAS ν12
AES 0.036 0.042 0.035 0.040 0.043 0.048 0.048
AIG 0.072 0.074 0.052 0.063 0.065 0.063 0.064
BAC 0.092 0.084 0.082 0.091 0.083 0.085 0.083
BXP 0.026 0.053 0.032 0.024 0.052 0.050 0.047
C 0.090 0.082 0.079 0.087 0.074 0.081 0.077
CNX 0.031 0.064 0.027 0.025 0.053 0.051 0.055
CSC 0.054 0.055 0.039 0.054 0.053 0.045 0.046
EQR 0.040 0.056 0.043 0.040 0.055 0.054 0.060
FLR 0.045 0.054 0.038 0.040 0.051 0.047 0.051
GS 0.069 0.066 0.050 0.061 0.065 0.052 0.052
HAL 0.043 0.047 0.032 0.043 0.047 0.045 0.048
HON 0.044 0.049 0.037 0.042 0.049 0.047 0.048
JCP 0.071 0.068 0.069 0.066 0.068 0.062 0.068
KEY 0.069 0.066 0.059 0.058 0.059 0.057 0.057
KO 0.068 0.068 0.061 0.064 0.066 0.063 0.064
LLY 0.054 0.051 0.047 0.054 0.053 0.051 0.051
MCO 0.062 0.067 0.052 0.054 0.062 0.051 0.056
MDT 0.052 0.059 0.046 0.051 0.053 0.048 0.052
MMC 0.045 0.045 0.032 0.040 0.044 0.042 0.044
MO 0.035 0.037 0.017 0.031 0.036 0.037 0.042
MS 0.065 0.063 0.062 0.059 0.063 0.061 0.061
MTB 0.058 0.063 0.067 0.058 0.065 0.058 0.061
NLY 0.035 0.056 0.026 0.032 0.042 0.044 0.048
POT 0.034 0.070 0.040 0.032 0.051 0.057 0.057
PXD 0.037 0.054 0.043 0.040 0.057 0.055 0.056
SU 0.023 0.056 0.029 0.024 0.050 0.053 0.053
TV 0.039 0.044 0.045 0.042 0.046 0.042 0.047
USB 0.045 0.047 0.049 0.048 0.056 0.048 0.055
WMB 0.035 0.043 0.031 0.035 0.045 0.048 0.048
XL 0.051 0.056 0.048 0.050 0.054 0.049 0.054

Summary of UC-test
] p-val < 0.10 21 15 20 23 12 9 9
] p-val < 0.05 20 13 19 18 10 7 8
] p-val < 0.01 17 13 15 12 9 3 5
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Vol-of-Vol. Interestingly, the GAS models with F distribution and time-varying tail shape

for RKt also outperform the time-varying location and scale model for logRKt: the UC

test for the logRKt models fails too many times, namely 17 and 13 times out of 30 cases,

respectively.

We also compare the forecasting power of our models in a statistical setting, by consid-

ering 1-step ahead density forecasts of the realized kernel. We use the log score (see Mitchell

and Hall, 2005; Amisano and Giacomini, 2007) as a scoring rule to differentiate between the

density forecasts of the models. Define the difference in the log score between two density

forecasts M1 and M2 as

dls,t = Sls,t(RKt,M1)− Sls,t(RKt,M2) (13)

for t = 1501, 1502, . . . , T − 1 with Sls,t(RKt,Mj) (j = 1, 2) the log score at time t of the

density forecast corresponding to model Mj,

Sls,t(RKt,Mj) = log pt(RKt|µt,Ft−1,Mj) (14)

where pt(·) is the χ2 or F density. The null and alternative hypothesis of equal predictive

ability are now given by

H0 : E[dls] = 0, HA : E[dls] 6= 0, (15)

for all P out-of-sample (OOS) forecasts. This hypothesis can be tested by means of a

Diebold and Mariano (1995) (DM) test statistic

DMls = d̄/
√
σ̂2/P , (16)

with d̄ the out-of-sample average of the log score differences and σ̂2 a HAC-estimator of the

true variance σ2 of dls. A significantly negative value of DMls means that model M2 has a
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Table 4: 1-step ahead density forecasts of the realized kernel
This table reports results on 1-step ahead density forecasts of the realized kernel, using the MEM model
assuming a Γ distribution, the GAS HAR F model assuming an F distribution with fixed degrees of freedom
parameters and three GAS HAR models with time varying tail shape and/or dispersion parameter(s). The
models are applied to daily realized kernels of 30 stocks from the S&P 500 index. We use an expanding
window where the first window contains 1500 observations. The table summarizes the number of times the
test-statistic is negative (implying relatively better density forecasts produced by model M2) and the number
of negative significant test-statistics at a 10, 5 or 1% level. The out-of-sample period covers December 20,
2006 until December 31 2014 and contains 2021 observations.

Summary of DM-test
Model M1 MEM GAS HAR GAS HAR GAS HAR
Model M2 GAS HAR GAS HAR ν1 GAS HAR ν2 GAS HAR ν12
] neg 30 21 24 22

] neg sign. at 10% 29 12 14 17
] neg sign. at 5% 29 11 12 13
] neg sign. at 1% 29 6 10 9

superior forecast performance over model M1.

Figure 7 and Table 4 present the results on the density forecasts. The figure present the

histogram of the Diebold-Mariano tests for four different pairs of models. The dark blue bar

corresponds to the comparison of the log score performance of the MEM model (Gamma

distribution) to the GAS HAR model (F distribution). Clearly, the F distribution produces

considerably better density forecasts than the Gamma distribution: all Diebold-Mariano

tests for the 30 stocks are negative, and 29 significantly so. The light blue, green, and

yellow bars give the DM statistics across all 30 stocks for the GAS HAR model with static

ν1 and ν2 compared to its dynamic counterparts. Again, most DM statistics are negative. As

expected, the effect is less strong than the switch from a Gamma to an F distribution. Still,

however, it also appears relevant for out-of-sample density forecasts to allow for a time-

varying shape and/or Vol-of-Vol parameter. Table 4 confirms this by showing summary

statistics of the 30 DM test-statistics: the t-statistic is negative and statistically significant

in 12, 14 and 17 out of 30 cases at a 10% level. Even at a 1% significance level, the model

with a time-varying shape parameter ν2,t still significantly outperforms the GAS HAR model

with static shape parameter in a third of the cases.

We conclude that density forecasts improve when accounting for a time-varying shape
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Figure 7: Histogram of test-statistics on equal predictive accuracy
This figure shows a histogram of Diebold-Mariano test-statistics on equal predictive accuracy between a
pair of two models M1 and M2 using the log score. The four different colours present four different pairs of
models: the dark blue bar corresponds with differences in the log score between the MEM model (Gamma
distribution) and the GAS HAR model (F distribution). The light blue, green and yellow bars show test
statistics of predictive accuracy between the GAS HAR ν1, GAS HAR ν2 and GAS HAR ν12 model vis-á-vis
the benchmark GAS HAR model. A negative DM statistics means that the model M2 has superior predictive
accuracy. The out-of-sample period covers December 20, 2006 until December 31 2014 and contains 2021
observations.

and/or Vol-of-Vol parameter. In addition, we find that VolaR forecasts improve when the

realized kernel is modeled directly with the F distribution compared to modeling the loga-

rithm of RKt with a Student’s t distribution.

5 Conclusions

We introduced a new dynamic score driven model for the Vol-of-Vol and the tail shape of

realized kernels. The proposed model explicitly acknowledges that realized kernels are fat-

tailed. The proposed set-up is particularly suitable for cases where no explicit robustification

methods are applied while estimating realized measures. Using the GAS dynamics of Creal
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et al. (2013) and the recent work of Opschoor et al. (2018) based on the F distribution for

the realized kernel, we derived an observation driven model for the unobserved tail shape

and Vol-of-Vol parameters with robust propagation dynamics.

Using realized kernels of 30 U.S. stocks of the S&P 500 Index over 2001–2014, the new

model improves both the in-sample and out-of-sample fit of the realized kernel dynamics

vis-á-vis the MEM model of Engle and Gallo (2006) and the GAS F model with fixed tail

shape and Vol-of-Vol of Opschoor et al. (2018). Particularly Volatility-at-Risk predictions

are significantly better if one accounts for time-varying tail shape parameters. The model

also outperforms models based on the logarithm of the realized kernel. We conclude that

our new model provides a valuable tool when modeling and forecasting realized kernels, and

time-varying tail shapes are empirically important.
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