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Abstract

We propose a new approach for estimating mutual fund performance that simultaneously controls

for both factor exposure and firm characteristics. This double-adjusted alpha is motivated by

the recent findings that traditional Fama-French style factor models do not fully adjust returns

for the anomalies related to the factors. We formulate a hierarchical Bayesian model which

separates the part of the traditional alpha that can be related to firm and asset characteristics

from the true alpha. Our Bayesian approach is straightforward, has theoretical advantages over

the traditional two-pass estimation and leads to higher precision. Our double-adjusted alphas

produce a different ranking of mutual funds than the traditional alphas. We show that as a

consequence, the double-adjusted alphas lead to stronger evidence of persistence of mutual fund

performance. On the other hand, we find that the link between selectivity and alpha is driven

by the effect of characteristics. Finally, we show that fund flows are mostly driven by the true

skill part of the return and hardly by the effect of characteristics. We conclude that good

measurement of the true outperformance of mutual funds is crucial for understanding skill.

Keywords: Mutual fund performance, Double-adjusted performance, Firm characteristics, Hi-

erarchical Bayes
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1 Introduction

Evalutions of the performance of mutual funds commonly resort to factor models such as the Capital

Asset Pricing Model (CAPM), the three-factor model of Fama & French (1993) or the model of

Carhart (1997). Recently, the beta-pricing relation underlying these models has been put under

scrutiny, as the empirical asset pricing literature has looked beyond a unilateral explanation of cross-

sectional variation in equity returns by factor exposures. Instead, considerable evidence indicates

that firm and asset characteristics such as market capitalization, book-to-market ratios, and past

returns substantially help explaining the cross section of equity returns, see for example Avramov

& Chordia (2006); Brennan et al. (1998); Chordia et al. (2015).

The conclusion that both factors and characteristics should be used to explain equity returns

implies that both should also be used in the evaluation of the performance of mutual funds and

the determination of their alpha. Chen et al. (2018) show that using either factor models or

characteristics to adjust performance leads to materially different values for alpha, and a different

alpha-based ranking of mutual funds. Busse et al. (2017) propose a double-adjusted alpha as a

performance measure. In the first step, returns of a mutual fund are adjusted for factor exposures,

and in the second for characteristics of the fund’s holdings. They show by means of simulation that

their double-adjusted alpha is less prone to errors in performance evaluation than the traditional

single-adjusted alpha approach that only adjusts returns for factor exposures.

The improvement in performance evaluation offered by using both factors and characteristics

comes at the cost of a more complex analysis. Typically a two-pass procedure is employed, where

factor exposures are estimated in the first pass by time-series regressions, and the rewards to factor

exposures and characteristics in the second pass by a cross-sectional regression (cf. Busse et al.,

2017; Chordia et al., 2015). The pricing errors or alphas, which are taken as measure for skill by

Busse et al. (2017) also follow from this second pass. Because the factor exposures are estimated,

the second pass suffers from an errors-in-variable bias. Chordia et al. (2015) show how to correct

for this bias, whereas Jegadeesh et al. (2016) use an instrumental variable approach to solve it.

Using the intercepts of the first pass as dependent variables in a regression on characteristics as in

Busse et al. (2017) does not suffer from an errors-in-variables bias, but induces heteroskedasticity

and should address that these intercepts are not observed.

In this paper, we show how to circumvent the complexities arising from the two-pass estimation

by a hierarchical Bayesian approach to estimating a double-adjusted alpha. The model that we
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propose for asset returns consists of three layers. In the first layer, we relate daily asset returns to

risk factors by beta-coefficients and an intercept that all vary on a monthly basis. This intercept

corresponds with the traditional alpha. In the next layer, we relate this monthly intercept to asset

characteristics, a time-random effect and an asset-specific component. The sum of the two latter

terms gives the double-adjusted alpha. In the third layer, we specify that the time-random effect and

the coefficients for the asset characteristics for each month are drawn from a given distribution with

constant mean and variance. The asset-specific component is drawn from a distribution with a zero

mean and a variance that varies per month. Our model is similar to Cederburg & ODoherty (2015),

though we allow for more risk factors in the first layer. Moreover, they combine monthly returns

with yearly varying coefficients. Cosemans et al. (2015) use a similar setup to model time-variation

in betas related to firm characteristics.

As in Busse et al. (2017), our double-adjusted alpha is constructed by adjusting for exposure to

risk factors and the effect of characteristics, but our approach comes with several advantages. First,

we can estimate it in a single pass, which leads to efficiency gains and inferences for the double

adjusted alphas that account for the estimation uncertainty from both the time series and the

cross-sectional domain. Second, when estimating the parameters for mutual fund returns, the time-

random effect in the double-adjusted alpha measures the out- or underperformance of the average

mutual fund in a particular month. The mean of the distribution from which the time-random effects

are drawn measures the extent to which the average mutual fund can deliver outperformance. We

call this mean the aggregate alpha. Third, because we use a Bayesian approach, we can specify a

prior distribution for it. For example, if we believe that the model uses the correct risk factors and

characteristics, and that the average mutual funds does not possess skill, the prior distribution of

the aggregate alpha should be centered on zero. The posterior distribution then shows the support

for this hypothesis in the data.

We use the hierarchical Bayes approach to construct double-adjusted alphas for actively managed

equity mutual funds in the U.S. over the period 2001–2016. We take the risk factors from the five-

factor model of Fama & French (2015), augmented with a momentum factor as in Carhart (1997).

Jordan & Riley (2016) provide evidence favoring the addition of the profitability and investment

factors next to the standard market, size, value and momentum factors. We also include the

corresponding characteristics: marktet capitalization, book-to-market ratio, momentum, operating

profitability and asset growth. We aggregate the firm characteristics of a fund’s holdings to compute

aggregate monthly fund-level characteristics. Similar to the evidence on stock returns, we find that
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mutual fund factor betas and holdings characteristics are correlated, but the correlations are modest

in magnitude (e.g., the average of the absolute value is roughly 0.4), implying that factor betas and

characteristics do not convey identical information. When we conduct monthly cross-sectional

regressions of mutual fund returns on factor betas and characteristics as in Avramov & Chordia

(2006), we find that both account for about half of the model explained variation. This highlights

the importance of including both and constructing double-adjusted alphas.

Our results confirm that characteristics should be taken into account when evaluating mutual

fund performance. The posterior distribution of the coefficient for each characteristic when included

in isolation strongly indicates values different from zero, except for profitability. Including all char-

acteristics simultaneously yields similar estimates to the univariate results. This result means that

funds can exhibit higher relative performance based on standard factor model alpha by passively

loading on characteristics, even when the factor model explicitly adjust returns for those charac-

teristics. When we use the frequentist two-pass procedure as in Busse et al. (2017), we do not find

an effect for the size, momentum and investments characteristics. In our Bayesian approach, the

posterior mean of the aggregate alpha is negative, and the 95% posterior density does not include

zero. The two-pass procedure yields estimates that are close to this posterior mean, but it’s not

significant, indicating that our Bayesian approach leads to higher precision.

Next, we analyze the impact of our double-adjusted performance measure on relative mutual

fund performance. We find that the median change in percentile performance ranking is roughly 9%.

That is, a fund ranked in the median percentile according to the traditional six-factor alpha would

be ranked in the 41th or 59th percentile based on our double-adjusted measure. Furthermore, we

find that a large number of funds exhibit dramatic changes in percentile ranks, with 10 (5) percent

of funds exhibiting a mean change in percentile ranking greater than 22.99% (27.24%).

We continue our analysis by showing that replacing the traditional alpha by our more refined

double-adjusted alpha has consequences for our understanding of the causes and consequences of

skill in the mutual fund industry. First, we show that the changes in relative performance alter

inferences on the persistence of mutual fund performance as documented in Bollen & Busse (2004);

Carhart (1997). We create decile portfolios of mutual funds ranked on their traditional alpha and

their double-adjusted alpha based on the past 24 months. In both cases we observe that the top

decile beats the bottom decile in terms of alpha over periods of one quarter, one year and three years.

However, when we rank on double-adjusted alpha, significance levels are higher with t-statistics of

the difference well over 5, the difference is also present in returns, and persistence lasts up to six
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years after portfolio formation. These results confirm the findings of Busse et al. (2017), though we

examine a shorter period. The part of the traditional alpha that is related to characteristics does

not predict differences in returns or alpha, showing that that part of the traditional alpha should

be excluded from a measure of skill.

Second, we show that skill can no longer be linked to the selectivity of a fund. Amihud & Goyenko

(2013) document that the R2 of the first-pass regression of fund returns on the returns to factor

portfolios is negatively related to alpha. They argue that low R2 values show that fund managers

deviate from factor portfolios, and interpret the relation with alpha as a sign of skill. We find that

low R2 values are related to the part of the traditional alpha that is related to characteristics, but

not to the double-adjusted alpha that is a better measure for skill. It means that as commonly

found in finance literature low values of R2 indicate that factor models do not explain returns well,

but they cannot be directly interpreted as a measure for selectivity related to skill. Our results are

a bit stronger than those reported by Busse et al. (2017) over a longer time sample period.

Third, we investigate the relation between fund flows, factor exposures and alpha as in Barber et

al. (2016). They argue that truly sophisticated investors should adjust the returns of mutual funds

for all factor exposures and effects of characteristics, and should select funds only based on their

true alpha. In their analysis they only take factor exposures into account, but do not investigate

the effect of characteristics. We complement their analysis by showing that fund flows are most

responsive to the double-adjusted alpha. The effect of the double-adjusted alpha on fund flows is ten

times larger than the part of alpha that is related to characteristics. The effect of the characteristic

part is mainly driven by size and momentum. We interpret this result as evidence that at least part

of the investment community can really distinguish skilled fund managers.

Our findings contribute to the literature in two ways. First, we show how to efficiently estimate

double-adjusted alphas based on a hierarchical Bayesian model that combines both time series and

cross-sectional information, but without the need for a two-pass procedure. We theoretically argue

and empirically show that our approach leads to more precise estimates of the double-adjusted

alpha and the effect of characteristics than the two-pass approach that is used by Busse et al.

(2017); Chordia et al. (2015).

Second, we confirm and extend the conclusion of Busse et al. (2017) that the effect of characteris-

tics present in traditional alphas contaminates further analyses related to mutual fund performance.

Conform their results, rankings of mutual funds change substantially, leading to stronger evidence

of persistence in mutual fund performance. We also find that the relation between time series R2
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and skill disappears. As an extension, we show that the relation between alpha and fund flows

survives when we use double-adjusted alphas. Taken together, we conclude that the method to

measure alpha is crucial in the analysis of skill in mutual funds.

This paper proceeds as follows. Section 2 describes the data set, the construction of the fund-

level characteristics, and the cross-sectional regressions of mutual fund returns on factor betas and

characteristics. Section 3 describes our hierarchical Bayes approach to obtain our double-adjusted

performance measure. Section 4 examines the implications of this new performance measure on

previous findings in the mutual fund literature. Section 5 contains robustness checks. Finally,

Section 6 concludes.

2 Data

This section describes our data set and sample selection criteria, followed by summary statistics

for the mutual fund sample including the firm characteristics obtained from the holdings of mutual

funds. As a preliminary indication of the importance of characteristics, we run cross-sectional

regressions of individual mutual fund returns on their factor betas and characteristics using the

traditional two-pass procedure of Fama & MacBeth (1973) with rolling estimation of factor betas. To

address the inherent errors-in-variables (EIV) bias, we use the EIV-corrected estimator of Chordia

et al. (2015).

2.A Data Selection

The mutual fund database is constructed by combining the Center for Research in Security Prices

(CRSP) Survivor-Bias-Free U.S. Mutual Fund database with the Thomson Reuters Mutual Fund

Holdings S12 database, formerly known as CDA/Spectrum. To combine these databases, we rely on

the MFLINKS database provided by Russ Wermers on Wharton Research Data Services (WRDS).

The main focus is on U.S. equity actively managed mutual funds, for which the data on holdings is

the most complete and reliable; we eliminate balanced, bond, money market, international, index,

and sector funds, as well as funds not invested primarily in common stocks (for details on our

selection, see Appendix A).

We obtain both monthly and daily mutual fund returns from the CRSP mutual fund database.

Additional stock-level information on the fund holdings are retrieved from the CRSP monthly stock

file and the Compustat database. Consistent with previous literature, this study only considers
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common stocks traded on the New York Stock Exchange (NYSE), American Stock Exchange and

NASDAQ; we excluding real estate trusts, foreign companies, closed-end funds and primes (we only

retain shares codes 10 or 11). The final database for the empirical analysis consists of monthly

panel data on mutual fund holdings at the intersection of CRSP, Compustat and Thomson Reuters,

spanning the period from January 2001 to December 2016.

2.B Mutual Fund Holdings Characteristics

For each stock in a fund’s portfolio, we obtain firm characteristics, including market capitaliza-

tion, book-to-market ratio, momentum return, operating profitability and asset growth. Market

capitalization (Mcap) is defined as the product between the previous month-end stock price and

the previous month-end total shares outstanding. Book-to-Market (B/M) is the ratio between the

most recently available book value of equity and the previous month-end market capitalization.1

Momentum (Mom12) is the past twelve-month cumulative return over the period from month t−12

to t − 2, where the most recent month is excluded to avoid short-term reversal effects. Operating

profitability (Profit) is the current revenues minus costs of goods sold, interest expense, selling,

general, and administrative expenses, divided by book equity for the last fiscal year t − 1. Asset

growth (Invest) is the percentage change in total assets from fiscal year t − 2 to fiscal year t − 1.

We assume that all the accounting variables, e.g., book value of equity, operating profitability and

asset growth, are publicly available six months after the fiscal year-end.

For each fund in our sample, we use individual stock holdings to compute the monthly fund-level

market capitalization, book-to-market ratio, momentum return, operating profitability, and asset

growth. We weight each firm characteristic according to its current portfolio weight and calculate

a fund’s portfolio-weighted average characteristic. For each characteristic, values greater than the

0.995 percentile or less than the 0.005 percentile are set equal to the 0.995 and the 0.005 percentiles

each month.

Table 1 reports statistics on the characteristics and the factor betas. Each month, we calculate

the cross-sectional mean, standard deviation and percentiles for each characteristic and factor beta.

We report the time series averages of the monthly cross-sectional distribution for characteristics in

Panel C and for factor betas in Panel D. The factor betas are estimated from a six-factor model

which augments the Carhart (1997) four-factor model with the profitability and investment factors

1We supplement the book values from Compustat with hand-collected data provided by Moody’s. It includes
the data used in Davis et al. (2000) and contains data ranging from 1926 to 2001. The data is available on
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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from Fama & French (2015).2 The factor betas are derived from rolling-window regressions using

daily returns of the past two years.

Panel E of Table 1 reports the cross-sectional correlations between the factor betas and the

characteristics averaged across all sample months. Conform to expectations, the betas for SMB

and CMA are negatively correlated with their underlying characteristics, while the betas for HML,

WML, and RMW are positively correlated with their underlying characteristics. The correlations

vary in magnitude, with the highest correlations for the size and value factors (-0.82 and 0.75), the

momentum and investment factors yield slightly lower correlations (0.57 and -0.47), and a modest

correlation of 0.14 for the profitability factor. These correlations indicate that the factor betas and

the characteristics do not convey identical information on the expected return, especially for the

profitability factor. As a consequence, regressing fund returns on the risk factors may not fully

adjust performance for the main anomalies.

2.C The Importance of Characteristics

We examine the role of factor betas and firm characteristics in explaining the returns of mutual

funds. For this purpose we run monthly cross-sectional regressions of individual mutual fund returns

on their factor betas and characteristics following the traditional two-pass procedure of Fama &

MacBeth (1973) with rolling estimation of factor betas. The monthly regressions are of the form:

Rt = γ0t + γ1tB̂t−1 + γ2tZt−1 + ξt, t = 1, ..., T, (1)

where Rt is a Nt × 1 vector of excess fund returns, B̂t−1 is a Nt × K matrix of estimated factor

betas from a K-factor asset pricing model using the past two years of daily ending with month t−1,

and Nt is the number of funds in month t. The Nt × L matrix Z contains lagged characteristics

including the logarithm of market capitalization (Mcap), the logarithm of book-to-market ratio

(B/M), the logarithm of one plus the past twelve-month cumulative return (Mom12), operating

profitability (Profit), and asset growth (Invest). We employ the errors-in-variables (EIV)-corrected

estimator of Chordia et al. (2015) to obtain coefficient estimates of Γ̂t = (γ̂0t, γ̂1t, γ̂2t) in Eq.(1).

We describe the EIV-corrected estimator in Appendix B.

We present the results for the CAPM, the Fama & French (1993) three-factor model, the Carhart

(1997) four-factor model, the Fama & French (2015) five-factor model and a six-factor model with

2The risk factor returns for all factor models are provided on Ken French’s Website.
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all factors. Table 2 reports the estimated coefficients on both factor betas and characteristics with

the EIV bias correction and without. We find that all factor premia except for the value premium

are insignificant when their underlying characteristics are added to the model. Momentum return

(Mom12) is significant in all factor models which exclude the momentum factor with t-statistics just

above 2. Lou (2012) and Vayanos & Woolley (2013) argue that winning funds, by scaling up their

existing holdings that are concentrated in past winning stocks, drive up the returns of past winning

stocks and thereby enhance the subsequent return of past winning stocks. This self-enhancing

mechanism may lead to higher momentum returns for funds.

We use the measure of Lindeman & Lindeman (1980)3 to evaluate the relative contributions

of factor betas and characteristics to the explanatory power of the joint model. We find that in

each factor model, almost 50% of the model R2 is attributed to the characteristics. The relative

contributions of the size and value betas decrease by roughly 50% when Mcap and B/M are added

to the joint model. The RMW and CMA betas contribute roughly twice as much as their respective

characteristics.

To sum up, the factor betas and characteristics both account for roughly half of the model

explained variation in fund returns. These findings are consistent with those of Chordia et al.

(2015), which find that in a joint model, firm characteristics explain a majority of cross-sectional

variation in stock returns. In the remainder of this paper, we will explore the implications of the

equal explanatory power of factor betas and characteristics for the performance evaluation of mutual

funds.

3 Double-adjusted Mutual Fund Performance Measure

There are many alternatives to evaluate the performance of mutual funds. A common performance

measure is a fund’s alpha, the return adjusted for exposures to risk factors that drives most of

the fund’s return. The intercept (alpha) is then interpreted as the abnormal return reflecting the

ability of the fund manager. Alternatively, funds are evaluated relative to the characteristic-based

benchmark approach of Daniel, Grinblatt, Titman, and Wermers (DGTW; 1997). The DGTW

measure controls for the main anomalies through characteristic-sorted portfolio returns. We will

examine this measure in Section 5.B.

3The measure of Lindeman & Lindeman (1980) uses sequential sums of squares from the linear model. In particular,
the relative contribution of regressor j is measured by averaging over all possible permutations of p regressors the
increase of R2 when regressor j is added to the model based on the other regressors entered before j in the model.

8



We develop a performance measure which adjusts the alphas from a linear factor model for fund

exposures to characteristics. We adopt a system of equations in which we simultaneously model

conditional factor model alphas and analyze the cross-sectional relation between fund alphas and

characteristics. The model takes on the following structure:

Riτ,t = αit + β′itFτ,t + εiτ,t, εiτ,t ∼ N (0, σ2
εit), τ = t− T + 1, ..., t, i = 1, ..., Nt (2)

αit = δ0t + δ′1tZit−1 + ηit, ηit ∼ N (0, σ2
ηt), t = 1, ..., T, (3)

where Riτ,t and Fτ,t are daily excess returns of fund i and daily factor returns, respectively. The

superscript τ is used to index the daily returns in the rolling window ending in month t and T is

the length of the rolling window, that is, two years (T ≈ 500 trading days).

The vector δt = [δ0t δ1t]’ contains the coefficients that measures for a given month t the average

abnormal returns of mutual funds and the relation between alphas (αit) and characteristics (Zit−1).

We follow Cederburg & ODoherty (2015) in adding a third layer to the model hierarchy:4

δt = δ̄ + vt, vt ∼ N (0,Σδ), t = 1, ..., T, (4)

where the monthly coefficients {δt}Tt=1 are drawn from a multivariate normal distribution centered

at δ̄ with covariance matrix Σδ. This layer of the model means that the coefficients δt can be

interpreted as time-random effects in a panel-data model.

We treat δ̄ as an unknown parameter and aggregate the evidence about δt across each month

in our sample to estimate δ̄. If the factor model prices the mutual funds, we should not find a

significant (systematic) relation between alphas and characteristics, such that the elements of δ̄

should be centered around zero. If an element of δ̄ deviates from zero, there is evidence that the

factor model inadequately adjusts for exposure to a certain characteristic, such that fund managers

can generate alpha by passively loading on this characteristic. In the remainder of this paper, we

analyze δ̄ when assessing the importance of adjusting alpha for passive exposures to characteristics.

Eq.(2) represents the factor model for each fund i based on daily fund returns from the rolling

window. In our empirical analysis we use a six-factor model which augments the Carhart (1997) four-

factor model with the profitability and investment factors from Fama & French (2015). In Eq.(3),

4Cederburg & ODoherty (2015) propose a hierarchical Bayes approach to model CAPM alphas conditioned on a
set of firm characteristics. Our model extends their work by including daily returns and by evaluating a larger set of
risk factors. Another example of hierarchical Bayes is presented in Cosemans et al. (2015), which specify a hierarchical
prior on the parameters in their conditional factor beta model.
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we relate the cross-section of alphas to the characteristics from the previous month. In Z we include

the logarithm of market capitalization (Mcap), the logarithm of book-to-market ratio (B/M), the

logarithm of one plus the past twelve-month cumulative return (Mom12), operating profitability

(Profit), and asset growth (Invest). Before including them in the regressions, each characteristic

is standardized by subtracting the cross-sectional mean in each month. In each rolling window we

obtain estimates of αit and δt and we roll the window a month at a time.

Using the definitions in Busse et al. (2017), double-adjusted performance measure of fund i in

month t is defined as

α∗it = αit − δ′1tZit−1 = δ0t + ηit. (5)

In this way we control for both the exposures to risk factors through αit and the effects of firm

characteristics by subtracting the component of alpha attributable to passive exposures to firm

characteristics. Characteristic-driven performance is defined as

αcharit = αit − α∗it = δ′1tZit−1. (6)

The errors in Eqs.(2) and (3) are assumed to be independent and normally distributed, such that

excess returns are conditionally independent across funds and within rolling windows. Similarly,

alphas are conditionally independent across funds and the monthly relations δt are independent

conditional on δ̄. The main advantage of the specification of independent errors in returns and alphas

is that we avoid the estimation of large variance-covariance matrices to capture autocorrelations

and cross-sectional correlations.

3.A Model Estimation

We adopt a hierarchical Bayes approach to estimate Eqs.(2), (3) and (4) simultaneously.5 This ap-

proach yields several advantages over the alternatives, as the Bayesian approach is computationally

more attractive than maximum likelihood estimation, and yields better finite sample properties than

General Method of Moments (GMM).6 Another main advantage of our model is that we estimate

all model parameters simultaneously. Conversely, a majority of previous studies employ a two-pass

5The first examples of Bayesian inference in asset pricing models are presented in McCulloch & Rossi (1990)
and Harvey & Zhou (1990). More recently, Cremers (2006) propose Bayesian tests for the mean-variance efficiency
of a given portfolio. Avramov & Chao (2006) tests the international Capital Asset Pricing Model (ICAPM) with
time-varying risk premia using posterior probabilities.

6Ferson & Foerster (1995) demonstrate that GMM has poor finite sample properties in the context of latent variable
asset pricing models.
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procedure to estimate the relation between alphas and characteristics (e.g., Brennan et al. (1998),

Avramov & Chordia (2006) and Busse et al. (2017)). Brennan et al. (1998) find that characteristics

(e.g., size, book-to-market, momentum) remain significantly related to expected returns even after

the risk-adjustment by a factor model with risk factors based on those same characteristics. The

two-step procedure includes the estimation of a factor model before regressing the resulting esti-

mates of alpha on the firm characteristics. In the first step alphas are estimated with error such that

the variance of these estimates equal the variance of the true alphas plus a measurement error term.

Consequently, the standard errors of the estimated coefficients in the second-step regression are

overstated. This measurement error may lead to insignificant coefficients even if the data conveys

a significant relation between alphas and characteristics. A simultaneous estimation of all model

parameters mitigates this measurement error problem.

3.A.1 Prior Distributions

To conduct Bayesian estimation techniques, we need to specify prior distributions for the model

parameters. A prior distribution incorporates a researcher’s belief about the parameter of inter-

est, often founded on empirical research or economic theory. We specify proper, but relatively

uninformative, priors for all parameters.7

Regarding the loadings on characteristics, the expression in Eq.(4) implies the following hierar-

chical prior on δt

δt|δ̄,Σδ ∼ N (δ̄,Σδ), (7)

which is a normal distribution with location parameter δ̄ and covariance matrix Σδ. We treat δ̄ and

Σδ as unknown parameters and assume the following uninformative priors

δ̄ ∼ N (d,Σd) , (8)

Σδ ∼ IW ([ψδSδ], ψδ) , (9)

where IW denotes the inverted Wishart distribution with degrees of freedom ψδ and scale matrix

[ψδSδ]. We specify an uninformative prior for δ̄ by setting d equal to the zero vector and Σd to

100I, where I is the identity matrix. Setting d equal to the zero vector implies that alphas are not

associated with characteristics, which contradicts previous empirical findings. However, by setting

7Hobert & Casella (1996) advocate the use of proper priors in estimating hierarchical models. They find that using
improper priors may lead to improper posterior distributions which is difficult to detect from posterior draws.
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the diagonal elements of Σd to large values we minimize the influence of the prior on the posterior

distribution of δ̄. ψβ is set to the dimension of Σδ, since this value gives the lowest weight to the

prior (see, Gelman et al. (2014)). The matrix Sδ is the prior mean of Σδ and is set to I.

Regarding the fund-specific parameters, the hierarchical structure of our model implies the

following prior on αit

αit|δt, σ2
ηt ∼ N (δ0t + δ′1tZit−1, σ

2
ηt), (10)

in which the prior mean is dependent on characteristics. The posterior of αit combines information

from both the fund-specific time series of returns and from the cross-section of alphas. The relative

importance of both components depends on the rolling window size T and the cross-sectional residual

variance σ2
ηt. We specify a conjugate prior for βit as

βit ∼ N (β̄,Σβ), (11)

where we set β̄ equal to the sample mean of rolling window estimates of fund betas (see Panel D of

Table 1). We define Σβ equal to 10I to let the data speak for itself.

We complete the prior specification of our model by specifying conjugate priors for the idiosyn-

cratic variances σ2
εit and σ2

ηt as

σ2
εit ∼ IG2(vε, sε) (12)

σ2
ηt ∼ IG2(vη, sη), (13)

where IG2 denotes the inverted Gamma-2 distribution. We specify relative uninformative priors by

setting the degrees of freedom parameters vε and vη equal to 3 and the scale parameters sε and sη

equal to 10−3.

3.A.2 Markov Chain Monte Carlo Gibbs Sampler

We employ the Markov Chain Monte Carlo (MCMC) Gibbs sampler8 to estimate the model. An

attractive feature of MCMC techniques is that samples of random drawings of the model parameters

θ can be generated from the joint posterior indirectly, without the need to specify the exact form

of this joint distribution directly. The Gibbs sampler uses an iterative procedure to create Markov

chains by simulating from full conditional posteriors instead which are typically much easier to

8For an extensive reading on the application of the Gibbs sampler in several econometric models, we refer to
De Pooter et al. (2006).
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derive. In particular, the parameter vector θ is partitioned into B blocks (θ(1),...,θ(B)). At each

iteration of the Gibbs sampler each block is sampled from its posterior distribution conditioned on

the other blocks and the data. After the Markov chains have converged, the sets of draws that

are obtained from the conditional posteriors can be effectively considered as samples from the joint

posterior. We provide the steps in the Gibbs sampler and the derivation of the full conditional

posterior distributions in Appendix D.

To check the convergence of the Gibbs sampler, we turn to standard diagnostics tests, including

the partial means test of Geweke (1992) and the Gelman-Rubin statistic described in Gelman et al.

(2014). Both tests indicate that the Markov Chains have converged after 2500 iterations. Therefore,

in our empirical analysis we run 5000 iterations of the Gibbs sampler and discard the first 2500

iterations as burn-in period. The remaining draws are used to derive posterior results. The mth

draw of double-adjusted alpha and characteristic-driven performance are given by

α∗it
(m) = α

(m)
it − δ

′
1t

(m)Zit−1 and αcharit
(m) = δ′1t

(m)Zit−1 (14)

The posterior mean of draws {α∗it(m)}5000
m=2501 and {αcharit

(m)}5000
m=2501 constitute the final estimates of

double-adjusted alpha and characteristic-driven performance, respectively.

3.B Estimation Results

Table 3 summarizes the relation between six-factor alphas and fund-level characteristics. In Panel

A, we report the posterior estimates of the distribution of δ̄, which measures the systematic relation

between alphas and characteristics over the entire sample period. When we estimate the model

for each characteristic in isolation, we find that market capitalization (Mcap) and book-to-market

(B/M) are negatively associated with alpha, while momentum return (Mom12) and asset growth

(Invest) are positively associated with alpha. Alphas are unrelated to the profitability characteristic.

If the characteristics are correlated with each other and offer little unique information about alphas

then studying each characteristic in isolation will overstate the failings of the factor model. If we

specify alpha as a linear combination of all characteristics, Mcap, B/M, Mom12 and Invest remain

significantly associated with alphas. The constant term in Table 3 measures the outperformance of

the average mutual fund relative to the Fama-French benchmarks, which we refer to as the aggregate

alpha. Over our sample period we find that the average mutual fund earns negative risk-adjusted

returns.
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Recall that the six-factor model adjusts returns for exposures to factors based on Mcap, B/M,

Mom6, Profit, and Invest. The results in Panel A suggest that the six-factor model under-adjusts for

exposures to the size and momentum factors, while the model appears to over-adjust for influences

related to the value and investment factors. In other words, funds holding small (high-momentum)

stocks show higher abnormal return despite the risk-adjustment to the SMB (WML) factor. Con-

versely, funds holding positions in high book-to-market (conservative investment) stocks under

perform, contradictory to previous findings on value and investment effects. Similar conclusions are

drawn by Huij & Verbeek (2009), which find that fund managers following a value-orientated strat-

egy earn a substantially lower premium than those projected by the hypothetical hedge portfolio

HML, while the momentum premium earned by funds is larger than that projected by the WML

factor.

In Panel B we report the estimates from a standard OLS two-step procedure. In each month t,

we estimate the six-factor model for each fund i. We then regress cross-sectionally the estimated

alphas on a constant and lagged characteristics. In the style of Fama & MacBeth (1973) we report

the time series averages of the cross-sectional coefficients. The estimation results using OLS lead to

several differences in comparison to the Bayesian estimation. While the inferences regarding B/M,

Mom12 and Invest are similar between the two estimation methods, alpha becomes unrelated to

Mcap using the two-step OLS approach. Moreover, if we consider all characteristics simultaneously

we find that all characteristics but B/M become unrelated with alphas using the two-step OLS

approach.

Inferences for the hierarchical Bayes and two-step OLS approach may differ due to way informa-

tion from both the cross-section and time series is combined. In the hierarchical Bayes approach, the

estimated factor model alphas are a weighted average of fund-specific time series information and

cross-sectional information, with the precision (the inverse of the variance) as weights. Conversely,

the two-step approach directly uses parameter estimates into the second-stage regression, thereby

not exploiting information from the cross-section of funds, which makes the two-step approach more

prone to the influence of outliers. As these outliers are marked by considerable uncertainty, the hi-

erarchical Bayes approach is more suitable to combine multiple sources of information with varying

degrees of precision.

Figure 1 graphs the time series plots of the posterior mean and 95% credible interval of {δt}Tt=1,

obtained from estimating the model using all characteristics. As expected, we find the relation

between six-factor alpha and a given characteristic to be varying across our sample. For instance,
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we find that δt for the momentum characteristic is negative in times when momentum stocks perform

poorly (e.g., the internet bubble (post 2001) and the financial crisis of 2007-2008). Moreover, we find

that the monthly posterior distributions for the size, value and momentum characteristics exhibit

higher precision in comparison to the posteriors of the other two characteristics.

Finally, we examine whether our results are robust to the risk factors included in Eq.(2). In

Table 4 we add the posterior results from the model using alphas from the CAPM, the Fama-French

three-factor model, the Carhart (1997) four-factor model and the Fama & French (2015) five-factor

model. The systematic relation between alphas and characteristics are similar across factor models.

The posterior means of B/M, Mom12 and Invest vary the most across the factor models, indicating

that cross-correlations are the largest between the value, momentum and investment effects, both

through the risk factors and the characteristics. Interestingly, we find that the posterior mean of

B/M changes sign when the quality factors are considered. The value factor in the three- and four-

factor models under-adjusts for the value factor, as alphas are positively related to funds holding

value stocks. Conversely, alphas from the five- and six-factor models are positively related to funds

holding growth stocks. This contradiction is possibly caused by the interaction between the value

factor and the quality factors, which is a negative correlation between the two. All in all, we

conclude that the traditional Fama-French risk factors (jointly) insufficiently adjust returns for the

main anomalies.
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4 Impact on Relative Mutual Fund Performance

In Section 2.C, we show the importance of incorporating characteristics in explaining the returns of

mutual funds. The results in the previous section demonstrate an important flaw of the traditional

factor model alphas, insofar as they attribute skill to passive exposures to characteristics. Therefore,

we propose a mutual fund performance measure which adjusts performance for exposures to both

factor betas and characteristics.

In this section, we examine the extent to which our new double-adjusted alpha affects inference

relating to relative mutual fund performance. We replicate the work of several mutual fund per-

formance studies using six-factor alpha as our baseline measure of performance, computed using

the traditional time series regression approach.9 Because we use traditional alpha as our baseline

performance measure, we can easily extend previous analysis with the two components of alpha,

our double-adjusted measure and the portion of alpha associated with characteristics (see Eqs.(5)

and (6)). The decomposition of alpha will indicate the extent to which both components contribute

to the main findings of previous studies.10

We begin by calculating the difference in fund percentile performance rankings between using

double-adjusted alpha in comparison to those based on alpha. Next, central to the mutual fund per-

formance literature are studies that analyze persistence in fund performance, e.g., Carhart (1997).

Other studies examine the relation between fund performance and certain fund features, such as a

fund’s factor model R-squared (Amihud & Goyenko, 2013) and a fund’s investors cash flows (Barber

et al., 2016). We plug in our estimates of the posterior mean of both components of alpha in the

analysis of these papers. We use the estimation methods used in these papers to accommodate a

fair comparison between inferences based on traditional alpha and those based on double-adjusted

alpha.

4.A Relative Mutual Fund Performance Rankings

We examine the degree to which our new performance measure alters the performance rankings of

funds. In each month in our sample, we sort funds into percentiles based on six-factor alpha (α)

9Even though the hierarchical Bayes model also provides estimates of fund alphas, we choose the time series
regression approach as this is standard in previous literature. Moreover, the Bayesian estimate of standard alpha
makes use of cross-sectional information. To highlight the difference made by adjusting performance for characteristics,
we compare our double-adjusted alpha to a performance measure which is not influenced by these characteristics.

10We follow Busse et al. (2017) in reassessing previous findings in the mutual fund literature using the double-
adjusted performance measure. In addition to the analyses in this paper, they also reevaluated the relation between
fund performance and the industry concentration (Kacperczyk et al., 2005), the return gap (Kacperczyk et al., 2008),
and active share (Cremers & Petajisto, 2009).
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and on double-adjusted six-factor alpha (α∗). Given a number of Nt funds in month t, we obtain

pairs of percentile ranks for each fund {(Pα1t, Pα
∗

1t ), ..., (PαNtt, P
α∗
Ntt

)}. Using the percentile rank pairs

we compute Kendall’s tau coefficient, which is a correlation coefficient between two rankings. We

find a time series average of Kendall’s tau equal to 0.70, which indicates differences between the

two rankings.

To examine the impact of double-adjusted alpha on performance rankings in more detail, we

compute the difference between the performance ranks Pαt and Pα
∗

t for each fund in each month

t. Table 5 presents the time series average distribution (across all months in our sample) of the

difference in percentile performance rankings. We find that the median change in percentile rankings

is roughly 9%, i.e., a fund which is ranked in the median percentile according to alpha is ranked in

either the 41th or 59th percentile based on double-adjusted alpha. Moreover, many funds exhibit

dramatic changes in percentile ranking, with 10 (5) percent of funds exhibiting a mean change in

percentile ranking of at least 22.99% (27.24%). Thus, we find that adjusting traditional alpha for

characteristics materially impacts the performance ranking of funds.

4.B Mutual Fund Return Persistence

Mutual fund persistence is well documented in the finance literature. Early works include Grinblatt

& Titman (1992), Brown & Goetzmann (1995) and Wermers (1997), which document significant

persistence in mutual fund rankings based on returns after adjustment for risk. This persistence

lasts over horizons of one to three years, and they attribute the persistence to “hot hands” or

common investment strategies. Carhart (1997) add stock momentum as an additional risk factor

and find a significant difference in abnormal returns of more than 4% on an annual basis. Drawing

on Carhart’s findings, Bollen & Busse (2004) find an average abnormal return of 39 basis points for

the top quintile in the post-ranking quarter. This post-ranking abnormal return disappears when

evaluated over longer periods.

We examine return persistence in several performance measures: six-factor alpha (α), double-

adjusted six-factor alpha (α∗) and characteristic-driven performance (αchar). If our new perfor-

mance measure, which accounts for characteristics, is a better indicator of true skill, we expect

double-adjusted alpha to account for most of the persistence in alpha, such that double-adjusted

alpha persists for a longer period. In this case, there should be no distinct return pattern us-

ing characteristic-driven performance. That is, if true skill goes beyond the premiums which are

passively associated with characteristics.
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We replicate the studies on return persistence.11 Each quarter-end, we sort funds into deciles

using the aforementioned performance measures; decile 10 contains the best performing funds and

decile 1 contains the worst performing funds. We hold the sorted portfolios for up to six years

and compute the equal-weighted return in each decile in the post-ranking period. To deal with

overlapping decile portfolios formed in different quarters, we compute the equal-weighted return

across overlapping periods. We examine the post-ranking performance by concatenating the returns

of all post-ranking periods for each decile and estimate six-factor alpha using the resulting time series

of post-ranking (monthly) returns for each decile.

Table 6 presents the persistence results. Panel A shows strong evidence of persistence in standard

six-factor alpha. In the short term, the average difference in alpha between the top and bottom

deciles is 0.28 (t = 3.62) in the following quarter and 0.27 (t = 3.85) in the year thereafter, both of

which significant from a statistical and an economic perspective. This abnormal return difference

remains statistically significant in the second and third year after formation, followed by a decrease

in the top-minus-bottom post ranking abnormal return from the fourth year onwards. Consistent

with the findings of Carhart (1997), we find that the majority of the return spread is driven by past

losing funds in the bottom deciles. In untabulated results, we find significant negative alphas in the

bottom decile with t-statistics below -3.

The results in Panel B show strong evidence that the double-adjusted six-factor alpha predicts

future fund performance. We find a distinct return pattern across deciles sorted on our double-

adjusted performance measure, as post-ranking alpha increases nearly monotonically across deciles

and indicates a sizable return spread of 0.19 (t = 5.31) in the post-ranking quarter. The top-minus-

bottom portfolios yield statistical significant alphas between 0.05 and 0.17, which persist up to

six years. In Figure 2, we analyze return persistence on the long term. We graph the cumulative

six-factor alpha of the top-minus-bottom portfolios, where the three plots lines represent alternative

sorts on six-factor alpha, double-adjusted six-factor alpha, and characteristic-driven performance.

The plots indicate an upward trend in the cumulative performance of both alpha and double-

adjusted alpha, which lasts for the entire holding period of ten years. The results in Panel B of

Table 6 combined with the plots from Figure 2 suggest that double-adjusted alpha reflects true skill,

which pays off in the long run such that persistence in this component of alpha causes most of the

11This paper adopts a similar approach to the one used in Carhart (1997). The only difference is the frequency of
rebalancing, which is set to a quarterly basis in this work. Busse et al. (2017) analyzed persistence in their double-
adjusted performance measure. They adopt an annual rebalancing of portfolios and found new evidence of persistence
in mutual fund skill based on their double-adjusted performance measure.
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persistence in alpha. Our results are in line with the persistence analysis in Busse et al. (2017).

Using their double-ajdusted alpha they find evidence of persistence in fund four-factor alphas up to

nine years after the initial ranking. We show that persistence is also present when a shorter sample

period is used.

In Panel C of Table 6 we turn to the component of alpha driven by passively loading on char-

acteristics. The average return difference in alpha in the first year after formation is 0.16 with

insignificant t-statistics, followed by a slight reversal from the second year onwards. The graph

in Figure 2 shows that sorts on characteristic-driven performance does not exhibit a distinct re-

turn pattern after formation in the long term. These results indicate that returns associated with

characteristics do not convey information about future fund performance. This supports the claim

that evidence of return predictability in alpha is mostly accounted for by the component adjusted

for passive loadings on characteristics. By removing this noisy component, which does not detect

skill, double-adjusted alpha is a more precise measurement of skill, leading to stronger evidence of

persistence in mutual fund performance.

4.C Mutual Fund’s R-squared

Recent studies show that fund performance is positively affected by fund selectivity or active fund

management, which is measured by the deviation of fund holdings from a diversified benchmark

portfolio. This selectivity measure requires data on the holdings of funds and knowledge on the

benchmark indices of funds, which are difficult to obtain. In addition, the benchmark portfolio is

not always accurately defined. Amihud & Goyenko (2013) propose a simple and intuitive measure

of mutual fund selectivity:12 the fund’s R-squared (R2), the proportion of the return variance that

is explained by the benchmark portfolios, estimated from a multi-factor model. Amihud & Goyenko

(2013) hypothesize that a low R2 corresponds to high stock selectivity, as a low R2 indicates that

mutual returns are not well explained by the Fama-French risk factors. In this respect, they find

that R2 has a negative and significant predictive effect on fund performance. We replicate the work

of Amihud & Goyenko (2013) by examining the relation between a fund’s factor model R2 and

fund performance. Each month, we calculate a fund’s R2 from a six-factor model over a 24-month

estimation period using daily returns. Following Amihud & Goyenko (2013), since the distribution

12Amihud & Goyenko (2013) define fund selectivity as 1 - R2 = RMSE2

TotalVariance
= RMSE2

SystemeticRisk+RMSE2 .

RMSE is the idiosyncratic volatility, which is the volatility of the factor model residuals. SystemeticRisk is the return
variance that is due to the risk factors. Fund selectivity is greater if the fund’s idiosyncratic volatility is higher relative
to its total variance, meaning that the fund’s volatility is less driven by factor-based (systematic) volatility.
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of R2 is negatively skewed, we apply the log transformation of R2: R̃2 = log
[ √

R2

(1−
√
R2)

]
. We test

whether fund selectivity explains fund performance by the following panel regression

Performanceit = c0t + c1tR̃
2
it + c2tExpRatioit−1 + c3tTurnoverit−1 + c4tlog(TNA)it−1

+ c5tlog(FundAge)it−1 + vit, (15)

where Performanceit refers to fund i’s six-factor alpha (α), double-adjusted six-factor alpha (α∗), or

characteristic-driven performance (αchar), all estimated over a rolling window of 24 months ending

in month t. We relate fund performance to the contemporaneous log-transformed R-squared, R̃2,

which is measured over the same rolling window period. Lagged control variables are included in

the regression comprising ExpRatio, the total expenses divided by a fund’s Total Net Assets (TNA);

Turnover, defined as the minimum of aggregated sales or aggregated purchases divided by TNA;

TNA in logarithm; and FundAge in logarithm, computed as the difference in years between the

current date and the date the fund was first offered. The model residuals are given by vit. We

estimate this regression in each month in our sample.

Table 7 reports the averaged cross-sectional regression coefficients along with Fama-MacBeth

t-statistics with the Newey & West (1986) correction for time series correlation with 12 lags. Firstly,

similar to the findings of Amihud & Goyenko (2013), we find that alpha is higher for funds with lower

R-squared, that is, funds with high stock selectivity. The control variables yield no significant esti-

mates. When we consider double-adjusted alpha we find no significant relation with R̃2. However,

the results indicate a significant (inverse) relation between the characteristic-driven component of

alpha and R-squared, with t-statistics well above two. A potential reason might be that character-

istics can help explain fund returns in cases where the Fama-French factors fail to do so, such that

we find a strong inverse relation between characteristic-driven performance and R-squared. Thus,

we find that inverse relation between alpha and R-squared does not indicate a positive relation

between fund performance and fund selectivity, but rather indicates the poor explanatory power of

the Fama-French style factor models. This calls into question the use of R-squared as a measure of

fund selectivity.

4.D Mutual Fund Flows

There is no shortage of literature on mutual fund flows. The first stream of literature (e.g., Warther

(1995), Edelen & Warner (2001), Brown et al. (2003)) have focused on aggregate fund flows to
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the equity market, documenting a positive correlation with contemporaneous stock returns. Early

works of Ippolito (1992), Gruber (1996) and Sirri & Tufano (1998) find that capital flows to and

from funds are strongly related to past fund performance. The general consensus is that the flow-

performance relation is positive, asymmetric and convex; the inflows generated by positive returns

is of greater magnitude than the outflows due to negative returns. The establishment of a convex

flow-performance relation is generally robust to different performance measures varying from raw

returns to multi-factor model alphas.

More recently, a second stream of literature goes beyond the simple flow-performance relations.13

A recent paper of Barber et al. (2016) investigate which risk factors are used by investors to adjust

raw returns when evaluating fund performance. They run linear regressions of fund flows on fund

alphas obtained from several Fama-French factor models and conclude that CAPM alphas are the

best predictor of flows among all factor model alphas. In additional analysis, they decompose fund

returns into alpha and returns resulting from factor tilts. They conclude that alpha generates the

largest flow response, closely followed by a fund’s momentum related return, while flows are least

sensitive to fund returns traced to market beta.

We aim to replicate the work of Barber et al. (2016) using our decomposition of traditional alpha.

Using fund flows, we investigate whether investors tend toward the double-adjusted component α∗ or

toward the characteristic-driven component αchar when assessing fund managers. For this purpose,

we follow the majority of the prior literature on fund flows and calculate net capital flow14 to fund

i during month t as

flowit =
TNAit − TNAit−1(1 +Rit)

TNAit−1
, (16)

where TNAit is fund i’s total net assets at the end of month t and Rit is the monthly net return of

fund i in month t.15 The variable flow reflects the percentage growth of a fund that is due to new

investment (under the assumption of dividends being reinvested in the fund).

Similar to Barber et al. (2016), we further decompose characteristic-driven performance into

13A mutual fund’s investment style is an important source of information to investors. Cooper et al. (2005) document
an increase in fund flows to funds adopting the current hot investment style in their names. They find that these
inflows are similar across funds who alter their positions matching their new name and those who do not, suggesting
that investors are irrationally influenced by cosmetic effects. Guo (2016) use a fund’s reported holdings to determine
a fund’s investment style and find that funds adopting a more volatile implementation of style strategy garner higher
inflows.

14Frazzini & Lamont (2008) and Lou (2012) correct for fund mergers when calculating fund flows. As fund mergers
are quite rare, this study ignores them.

15 Fund flows are dropped if the percentage difference in TNA in between two months is greater than 200% or less
than -50%. These extreme flows are rare and are typically related to structural changes within funds, e.g., mergers.

21



alpha related to each individual characteristic. Recall that characteristic-driven performance (see

Eq.(6)) is defined as

αcharit = δ′1tZit−1

= δMcap
1t Mcapit−1 + δ

B/M
1t B/Mit−1 + δMom12

1t Mom12it−1 + δProfit
1t Profitit−1 + δInvest

1t Investit−1

(17)

which is the sum of lagged (standardized) characteristics multiplied by the corresponding cross-

sectional premia. With this decomposition, we gauge whether fund flows are distributed differently

across the characteristic components of alpha by estimating the following panel regression

flowi,t+1:t+12 = c0t + c1tα
∗
it + c2t[δ

Mcap
1t Mcapit−1] + c3t[δ

B/M
1t B/Mit] + c4t[δ

Mom12
1t Mom12it−1]

+ c5t[δ
Profit
1t Profitit−1] + c6t[δ

Invest
1t Investit−1]

+ c7tExpRatioit + c8tTurnoverit + c9tlog(TNA)it + c10tlog(FundAge)it + vit, (18)

where the dependent variable is the average monthly fund flow of fund i in the following year. The

independent variables include double-adjusted alpha α∗it and alpha related to a fund’s size, value,

momentum, profitability and investment characteristics (see Eq.(17)). We include the same control

variables as in Eq.(15). The model residuals are given by vit. We estimate this regression at each

year-end. We expect that managerial skill attracts fund, such that there is no capital directed

towards abnormal return related to known characteristics. That is, we expect that the parameters

related to the characteristic components to be indistinguishable from zero. Contrary evidence

implies that either investors are not considering known factors when assessing fund performance,

or alpha provides an incomplete risk-adjustment for these characteristics.

Table 8 reports the cross-sectional regression coefficients averaged across time along with Fama-

MacBeth t-statistics with the Newey & West (1986) correction for time series correlation with 3

lags. In the first two columns, we specify future fund flows as a linear combination of double-

adjusted alpha and characteristic-driven performance, with and without the set of control variables.

We find strong positive relations between both performance measures and fund flows, where the

double-adjusted component garners the most inflows. Among the set of control variables, we find

positive but statistically insignificant coefficients for ExpRatio and log(FundAge). Of interest are

the estimated sensitivities of flows to the characteristic components of alpha. Generally, fund

returns related to characteristics do not garner the same magnitude of flows as double-adjusted
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alpha does. The coefficients on the value and profitability characteristics are both statistically and

economically insignificant. However, we do find evidence of investors tending to size and momentum

characteristics, which yield significant parameter estimates of about half of that of double-adjusted

alpha (in absolute value). Thus, in aggregate, we find that the flow-performance relation is mostly

driven by double-adjusted alpha and that investors allocate a portion of their investment toward

funds with favourable characteristics in the size and momentum dimensions.

In sum, we have replicated parts of the analysis from several papers on mutual fund performance.

First, we find stronger evidence of return persistence when using double-adjusted alpha. Second, we

find that the inverse relation between alpha and R-squared is mostly driven by the characteristic-

component of alpha. Third, fund flows are more responsive to double-adjusted alpha rather than

characteristic-driven performance. These findings show that adjusting alphas for characteristics

materially impacts previous findings on mutual fund performance. As our results together with

those of Busse et al. (2017) indicate that double-adjusted alpha better reflects true skill, we believe

that this performance measure should be used to reassess previous studies and in future studies on

mutual fund performance.

5 Robustness Checks

5.A Overlapping Rolling Windows

In a recent paper, Britten-Jones et al. (2011) examine the impact of overlapping dependent variables

on the inference from standard Fama-MacBeth cross-sectional regressions. The overlap induces an

autocorrelation pattern in the standard errors of the cross-sectional regressions and commonly used

methods (e.g., White or common Newey-West standard errors) to deal with this autocorrelation

are inadequate and can lead to misleading estimates of the confidence intervals associated with

coefficient estimates obtained from finite samples.16 As the rolling windows overlap in our model in

Eqs.(2), (3) and (4), we check the robustness of our results in Section 3.B. Specifically, we re-estimate

our model using different frequencies of the cross-sectional regressions in Eq.(3).

Table 9 reports the results. In Panel A, we estimate the cross-sectional regressions at each

quarter-end rolling the window three months at a time. The results are very similar compared

16Britten-Jones et al. (2011) transform original regressions into an equivalent representation in which the dependent
variables are non-overlapping to remove the autocorrelation. Their method is easily applicable within standard
frequentist analyses and they show that conventional inference procedures (OLS-, White-, Newey-West- standard
errors) are asymptotically valid when applied to the transformed regression.

23



to the results using monthly cross-sectional regressions (see Table 3).17 All characteristics except

operating profitability remain significantly associated with six-factor alphas. Moreover, we find

an increase in the posterior standard deviations for the momentum, profitability and investment

characteristics. In Panel B, we estimate the cross-sectional regressions at a semi-annual frequency.

We use less periods to estimate the systematic relation between alphas and characteristics, which

leads to a further increase in posterior standard deviations. Consequently, we find more tenuous

relations between six-factor alphas and the momentum and investment characteristics.

Another factor to consider is the frequency of mutual fund portfolio disclosure. The Thomson

Reuters database provides quarterly snapshots of fund portfolios, which we keep constant between

quarters to create a monthly time series of fund holdings (see Appendix A). Consequently, the vari-

ation in fund-level characteristics within quarters is only caused by the monthly variation in firm

characteristics of each fund position. The staleness in our holdings data might compound the auto-

correlation in the standard errors described above. While our analysis would benefit from portfolio

disclosure at a higher frequency, the potential effects of frequent mutual fund portfolio disclosure

remains the focus of a longstanding debate among practitioners, regulators, and academics.

5.B Characteristic-based Benchmark Approach

Daniel et al. (1997) develop a new measure of mutual fund performance which use benchmarks

based on the firm characteristics of mutual fund holdings. The benchmarks are constructed from

the returns of passive portfolios sorted on characteristics that are matched with the characteristics

of the evaluated fund’s holdings. Specifically, the DGTW characteristic selectivity (CS) measure is

calculated as

CSit =

Nit∑
j=1

wjt−1(Rjt −R
bjt
t ), (19)

where wjt−1 is the portfolio weight on stock j at the end of month t−1, Rjt is the month t return of

stock j, R
bjt
t is the month t return of the characteristic-based benchmark portfolio that is matched

to stock j, and Nit is the number of holdings of fund i in month t. We use the DGTW CS measure

to adjust fund returns for size, value, momentum, profitability and investment effects. In Appendix

E, we describe the construction of the characteristic-based benchmark portfolios in greater detail.

To test whether this characteristic-based performance measure fully adjusts fund returns for the

17We repeated the analysis of Section 4 using double-adjusted alpha obtained from quarterly cross-sectional regres-
sions. In untabulated results, we find that inference is qualitatively similar to that based on double-adjusted alpha
from monthly cross-sectional regressions.

24



main anomalies, we regress cross-sectionally the DGTW CS measure on the factor betas from the

Fama-French six-factor model. Particularly, we conduct the following panel regression

CSi,t−23:t = c0t +
6∑

k=1

cktβikt + vit, (20)

where the dependent variable is the average DGTW CS measure of fund i across a 24-month period

ending in month t. The independent variables include the six-factor betas of fund i estimated over

the same 24-month period using daily fund returns. The model residuals are given by vit. Beginning

with the 24th month of our sample, we estimate the monthly cross-sectional regressions over the

period December 2002 to December 2016, consisting of 169 months.

Table 10 reports the results. In Panel A, we only adjust returns for size, value and momentum

effects. When considered in isolation, we find significant relations between the DGTW CS measure

and the market, momentum and profitability betas. That is, the characteristic-based measure under-

adjusts for exposures to the momentum and profitability factors. When we consider all factor betas

together, the profitability beta is no longer significantly related with characteristic-adjusted fund

performance. In Panel B, we adjust returns for all characteristics and the results are qualitatively

similar.

In sum, we conclude that the characteristic-based measure of Daniel et al. (1997) does not fully

adjust fund performance for the main anomalies. Controlling only for factor betas, as in Fama-

French factor models, or only for characteristics, as in DGTW, may overlook the other effect, and

in so doing materially impact estimates of fund manager skill.

6 Conclusion

We propose a new approach to evaluate the performance of mutual funds. It combines traditional

factor models as in Carhart (1997); Fama & French (1993) with the effects of firm and asset char-

acteristics, conform the recent insight that these information sources complement each other in

explaining asset returns (Avramov & Chordia, 2006; Brennan et al., 1998; Chordia et al., 2015).

Busse et al. (2017) shows that the firm and asset characteristics resulting from mutual fund holdings

should also be included in analyses of mutual fund performance.

Our approach consists of a hierarchical Bayesian model with three layers in the style of Cederburg

& ODoherty (2015). The first layer specifies a factor model for daily returns, whereas the second

splits the intercept in the effect of firm and asset characteristics, and the remainder which we
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call the double-adjusted alpha. The third layer adds monthly time variation to it. The double-

adjusted alpha for each asset and each point in time can be split in an aggregate time-random effect

and a time- and asset-specific component. Though our model combines the same information as

Busse et al. (2017) to construct the double-adjusted alpha, the Bayesian approach offers a couple

of advantages. Whereas Busse et al. (2017) uses a two-pass estimation, our Bayesian approach

estimates the time series and cross-sectional parts of the model in one pass which leads to efficiency

gains and automatically accounts for the estimation uncertainty that otherwise should be included

in the second part. More generally, the posterior mean of the time-random component of alpha

shows to which extent the aggregate mutual fund can deliver outperformance, while the prior can

be used to specify the belief in outperformance.

We apply our approach to analyse the performance of U.S. mutual funds over the period 2001–

2016, with the risk factors from Fama & French (2015) and a momentum factor, as well as the

corresponding characteristics. We show that both factor exposures and the effect of characteristics

are needed to explain mutual fund performance, and that our Bayesian approach leads to more

precise estimates than the frequentist approach. Moreover, we show that the ranking of mutual

funds based on the posterior mean of the double-adjusted alpha differs substantially from the ranking

that results from the traditional alphas based on factor models.

We then show how our new inferences on mutual fund performance impact research into the

skill of mutual funds. Replacing the traditional alpha by our double-adjusted one leads to stronger

evidence for persistence in the performance of mutual funds. However, when we use the double-

adjusted alpha, we do not find a relation with the time-series R2 of the factor regression anymore as

in Amihud & Goyenko (2013), indicating that the R2 cannot be interpreted as a measure of selectiv-

ity related to skill. We extend Barber et al. (2016) by showing that fund flows are most responsive

to the double-adjusted alpha, and not so much to the part that is related to characteristics. We

interpret this as evidence that at least part of the investment community also adjusts returns for

the part that can be explained by well-known return drivers.

Our findings contribute to the literature in two ways. First, we show how to efficiently estimate a

double-adjusted alpha in a single-pass using Bayesian techniques. We argue theoretically and show

empirically that our approach improves upon the more standard two-pass estimation methodology

by offering better and more precise estimates. Second, we show that these improved inferences are

relevant for studies related to the performance and skill of mutual funds. Some of the results from

earlier studies turn out to be stronger, while other results vanish. Taken together, it means that
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we have to be careful in the investigation of mutual fund performance, and should make sure that

we include the necessary information in the right way. Our paper shows how a straightforward

Bayesian model can accomplish that.
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Figure 1: Time series plots of the posterior means of the time-varying relation
between six-factor alphas and characteristics δt

The figure presents estimation results of the model in Eqs.(2), (3) and (4) examining the cross-
sectional relation between six-factor alphas and all characteristics simultaneously. In each plot
we report posterior results for a given characteristic across our sample period February 2001 to
December 2016. The solid line is the posterior mean of δt and the dashed lines represent the 95%
credible interval.
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Figure 2: Cumulative alphas for top-minus-bottom portfolios

This figure presents the cumulative post-ranking Fama-French six-factor alpha for top-minus-bottom
portfolios sorted on one of the following performance measures: six-factor alpha (α), double-adjusted
six-factor alpha (α∗), or characteristic-driven performance (αchar). These performance measures are
calculated using rolling windows with a window size of 24 months. Portfolios are rebalanced every
quarter-end and held up to 40 quarters. The horizontal axis shows the post-ranking holding period
in quarters.
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Table 1: Summary statistics of equity mutual fund sample

This table presents the summary statistics for the equity mutual funds sample over the period
January 2001 to December 2016. Panel A reports statistics on the sample size. Panel B reports
additional information on the funds. Panel C reports the cross-sectional distribution of
characteristics averaged across all sample months. We weight each firm characteristic according to
its current portfolio weight and calculate a fund’s portfolio-weighted average characteristic.
Market capitalization (Mcap) is the product between the previous month-end stock price and the
previous month-end total shares outstanding. Book-to-Market (B/M) is the ratio between the
most recently available book value of equity and the previous month-end market capitalization.
Momentum (Mom12) is the past twelve-month cumulative return excluding the most recent
month. Operating profitability (Profit) is the current revenues minus costs of goods sold, interest
expense, selling, general, and administrative expenses, divided by book equity for the last fiscal
year t− 1. Asset growth (Invest) is the percentage change in total assets from fiscal year t− 2 to
fiscal year t− 1. Panel D reports the time series averages of the cross-sectional distributions of
six-factor betas, which are estimated from rolling time series regressions using the past two years
of daily fund returns. Panel E reports the time series averages of the cross-sectional correlations
between factor betas and characteristics.

Mean
25%
percentile

Median
75%
percentile

Standard
deviation

Panel A: Observations
Number of distinct funds 2,871
Number of fund-report dates 92,903
Number of fund-month dates 314,362
Number of distinct stocks 7,952

Panel B: Fund characteristics
Fund age 22.90 15.76 19.96 25.38 12.33
Fund monthly net return (in %) 0.51 -2.08 0.99 3.60 5.12
TNA (total net assets) (in millions) 1,341.43 56.00 220.00 863.10 5,335.74
Expense ratio (in %) 1.24 0.97 1.19 1.45 0.63
Turnover ratio (in %) 83.19 34.00 62.00 105.00 101.68

Panel C: Fund holdings characteristics
Mcap (in millions) 44,475.74 3,792.98 43,016.63 78,966.25 39,731.13
B/M 0.46 0.32 0.44 0.56 0.16
Mom12 (in %) 17.12 9.15 14.89 22.86 12.13
Profit 0.46 0.35 0.42 0.50 0.24
Invest 0.09 0.07 0.09 0.12 0.04

Panel D: Rolling window fund six-factor betas
βMKT 0.98 0.94 0.99 1.03 0.10
βSMB 0.20 -0.08 0.07 0.46 0.34
βHML 0.00 -0.16 0.01 0.16 0.21
βWML 0.02 -0.05 0.01 0.09 0.12
βRMW -0.06 -0.17 -0.02 0.09 0.21
βCMA -0.04 -0.15 -0.02 0.10 0.21
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Table 1 (Continued)

Panel E: Cross-correlations between six-factor betas and characteristics

βSMB βHML βWML βRMW βCMA Mcap B/M Mom12 Profit Invest
βMKT 0.096 -0.093 0.113 -0.204 -0.173 -0.023 -0.114 0.170 -0.004 0.077
βSMB 0.095 0.043 -0.142 -0.075 -0.816 0.110 0.283 -0.255 -0.064
βHML -0.315 0.610 0.328 -0.042 0.746 -0.236 -0.079 -0.452
βWML -0.231 -0.270 -0.054 -0.469 0.568 0.103 0.191
βRMW 0.361 0.246 0.367 -0.283 0.136 -0.274
βCMA 0.049 0.354 -0.215 -0.004 -0.470
Mcap 0.049 0.354 -0.215 -0.004
B/M -0.363 -0.189 -0.486
Mom12 -0.003 0.054
Profit 0.049
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Table 2: Cross-sectional regressions of mutual fund returns

This table presents the time series averages of risk premia (γ) estimated using the cross-section of
mutual fund (monthly) returns following the Fama & MacBeth (1973) procedure. The monthly
regressions are of the form:

Rt = γ0t + γ1tB̂t−1 + γ2tZt−1 + ξt, t = 1, ..., T.

We employ the CAPM, the Fama & French (1993) three-factor model, the Carhart (1997)
four-factor model, the Fama & French (2015) five-factor model and a six-factor model combining
all factors. Factor betas (B̂) are estimated from rolling time series regressions using daily returns
from the past two years. The characteristics (Z) are the logarithm of market capitalization
(Mcap), the logarithm of book-to-market ratio (B/M), the logarithm of one plus the cumulative
past twelve-month cumulative return (Mom12), operating profitability (Profit) and asset growth
(Invest). Each characteristic is winsorized at the 0.5% and the 99.5% levels. To address the EIV
bias, we employ the EIV-corrected estimator of Chordia et al. (2015). Risk premia (in percent per
month) are fitted using OLS, both with EIV-correction and without. Fama & MacBeth (1973)
t-statistics are reported in parenthesis. Estimates significant at the 5% are in bold font. Risk
premia are estimated over the period February 2001 until December 2016.

CAPM FF 3FM Carhart 4FM FF 5FM FF 6FM
OLS EIV OLS EIV OLS EIV OLS EIV OLS EIV

Cnst 1.013 1.020 0.685 0.628 0.887 0.857 0.651 0.638 0.769 0.759
(2.46) (2.49) (1.88) (1.67) (2.61) (2.38) (2.00) (1.93) (2.47) (2.37)

βMKT -0.071 -0.080 -0.011 -0.011 -0.029 -0.033 0.130 0.177 0.100 0.133
(-0.24) (-0.26) (-0.04) (-0.03) (-0.09) (-0.10) (0.46) (0.61) (0.35) (0.46)

βSMB 0.098 0.120 0.049 0.061 0.099 0.099 0.074 0.073
(0.62) (0.66) (0.30) (0.33) (0.66) (0.59) (0.48) (0.42)

βHML 0.347 0.373 0.372 0.412 0.220 0.190 0.266 0.252
(2.12) (2.09) (2.04) (1.99) (1.45) (1.07) (1.61) (1.30)

βWML 0.176 0.227 0.114 0.195
(1.14) (1.19) (1.01) (1.13)

βRMW 0.190 0.224 0.225 0.271
(1.17) (1.16) (1.29) (1.32)

βCMA 0.152 0.141 0.173 0.164
(1.13) (0.90) (1.33) (1.09)

Mcap -0.065 -0.065 -0.047 -0.043 -0.055 -0.052 -0.050 -0.051 -0.054 -0.054
(-1.97) (-1.97) (-1.46) (-1.24) (-1.79) (-1.56) (-1.82) (-1.77) (-1.96) (-1.89)

B/M 0.004 0.003 -0.074 -0.082 0.072 -0.085 -0.025 -0.010 -0.031 -0.017
(0.04) (0.03) (-0.98) (-1.08) (-1.08) (-1.26) (-0.36) (-0.07) (-0.50) (-0.27)

Mom12 0.783 0.787 0.863 0.859 0.478 0.446 0.794 0.774 0.513 0.524
(2.11) (2.12) (2.34) (2.36) (1.78) (1.67) (2.17) (2.13) (1.85) (1.81)

Profit 0.066 0.065 0.047 0.046 0.019 0.016 0.030 0.025 0.003 0.000
(1.18) (1.17) (0.94) (0.94) (0.40) (0.34) (0.68) (0.59) (0.07) (0.02)

Invest -0.573 -0.560 -0.389 -0.371 -0.391 -0.355 -0.279 0.257 -0.230 -0.222
(-1.69) (-1.67) (-1.43) (-1.38) (-1.53) (-1.40) (-1.14) (-0.97) (-0.98) (-0.87)
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Table 3: Six-factor alpha vs. characteristics

This table presents the results of the estimation of the model in Eqs.(2), (3) and (4). We estimate
this model in each month during the period February 2001 to December 2016, using an estimation
period of two years to estimate the six-factor model in Eq.(2), rolling the window a month at a
time. The characteristics (Z) are the logarithm of market capitalization (Mcap), the logarithm of
book-to-market ratio (B/M), the logarithm of one plus the past twelve-month cumulative return
(Mom12), operating profitability (Profit) and asset growth (Invest). Each characteristic is
standardized by subtracting the cross-sectional mean each month. We estimate the model for each
characteristic in isolation and for all characteristics in a joint model. Panel A presents the
posterior mean and standard deviation for the aggregate-level parameters in δ̄, based on the
posterior distribution of the parameters constructed from 5000 iterations of the Gibbs sampler
with the first 2500 iterations discarded as a burn-in period. Panel B presents Fama & MacBeth
(1973) estimates and Fama & MacBeth (1973) t-statistics with the Newey & West (1986)
correction of 12 lags. In Panel A, estimates in bold font indicate that the 95% credible interval of
the posterior distribution does not include zero. In Panel B, estimates in bold font indicate
significance at the 5% level.

Panel A: Simultaneous Bayesian estimation
Cnst -0.003 -0.003 -0.003 -0.003 -0.003 -0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Mcap -0.002 -0.002

(0.000) (0.000)
B/M -0.003 -0.004

(0.000) (0.000)
Mom12 0.019 0.005

(0.002) (0.003)
Profit -0.011 -0.003

(0.002) (0.002)
Invest 0.024 0.017

(0.004) (0.004)

Panel B: Two-step OLS approach
Cnst -0.002 -0.002 -0.002 -0.002 -0.002 -0.002

(-1.40) (-1.40) (-1.40) (-1.40) (-1.40) (-1.40)
Mcap -0.001 -0.002

(1.81) (-1.60)
B/M -0.005 -0.006

(-2.45) (-2.29)
Mom12 0.016 0.002

(4.66) (0.18)
Profit -0.011 -0.005

(-1.57) (-2.27)
Invest 0.040 0.023

(2.27) (1.26)
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Table 4: Multi-factor model alphas vs. characteristics

This table presents the results of the estimation of the model in Eqs.(2), (3) and (4) based on
several Fama-French models. We employ the CAPM, the Fama & French (1993) three-factor
model, the Carhart (1997) four-factor model, the Fama & French (2015) five-factor model and a
six-factor model combining all factors. We estimate the model in each month during the period
February 2001 to December 2016, using an estimation period of two years to estimate the factor
model in Eq.(2), rolling the window a month at a time. The characteristics (Z) are the logarithm
of market capitalization (Mcap), the logarithm of book-to-market ratio (B/M), the logarithm of
one plus the past twelve-month cumulative return (Mom12), operating profitability (Profit) and
asset growth (Invest). Each characteristic is standardized by subtracting the cross-sectional mean
each month. We report the posterior mean and standard deviation for the aggregate-level
parameters in δ̄, based on the posterior distribution of the parameters constructed from 5000
iterations of the Gibbs sampler with the first 2500 iterations discarded as a burn-in period.
Estimates in bold font indicates that the 95% credible interval of the posterior distribution does
not include zero.

CAPM FF 3FM Carhart 4FM FF 5FM FF 6FM
Cnst 0.000 -0.004 -0.003 -0.003 -0.002

(0.000) (0.000) (0.000) (0.000) (0.000)
Mcap -0.003 -0.001 -0.001 -0.002 -0.002

(0.000) (0.000) (0.000) (0.000) (0.000)
B/M 0.006 0.002 0.001 -0.003 -0.003

(0.001) (0.000) (0.000) (0.001) (0.000)
Mom12 0.015 0.008 0.004 0.007 0.005

(0.003) (0.003) (0.003) (0.003) (0.003)
Profit 0.003 0.001 0.001 -0.004 -0.003

(0.001) (0.001) (0.001) (0.001) (0.002)
Invest -0.046 -0.023 0.020 0.014 0.017

(0.005) (0.004) (0.004) (0.004) (0.004)
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Table 5: Change in performance percentile rankings

This table presents the differences between the performance percentile ranks based on
double-adjusted six-factor alpha (α∗) relative to six-factor alpha (α). These performance measures
are calculated using rolling windows with a window size of 24 months (see section ??). Each
month in our sample period we compute the difference between the percentile ranking based on
alpha (Pα) and the percentile ranking based on double-adjusted alpha (Pα

∗
). We report the time

series average distribution of the difference between performance rankings. The sample period is
February 2001 to December 2016.

Percentile 5 10 25 50 75 90 95
Rank (%) -22.93 -17.89 -8.99 -0.02 9.05 17.84 23.07

Abs. Rank (%) 0.99 1.49 4.08 9.03 15.98 22.99 27.24
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Table 6: Mutual fund performance persistence

This table presents the returns of decile porfolios sorted by six-factor alpha (Panel A),
double-adjusted six-factor alpha (Panel B) and characteristic-driven performance (Panel C). These
performance measures are calculated using rolling windows with a window size of 24 months.
Portfolios are rebalanced every quarter-end and are held for up to six years. To deal with
overlapping portfolios, we follow Jegadeesh & Titman (1993) to take the equal-weighted return
across overlapping portfolios formed in different quarters. Two different returns are reported: the
excess (monthly) return over the risk-free rate and the Fama-French six-factor alpha. T-statistics,
shown in parenthesis, are computed using White’s standard errors. Estimated significant at the
5% level are in bold font. The sample period is February 2001 to December 2016.

Qtr 1 Qtr 1-4 Qtr 5-12 Qtr 13-24
Decile Excess 6F alpha Excess 6F alpha Excess 6F alpha Excess 6F alpha
Panel A: Six-factor alpha (α)

1 0.43 -0.27 0.44 -0.26 0.49 -0.18 0.57 -0.12
2 0.46 -0.20 0.45 -0.21 0.49 -0.15 0.56 -0.10
3 0.44 -0.19 0.45 -0.19 0.49 -0.15 0.56 -0.10
4 0.47 -0.16 0.47 -0.16 0.49 -0.13 0.56 -0.10
5 0.49 -0.13 0.49 -0.13 0.50 -0.12 0.56 -0.10
6 0.53 -0.09 0.52 -0.11 0.54 -0.10 0.57 -0.09
7 0.54 -0.08 0.54 -0.09 0.55 -0.08 0.57 -0.09
8 0.57 -0.06 0.56 -0.07 0.56 -0.08 0.59 -0.08
9 0.57 -0.05 0.57 -0.04 0.59 -0.06 0.59 -0.08
10 0.58 0.01 0.58 0.01 0.57 -0.06 0.58 -0.08

10-1 0.15 0.28 0.14 0.27 0.08 0.12 0.01 0.05
(1.63) (3.62) (1.61) (3.85) (1.14) (2.17) 0.16 (1.01)

Panel B: Double-adjusted six-factor alpha (α∗)
1 0.43 -0.21 0.45 -0.20 0.51 -0.14 0.57 -0.12
2 0.48 -0.18 0.49 -0.17 0.52 -0.13 0.57 -0.10
3 0.47 -0.18 0.50 -0.17 0.52 -0.13 0.58 -0.09
4 0.48 -0.17 0.49 -0.15 0.52 -0.13 0.56 -0.10
5 0.51 -0.14 0.50 -0.15 0.51 -0.13 0.58 -0.09
6 0.53 -0.11 0.52 -0.12 0.54 -0.11 0.58 -0.09
7 0.55 -0.07 0.52 -0.11 0.53 -0.11 0.57 -0.09
8 0.51 -0.11 0.53 -0.09 0.53 -0.09 0.56 -0.10
9 0.54 -0.04 0.53 -0.06 0.54 -0.07 0.57 -0.08
10 0.57 -0.02 0.56 -0.03 0.55 -0.05 0.59 -0.07

10-1 0.14 0.19 0.11 0.17 0.04 0.08 0.02 0.05
(3.81) (5.31) (3.17) (5.37) (1.34) (2.94) (0.69) (2.05)
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Table 6 (Continued)

Qtr 1 Qtr 1-4 Qtr 5-12 Qtr 13-24
Decile Excess 6F alpha Excess 6F alpha Excess 6F alpha Excess 6F alpha
Panel C: Characteric-driven performance (αchar)

1 0.48 -0.18 0.44 -0.22 0.47 -0.15 0.58 -0.09
2 0.47 -0.16 0.46 -0.17 0.47 -0.14 0.56 -0.09
3 0.46 -0.16 0.45 -0.16 0.48 -0.13 0.55 -0.10
4 0.44 -0.16 0.45 -0.15 0.48 -0.13 0.55 -0.10
5 0.42 -0.18 0.44 -0.15 0.50 -0.12 0.55 -0.11
6 0.45 -0.14 0.46 -0.13 0.52 -0.11 0.55 -0.11
7 0.52 -0.10 0.52 -0.10 0.55 -0.09 0.58 -0.10
8 0.59 -0.06 0.57 -0.08 0.59 -0.06 0.61 -0.08
9 0.62 -0.05 0.62 -0.05 0.60 -0.08 0.61 -0.07
10 0.63 -0.02 0.65 -0.02 0.60 -0.08 0.60 -0.07

10-1 0.15 0.16 0.20 0.20 0.13 0.07 0.02 0.02
(0.97) (1.28) (1.44) (1.91) (1.11) (0.84) (0.20) (0.32)
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Table 7: Relation between mutual fund performance and R2

This table presents the time series averages of monthly cross-sectional regressions of mutual fund
performance measures on fund selectivity, measured by the contemporaneous log-transformed
R-squared (R̃2). As (annualized) performance measures we employ six-factor alpha (α),
double-adjusted six-factor alpha (α∗) and characteristic-driven performance (αchar). These
performance measures are calculated using rolling windows with a window size of 24 months. We
estimate the regressions with and without a set of control variables. Fama & MacBeth (1973)
t-statistics with the Newey & West (1986) correction of 12 lags are reported in parenthesis.
Estimates significant at the 5% are in bold font. The monthly regressions cover the period
February 2001 until December 2016.

α α∗ αchar

Cnst 4.770 4.778 -0.518 -0.540 1.073 1.110
(2.01) (1.98) (-2.12) (-2.20) (2.76) (2.61)

R̃2 -1.148 -1.269 -0.018 -0.021 -0.314 -0.306
(-2.12) (-2.36) (-1.02) (-1.18) (-2.67) (-2.55)

ExpRatio 8.112 0.848 -0.548
(1.30) (1.62) (-0.37)

Turnover -0.081 0.001 -0.002
(-1.78) (0.32) (-0.29)

Log(TNA) -0.014 -0.001 -0.002
(-1.07) (-0.23) (-0.45)

Log(FundAge) 0.015 0.006 -0.010
(0.48) (1.45) (-0.60)
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Table 8: Response of fund flows to components of alpha

This table presents the time series averages of annual cross-sectional regressions of the one-year
ahead average of monthly fund flows on double-adjusted six-factor alpha (α∗) and
characteristic-driven performance (αchar). These performance measures are calculated using
rolling windows with a window size of 24 months. We also estimate the regressions in which we
further decompose αchar into alpha related to each individual characteristic. We estimate the
regressions with and without a set of control variables. Fama & MacBeth (1973) t-statistics with
the Newey & West (1986) correction of 3 lags are reported in parenthesis. Estimates significant at
the 5% are in bold font. We estimate these annual regressions at the end of each year, covering 16
years from 2001 to 2016.

Cnst 0.014 0.004 0.014 0.005
(6.69) (0.58) (6.48) (0.69)

α∗ 4.061 4.044 4.065 4.047
(9.75) (9.80) (9.75) (9.81)

αchar 0.396 0.366
(2.41) (2.16)

δMcap · Mcap -1.476 -1.455
(-2.19) (-2.11)

δB/M · B/M 0.275 0.215
(0.31) (0.24)

δMom12 · Mom12 1.778 1.720
(3.06) (2.91)

δProfit · Profit 0.338 0.221
(0.37) (0.22)

δInvest · Invest 1.776 1.694
(0.85) (0.87)

ExpRatio 0.481 0.468
(1.42) (1.40)

Turnover 0.000 0.000
(-0.96) (-1.07)

Log(TNA) 0.000 0.000
(-0.82) (-0.82)

Log(FundAge) 0.002 0.002
(1.75) (1.78)
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Table 9: Rolling window frequency robustness

This table presents the results of the estimation of the model in Eqs.(2), (3) and (4) using
different frequencies of the cross-sectional regressions in Eq.(3). We estimate this model during
the period February 2001 to December 2016, using an estimation period of two years to estimate
the six-factor model in Eq.(2), rolling the window three months at a time between quarter-ends in
Panel A and six months at a time in Panel B. The characteristics (Z) are the logarithm of market
capitalization (Mcap), the logarithm of book-to-market ratio (B/M), the logarithm of one plus the
past twelve-month cumulative return (Mom12), operating profitability (Profit) and asset growth
(Invest). Each characteristic is standardized by subtracting the cross-sectional mean each month.
We estimate the model for each characteristic in isolation and for all characteristics in a joint
model. We presents the posterior mean and standard deviation for the aggregate-level parameters
in δ̄, based on the posterior distribution of the parameters constructed from 5000 iterations of the
Gibbs sampler with the first 2500 iterations discarded as a burn-in period. Estimates in bold font
indicate that the 95% credible interval of the posterior distribution does not include zero.

Panel A: Quarterly cross-sectional regressions
Cnst -0.003 -0.003 -0.003 -0.003 -0.003 -0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Mcap -0.002 -0.002

(0.000) (0.000)
B/M -0.003 -0.004

(0.000) (0.001)
Mom12 0.019 0.005

(0.003) (0.005)
Profit -0.011 -0.003

(0.003) (0.002)
Invest 0.022 0.016

(0.007) (0.007)

Panel B: Semi-annual cross-sectional regressions
Cnst -0.003 -0.003 -0.003 -0.003 -0.003 -0.003

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Mcap -0.002 -0.002

(0.000) (0.000)
B/M -0.003 -0.003

(0.001) (0.001)
Mom12 0.017 0.006

(0.004) (0.007)
Profit -0.011 -0.003

(0.004) (0.002)
Invest 0.017 0.012

(0.009) (0.009)
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Table 10: DGTW CS measure vs. six-factor betas

This table presents the time series averages of monthly cross-sectional regressions of the DGTW
characteristic selectivity (CS) measure on the Fama-French six-factor betas. We calculate the
average DGTW CS measure across the past 24 months. We estimate the six-factor model over the
same 24-month period using daily fund returns. In Panel A, the DGTW CS measure controls for
the size, value and momentum characteristics. In Panel B, the DGTW CS measure also controls
for the profitability and investment characteristics. Fama & MacBeth (1973) t-statistics with the
Newey & West (1986) correction of 12 lags are reported in parenthesis. Estimates significant at
the 5% are in bold font. Starting with the 24th month in our sample, the monthly regressions
cover the period December 2002 to December 2016.

Panel A: Size, value and momentum characteristics
Cnst 0.225 0.003 0.001 -0.004 0.013 0.003 0.207

(3.30) (0.31) (0.06) (-0.40) (1.81) (0.32) (2.89)
RMRF -0.227 -0.211

(-3.09) (-2.71)
SMB -0.008 -0.008

(-0.35) (-0.31)
HML 0.090 0.071

(1.67) (1.65)
WML 0.207 0.323

(2.31) (3.89)
RMW 0.116 0.063

(2.03) (1.18)
CMA 0.010 0.001

(0.11) (0.02)

Panel B: All characteristics
Cnst 0.250 0.006 0.007 0.000 0.016 0.011 0.218

(3.54) (0.59) (0.68) (0.01) (1.79) (1.20) (3.31)
RMRF -0.246 -0.223

(-3.10) (-3.08)
SMB 0.014 0.013

(0.76) (0.60)
HML 0.046 0.024

(1.06) (0.48)
WML 0.237 0.351

(2.59) (4.11)
RMW 0.092 0.067

(2.23) (1.27)
CMA 0.019 0.041

(0.29) (0.91)
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Appendices

Appendix A: Mutual Fund Selection

Our sample contains U.S. equity actively managed funds at the intersection of the CRSP Survivor-

Bias-Free U.S. Mutual Fund database with the Thomson Reuters Mutual Fund Holdings S12

database. We use the MFLINKS database available from Wharton Research Data Services (WRDS)

to combine both databases. Our final database contains mutual fund holdings spanning the period

from January 2001 to December 2016.

A.1 CRSP Mutual Fund Database

Since we wish to capture active mutual funds that invest primarily in U.S. equities, we follow

Kacperczyk et al. (2008) and Lou (2012), by eliminating balanced, bond, money market, interna-

tional, index, and sector funds, as well as funds that do not primarily invest in U.S. common equity.

We base our mutual fund selection on identifiers provided in the CRSP mutual fund database.

Specifically, we select funds with the following Lipper Objective codes: EI, EIEI, EMN, FLX, G,

GI, I, LCCE, LCGE, LCVE, LSE, MC, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE,

SCGE, SCVE, SESE, SG. If a fund’s Lipper Objective code is missing, we pick funds with the

following Strategic Insight Objective codes: SCG, GRO, AGG, ING, GRI, GMC. If both codes are

missing for a fund, we select funds with the following Wiesenberger Fund Type codes: SCG, AGG,

G, G-S, S-G, GRO, LTG, I, I-S, IEQ, ING, GCI, G-I, G-I-S, G-S-I, I-G, I-G-S, I-S-G, S-G-I, S-I-G,

GRI, MCG.

Since some funds misreport their objective code, we require funds to hold at least 80% and at

most 105% in common stocks, on average. Index funds are eliminated based on the CRSP index

fund flags (provided since 2003) and by screening fund names. In particular, funds are dropped if

the fund name contains the following strings: INDEX, IND, INDX, IDX, IDX, MKT, MARKET,

SP, SP, MSCI, NYSE, RUSSELL, NASDAQ, ISHARES, DOWJONES, SPDR, ETF, 100, 400, 500,

600, 1000, 1500, 2000, 3000, 5000. Following Kacperczyk et al. (2008), to address the incubation

bias18 we delete observations for which the date of the observation is prior to the reported fund

start-date and we delete observations with missing fund names. Other data from the CRSP mutual

fund database include the total net assets (TNA), net returns (both monthly and daily), fees, and

18Evans (2004) and Kacperczyk et al. (2008) detect a form of survival bias in the CRSP mutual fund database,
which stems from fund families sugarcoating their past performance. Fund families incubate private funds and only
report the returns of the surviving incubated funds and do not disclose the past performance of terminated funds.
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other qualitative fund data. We aggregate all different share classes belonging to a single fund at

each point in time into one observation. Regarding the quantitative attributes of funds, we sum

the TNA and we take a weighted average of the fund returns, expense ratio, turnover ratio and

fees, using the lagged TNAs of each individual share class as weights. Regarding the qualitative

attributes of funds (e.g., fund name, CRSP objective code, year of origin), the data of the oldest

fund is retained.

A.2 Thomson Reuters Database

Mutual fund holdings are provided by Thomson Reuters and are compiled from mandatory SEC

fillings19 and voluntary disclosures. From this database we exclude funds with the following objective

codes: International, Municipal Bonds, Bond & Preferred, Balanced and Metals. Every fund files

the SEC form at the end of a quarter (the file date), which is often in the same quarter as the report

date; the date for which the holdings are actually held (adjusted for stock splits20). To create a

monthly time series of fund holdings, we keep reported holdings constant between report dates

(e.g., holdings reported at the end of September are valid in October, November and December).

A majority of funds report holdings on a quarterly basis, while a small number of funds have gaps

between report dates of more than two quarters. To fill these gaps (of no more than two quarters),

we impute holdings of missing quarters using the most recently available report date, assuming that

these funds adopt a buy-and-hold strategy. In the final database about 65% of the funds disclose

their holdings quarterly, 34% semi-annually, and 1% on a less frequent basis.

A.3 MFLINKS

To combine the CRSP mutual fund database with the Thomson Reuters database, we use the

MFLINKS provided by Russ Wermers on Wharton Research Data Services (WRDS). MFLINKS

maps CRSP fund identifiers to Thomson Reuters fund identifiers, covering approximately 98% of

the domestic equity mutual funds. We manage to link about 92% of the target universe in the

CRSP mutual fund database to holdings data from Thomson Reuters. To ensure a reliable linkage

between the two databases, we require that the TNAs reported by both databases do not differ by

more than a factor of two. Finally, funds with less than 10 identified stock positions and less than

19Investment companies, which include mutual funds, insurance companies, banks, pension funds, and numerous
other institutions are often called 13f institutions. These institutions are required to fill in a form with the Securities
and Exchange Commission (SEC) on a semiannual basis.

20Adjustments are made using the cumulative adjustment factor for shares in the CRSP monthly file.

48



$5 million assets under management are excluded.

The final mutual fund database contains 2,871 distinct mutual funds including 92,903 fund-

report dates and 314,362 fund-month observations. Table A1 presents the number of funds at the

end of each year along with the TNA and number of holdings reported by Thomson Reuters. There

is a rising trend in both the number of funds, the average fund size, and the market share held.

Table A1: End of year summary statistics of the equity mutual fund sample

This table presents summary statistics for the mutual fund database as of December each year.
#Holdings is the number of reported holdings in Thomson Reuters. #Distinct stocks contains the
number of unique stocks held by the funds in the sample and the aggregated percentage market
share held. TNA is the total net assets under management reported by CRSP, expressed in
millions USD.

Year #Funds #Holdings #Distinct stocks TNA($M)
Mean Median Mean %Market Mean Median

2001 1,126 110 73 4,802 7.83 730.69 165.20
2002 1,236 120 75 4,301 9.57 759.20 141.00
2003 1,221 115 78 4,383 10.10 903.92 164.85
2004 1,137 113 75 4,392 12.57 1,192.07 192.30
2005 1,061 124 77 4,056 11.71 1,420.41 238.80
2006 967 122 76 4,021 12.14 1,700.04 298.60
2007 1,071 113 75 4,211 11.96 1,649.38 276.30
2008 1,192 120 75 4,012 11.98 972.76 165.20
2009 1,114 116 80 3,793 12.82 1,387.80 233.45
2010 1,294 122 78 3,691 12.91 1,520.00 299.10
2011 1,226 122 78 3,470 12.17 1,440.66 290.80
2012 1,335 123 77 3,398 12.79 1,579.65 361.80
2013 1,176 114 77 3,365 12.44 2,153.20 519.85
2014 1,170 119 78 3,424 11.58 2,383.97 540.90
2015 797 111 70 3,320 9.56 2,584.96 584.60
2016 697 113 75 3,180 8.45 2,798.21 648.10
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Appendix B: Errors-in-variables (EIV) - corrected estimator

The cross-sectional regression in Eq.(1) is inherently subject to the EIV bias, since the explanatory

variables are estimations resulting from the first-pass time series regressions. Since B̂t−1 is estimated

with error, the OLS-estimator of Γ will be biased downwards.

Chordia et al. (2015) propose the following bias-corrected estimator of Γt

Γ̂EIVt =

[
X̂ ′t−1X̂

′
t−1 −

Nt∑
i=1

M ′Σ̂βit−1
M

]−1

X̂ ′t−1Rt, (A.1)

where X̂t−1 = [1Nt B̂t−1 Zt−1] contains the lagged regressors, 1Nt is a Nt × 1 vector of ones, M is

a K × (1+K+L) matrix defined as M = [0Kx1 1KxK 0KxL], and Σ̂βit−1
is the heteroskedasticity-

consistent K × K covariance matrix estimator of White (1980) for the estimation of the factor

model parameters βit−1. The matrix M ensures that the bias-correction only affects the K × K

submatrix B̂′t−1B̂t−1 of Xt−1.

This bias-corrected estimator was originally proposed by Theil & Theil (1971) and Litzenberger

& Ramaswamy (1979). Shanken (1992) generalize the EIV-corrected estimator and show that this

estimator is consistent when Nt diverges. Chordia et al. (2015) gauge the statistical properties of the

EIV-corrected estimator in simulations and show that the negative bias is reduced in comparison

to the OLS estimator. Raponi et al. (2017) employ this estimator in a small T environment to

test several prominent beta-pricing specifications of Fama-French using individual stocks. They

find significant pricing ability of all factors, while the same risk premia often appear insignificantly

different from zero when estimated using the traditional approach.

The EIV-corrected estimator subtracts the estimated covariance matrix of the estimator of βit

from B̂′t−1B̂t−1, to better approximate the true value of B′t−1Bt−1. However, under a finite T there is

the possibility that this correction will overshoot, turning the matrix in parenthesis nearly singular

or even not positive definite. This may lead to extreme estimates of Γt and nonsensical inference.

To prevent this we apply the following procedure. Following Chordia et al. (2015), we reduce the

likelihood of overshooting due to outliers by winsorizing each element of the estimated covariance

matrix at the 5% and 95% levels across the cross-section of funds at each time t. Then, we apply

the shrinkage procedure of Raponi et al. (2017) using a shrinkage scalar λ (0 ≤ λ ≤ 1):

Γ̂EIV
t =

[
X̂ ′t−1X̂t−1 − λ

Nt∑
i=1

M ′Σ̂βit−1
M

]−1

X̂ ′t−1Rt. (A.2)
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When λ is one we obtain the estimator in Eq.(A.1), whereas when λ is zero, we obtain the OLS

estimator. The choice of shrinkage parameter λ is dependent on the eigenvalues of the matrix in

parenthesis. Starting from λ = 1, if the minimum eigenvalue of this matrix is negative, we lower

λ by an arbitrary small amount set to 0.05. We also apply this shrinkage in case the difference

between the EIV-corrected and OLS coefficients is bigger than 100%.
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Appendix C: Probability Density Functions

In this appendix several univariate and multivariate probability density functions are given which

are used throughout this paper. For univariate densities, we indicate the first moment around the

mean by µ, whereas for multivariate densities this is indicated by µµµ.

C.1 Univariate Distributions

Normal density:

The pdf of a normal distributed random variable Z with mean µ and variance σ2, that is, Z ∼

N (µ, σ2) is given by

p(Z|µ, σ2) =
1√

2πσ2
exp

(
−(Z − µ)2

2σ2

)
. (A.3)

Inverted Gamma-2 density:

The pdf of an inverted Gamma-2 distributed random variable Z with scale parameter s > 0 and

degrees of freedom v > 0, that is, Z ∼ IG2(s, v) is given by

p(Z|s, v) = c−1Z−
v+2
2 exp

(
− s

2Z

)
, (A.4)

where c = Γ(v/2)
(

2
s

)v/2
. The mean and variance of Z are given by

E[Z] =
s

v − 2
for v > 2

Var[Z] =
2

v − 4
(E[Z])2 for v > 4.
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C.2 Multivariate Distributions

Multivariate Normal density:

The pdf of a multivariate normal distributed random variable Z with k-dimensional location pa-

rameter µµµ and k x k positive definite symmetric covariance matrix Σ, that is, Z ∼ N (µµµ,Σ) is given

by

p(Z|µµµ,Σ) =

(
1√
2π

)k
|Σ|−

1
2 exp(−1

2
(Z −µµµ)′Σ−1(Z −µµµ)), (A.5)

where the mean and variance of Z are µµµ and Σ, respectively.

Inverted Wishart density:

The pdf of an inverted Wishart distributed k x k symmetric positive definite matrix Z with degrees

of freedom v ≥ k and symmetric positive definite scale matrix S, that is, Z ∼ IW (S, v) is given by

p(Z|S, v) = c−1 |S|v/2

|Z|(v+k+1)/2
exp

(
−1

2
tr(Z−1S)

)
, (A.6)

where c = 2
vk
2 Γk

(
v
2

)
. The mean of Z is given by

E[Z] =
S

v − k − 1
for v > k + 1.

For a nice representation of the variance of Z, we refer to Nydick (2012).
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Appendix D: Gibbs Sampler

We provide the Gibbs sampler and the posterior distributions of the parameters in our model in

Eqs.(2), (3) and (4), which we repeat here for convenience

Riτ,t = αit + β′itFτ,t + εiτ,t, εiτ,t ∼ N (0, σ2
εit), τ = t− T + 1, ..., t, i = 1, ..., Nt (A.7)

αit = δ0t + δ′1tZit−1 + ηit, ηit ∼ N (0, σ2
ηt), t = 1, ..., T, (A.8)

δt = δ̄ + vt, vt ∼ N (0,Σδ), t = 1, ..., T. (A.9)

For the sake of convenience, we can write the model in matrix form as

Ri,t = XtBit + εi,t (A.10)

αt = Yt−1δt + ηt (A.11)

δt = δ̄ + vt, (A.12)

where Ri,t is a T × 1 vector with daily returns of fund i during the rolling window ending in month

t, Xt is a T × (K+1) matrix with a column of ones and the corresponding factor returns, Bit =

[αit, βit]’ contains the parameters of the factor model, and εi,t is a T × 1 vector with residuals. In

the second equation, αt is a Nt × 1 vector with factor model alphas in month t, Yt−1 is a Nt ×

(L+1) matrix with a column of ones and the lagged fund-level characteristics for each fund, and ηt

is a Nt × 1 vector with residuals.

D.1 Gibbs Sampler

To initialize the Gibbs sampler, we require starting values for the model parameters. For the fund-

specific parameters, we estimate Eq.(2) for each fund in each rolling window and use the estimates as

starting values for αit and βit. Each month t, we regress the estimates of alpha on a constant and the

lagged characteristics using the cross-section of funds. The resulting estimates are used as starting

values for δt. The starting values for σ2
εit and σ2

ηt are set to the sample residual variance estimator

from the corresponding regressions. For the hyperparameters δ̄ and Σδ, we set the starting values

equal to the sample mean and covariance matrix of the estimates {δt}Tt=1, respectively. The Gibbs

sampler uses an iterative procedure to create Markov chains by simulating from full conditional

posteriors. The algorithm below summarizes the steps in the Gibbs sampler.
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Algorithm 1 MCMC Gibbs sampler

Inputs: {{{Riτ,t, Zit−1, Fτ,t}Nti=1}tτ=t−T +1}Tt=1 (data)

Outputs: {θ(m)}Mm=1 (approximate sample from the joint posterior)

1: Set starting values for model parameters:

θ(0) = {{{α(0)
it , β

(0)
it , σ

2
εit

(0)}Nti=1, δ
(0)
t , σ2

ηt
(0)}Tt=1, δ̄

(0),Σ
(0)
δ } and set m to 0.

2: Update parameters given current draws θ(m):

(i) Sample α
(m+1)
it , β

(m+1)
it | σ2

εit
(m), δ

(m)
t , σ2

ηt
(m), for i = 1,...,Nt, t = 1,...,T .

(ii) Sample σ2
εit

(m+1) | α(m+1)
it , β

(m+1)
it , for i = 1,...,Nt, t = 1,...,T .

(iii) Sample δ
(m+1)
t | {α(m)

it }
Nt
i=1, σ2

ηt
(m), δ̄(m), Σ

(m)
δ , for t = 1,...,T .

(iv) Sample σ2
ηt

(m+1) | {α(m+1)
it }Nti=1, δ

(m+1)
t , for t = 1,...,T .

(v) Sample δ̄(m+1) | {δ(m+1)
t }Tt=1, Σ

(m)
δ .

(vi) Sample Σ
(m+1)
δ | {δ(m+1)

t }Tt=1, δ̄(m+1).

3: Set m = m + 1, and go to step 2.

D.2 Joint Posterior Distribution

The joint posterior distribution is proportional to the product of the likelihood function of the

data and the prior distributions. Denote θ = {{{αit, βit, σ2
εit}

Nt
i=1, δt, σ

2
ηt}Tt=1, δ̄,Σδ} as the model

parameters. Denote R as the matrix which stacks the returns in the rolling windows across all

funds over the entire sample period. Substituting the prior specifications as in Section 3.A.1, the

joint posterior is given by:

p(θ|R) ∝ p(R|θ)p(θ)

∝
T∏
t=1

Nt∏
i=1

(σ2
εit)
−T

2 exp

[
− 1

2σ2
εit

(Ri −XtBit)
′(Ri −XtBit)

]

×
T∏
t=1

(σ2
ηt)
−Nt

2 exp

[
− 1

2σ2
ηt

(αt − Yt−1δt)
′(αt − Yt−1δt)

]

×
T∏
t=1

Nt∏
i=1

|Σβ|−
1
2 exp

[
−1

2
(βit − β̄)′Σ−1

β (βit − β̄)

]

×
T∏
t=1

|Σδ|−
1
2 exp

[
−1

2
(δt − δ̄)′Σ−1

δ (δt − δ̄)
]

× |Σd|−
1
2 exp

[
−1

2
(δ̄ − d)′Σ−1

d (δ̄ − d)

]

55



× |Σδ|−
ψδ+k+1

2 exp

[
−1

2
tr(Σ−1

δ [ψδSδ])

]
×

T∏
t=1

Nt∏
i=1

σ(vε+2)
εit exp

(
− sε

2σ2
εit

)

×
T∏
t=1

σ
(vη+2)
ηt exp

(
− sη

2σ2
ηt

)
, (A.13)

where k denotes the dimension of Σδ.

D.3 Conditional Posterior Distributions

In order to implement the MCMC Gibbs sampler, we need to derive the full conditional posterior

distributions for each block of model parameters. The conditional densities can be obtained from

the joint posterior density by gathering all the terms that depend on the parameters of interest

and ignore all the remaining parameters. We then obtain the conditional density for each block

of parameters by rearranging the remaining terms into the kernel of a known distribution.21 We

partition the model parameters θ into the following blocks:

• θ(1): Fund-specific factor model parameters (αit, βit)

• θ(2): Fund-specific idiosyncratic variance (σ2
εit)

• θ(3): Characteristic loadings (δ0t, δ1t)

• θ(4): Cross-sectional idiosyncratic variance (σ2
ηt)

• θ(5): Time series mean of characteristic loadings (δ̄)

• θ(6): Time series covariance matrix of characteristic loadings (Σδ)

The conditional posteriors for all parameters have convenient functional forms which trace back

to a known distribution. Therefore, we use the Gibbs sampler to iteratively draw from the full

conditional distributions of θ(1), θ(2), θ(3), θ(4), θ(5), and θ(6). Using the joint posterior distribution

in Eq.(A.13), we will derive the full conditional posteriors for each block.

21Appendix D provides the probability density functions (pdfs) of the distributions used in our analysis.
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D.3.1 Conditional Posterior [αit βit]’

In order to derive the full conditional posterior of [αit βit]’, we require the following mathematical

relations. First, we require

B−1 = B−
1
2
′B−

1
2 , (A.14)

which is denoted the Cholesky decomposition, i.e., the decomposition of a positive-definite matrix

into the product of a lower triangular matrix and its conjugate transpose. We also require the

decomposition rule:

(y −Xβ)′(y −Xβ) = (y −Xβ̂)′(y −Xβ̂) + (β − β̂)′X ′X(β − β̂), (A.15)

where β̂ = (X ′X)−1X ′y is the OLS estimator of β.

Following Bayes’ theorem, we can write

p(Bit|R) ∝ p(R|Bit)p(Bit)

∝ exp

[
− 1

2σ2
εit

(Ri,t −XtBit)
′(Ri,t −XtBit)

]
× exp

[
−1

2
(Bit − B̄it)′Σ−1

Bit
(Bit − B̄it)

]
,

where B̄it =

δ0t + δ′1tZit−1

β̄

 and ΣBit =

 σ2
ηt 01×K

0K×1 Σβ


= exp

[
−1

2

(
1

σ2
εit

(Ri,t −XtBit)
′(Ri,t −XtBit) + (Σ

− 1
2

Bit
B̄it − Σ

− 1
2

Bit
Bit)

′(Σ
− 1

2
Bit
B̄it − Σ

− 1
2

Bit
Bit)

)]
using Eq.(A.14)

= exp

[
−1

2
(wit − VitBit)′(wit − VitBit)

]
,

where wit =

[
σ−1
εit Ri,t Σ

− 1
2

Bit
B̄it

]′
and Vit =

[
σ−1
εit Xt Σ

− 1
2

Bit

]′
∝ exp

[
(Bit − B̂it)′V ′itVit(Bit − B̂it)

]
, using Eq.(A.15),

where B̂it = (V ′itVit)
−1V ′itwit, (A.16)

which is the kernel of a normal distribution with mean B̂it and variance (V ′itVit)
−1, that is, the full
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conditional posterior22 of Bit = [αit βit]’ follows a multivariate normal distribution and is given by

αit
βit

 |θ−(αit,βit), R ∼ N
(
B̃it,

[
σ−2
εit X

′
tXt + Σ−1

Bit

]−1
)
, (A.17)

with

B̃it =
[
σ−2
εit X

′
tXt + Σ−1

Bit

]−1 [
σ−2
εit X

′
tRt + Σ−1

Bit
B̄it

]
. (A.18)

We derive the full conditional posteriors of δt and δ̄ in the same way, leading to the following results.

D.3.2 Conditional Posterior δt

The full conditional posterior of δt follows a multivariate normal distribution and is given by

δt|θ−(δt), R ∼ N
(
δ̃t,
[
σ−2
ηt Y

′
t−1Yt−1 + Σ−1

δ

]−1
)
, (A.19)

with

δ̃t =
[
σ−2
ηt Y

′
t−1Yt−1 + Σ−1

δ

]−1 [
σ−2
ηt Y

′
t−1αt + Σ−1

δ δ̄
]
. (A.20)

D.3.3 Conditional Posterior δ̄

The full conditional posterior of δ̄ follows a multivariate normal distribution and is given by

δ̄|θ−(δ̄), R ∼ N
(

˜̄δ,
[
TΣ−1

δ + Σ−1
d

]−1
)
, (A.21)

with

˜̄δ =
[
TΣ−1

δ + Σ−1
d

]−1

[
Σ−1
δ

T∑
t=1

δt + Σ−1
d d

]
. (A.22)

22Let θ−(x) denote the model parameters excluding the set x.
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D.3.4 Conditional Posterior Σδ

In order to derive the full conditional posterior of Σδ, we require the following mathematical rela-

tions. First, we require

A = tr(A) (A.23)

tr(ABC) = tr(CAB) = tr(BCA) (A.24)

tr(A) + tr(B) = tr(A+B), (A.25)

where tr denotes the trace of a matrix. The above relations state that the trace of a scalar is

equivalent to the scalar itself, that the trace is invariant under cyclic permutations, and that the

sum of traces equals the trace of the sum.

Following Bayes’ theorem, we can write

p(Σδ|R) ∝ p(Σδ)p(δt)

∝ |Σδ|−
ψδ+k+1

2 exp

[
−1

2
tr(Σ−1

δ [ψδSδ])

]
×

T∏
t=1

|Σδ|−
1
2 exp

(
−1

2
(δt − δ̄)′Σ−1

δ (δt − δ̄)
)

= |Σδ|−
ψδ+T+k+1

2 exp

[
−1

2

(
tr(Σ−1

δ [ψδSδ]) + tr

(
T∑
t=1

(δt − δ̄)′Σ−1
δ (δt − δ̄)

))]
,

using Eq.(A.23)

= |Σδ|−
ψδ+T+k+1

2 exp

[
−1

2

(
tr(Σ−1

δ [ψδSδ]) + tr

(
T∑
t=1

Σ−1
δ (δt − δ̄)(δt − δ̄)′

))]
,

using Eq.(A.24)

= |Σδ|−
ψδ+T+k+1

2 exp

[
−1

2
tr

(
Σ−1
δ

[
T∑
t=1

(δt − δ̄)(δt − δ̄)′ + ψδSδ

])]
,

using Eq.(A.25), (A.26)

which is the kernel of an inverted Wishart distribution, that is, the full conditional posterior distri-

bution of Σδ is given by

Σδ|θ(−Σδ), R ∼ IW

(
T∑
t=1

(δt − δ̄)(δt − δ̄)′ + ψδSδ, ψδ + T

)
. (A.27)
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D.3.5 Conditional Posterior σ2
εit

Following Bayes’ theorem, we can write

p(σ2
εit |R) ∝ p(R|σ2

εit)p(σ
2
εit)

∝ σ−(T +vε+2)
εit exp

[
− 1

2σ2
εit

(
(Ri,t −XtBit)

′(Ri,t −XtBit) + sε
)]
, (A.28)

which is the kernel of an inverted Gamma-2 distribution, that is, the full conditional posterior

distribution of σ2
εit is given by

σ2
εit |θ

(−σ2
εit

), R ∼ IG2
(
(Ri,t −XtBit)

′(Ri,t −XtBit) + sε, T + vε
)
. (A.29)

D.3.6 Conditional Posterior σ2
ηt

The full conditional posterior of σ2
ηt follows an Inverted Gamma-2 distribution and is given by

σ2
ηt|θ(−σ2

ηt), R ∼ IG2
(
(αt − Yt−1δt)

′(αt − Yt−1δt) + sη, Nt + vη
)
. (A.30)
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Appendix E: Construction of Benchmark Portfolios of DGTW Characteristic

Selectivity Measure

We construct the benchmark portfolios in the spirit of Daniel, Grinblatt, Titman, and Wermers

(DGTW; 1997). We proceed as follows. We conduct a three-dimensional sort along the size, value

and momentum dimensions. All stocks having accounting data from Compustat, as well stock return

and market capitalization data are sorted into quintile portfolios by their market capitalization. The

breakpoints for the sort on size is based on stocks listed on the NYSE, while the analysis includes

all stocks listed on the NYSE, NYSE MKT (formerly known as AMEX), and NASDAQ. Each size

quintile is further subdivided into quintiles based on the book-to-market ratio of stocks, resulting

into 25 fractile portfolios. Then, each fractile portfolio is further subdivided into quintiles based

on the past twelve-month cumulative return excluding the most recent month. This 5x5x5 sorting

procedure leads to 125 portfolios, each with a unique combination of size, value, and momentum

rankings.23

Next, to adjust for profitability and investment effects, we also conduct a 3x3x3x2x2 sorting

procedure along the size, value, momentum, profitability, and investment dimensions. Similar to the

previous sorting procedure, we first sort stocks into three portfolios based on market capitalization,

using breakpoints derived from NYSE listed stocks. Then we further subdivide the portfolios, first

into three value portfolios and then into three momentum portfolios, resulting into 27 portfolios.

Then, we subdivide each fractile portfolio into two portfolios based on the operating profitability

of stocks. We conclude the sorting procedure by further dividing the fractile portfolios into two

portfolios based on the investment variable. Thus, we end up with 108 portfolios, each with a

distinct combination of size, value, momentum, profitability, and investment rankings.

The 3x3x3x2x2 (5x5x5) sorting procedure is repeated at the end of each quarter, such that the

108 (125) portfolios are reconstituted each quarter-end, and are held for the subsequent quarter.

We calculate the value-weighted average return for each portfolio during the months in the holding

period. We store quarter-end rankings for all stocks, such that we can track the rankings of all

portfolio holdings, which are valid for the subsequent quarter.

23For example, a stock sorted in size portfolio five, value portfolio five, and momentum five, is a large, value and
high momentum stock.
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