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Abstract

We present an accurate and efficient method for Bayesian forecasting of two financial

risk measures, Value-at-Risk and Expected Shortfall, for a given volatility model.

We obtain precise forecasts of the tail of the distribution of returns not only for the

10-days-ahead horizon required by the Basel Committee but even for long horizons,

like one-month or one-year-ahead. The latter has recently attracted considerable

attention due to the different properties of short term risk and long run risk. The

key insight behind our importance sampling based approach is the sequential con-

struction of marginal and conditional importance densities for consecutive periods.

We report substantial accuracy gains for all the considered horizons in empirical

studies on two datasets of daily financial returns, including a highly volatile period

of the recent financial crisis. To illustrate the flexibility of the proposed construction

method, we present how it can be adjusted to the frequentist case, for which we

provide counterparts of both Bayesian applications.

Keywords: Bayesian inference; forecasting; importance sampling; numerical accu-

racy; long run risk; Value-at-Risk; Expected Shortfall.
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1 Introduction

The global financial crisis stressed the importance of appropriate risk management, which

requires accurate forecasts of the market risk related to fluctuations of stock or index

prices. It also emphasised the necessity of precise predictions of the long-term financial

risk: as noted by The Volatility Laboratory (2012)1, the turbulent events of 2008 moved

the focus of risk forecasting from solely short term horizons to longer ones. This is because

most portfolios consist of assets that are held longer than just a few days, so that e.g.

excess leverage is likely to pose a much higher risk in the long run than in the short run

(Engle, 2009). Hence, increased attention has been recently devoted to risk forecasting

for one-month-ahead or even one-year-ahead horizons, and not only the standard, 1-day-

ahead or 10-days-ahead measures required by Basel Committee on Banking Supervision

(1995).

One of the potential reasons why the main focus was previously on short run forecasts is

the difficulty of obtaining precise risk predictions for long horizons. As noted by McNeil

et al. (2015) and Embrechts et al. (2005), a straightforward approach to risk forecasting

based on the so-called scaling rule, suitable for short term risk, might be inappropriate

for long-term forecasts2. Furthermore, Christoffersen et al. (1998) state that generally

conventional parametric models are ill-suited for extreme events analysis because they

focus on “average” scenarios in order to obtain a high goodness of fit. This misperformance

may be even more severe when the horizon of analysis increases.

McNeil and Frey (2000) distinguish three main approaches to forecasting tail related

measures: non-parametric historical simulations (HS); parametric methods based on an

econometric model where the volatility dynamics are explicitly specified; methods based

on extreme value theory (EVT). They argue that a parametric model of volatility is essen-

tial in order to capture the volatility dynamics exhibited by financial returns, which allows

for prediction of risk based on the current volatility background. Moreover, parametric

1As it describes itself, The Volatility Laboratory (V-Lab) of The Volatility Institute provides real time
measurement, modelling and forecasting of financial volatility, correlations and risk for a wide spectrum
of assets and it produces volatility forecasts up to a year in advance. The Volatility Institute was created
at New York University Stern School of Business in 2009 under the direction of Professor R. F. Engle.

2The performance of the scaling rule crucially depends on the data generating process, in particular
its “closeness” to a normal random walk model, where indeed a quantile of H-days-ahead distribution
is given by the quantile of the 1-day-ahead distribution multiplied by

√
H (see Dańıelsson and Zigrand,

2006; Diebold et al., 1997).
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time series models provide a framework to extrapolate the analysis beyond the observed

data – as opposed to the HS methods. For these reasons it is a natural starting point

for our analysis to build upon parametric methods from the second group. As the main

drawback of these models McNeil and Frey (2000) indicate their common conditional nor-

mality assumption, which seems to be invalid for most financial series. Hence, they apply

EVT to estimate extreme quantiles of the distribution of the standardised residuals from

a normal GARCH model. The EVT approach for capturing the properties of extreme

tails was also suggested by Christoffersen et al. (1998).

In this paper we decide to proceed differently: in order to address the issue of precise

long-run risk evaluation we build upon the approach of Hoogerheide and van Dijk (2010).

These authors suggest to forecast the probability of extreme events, for a given volatility

model, via importance sampling (IS) based on a specially designed importance density

focusing on the left tail. To cope with heavy tails of conditional return distributions

we consider volatility models with Student’s t distributed error terms. We propose an

accurate and efficient approach to forecasting two standard measures of market risk,

Value at Risk (VaR) and Expected Shortfall (ES), in a situation when the prediction

horizon is long, e.g. 40, 100 or 250 days ahead. The latter is a noticeable contribution

compared to Hoogerheide and van Dijk (2010), who proposed a method suited for standard

short-run analysis3. To this end we first redesign the original approach of Hoogerheide

and van Dijk (2010) using a more flexible approximation algorithm. Second, we suggest

a novel sequential construction of the importance density, feasible thanks to employing

that new algorithm. The construction of importance densities allows for “guiding” of

the subsequent simulated returns over time so that the cumulative return falls in the

“high-loss” region, making the analysis of long horizons feasible. In our approach the

properties of the subsequent conditional importance densities depend on the previous

simulated returns in the sense that at each step we take into consideration the cumulative

return up to that time point. This allows us to assess how much the situation still needs

to deteriorate in order to qualify for being a “high-loss” scenario. We focus on the 99%

quantile of the profit-loss distribution, as required by the Basel Committee on Banking

Supervision (1995); such an extreme tail is also more challenging to precisely predict than

3Hoogerheide and van Dijk (2010) note that the relative performance of their method may decrease
with the prediction horizon length, due to the so-called “curse of dimensionality of importance sampling”,
and is likely to vanish for very long horizons, such as 100-days-ahead.
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e.g. the 95% quantile, which is also commonly analysed.

It is important to stress that our method is universal, i.e. it can be applied for any chosen

parametric volatility model. Hence, we abstract from the issue of model selection, but aim

at a precise and efficient evaluation of risk implied by the given model. Nevertheless, our

method is still highly advantageous in the context of model selection because by reducing

the uncertainty related to the simulation noise the comparison between models is more

likely to be based on their “true” quality.

As a variance reduction technique, IS has been already applied in the context of mar-

ket risk evaluation. Importantly, Glasserman et al. (1999), Glasserman et al. (2000) and

Glasserman et al. (2002) combine IS with stratified sampling to obtain precise estimates

of VaR. They, however, do not consider time series models and carry out barely a “nu-

merical example”, not an empirical study with real data. Furthermore, they restrict their

attention to a 10-days-ahead horizon and analyse portfolio loss probabilities from the fre-

quentist perspective. However, risk forecasting, and especially for long horizons, is subject

to a considerable parameter uncertainty. That is why the Bayesian approach seems to be

particularly suited for long run risk analysis. In addition, not only it naturally captures

parameter uncertainty but also provides a convenient starting point for considering model

uncertainty via Bayesian model averaging. Therefore we follow Hoogerheide and van Dijk

(2010) and focus primarily on the analysis from the Bayesian perspective. However, to

illustrate the merits and the flexibility of the proposed method, we demonstrate how the

method can be adjusted to the frequentist case, for which we provide the counterparts of

the Bayesian applications.

The outline of the paper is as follows. In Section 2 we first recall the approach of Hooger-

heide and van Dijk (2010) to show how IS can be applied in the context of Bayesian risk

forecasting; second, we present how our proposed method allows to mitigate the “curse of

dimensionality”, inherent to IS, to allow for more accurate and efficient long run VaR and

ES forecasts. We illustrate the performance of our novel method in Section 3 with two

workhorse models, commonly used by practitioners, i.e. the Generalized Autoregressive

Conditional Heteroscedasticity model (GARCH, Engle, 1982; Bollerslev, 1986) and the

Generalised Autoregressive Score model (GAS, Creal et al., 2013), both with Student’s t

innovations. In Section 4 we consider the alternative, frequentist method for long run

prediction of VaR and ES: we discuss the necessary methodology modifications and pro-
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vide the frequentist counterparts of the Bayesian applications from Section 3. Section 5

concludes and presents an outline for the further research.

2 Bayesian risk evaluation using importance sampling

Let {yt}t∈Z be a time series of daily logreturns yt = 100(log pt − log pt−1) on a financial

asset with price pt at the end of day t, with y1:T := {y1, . . . , yT} denoting the observed

data. We assume that {yt}t∈Z is subject to a dynamic stationary process parametrised

by θ, on which we put a prior p(θ). Let y∗1:H = {yT+1, . . . , yT+H} denote the vector of H

future returns and consider the posterior predictive distribution of profit/loss PL(y∗1:H) =

100
[
exp

(∑T+H
t=T+1 yt/100

)
− 1
]

(converting the sum of the logreturns to the percentage

return) defined as defined as

p (PL(y∗1:H)|y1:T ) =

∫
p (PL(y∗1:H)|y1:T , θ) p(θ|y1:T )dθ, (2.1)

obtained by marginalisation over the parameter with respect to the posterior distribution

p(θ|y1:T ). We are interested in Bayesian forecasting of the 100α% VaR, i.e. the 100(1−α)%

quantile of the posterior predictive distribution of profit/loss within a horizon of the next

H trading days, i.e.

100α% VaR = inf
{
x ∈ R : P(PL(y∗1:H) ≥ x|y1:T ) ≥ α

}
.

We also consider ES as an alternative risk measure, due to its advantageous properties

compared to VaR, mainly sub-additivity (which makes ES a coherent risk measure in the

sense of Artzner et al., 1999). Given 100α% VaR, the conditional ES is defined as

100α% ES = E
[
PL(y∗1:H)|PL(y∗1:H) < 100α% VaR

]
.

Since (2.1) is usually analytically intractable, simulation based methods need to be ap-

plied in order to estimate VaR and ES. Following Hoogerheide and van Dijk (2010) we

distinguish two approaches to that. The first one, which we will refer to as the direct

approach, is straightforward:

1. draw a sample of model parameter θ(i), i = 1, . . . ,M , from the posterior distribution
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(using e.g. the Metropolis-Hastings algorithm);

2. generate the corresponding paths of H future log-returns y∗(i) = {y(i)
T+1, . . . , y

(i)
T+H};

3. compute the resulting profits/losses PL(y∗(i));

4. sort in ascending order the values of PL(y∗(i)) to obtain the permutation PL(j),

j = 1, . . . ,M ;

5. obtain the 100α% VaR and ES as

V̂ aRDA = PL((1−α)N), (2.2)

ÊSDA =
1

(1− α)N

(1−α)N∑
j=1

PL(j). (2.3)

The Volatility Laboratory (2012) uses this direct approach for the non-Bayesian forecast-

ing of long run VaR, where step 1 is replaced by frequentist estimation. The drawback of

the direct approach is that it is subject to an inherent problem of rare events simulations,

i.e. that most of the generated scenarios are not the ones of the ultimate interest, the

extremely negative ones. This makes direct estimators very inefficient and the only way

to increase their precision is to consider many more draws. Obviously, the latter is costly,

in terms of both computing time and computing resources (e.g. the available memory).

To illustrate the problem, let us introduce a toy example of white noise returns4

yt ∼
√
σ2εt εt ∼ N (0, 1), σ2 ∼ p(σ2),

where p is a conjugate prior distribution. Then, the future profits/losses follow PL(y∗1:H) ∼

N (0, Hσ2). If we treat σ2 as known and equal to 1, i.e. under the assumption that the

data were generated from a standard normal distribution, the value for the 10-days-

ahead 99% VaR is given by Φ−1(0.01)
√

10 = −7.3566, for 100-days-ahead it is equal to

−23.2635, while for 250-days-ahead to −36.7828. Figure 2.1 presents the outcome of the

direct approach for the shortest horizon of 10-days-ahead. One can see that – as discussed

above – only a very small fraction of roughly 1/100 of the generated paths corresponds

to the high losses that we are interested in, which indeed leads to a low efficiency.

4In this example we consider for simplicity the cumulative logreturn over H = 10 days (instead of the

percentage return), so that the profit/loss is just the sum of the H logreturns, i.e. PL(y∗1:H) :=
∑H
h=1 y

∗
h.
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Figure 2.1: Direct simulation results in very few paths (the red ones) below the 99% VaR value (the violet horizontal
line). White noise returns, 10-days-ahead horizon, simulated 10, 000 paths.

2.1 Tail focused importance density

To overcome the inefficiency of the direct approach, Hoogerheide and van Dijk (2010)

suggest importance sampling (IS), a well known variance reduction technique. Its main

merit is the potential focus on the important subspace by adopting an appropriate sam-

pling density, which in the context of VaR and ES should be tail-focused. Hoogerheide

and van Dijk (2010) propose the Quick Evaluation of Risk using Mixture of t approxima-

tions (QERMit) algorithm, where the key idea is to oversample the high-loss scenarios

and to give them lower importance weights. The theoretical insight for their method

comes from the properties of the optimal importance density for the Bayesian estimation

of f̄ ≡ E [f(X)] for a variable X with density kernel p(x), outlined by Geweke (1989)5,

which is given by qopt(x) ∝ |f(x)− f̄ |p(x), provided that E[|f(X)− f̄ |] <∞. For the case

of f(x) = IS(x), i.e. the indicator function of the set S, we have

E[f(X)] = P[X ∈ S] =: p̄

and the optimal importance density is given by

qopt(x) ∝

(1− p̄)p(x), for x ∈ S

p̄p(x), for x 6∈ S
, or qopt(x) =

c(1− p̄)p̃(x), for x ∈ S

cp̄p̃(x), for x 6∈ S
,

5Here, the optimality refers to minimisation, given the specified number of draws, of the numerical
standard error of the IS estimator of f̄ ≡ E [f(X)] , where f is the function of interest of the random
variable X, which has the density p̃(x) with the kernel p(x).
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where c is a constant, which results in6

∫
x∈S

qopt(x)dx =

∫
x 6∈S

qopt(x)dx =
1

2
. (2.4)

Condition (2.4) implies that half of the total probability mass of the importance distri-

bution shall be located in the region of interest S, and the remaining half outside that

region. Such a split is the consequence of using only the kernel of the target distribution

and not its proper density, which makes it necessary to adequately normalise the impor-

tance weights via sampling from the whole domain instead of merely sampling high loss

scenarios, which is the optimal method in the frequentist approach that we consider in

the sequel of this paper.

Hoogerheide and van Dijk (2010) apply the above result in the context of VaR and ES

estimation. Then, S is interpreted as the “high loss region”, i.e. the subspace of the

profits/losses space with the 100(1 − α)% lowest values, while the optimal importance

density prescribes that 50% of draws shall represent high losses while the other 50% the

remaining profit/loss realisations. Figure 2.2 illustrates the construction of the optimal

importance density for the VaR estimation.

Profit/loss density and 99% VaR

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

Optimal IS candidate

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

Figure 2.2: Construction of the optimal importance density. Exemplary density function (Student’s t with 5 degrees of
freedom) of profit/loss and the implied 99% VaR (top). The optimal importance density for the VaR estimation (bottom).

6This is obtained by noting that∫
x∈S

qopt(x)dx = c(1− p̄)
∫
x∈S

p̃(x)dx = cp̄(1− p̄) = cp̄

∫
x 6∈S

p̃(x)dx =

∫
x 6∈S

qopt(x)dx,

while
∫
x∈S qopt(x)dx+

∫
x 6∈S qopt(x)dx = 1.
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Notice that in the case of Bayesian forecasting of VaR and ES we have a joint density

p(θ, y∗1:H |y1:T ) of the parameters θ and future returns y∗1:H of which we have kernel

p(θ, y∗1:H |y1:T ) ∝ p(θ)p(y1:T |θ)p(y∗1:H |θ, y1:T ),

the product of the posterior density kernel and the future returns’ density. The IS esti-

mator V̂ aRIS of the 100(1− α)% VaR is obtained by solving x in

̂P[PL(y∗1:H) ≤ x]IS = 1− α,

which in practice can be done via the following procedure:

1. draw a sample of parameter vectors θ(i) and corresponding future returns y
∗(i)
1:H ,

i = 1, . . . ,M , from their joint importance density q(θ(i), y
∗(i)
1:H |y1:T );

2. compute the corresponding importance weights w(i) =
p(θ(i),y

∗(i)
1:H |y1:T )

q(θ(i),y
∗(i)
1:H |y1:T )

, i = 1, . . . ,M ;

3. compute the resulting profits/losses PL(y
∗(i)
1:H);

4. sort in ascending order the values of PL(y
∗(i)
1:H) to obtain the permutation PL(j),

j = 1, . . . ,M , with the corresponding weights w(j);

5. set V̂ aRIS as PL(k) for which

k∑
j=1

w(j) ≤ 1− α and
k+1∑
j=1

w(j) > 1− α,

and given V̂ aRIS

ÊSIS =
k∑
j=1

w(j)PL(j)

/
k∑
j=1

w(j).

2.2 Approximations by mixtures of Student’s t distributions

The choice of the importance density is crucial for the performance of the IS estimation.

Clearly, as pointed out by Geweke (1989), the importance density should resemble the

target density and at the same time remain easy to sample from. Moreover, the tails

of the importance density need to be thicker than those of the target density, in order
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to minimise the risk of omitting subsets of the target’s support. Finding an appropriate

importance density becomes particularly cumbersome when the shape of the target density

is non-elliptical. As illustrated by Figure 2.2, the optimal importance density for Bayesian

VaR estimation is generally bimodal.

A standard approach to overcome this problem is to approximate the target density with

a mixture of basis densities7, for which Student’s t densities are often chosen. Several

methods to construct the approximating mixture of Student’s t have been developed, see

Peel and McLachlan (2000), Svensén and Bishop (2005), Hoogerheide et al. (2007) and

Hoogerheide et al. (2012). We employ the latter algorithm, Mixture of t by Importance

Sampling weighted Expectation Maximization (MitISEM). This is a noticeable distinction

compared to Hoogerheide and van Dijk (2010), whose original QERMit algorithm relies

on another approximation algorithm, Adaptive Mixture of t (AdMit) of Hoogerheide

et al. (2007). Our main motivation behind this change is that the latter method cannot

be applied to conditional or marginal densities, which makes it useless in our Bayesian

analysis based on the factorisation of the joint target density of the parameters and future

returns. We provide a more detailed comparison of both methods in the Online Appendix.

2.3 Sequential construction of importance densities

If the horizon of the future returns increases, then it becomes more difficult to obtain an

appropriate importance density for the parameters and future returns. Hence, we want

to construct an approximation “sequentially”, in each future time period conditioning the

properties of the current conditional importance density of the return on the simulated

parameters and returns in the previous periods. Intuitively, the idea is to “guide” the

draws to fall into the high-loss region: if so far certain losses have been recorded, we know

by how much the situation must additionally deteriorate to end up in the tail. Such a

sequential and conditional construction of the importance densities can be easily carried

out using the Partial MitISEM (PMitISEM) method of Hoogerheide et al. (2012). This

algorithm aims at approximating the joint target density indirectly, by approximating the

product of marginal and conditional target densities of subsets of model parameters – and

in our case future returns.

7Zeevi and Meir (1997) show that such mixtures can provide an arbitrarily close approximation to
any strictly positive density over a compact domain.
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To explain how the “guiding” process is carried out, below we discuss the details of

PMitISEM. We express the joint target density p(θ) as a product of a marginal density

and conditional densities:

p(θ) = p(θS|θS−1, . . . , θ2, θ1) . . . p(θ2|θ1)p(θ1),

where (θ1, . . . , θS) is a partition of a k-dimensional vector θ into S subsets with respective

dimensions ks, s = 1, . . . , S, where naturally
∑S

s=1 ks = k. Then it may be desirable to

iteratively approximate each of the marginal and conditional densities due to the implied

dimensionality reduction for each of the sub-problems. In general, the basic MitISEM

could be applied to each of them to optimise the modes, scale matrices, degrees of free-

dom and weights independently for each subset. However, this would naturally result in

a very poor joint importance density (unless the subsets θs are independent) as the con-

ditional structure would be neglected. In order to capture the interdependence between

the subsets, in the PMitISEM algorithm the modes of the components in the subsequent

conditional subsets are based on fitted values in the regression of the current subset param-

eters on (a function of) the parameters from the previous subsets (and potentially other

“global” variables, e.g. functions of the data). PMitISEM optimises the regression coeffi-

cients for the conditional importance densities (corresponding to the subsets θ2, . . . , θS),

instead of optimising their modes. Below we discuss the details of the regression.

The underlying idea comes from the basic result in multivariate regression theory. For

the sake of simplicity of the exposition we restrict ourselves to the case S = 2; the

extension to more subsets is straightforward. Consider the (asymptotically valid) approx-

imating normal distribution N (µ,Σ) for θ = (θT1 , θ
T
2 )T , where µ = arg maxθ f(θ) and

Σ = − H(log f(θ))−1|θ=µ, where f(θ) is the posterior density kernel. Let

µ =

µ1

µ2

 , Σ =

Σ11 Σ12

Σ21 Σ22

 .
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Then

θ1 ∼ N (µ1,Σ11),

θ2|θ1 ∼ N (µ2 + Σ−1
22 Σ21(θ1 − µ1)︸ ︷︷ ︸

βX

,Σ22 − Σ21Σ−1
11 Σ12).

The PMitISEM algorithm replaces both the marginal and conditional normal distributions

with mixtures of Student’s t distributions. The mixture for the marginal distribution for

θ1 is constructed with the basic MitISEM algorithm. The mixture for the conditional

density for θ2 given θ1 is constructed with a modified version of the algorithm, based on a

regression of the parameters θ2 on a constant term and some functions of parameters from

the subsequent subset θ1 (and potentially the data), all kept in the matrix X. Then, the

above mentioned modification pertains to the optimisation of the coefficients of regression

β instead of the modes.

In the basic MitISEM algorithm the maximisation step for the modes and the covariance

matrices of the c-th mixture component is given by

µ(L)
c =

[
N∑
i=1

W i z̃/w
i

c

]−1 [ N∑
i=1

W i z̃/w
i

cθ
i

]
,

Σ̂(L)
c =

∑N
i=1W

i z̃/w
i

c(θ − µ
(L)
c )(θi − µ(L)

c )T∑N
i=1W

i z̃ic
,

where W i are the importance weights, and where z̃/w
i

c and z̃ic, i = 1, . . . , N , are computed

in the expectation step of the algorithm. The exact formulae for their computation,

together with other details of the basic MitISEM algorithm are provided in the Online

Appendix. In the partial MitISEM algorithm, the maximisation step for the regression

coefficients β and the covariance matrices (for the conditional densities) of the c-th mixture

component becomes as follows

(β(L)
c )T =

[
N∑
i=1

W i z̃/w
i

cX
i
s(X

i
s)
T

]−1 [ N∑
i=1

W i z̃/w
i

cX
i
s(θ

i)T

]
,

Σ̂(L)
c =

∑N
i=1W

i z̃/w
i

c(θ
i − β(L)

c X i
s)(θ

i − β(L)
c X i

s)
T∑N

i=1 W
i z̃ic

.

Notice that in the current partial setting each draw θis (of length ks) from the subset s
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(s = 2, . . . , S) has a different conditional mean µic = βcX
i
s, where X i

s is an r × 1 vector

(with elements being a constant and some r − 1 functions of y and θ1, . . . , θs−1) and βc

is a ks × r matrix. Intuitively, for each subset (and each component h in the conditional

importance density for this subset) βc characterises the common dependence of the s-th

subset of parameters θs (for component h) on the previous s − 1 subsets of parameters

(and on the data). The details of the procedure are presented in the Online Appendix.

Let us return to the introductory toy example of white noise returns, with only one

model parameter σ2 and H other “parameters” corresponding to the future disturbances

ε1, . . . , εH . The sampling scheme is then as follows

(σ2, ε1) ∼ q1,

ε2|σ2, ε1 ∼ q2,

ε3|σ2, ε1, ε2 ∼ q3,

...

εH |σ2, ε1, ε2, . . . , εH−1 ∼ qH .

To construct the conditional mixture importance densities qh with the PMitISEM algo-

rithm we put for h = 2, . . . , H

Xh =

[
1,

h−1∑
t=1

y∗t

]
,

i.e. a column of ones and the cumulative returns in the previous periods. The latter

choice is motivated by our aim to keep track of the evolution of the returns, i.e. how bad

the situation has become up to now. In order to construct the marginal and conditional

importance densities in the PMitISEM approach we need a preliminary set of parameter

draws and corresponding high loss paths of future returns. For this purpose we use the

high loss paths (and corresponding parameter draws) of a preliminary run of the direct

approach (illustrated in Figure 2.1), which also yields a preliminary VaR forecast. Given

the preliminary VaR, this can allow us to assess how much “down” we still need to go

in order to get to the high loss region. In Figure 2.3 this aim can be seen as ending up

below the violet line.
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Figure 2.3: Simulations using PMitISEM result in almost all paths falling into the high-loss region (the red ones) below
the 99% VaR value (the violet horizontal line). White noise returns, 10-days-ahead horizon, 10, 000 simulated paths.

3 Empirical illustrations of Bayesian forecasting

In this section we discuss our key results for the 99% VaR and ES forecasting from

the Bayesian perspective. We analyse two benchmark models of volatility, commonly

employed by practitioners, the Generalized Autoregressive Conditional Heteroscedasticity

model (GARCH, Engle, 1982; Bollerslev, 1986) and the Generalised Autoregressive Score

model (GAS, Creal et al., 2013), both with Student’s t innovations.

The main purpose of our applications is to illustrate the proposed IS-based forecasting

method, i.e. how it is implemented and what efficiency gains it can yield. Keeping this in

mind we apply each model to a different dataset, one used in the original paper of Hooger-

heide and van Dijk (2010) and another one consisting of more recent data. Importantly,

the former is a tranquil series, collected shortly before the financial crisis of 2008, while

the latter contains the “wild” period of that financial distress, which makes the analysis

much harder. Nevertheless, we record considerable efficiency gains for all the considered

horizons also for that difficult dataset.

3.1 GARCH(1,1)-t

As our first illustration we consider the most advanced application from Hoogerheide and

van Dijk (2010), where the authors apply the GARCH(1,1)-t model to the daily logreturns

of the S&P 500, from January 2, 1998 to December 31, 2007 (2513 observations, Figure

3.1) to evaluate the 10-days-ahead 99% VaR and ES. This is a natural starting point for

our analysis, as with the AdMit algorithm employed in the original paper it was already

difficult to obtain 10-days-ahead forecasts, while with the MitISEM algorithm “shorter”

14



horizons, such as 10-day-ahead or 20-day-ahead, are easily reachable. Moreover, adopting

the Partial MitISEM algorithm allows us to extend the original analysis much further, to

record time–precision gains even for the one-year-ahead horizon.
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Data descriptive statistics

T: 2513

Mean: 0.0163

Median: 0.0476

Min.: -7.0438

Max.: 5.5744

St. Dev.: 1.1352

Skewness: -0.0388

Kurtosis: 5.6470

Figure 3.1: The data from the original Hoogerheide and van Dijk (2010) paper: the daily logreturns of the S&P 500, from
January 2, 1998 to December 31, 2007.

The model is specified as follows:

yt = µ+
√
ρhtεt,

εt ∼ t(ν),

ρ :=
ν − 2

ν
,

ht = ω + αy2
t−1 + βht−1,

and we stack the model parameters into the vector θ = (ω, α, β, µ, ν). We put flat priors

on ω > 0, α ∈ (0, 1), β ∈ (0, 1) with α + β < 1, to enforce that the conditional variance

is positive and to ensure covariance stationarity, while for the degrees of freedom we set

an uninformative yet proper prior: ν − 2 ∼ Exp(0.01).

Table 3.1 presents the simulation results for the two direct approaches that we consider.

In the naive-direct approach the candidate density is based on a single Student’s t dis-

tribution with the mode equal to the MLE, the scale matrix equal to minus the inverse

of the Hessian of the loglikelihood function evaluated at the mode, and the number of

degrees of freedom set to 3 to allow for fat tails (as suggested by Geweke, 1989). To ob-

tain the candidate with the adapted-direct approach we employ the MitISEM algorithm

(Hoogerheide et al., 2012) to approximate the posterior of the model parameters with the

resulting candidate being a two-component mixture of Student’s t distributions. Here,

and in the subsequent applications, computation times refer to computations performed

on an Intel(R) Core(TM) i5–3470 processor with 3.20 GHz. The “adaptation” of the can-
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ML MH (naive candidate) MH (adapted candidate)

Parameter MLE SD Mean SD IF Mean SD IF

ω 0.0082 0.0036 0.0091 0.0035 5.8174 0.0092 0.0034 5.4216

α 0.0726 0.0121 0.0702 0.0110 5.7170 0.0707 0.0109 4.7439

β 0.9238 0.0123 0.9241 0.0118 5.7776 0.9236 0.0117 4.8040

µ 0.0481 0.0169 0.0486 0.0171 5.5711 0.0489 0.0169 4.0058

ν 9.9964 1.9873 10.2582 1.9389 5.9288 10.2512 1.8897 4.2826

AR 0.4376 0.6802

Time construction 0.93 s 60.89 s

Time sampling 10.86 s 13.72 s

No. of draws 10,000 10,000

Table 3.1: Estimation results in the GARCH(1,1)-t model for Maximum Likelihood (ML) method (reported for compar-
ison) and the Bayesian direct approach with naive (Student’s t) and adapted (MitISEM mixture of Student’s t) candidate
distributions in the independence chain Metropolis-Hastings (MH) method: estimated posterior mean and standard devia-
tion (SD), inefficiency factor (IF), acceptance rate (AR) in the MH method, and computing times for construction of the
candidate distribution and for performing the direct approach.

didate takes around one minute but allows for much closer approximation to the posterior

distribution. The acceptance rate (AR) in the independence Metropolis-Hastings (MH)

with the adapted candidate is almost 70%, which is much higher than when the naive can-

didate is adopted, in which case the AR is roughly 44%. Similarly, the adapted candidate

results in less autocorrelated draws as measured by the inefficiency factors (IF)8.

For the 99% VaR and ES evaluation we consider, next to both direct methods, two

QERMit (i.e. IS-based) approaches. In these methods we apply different methods to

approximate the “high-loss” density. The first one uses the basic MitISEM algorithm

and targets the posterior predictive density as a whole. For this reason, it usually be-

comes infeasible to use for prediction horizons longer than 20, because then the covariance

matrices of the Student’s t components are hard to work with. The second approxima-

tion algorithm is PMitISEM, based on the sequential construction of the marginal and

conditional importance densities as discussed in Section 2.3, which allows to extend the

analysis way further than the basic QERMit of Hoogerheide and van Dijk (2010). We

refer to these two methods by subscripts mit and pmit, respectively. Table 3.2 presents

the properties of the partial mixture generated by PMitISEM for the 10-days-ahead case.

8The inefficiency factor is defined as the variance of the parameter estimate divided by the variance in
case the sampling scheme would generate independent posterior draws and it is the inverse of the relative
numerical efficiency (see Pitt et al., 2012). For a sample of draws of a parameter ζ we compute IF as

IF(ζ) = 1 + 2
∑max{L,1000}
τ=1 ρτ (ζ), where ρτ (ζ) is the τ -th order autocorrelation in the sequence of draws

of parameter ζ and L is the lowest order τ for which ρτ is not significant.

16



Subset Parameters No. of components Weighted∗ µ or β∗

1 {(θ, ε1)} 4 [0.0089 0.0698 0.9250
0.0473 9.8126 -1.0284]

2 {ε2} 5 [-1.0863 -0.0948]

3 {ε3} 5 [-1.1816 -0.1083]

4 {ε4} 5 [-1.2589 -0.1070]

5 {ε5} 5 [-1.4608 -0.1390]

6 {ε6} 5 [-1.6167 -0.1471]

7 {ε7} 5 [-1.8912 -0.1697]

8 {ε8} 5 [-2.4583 -0.2202]

9 {ε9} 4 [-2.8833 -0.2568]

10 {ε10} 5 [-5.0261 -0.4842]

∗Weighted with the mixture weights.

∗∗**The mode µ (for subset 1) or the regression coefficients β (for the other subsets).

Table 3.2: Properties of the marginal and conditional importance densities from the PMitISEM method for H = 10 in
the GARCH(1,1)-t model.

Similarly as in the “toy” example of white noise returns we regress the draws from the

current conditional importance density s on

Xs =

[
1,

s−1∑
t=1

y∗t

]
,

to update the mode of the current conditional density. The last column contains the

weighted mode of the marginal importance density, i.e. for s = 1, and weighted coeffi-

cients of regression for the conditional importance densities, i.e. for s = 2, . . . , 10. The

latter show how PMitISEM “guides” the subsequent draws into the “high-loss region”.

As expected, the later the period, the more negative the regression coefficient (at the cu-

mulative return up to period s−1), with a noticeable jump in the last period to guarantee

that the whole scenario becomes a high-loss one.

Table 3.3 compares the results for the 99% VaR and ES forecasting for different horizons,

for which a visualisation is provided in the Online Appendix. For each method, the

results are based on 10, 000 draws, while to obtain the NSEs and interquantile ranges

(IQR) we performed 20 Monte Carlo replications of the evaluation experiment. Here, and
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in the next applications, we consider five horizon lengths, H ∈ {10, 20, 40, 100, 250}. This

selection ranges from the standard, intermediate horizon of two weeks, required by Basel

Committee on Banking Supervision (1995), through the one month horizon, up to the

long run, one-year-ahead horizon. The QERMit based methods clearly outperform the

direct approaches, with both RNEs and IQRs being roughly 6 times higher for H = 10

VaR and almost 3 times for H = 10 ES. For the longest horizon of H = 250 QERMit

delivers two to three times more accurate results than its direct competitors, both for

VaR and ES evaluations. As expected, for long horizons, with H = 40 or more, the basic

MitISEM becomes infeasible, due to the too high dimensionality of the scale matrices

of the mixture components it would need to tackle. Fortunately, owing to the partial

candidate construction, PMitISEM is still able to deliver satisfactory results even for

these long horizons. Notice that PMitISEM outperforms the basic MitISEM already for

the shorter horizons (H = 10 and H = 20), where its VaR forecasts are over twice more

accurate than those obtained with basic MitISEM; for the ES the relative advantage of

PMitISEM over basic MitISEM is smaller, yet still existing (the results from the latter

algorithm are almost 50% less accurate than these from the former one). Interestingly,

a better approximation to the posterior does not need to lead to a better performance

in the tail: in some cases the adapted direct approach yields worse results that its naive

counterpart, in particular when one considers just the IQR and not the NSE (see the NSE

and the IQR for the VaR at H = 250 or just the IQR for the VaR at H = 10 or the

ES at H = 20). This confirms the remark of Christoffersen et al. (1998) that standard,

goodness-of-fit-focused methods are not bound to succeed in the tail estimation problems.

Naturally, for any method it holds that the longer the horizon, the lower the prediction

accuracy. Also the advantage of the QERMit method over the direct approach diminishes

when the horizon gets extended. The crucial question is then whether there is still a

gain, in terms of the time-precision trade-off, of adopting a more accurate but also a

more complex and time consuming method. To quantify that trade-off we consider the

gain in precision (defined as the inverse of the variance) for one unit of computing time.

We refer to it as the slope, as it characterises the steepness of a function determining

the dependence between precision and computing time. A method with a higher slope

will eventually require less computing time to achieve a certain (high) precision, even

after accounting for an inevitable fixed “investment cost” of time needed to construct a
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Figure 3.2: Precision (1/var) of the predicted VaR (left) and ES (right), as a function of the amount of computing
time for different approaches, for the GARCH(1,1)-t model, for the shortest and the longest horizon. The horizontal
line corresponds to a precision of 1 digit (1.96NSE ≤ 0.05). A missing line for the MitISEM-based importance density
corresponds to a situation when it was not possible to construct such an importance density.

reliable importance density. The results of the investigation on this issue are presented in

Table 3.4, and the plots corresponding to the shortest and longest horizon are presented

in Figure 3.2 (the Online Appendix provides plots for all the horizons, with additional

details on the plots construction). The QERMit based methods turn out to be not only

more accurate but also more efficient than the direct approaches, in a sense that they

require less computing time and fewer draws to achieve the same accuracy as the direct

methods, or, stated differently, they yield higher precision in the same time and using

the same number of draws. Importantly, the conditioning of partial MitISEM allows us

to increase efficiency for all horizons, including the longest horizon of H = 250, for both,

VaR and ES evaluations.

Finally, following Hoogerheide and van Dijk (2010) we also consider the benchmark of 1

digit precision with 95% confidence. It is defined as 1.96NSE ≤ 0.05, which corresponds to

the required precision level of 1536. Then, the time required and draws required refer to the

computing time and the number of draws necessary to achieve this precision level. Notice,

that this benchmark is set somewhat arbitrarily and considering a higher confidence would

mean a much higher required precision. For instance, changing of the confidence to 99%

would raise it to 2654. Table 3.4 shows that even for the longest considered horizon of
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H V aRnaive V aRadapt V aRmit V aRpmit ESnaive ESadapt ESmit ESpmit

10 -8.1484 -8.1257 -8.2091 -8.1808 -9.9134 -9.7853 -9.9209 -9.8759

NSE (0.1836) (0.1748) 0.0531 (0.0267) (0.2329) (0.1922) (0.1192) (0.0838)

IQR [0.2066] [0.2478] [0.0840] [0.0367] [0.4104] [0.2563] [0.1543] [0.1384]

RNE 1.02 1.01 5.8198 12.37 1.59 1.60 11.28 44.66

20 -11.2028 -11.2846 -11.3024 -11.2265 -13.5991 -13.7225 -13.6589 -13.5866

NSE (0.2907) (0.2151) 0.1454 (0.0626) (0.3923) (0.3436) (0.1683) (0.1141)

IQR [0.3382] [0.3125] [0.2157] [0.0958] [0.5424] [0.6844] [0.2118] [0.1536]

RNE 1.01 1.03 2.6315 8.75 1.63 1.65 2.23 12.05

40 -15.2151 -15.2188 – -15.3329 -18.5758 -18.6593 – -18.7022

NSE (0.3520) (0.3094) (–) (0.1020) (0.5806) (0.5470) (–) (0.1991)

IQR [0.3605] [0.3839] [–] [0.1213] [0.9029] [0.5279] [–] [0.2513]

RNE 1.03 1.00 – 7.79 1.77 1.67 – 25.85

100 -22.6319 -22.6711 – -22.6115 -28.4722 -28.3719 – -28.6178

NSE (0.6497) (0.4005) (–) (0.2433) (0.8134) (0.7701) (–) (0.3119)

IQR [0.8049] [0.5865] [–] [0.4399] [1.0842] [1.2843] [–] [0.4846]

RNE 1.03 1.05 – 5.43 1.64 1.65 – 9.08

250 -32.0179 -32.0471 – -32.1617 -41.3818 -41.8261 – -41.3818

NSE (0.6737) (0.7966) (–) (0.3266) (1.2958) (1.2476) (–) (0.4583)

IQR [0.7134] [0.9548] [–] [0.4905] [2.2109] [1.6169] [–] [0.5894]

RNE 1.02 1.03 – 3.73 1.65 1.65 – 10.11

Missing value (–): it was not possible to generate the particular result with the corresponding algorithm.

Table 3.3: Results for the 99% VaR and ES, in the GARCH(1,1)-t model, based on N = 10, 000 draws and 20 replications
to obtain the numerical standard error (NSE) and the interquartile range (IQR). The RNE is the relative numerical efficiency,
the inverse of the inefficiency factor. The results are obtained using the direct approach (with naive and adapted candidate
distribution in the Metropolis-Hastings algorithm), and the QERMit method (with the basic MitISEM and PMitISEM
methods), respectively.

H = 250 the QERMit method is almost 2.5 times faster in estimating the 99% VaR with

such a reasonable precision and requires over 4 times fewer draws to achieve that than

the direct approach. For the ES the relative gain is even higher as QERMit turns out

to be more than 5 times faster and nearly 8 times less draw-requiring than the naive

direct approach. Notice that demanding a higher confidence on the precision would make

QERMit even more advantageous relative to the direct approach.
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Direct QERMit Direct QERMit

H Naive Adapted MitISEM PMitISEM Naive Adapted MitISEM PMitISEM

Total time

10 13.89 s 98.65 s 127.00 s 218.56 s

20 13.78 s 98.57 s 270.51 s 150.68 s

40 13.96 s 98.61 s – 328.77 s

100 13.95 s 98.93 s – 544.84 s

250 14.09 s 99.20 s – 1193.52 s

Construction time Sampling time

10 0.88 s 85.14 s 113.56 s 205.31 s 13.01 s 13.52 s 13.44 s 13.26 s

20 0.88 s 85.01 s 257.03 s 136.29 s 12.91 s 13.56 s 13.48 s 14.39 s

40 0.91 s 85.01 s – 314.87 s 13.05 s 13.60 s – 13.90 s

100 0.87 s 85.16 s – 530.03 s 13.08 s 13.77 s – 14.81 s

250 0.87 s 85.30 s – 1176.81 s 13.22 s 13.90 s – 16.72 s

VaR slope∗ ES slope∗

10 2.28 2.42 26.34 105.78 1.42 2.00 5.23 10.74

20 0.92 1.59 3.51 17.75 0.50 0.62 2.62 5.34

40 0.62 0.77 – 6.92 0.23 0.25 – 1.81

100 0.18 0.45 – 1.14 0.12 0.12 – 0.69

250 0.17 0.11 – 0.56 0.05 0.05 – 0.28

VaR time required∗∗ ES time required∗∗

10 674.42 s 719.98 s 171.89 s 219.84 s 1,085.54 s 852.25 s 407.13 s 348.36 s

20 1,677.00 s 1,049.22 s 694.79 s 222.84 s 3,053.12 s 2,544.50 s 843.71 s 423.86 s

40 2,485.72 s 2,085.40 s – 536.97 s 6,762.26 s 6,338.28 s – 1,161.81 s

100 8,486.05 s 3,480.60 s – 1,877.18 s 13,299.21 s 12,637.37 s – 2,743.92 s

250 9,220.75 s 13,640.17 s – 3,917.09 s 34,108.73 s 33,336.37 s – 6,573.53 s

VaR draws required∗∗ ES draws required∗∗

10 517,761 469,580 43,392 10,959 833,801 567,412 218,386 107,921

20 1,298,426 711,093 324,786 60,162 2,364,446 1,813,836 435,278 199,891

40 1,903,737 1,470,764 – 159,768 5,180,194 4,597,643 – 609,227

100 6,486,508 2,465,138 – 909,605 10,165,937 9,113,098 – 1,494,828

250 6,975,069 9,750,193 – 1,639,192 25,803,439 23,917,916 – 3,228,229

Missing value (–): it was not possible to generate the particular result with the corresponding algorithm.
∗Slope = increase in precision per unit of computing time.
∗∗Required for % estimate with 1 digit of precision (with 95% confidence).

Table 3.4: Trade-off of precision versus computing time for the 99% VaR and ES in GARCH(1,1)-t model for different
horizons.
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3.2 GAS(1,1)-t

Having referred to the benchmark GARCH application of Hoogerheide and van Dijk

(2010), in our second illustration we consider a more recently developed model for more

recent data. Creal et al. (2013) propose an alternative approach to modelling volatility

based on the updating of the time-varying parameter with the scaled score of the observa-

tion’s contribution to the likelihood function. We employ their Generalised Autoregressive

Score (GAS) model to the daily logreturns of the S&P 500, from January 3, 2005 to June

30, 2016 (2893 observations, Figure 3.3) to forecast the 99% VaR and ES at the same

horizons as in the previous section9. The data span over the 2008 financial crisis resulting

in very high sample kurtosis, so that one would expect potential difficulties in obtaining

precise risk forecasts.
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Figure 3.3: The series including the 2008 Financial Crisis: the daily logreturns of the S&P 500, from January 3, 2005 to
June 30, 2016.

We adopt the following basic specification of the GAS model, referred to as GAS(1,1)-t,

yt = µ+
√
ρhtεt,

εt ∼ t(ν),

ρ :=
ν − 2

ν
,

ht = ω + A
ν + 3

ν

(
Ct−1(yt − µ)2 − ht−1

)
+Bht−1,

Ct =
ν + 1

ν − 2

(
1 +

(yt−1 − µ)2

(ν − 2)ht−1

)−1

,

where we stack the model parameters into vector θ = (µ, ω,A,B, ν)T . Finally, we put flat

9We also considered “complimentary” applications, i.e. employing the GAS model to the “old” dataset,
as well as running the GARCH model on the “crisis” series. The former application performed better
than the originally analysed model, yielding even more noticeable efficiency gains than those reported in
Section 3.1. Regarding the latter, the GAS model as expected, provided a much better framework for
modelling extreme returns present in the crisis data compared to the GARCH model, which is a result
also reported by Jelsma and Lasak (2016).
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priors on µ, ω, A and B, with ω > 0 and B ∈ (0, 1) to guarantee that the conditional

variance is positive and to ensure covariance stationarity, and uninformative exponential

prior on ν, ν − 2 ∼ Exp(0.01).

Table 3.5: Estimation results in the GAS(1,1)-t model for Maximum Likelihood (ML) method (reported for compari-
son) and the Bayesian direct approach with naive (Student’s t) and adapted (MitISEM mixture of Student’s t) candidate
distributions in the independence chain Metropolis-Hastings (MH) method: estimated posterior mean and standard devia-
tion (SD), inefficiency factor (IF), acceptance rate (AR) in the MH method, and computing times for construction of the
candidate distribution and for performing the direct approach.

ML MH (naive candidate) MH (adapted candidate)

Parameter MLE SD Mean SD IF Mean SD IF

µ 0.0702 0.0141 0.0738 0.0140 4.8736 0.0739 0.0140 3.6611

ω 0.0219 0.0050 0.0222 0.0048 4.9919 0.0221 0.0048 3.6370

A 0.0996 0.0111 0.1026 0.0111 4.7300 0.1022 0.0110 3.6902

B 0.9817 0.0061 0.9818 0.0059 4.6926 0.9819 0.0059 3.7480

ν 6.8979 1.0376 7.0853 1.0256 5.0386 7.0762 1.0163 3.7607

AR 0.5547 0.7776

Time construction 0.98 s 108.83 s

Time sampling 17.24 s 17.80 s

No. of draws 10,000 10,000

Table 3.5 presents the simulation results for the two direct approaches. This time, due

to a bit longer series and a more complex volatility update formula, the adaptation of

the direct candidate takes slightly more than 1.5 minutes. However, the resulting AR is

much higher than in the previous application, reaching nearly 78%; it also exceeds the

one obtained with the naive candidate, which somewhat exceeds 55%. The superiority of

the adapted candidate is also reflected in lower IF values for all the parameters. Notice

that the degrees of freedom for the observation disturbances ν are estimated at a lower

level than in the previous application (around 7 compared to roughly 10 before), which

corresponds to a much more volatile nature of the current dataset.

Table 3.6 presents the properties of the partial mixture generated by PMitISEM for the

10-day-ahead case. Given an uneasy character of the current time series it is interesting to

notice that with the GAS model a lower number of mixture components was required by

the PMitISEM algorithm to approximate the tails, compared to the previous application.

Now two or three components are sufficient while with the GARCH model as many as

four to five components were necessary – and this was the case for much more regular

data. Again, the last column presents decreasing values of the regression coefficient (at
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Subset Parameters No. of components Weighted∗ µ or β∗

1 {(θ, ε1)} 1 [0.0731 0.0225 0.1045
0.9823 7.0176 -1.0027]

2 {ε2} 2 [-1.1023 -0.0975]

3 {ε3} 2 [-1.1874 -0.0887]

4 {ε4} 2 [-1.2748 -0.0966]

5 {ε5} 2 [-1.4993 -0.1150]

6 {ε6} 1 [-1.6575 -0.1231]

7 {ε7} 2 [-1.9947 -0.1557]

8 {ε8} 3 [-2.3280 -0.1755]

9 {ε9} 3 [-2.9323 -0.2234]

10 {ε10} 3 [-4.8901 -0.3954]

∗Weighted with the mixture weights.

∗∗The mode µ (for subset 1) or the regression coefficients β (for the other subsets).

Table 3.6: Properties of the marginal and conditional importance densities from the PMitISEM method for H = 10 in
the GAS(1,1)-t model.

the cumulative return up to period s − 1) used to determine the modes of subsequent

conditional mixtures, exhibiting the process of “guiding” of the draws to the tail by

PMitISEM.

Table 3.7 reveals that also this time we observe substantial accuracy gains for our proposed

methods for all horizons, for both the 99% VaR and ES (for the corresponding visualisation

we refer to the Online Appendix ). For the VaR evaluations at H = 10, 20, 40 the NSE is

around four times smaller, while for H = 100 and H = 250 it is roughly 2.5 times smaller.

Again, the ES turns out to be somewhat harder to precisely estimate than the VaR, yet

also in this case we report considerable gains. For H ≤ 40 the computed NSEs are around

three times lower with the PMitISEM based QERMit than with the direct approaches,

while for the two longest horizons they diminish more than twice. Broadly speaking, a

similar pattern pertains to the computed IQRs.

Finally, the most important results on time-precision trade-off are provided in Table 3.8

with the plots corresponding to the shortest and longest horizon presented in Figure 3.4

(the Online Appendix provides plots for all the horizons). For all horizons, for both the

VaR and the ES, the slopes obtained with the PMitISEM algorithm are much higher
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(c) VaR, H = 250
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(d) ES, H = 250

Figure 3.4: Precision (1/var) of the predicted VaR (left) and ES (right), as a function of the amount of computing time for
different approaches, for the GAS(1,1)-t model, for the shortest and the longest horizon. The horizontal line corresponds
to a precision of 1 digit (1.96NSE ≤ 0.05). A missing line for the MitISEM-based importance density corresponds to a
situation when it was not possible to construct such an importance density.

than in the case of the direct approach, often by more than one order of magnitude. Also

basic MitISEM outperforms the direct approaches, but it is clearly inferior to PMitISEM.

Eventually PMitISEM requires less time (and fewer draws) to achieve the same precision

as the direct approaches. For instance, when the 1 digit precision with 95% confidence is

considered, to accurately evaluate the 99% VaR and ES, the PMitISEM based QERMit

needs, respectively, almost 3 and over 4 times less time than the naive direct approach

(which outperforms the adaptive direct method).
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H V aRnaive V aRadapt V aRmit V aRpmit ESnaive ESadapt ESmit ESpmit

10 -9.4284 -9.4076 -9.4290 -9.4358 -11.5862 -11.4901 -11.6038 -11.5870

NSE (0.2183) (0.2793) 0.1040 (0.0601) (0.2988) (0.3205) (0.1205) (0.1078)

IQR [0.2697] [0.3666] [0.1865] [0.0891] [0.4290] [0.5576] [0.1183] [0.1505]

RNE 1.02 1.03 5.0467 9.92 1.67 1.59 8.82 26.39

20 -12.5332 -12.6962 -12.6807 -12.6483 -15.5819 -15.6293 -15.7741 -15.6556

NSE (0.3039) (0.3145) 0.1569 (0.0686) (0.4837) (0.4070) (0.3280) (0.1310)

IQR [0.5002] [0.3988] [0.2253] [0.1264] [0.6433] [0.5856] [0.3339] [0.1832]

RNE 1.01 1.03 2.4818 8.43 1.65 1.60 4.62 24.17

40 -16.4218 -16.4804 – -16.4626 -20.7435 -20.8218 – -20.8775

NSE (0.3907) (0.3582) (–) (0.0907) (0.7497) (0.5630) (–) (0.2182)

IQR [0.3910] [0.5375] [–] [0.1363] [0.7104] [0.8472] [–] [0.2692]

RNE 1.00 1.01 – 7.67 1.76 1.65 – 30.58

100 -21.7043 -21.7532 – -21.6031 -28.3618 -28.6295 – -28.4508

NSE (0.4918) (0.5725) (–) (0.2135) (1.1395) (0.7797) (–) (0.4737)

IQR [0.6407] [0.8066] [–] [0.3593] [2.0389] [1.1382] [–] [0.3251]

RNE 1.04 1.02 – 5.73 1.71 1.69 – 14.57

250 -25.2962 -25.4476 – -25.1630 -34.9541 -34.4421 – -34.3317

NSE (0.7228) (0.9014) (–) (0.3332) (1.1825) (1.5043) (–) (0.4997)

IQR [1.0707] [1.2386] [–] [0.5608] [1.8279] [1.4069] [–] [0.5731]

RNE 1.02 1.01 – 4.41 1.71 1.71 – 3.10

Missing value (–): it was not possible to generate the particular result with the corresponding algorithm.

Table 3.7: Results for the 99% VaR and ES, in the GAS(1,1)-t model, based on N = 10000 draws and 20 replications to
obtain the numerical standard error (NSE) and the interquartile range (IQR). The RNE is the relative numerical efficiency,
the inverse of the inefficiency factor. The results are obtained using the direct approach (with naive and adapted candidate
distribution in the Metropolis-Hastings algorithm), and the QERMit method (with the basic MitISEM and PMitISEM
methods), respectively.
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Direct QERMit Direct QERMit

H Naive Adapted MitISEM PMitISEM Naive Adapted MitISEM PMitISEM

Total time

10 21.64 s 126.74 s 208.47 s 152.90 s

20 21.52 s 126.74 s 189.78 s 164.66 s

40 21.57 s 126.79 s – 186.77 s

100 21.65 s 126.86 s – 297.01 s

250 21.87 s 127.13 s – 1191.88 s

Construction time Sampling time

10 4.41 s 108.94 s 192.11 s 136.38 s 17.23 s 17.81 s 16.36 s 16.52 s

20 4.28 s 108.92 s 171.95 s 147.82 s 17.24 s 17.82 s 17.83 s 16.83 s

40 4.29 s 108.94 s – 169.85 s 17.28 s 17.85 s – 16.92 s

100 4.29 s 108.91 s – 279.05 s 17.36 s 17.94 s – 17.96 s

250 4.30 s 108.96 s – 1170.85 s 17.57 s 18.17 s – 21.02 s

VaR slope∗ ES slope∗

10 1.22 0.72 5.66 16.76 0.65 0.55 4.21 5.21

20 0.63 0.57 2.28 12.61 0.25 0.34 0.52 3.46

40 0.38 0.44 – 7.18 0.10 0.18 – 1.24

100 0.24 0.17 – 1.22 0.04 0.09 – 0.25

250 0.11 0.07 – 0.43 0.04 0.02 – 0.19

VaR time required∗∗ ES time required∗∗

10 1,266.27 s 2,243.21 s 463.78 s 228.07 s 2,368.24 s 2,919.50 s 557.28 s 431.26 s

20 2,450.42 s 2,817.30 s 846.93 s 269.72 s 6,201.54 s 4,643.55 s 3,120.15 s 591.50 s

40 4,057.15 s 3,628.94 s – 383.75 s 14,926.56 s 8,803.87 s – 1,408.28 s

100 6,455.40 s 9,146.02 s – 1,537.72 s 34,635.95 s 16,871.56 s – 6,473.64 s

250 14,112.09 s 22,790.17 s – 4,756.85 s 37,756.56 s 63,277.38 s – 9,238.90 s

VaR draws required∗∗ ES draws required∗∗

10 732,326 1,198,603 166,065 55,495 1,371,858 1,578,403 223,218 178,472

20 1,419,270 1,519,981 378,493 72,408 3,595,706 2,544,903 1,653,200 263,554

40 2,345,620 1,971,873 – 126,410 8,636,375 4,870,819 – 731,891

100 3,716,418 5,036,326 – 700,689 19,950,925 9,341,719 – 3,448,462

250 8,028,977 12,485,292 – 1,705,594 21,485,424 34,772,225 – 3,837,372

Missing value (–): it was not possible to generate the particular result with the corresponding algorithm.
∗Slope =Slope = increase in precision per unit of computing time.
∗∗Required for % estimate with 1 digit of precision (with 95% confidence).

Table 3.8: Trade-off of precision versus computing time for the 99% VaR and ES in GARCH(1,1)-t model for different
horizons.
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4 Empirical illustrations of frequentist QERMit

The theoretical reason for the 50%-50% formula (2.4) was that in Bayesian analysis usu-

ally only a kernel of the target density is available, i.e. the normalising constant for the

posterior density is unknown, so that one needs to normalise the importance weights by

their sum. If the target was known there would be no need to normalise the importance

weights and the optimal sampling density would put all the probability mass into the

region of interest. This is typically the case in frequentist inference, where we only need

to simulate the future returns (or future innovations) of which we know the exact density

(including the scaling constant) given the parameter vector θ. Let p(ε∗) denote the target

density of future disturbances, ε∗ = (ε∗1, . . . , ε
∗
H), and suppose that the vector of model

parameters θ is fixed (this can be seen as either the “true” model parameters being known

or the MLE being available). Then the optimal importance density is a function only of

ε∗, given θ, and it is constructed solely over the tail.

In general, the optimal candidate density for estimation of Ep[g(X)] is given by

qopt(x) = C|g(x)|p(x)

with the normalising constant C = 1/Ep[|g(X)|] (see Kahn and Marshall, 1953). In the

case of estimating probability p̄ of an event S we have g(x) = 1S(x), hence

qopt(x) = 1S(x)p(x)/p̄,

so it is a density proportional to the target over the set S. Then

Ep[1S(X)] =

∫
S

p(x)dx

=

∫
S

p(x)

qopt(x)
qopt(x)dx

= Eqopt [1S(X)w(X)],

where w(x) = p(x)/qopt(x), and its unbiased and consistent MC estimator is then given
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by

̂Ep[1S(X)] =
1

N

N∑
i=1

1S(x(i))w(x(i)),

where x(1), . . . , x(N) are i.i.d. draws from qopt. Notice that using qopt results in zero-variance

IS, as p(x)
qopt(x)

1S(x) is constant (equal to Ep[g(X)]). Hence, in the case when the target

density is known, there is no limit on the potential relative gain in precision from using IS

rather than direct simulation10, which means that the RNE can be unbounded. In prac-

tice, however, the problem is that to implement sampling based on qopt, one needs to know

p̄, which obviously is infeasible as the evaluation of p̄ is the goal of the undertaken analysis

in the first place. In the context of risk forecasting, using the previously introduced nota-

tion, we would need to know the 100α% VaR. Hence, similarly as in the Bayesian case, we

can approximate qopt based on some preliminary value VaRprelim obtained with the direct

approach. To this end we again use a mixture of Student’s t distributions delivered by

MitISEM.

As already noted in the introduction, the advantages of IS as a variance reduction tech-

nique in the frequentist case have already been noticed in the literature. Glasserman et al.

(1999) and Glasserman et al. (2000) combine IS with stratified sampling to obtain precise

estimates of VaR, while Glasserman et al. (2002) extend their analysis to also include ES.

They specify an importance density based on a quadratic “delta-gamma” approximation

to the change in portfolio value. They, however, do not consider time series models and

do not carry out an empirical study on the real data, which are of key interest to us.

Hence, we do not consider their approach in our research, although some insights from

those studies might be useful in further research.

4.1 GARCH(1,1)-t

Below we discuss the frequentist counterpart of the Bayesian analysis of the GARCH(1,1)-

t model from Section 3.1. We fix the model parameters to their MLE values (reported

in Table 3.1), compute the corresponding volatility for the last in-sample time period

10see Hoogerheide and van Dijk (2010), who derive the limit of the potential relative gain in precision
from using IS rather than direct simulation for VaR evaluation in the Bayesian context, which is equal
to (4(1− p̄)p̄)−1. This is 25.25 for p̄ = 0.01, the case of the 99% VaR. Note that the relative precision
gain may be higher for the ES.
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and simulate only the i.i.d. future disturbances εh, h = 1, . . . , H. Since there is no

posterior density to approximate in this case, now we have only one direct approach,

where we simulate εh directly from the target, which in this case is the standard Student’s

t density with roughly 10 degrees of freedom. The QERMit approaches are based on the

approximations to the tail of the target, i.e. the tail of the predictive density.

Table 4.1 shows that also in the frequentist case we achieve noticeable improvements in

the accuracy of the VaR and ES evaluations for all horizons (the corresponding plots are

provided in the Online Appendix). This time, the NSEs for the VaR are four to eight

times lower when computed using the PMitISEM based QERMit than in the case of direct

sampling. For the ES PMitISEM outperforms the direct approach by more than three

times. Notice that the RNEs for the QERMit based methods are astonishingly high, for

the VaR ranging from over 3000 for H = 10, to 30 at H = 250, and for the ES from 250

to 10, respectively. This clearly demonstrates that in the frequentist case using IS rather

than the direct simulation faces no limits on the relative precision gain and is “barely”

constrained by our ability to construct an accurate candidate density.

Regarding the crucial time-precision trade-off, Table 4.2 shows that once again the slopes

for the QERMit-based methods are higher than these of the direct approach (the Online

Appendix provides the corresponding plots for all the horizons), usually two to three

times. For some horizons, however, the increase in the slope due to adopting our IS-based

method is much higher (for H = 100 it is over 7 for the VaR and over 13 for the ES).

Interestingly, for H = 10 the superior algorithm turns out to be basic MitISEM and not

PMitISEM, which delivers a slightly lower slope for the VaR than the direct approach.

An important remark must be made on the differences in sampling times between the

Bayesian and the frequentist applications. Any frequentist method is extremely fast

compared to any Bayesian method. Considering Table 3.4 for the Bayesian case and

Table 4.2 for the frequentist case reveals that in the latter the sampling is usually faster

by two orders of magnitude than in the former. The obvious reason for this speed of

the frequentist sampling is that each logreturn draw y∗(i), i = 1, . . . ,M , is based on the

common value of the parameter θ, fixed at the MLE. Therefore, not only no time is

spent on drawing parameters from the posterior, but also on calculating the implied time

T volatilities h
(i)
T , necessary for prediction of the future volatilities. In the frequentist

case the direct sampling time consists therefore barely of drawing i.i.d. variates from the

30



Student’s t target (i.e. ε
(i)
1 , . . . , ε

(i)
H ) and running the H-step-ahead recursion implied by

the model to obtain the final PL(y∗(i)) value. When the QERMit methods are adopted,

ε
(i)
h , h = 1, . . . , H are no longer independently drawn from a univariate target, but from

more complex densities with an inner dependence structure, which makes the sampling

more time consuming.

The fact that the direct approach is so fast in the frequentist case results in PMitISEM-

based QERMit methods requiring relatively more time to reach the benchmark 1 digit

precision (with 95% confidence), even though they are characterised by higher slopes.

Fortunately, for QERMit based on basic MitISEM (when it is feasible) our method requires

less time than the direct approach to achieve this benchmark precision level. Interestingly,

however, both QERMit methods require far fewer draws than the direct approach to

estimate 99% VaR and ES with the above specified precision, which again needs to be

related to the differences in sampling time. Finally, recall once again that if more precise

evaluations are required or a higher confidence for the precision is considered, the time

required would of course change in favour of the QERMit-based methods, due to their

higher slopes.

4.2 GAS(1,1)-t

Finally, we turn to the frequentist analysis of the GAS(1,1)-t model applied to the highly

volatile “crisis” data from Section 3.2. As in the previous frequentist application we

fix the model parameters at their MLE values (reported in Table 3.5). Hence, now the

future observation disturbances are drawn from the Student’s t distribution with roughly

7 degrees of freedom.

Table 4.3 presents the results for the VaR and ES evaluation (see the Online Appendix

for the corresponding plots). One can see that also this time the QERMit-based methods

generate much more accurate forecasts. For shorter horizons the NSE for the VaR is 5 to 6

times lower when evaluated with PMitISEM based QERMit than when computed directly,

while for the ES the improvement ranges from 3 to 6 times. For both the VaR and the

ES, the accuracy gain for long horizons is slightly lower, but still above 3 times. The IQR

follows a similar pattern to the NSE, with the relative advantage of the QERMit-based

methods being greater for the VaR than for the ES, and gradually slightly diminishing
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H V aRnaive V aRmit V aRpmit ESnaive ESmit ESpmit

10 -7.9417 -7.8999 -7.8988 -9.5686 -9.5494 -9.5218

NSE (0.1496) 0.0256 (0.0179) (0.2284) (0.0900) (0.0633)

IQR [0.1829] [0.0235] [0.0284] [0.3452] [0.1167] [0.0812]

RNE 1.00 1530.93 3129.10 1.00 123.57 249.28

20 -10.7175 -10.7775 -10.7904 -13.0425 -13.1050 -13.1076

NSE (0.2484) (0.0786) (0.0421) (0.3270) (0.0844) (0.0969)

IQR [0.3229] [0.0771] [0.0404] [0.4686] [0.0834] [0.0761]

RNE 1.00 161.73 565.28 1.00 140.24 106.51

40 -14.5069 -14.4811 -14.5548 -17.7166 -17.8923 -17.8710

NSE (0.2999) (0.1981) (0.0630) (0.5337) (0.3440) (0.0913)

IQR [0.3746] [0.3215] [0.0565] [0.8246] [0.2560] [0.0760]

RNE 1.00 25.49 251.59 1.00 8.45 120.01

100 -20.8270 – -20.7822 -26.2797 – -26.1151

NSE (0.7637) (–) (0.0882) (1.1799) (–) (0.0956)

IQR [0.7992] [–] [0.0881] [1.2810] [–] [0.1464]

RNE 1.00 – 128.59 1.00 – 109.42

250 -27.6190 – -27.3962 -35.6952 – -35.4605

NSE (0.7819) (–) (0.1804) (1.3967) (–) (0.3207)

IQR [1.0447] [–] [0.2453] [2.1390] [–] [0.3624]

RNE 1.00 – 30.73 1.00 – 9.73

Missing value (–): it was not possible to generate the particular
result with the corresponding algorithm.

Table 4.1: Results for the 99% VaR and ES, in the GARCH(1,1)-t model, based on N = 10000 draws and 20 replications
to obtain the numerical standard error (NSE) and the interquartile range (IQR). The RNE is the relative numerical efficiency,
the inverse of the inefficiency factor. The results are obtained using the direct approach (with naive and adapted candidate
distribution in the Metropolis-Hastings algorithm), and the QERMit method (with the basic MitISEM and PMitISEM
methods), respectively.
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Direct QERMit Direct QERMit

H Naive MitISEM PMitISEM Naive MitISEM PMitISEM

Total time

10 0.90 s 1.30 s 2.15 s

20 0.92 s 2.08 s 6.85 s

40 0.96 s 1.17 s 23.98 s

100 1.04 s – 146.35 s

250 1.27 s – 1015.70 s

Construction time Sampling time

10 0.88 s 1.26 s 2.01 s 0.02 s 0.04 s 0.15 s

20 0.89 s 2.04 s 6.53 s 0.03 s 0.05 s 0.33 s

40 0.90 s 1.09 s 23.35 s 0.06 s 0.08 s 0.62 s

100 0.89 s – 144.71 s 0.15 s – 1.63 s

250 0.90 s – 1010.97 s 0.37 s – 4.74 s

VaR slope∗ ES slope∗

10 2,464.45 42,196.32 21,071.42 1,056.97 3,405.84 1,678.66

20 490.24 3452.54 1,719.31 282.90 2,993.64 323.94

40 177.31 300.83 405.28 55.98 99.70 193.33

100 11.44 – 78.70 4.79 – 66.96

250 4.42 – 6.49 1.39 – 2.05

VaR time required∗∗ ES time required∗∗

10 1.51 s 1.30 s 2.08 s 2.34 s 1.71 s 2.92 s

20 4.02 s 2.48 s 7.42 s 6.32 s 2.55 s 11.27 s

40 9.56 s 6.20 s 27.15 s 28.35 s 16.50 s 31.30 s

100 135.22 s – 164.24 s 321.53 s – 167.66 s

250 348.18 s – 1,247.76 s 1,108.99 s – 1,759.19 s

VaR draws required∗∗ ES draws required∗∗

10 343,912 10,037 4,911 801,869 124,356 61,643

20 948,367 95,010 27,184 1,643,393 109,575 144,275

40 1,381,752 602,821 61,078 4,376,720 1,818,906 128,039

100 8,962,809 – 119,498 21,394,002 – 140,435

250 9,395,216 – 500,025 29,977,657 – 1,580,009

Missing value (–): it was not possible to generate the particular
result with the corresponding algorithm.

∗Slope = increase in precision per unit of computing time.

∗∗Required for % estimate with 1 digit of precision (with 95% confidence).

Table 4.2: Trade-off of precision versus computing time for the 99% VaR and ES in GARCH(1,1)-t model for different
horizons.
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with the length of the forecast horizon.

Regarding the time-precision trade-off, Table 4.4 shows that for all the measure-horizon

combinations we obtain considerable efficiency gains from adopting tail-focused densities

(the visualisation of the results can be found in the Online Appendix). This translates to

fewer draws being required to achieve the 1 digit precision by the QERMit methods. Due

to the specific nature of the frequentist sampling time, the PMitISEM-based QERMit

in some cases requires more time for that purpose, yet with MitISEM we obtain gains

also in this regards. A more demanding precision requirement would make both QERMit

methods more competitive compared to the direct sampling both in terms of time and

draws required.

5 Conclusions

We have proposed an efficient importance sampling based method for the Bayesian risk

forecasting, given a chosen model of volatility. We focus on two standard risk measures,

Value-at-Risk and Expected Shortfall. The proposed method enables an accurate forecasts

even for long horizons, such as one-month or one-year-ahead. We have carried out two

empirical studies for daily S&P 500 returns in different time periods, a tranquil period

and a highly volatile crisis period. Both applications confirm that our method not only

yields more accurate forecasts than the direct sampling approach, commonly used in

practice (see The Volatility Laboratory, 2012), but also achieves this in a time efficient

way, resulting in a considerable gain in terms of time-precision trade-off. This substantial

extension of the applicability of importance sampling to the simulation of returns for long

horizons is to be attributed to the sequential construction of the marginal and conditional

importance densities, which are flexible mixtures of Student’s t distributions.

The proposed method succeeds also for the frequentist applications, in terms of yielding

a higher precision gain for a unit of computing time. However, due to generally very fast

computations in the frequentist case, the advantage of the QERMit method relative to

the direct approach depends on the required precision level or on the chosen confidence

for the precision. We do stress that in the context of long run risk evaluation, Bayesian

analysis provides a more natural framework due to accounting for parameter uncertainty.
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H V aRnaive V aRmit V aRpmit ESnaive ESmit ESpmit

10 -9.3886 -9.3681 -9.3562 -11.4654 -11.4724 -11.4604

NSE (0.2346) (0.0588) (0.0346) (0.2467) (0.1043) (0.0711)

IQR [0.2717] [0.0677] [0.0430] [0.3244] [0.1365] [0.0797]

RNE 1.00 288.88 835.34 1.00 91.88 198.07

20 -12.5140 -12.4591 -12.5526 -15.3418 -15.4223 -15.4870

NSE (0.3144) (0.1222) (0.0673) (0.4080) (0.2497) (0.0658)

IQR [0.4695] [0.1413] [0.0562] [0.5067] [0.1851] [0.0760]

RNE 1.00 66.96 220.75 1.00 16.04 231.05

40 -16.2119 – -16.3093 -20.4478 – -20.4527

NSE (0.2933) (–) (0.0769) (0.5824) (–) (0.0941)

IQR [0.4169] [ –] [0.0991] [0.9540] [ –] [0.1494]

RNE 1.00 – 169.30 1.00 – 112.83

100 -21.4720 – -21.2891 -27.5570 – -27.3327

NSE (0.6093) (–) (0.1695) (0.8992) (–) (0.1591)

IQR [0.7680] [ –] [0.1984] [1.2750] [ –] [0.2958]

RNE 1.00 – 34.81 1.00 – 39.50

250 -24.3314 – -24.2340 -32.3997 – -32.2739

NSE (0.7701) (–) (0.2084) (1.4013) (–) (0.2369)

IQR [0.9156] [ –] [0.2901] [1.5927] [ –] [0.3614]

RNE 1.00 – 23.02 1.00 – 17.81

Missing value (–): it was not possible to generate the particular
result with the corresponding algorithm.

Table 4.3: Results for the 99% VaR and ES, in the GAS(1,1)-t model, based on N = 10000 draws and 20 replications to
obtain the numerical standard error (NSE) and the interquartile range (IQR). The RNE is the relative numerical efficiency,
the inverse of the inefficiency factor. The results are obtained using the direct approach (with naive and adapted candidate
distribution in the Metropolis-Hastings algorithm), and the QERMit method (with the basic MitISEM and PMitISEM
methods), respectively.
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Direct QERMit Direct QERMit

H Naive MitISEM PMitISEM Naive MitISEM PMitISEM

Total time

10 4.35 s 0.67 s 3.12 s

20 4.35 s 4.78 s 9.46 s

40 4.38 s – 23.71 s

100 4.48 s – 145.31 s

250 4.85 s – 988.06 s

Construction time Sampling time

10 4.33 s 0.64 s 2.98 s 0.02 s 0.03 s 0.14 s

20 4.31 s 4.73 s 9.16 s 0.03 s 0.05 s 0.29 s

40 4.31 s – 23.10 s 0.06 s – 0.61 s

100 4.32 s – 143.79 s 0.15 s – 1.52 s

250 4.47 s – 983.40 s 0.38 s – 4.66 s

VaR slope∗ ES slope∗

10 974.26 9,752.17 5789.43 880.80 3,101.69 1,372.74

20 293.21 1,389.32 749.19 174.13 332.71 784.13

40 182.63 – 276.93 46.30 – 184.56

100 17.45 – 22.90 8.01 – 25.98

250 4.48 – 4.94 1.35 – 3.82

VaR time required∗ ES time required∗

10 5.91 s 0.80 s 3.24 s 6.08 s 1.14 s 4.09 s

20 9.55 s 5.83 s 11.22 s 13.14 s 9.35 s 11.12 s

40 12.73 s – 28.65 s 37.50 s – 31.43 s

100 92.40 s – 210.89 s 196.11 s – 202.93 s

250 347.47 s – 1,294.69 s 1,140.28 s – 1,385.65 s

VaR draws required∗∗ ES draws required∗∗

10 845,752 53,194 18,395 935,498 167248 77,581

20 1,519,296 229,489 69,609 2,558,257 958,281 66,507

40 1,321,478 – 90,766 5,212,265 – 136,195

100 5,705,631 – 441,394 12,423,807 – 388,979

250 9,112,650 – 667,648 30,176,110 – 862,735

Missing value (–): it was not possible to generate the particular
result with the corresponding algorithm.

∗*Slope = increase in precision per unit of computing time.

∗∗Required for % estimate with 1 digit of precision (with 95% confidence).

Table 4.4: Trade-off of precision versus computing time for the 99% VaR and ES in GAS(1,1)-t model for different
horizons.
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