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Abstract

This paper introduces a new solution method for Dynamic Stochastic General Equi-
librium (DSGE) models that produces non explosive paths. The proposed solution
method is as fast as standard perturbation methods and can be easily implemented in
existing software packages like Dynare as it is obtained directly as a transformation of
existing perturbation solutions proposed by Judd and Guu (1997) and Schmitt-Grohe
and Uribe (2004), among others. The transformed perturbation method shares the
same advantageous function approximation properties as standard higher order per-
turbation methods and, in contrast to those methods, generates stable sample paths
that are stationary, geometrically ergodic and absolutely regular. Additionally, mo-
ments are shown to be bounded. The method is an alternative to the pruning method
as proposed in Kim et al. (2008). The advantages of our approach are that, unlike
pruning, it does not need to sacri�ce accuracy around the steady state by ignoring
higher order e�ects and it delivers a policy function. Moreover, the newly proposed
solution is always more accurate globally than standard perturbation methods. We
demonstrate the superior accuracy of our method in a range of examples.

1 Introduction

Since the seminal paper of Kydland and Prescott (1982) many di�erent methods have
been proposed to approximate the solution of Dynamic Stochastic General Equilibrium
(DSGE) models, see for example Taylor and Uhlig (1990), Christiano and Fisher (2000)
and Aruoba et al. (2006) for comparison studies. It is well known that, in most cases, closed
form analytical solutions do not exist, and hence we need numerical solution methods.

When selecting solution methods, two properties are of main interest: speed and ac-

curacy. On the one hand, arbitrarily accurate solution algorithms such as value function
iteration (Bertsekas, 1987) and projection methods (Judd, 1992) have existed for a long
time. However, such methods need long computing times. This is problematic, especially
when one is interested in estimating a DSGE model, since then the solution will have

∗We thank Michel Juillard, Sergey Ivashchenko and the attendants of the "Advances in solution meth-
ods" session of the 14th Dynare Conference for helpful comments and suggestions. We thank Martin
Andreasen and Wouter Den Haan for making code available that aided the paper.
†Corresponding author, email: m.h.c.nientker@vu.nl.
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to be computed for a range of di�erent parameter values. On the other hand, very fast
solution methods such as linearization (Blanchard and Kahn, 1980) and higher-order per-
turbation methods (Judd and Guu, 1997; Schmitt-Grohé and Uribe, 2004) are available.
These methods approximate the solution by taking a Taylor series expansion around the
deterministic steady state. Unfortunately, despite being very fast, perturbation methods
also have important limitations.

Linearization, or �rst order perturbation, can be very inaccurate and is often too sim-
plistic from an economic perspective. For example, linear solutions are certainty equivalent
and therefore miss potential volatility dynamics in the innovations. That means that one
needs higher order perturbation methods for risk to matter, which a�ects a multitude of
topics. For instance, this is a relevant limitation when attempting to model time vary-
ing risk premia as in Fernández-Villaverde et al. (2011); Rudebusch and Swanson (2012);
Fernández-Villaverde et al. (2015) and requires a perturbation approximation of at least
third order to be solved. Similarly, linearization is highly inaccurate when comparing wel-
fare across di�erent environments and can lead to paradoxical results (Tesar, 1995). Kim
and Kim (2003b) show that a welfare comparison based on a linear approximation of the
policy function may yield spurious results in a two-agent economy and that perturbation
approximations of at least second order are required. Some welfare studies that use higher
order perturbation approximations can be found in Kollmann (2002), Kim and Kim (2003a)
and Bergin et al. (2007).1 Finally, Van Binsbergen et al. (2012) discuss the need for higher
order perturbation solutions to study consumer risk aversion.

The speed of perturbation methods and their ability to locally capture important non-
linear dynamics renders high-order perturbation a popular solution method. However,
higher-order perturbation is an unattractive approximation method from a global perspec-
tive as it de�nes an unstable dynamic system which produces explosive paths. In fact, one
can commonly show that sample paths generated using higher-order perturbations diverge
to in�nity almost surely, even if the true policy function implies stable dynamics with
nonexplosive paths. This problem is outlined in Aruoba et al. (2006) and Den Haan and
De Wind (2010) and encountered in Fahr and Smets (2010) and Den Haan and De Wind
(2012), among others. See Section 3.3.2 and Section 5 in Den Haan and De Wind (2010)
for extensively discussed examples.

In order to deal with the unstable dynamics of higher-order perturbation solutions,
Kim et al. (2008) proposed the pruning method. The pruning method has been successfully
implemented in software packages and e�ectively solves the problem of explosive dynamics;
see also Andreasen et al. (2017) for recent results on the stability and stationarity of
pruned solutions. However, pruned solutions must sacri�ce local approximation accuracy
for stability. Den Haan and De Wind (2010) show that pruning �creates large systematic

distortions�. Furthermore, pruning is a simulation-based approximation and hence does
not provide a policy function. In fact, approximations based on the pruning procedure
contain di�erent updates for identical values of the model's original state variables. This
means that �the implied policy rule is not even a function of the model's state variables�

(Den Haan and De Wind, 2010).
Our paper introduces a new transformed perturbation solution method for DSGE mod-

els that is designed to avoid explosive paths produced by higher-order perturbation solu-
tions. Transformed perturbation is as fast as standard perturbation methods and can be
easily implemented in existing software packages like Dynare as it is obtained directly

1Woodford (2002) discusses a set of assumptions that ensure �rst order approximations are su�cient.
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as a transformation of existing perturbation solutions. The new method transforms the
standard perturbation approximation by replacing higher order monomials in the Taylor
expansion with transformed ones that are based on the transformed polynomials intro-
duced in Blasques (2014). Transformed polynomial functions share the same fundamental
approximation properties as polynomial functions. Blasques (2014) shows that transformed
polynomials are dense in the space of continuous functions and attain the same rates of con-
vergence as polynomials in Sobolev spaces of n times continuously di�erentiable functions.
Additionally, in this paper, transformed perturbation is shown to converge on analytic
function domains and to have the same excellent local properties as the standard per-
turbation method for continuously di�erentiable functions of appropriate order. From a
global perspective however, transformed perturbation performs in�nitely better than reg-
ular perturbation, because it provides a way of scaling down the higher order perturbation
terms that cause explosive behavior when the solution path moves far away from the steady
state. That way, transformed perturbation can be guaranteed to not create additional �xed
points if the Blanchard-Kahn conditions are satis�ed. Moreover, unlike pruning, the new
solution method does not need to sacri�ce accuracy by ignoring higher order e�ects. Addi-
tionally, transformed perturbation is guaranteed to be always more accurate than standard
perturbation methods, which is not the case for pruned solutions. Finally, in contrast to
pruning, transformed perturbation also has the advantage of delivering a policy function
from which the simulations are drawn.

In this paper, we prove that transformed perturbation produces non explosive paths
and that solutions are stable and strictly stationary ergodic with bounded moments. Ad-
ditionally, we show that solution paths exhibit fading memory (i.e. geometric ergodicity
and absolute regularity or β-mixing) and that sample moments of the process converge
exponentially fast to the moments of the solution. These are crucial properties for con-
ducting simulation-based estimation of parameters and simulation-based analysis of the
DSGE model. Overall, this renders the transformed polynomial solution attractive from
both a practical and theoretical stand-point.

We demonstrate the accuracy of the transformed perturbation method extensively for
two nonlinear DSGE models in which higher order perturbation is infeasible. We com-
pare second order transformed perturbation to �rst order perturbation and second order
pruning. The �rst model is a partial equilibrium model in which agents face idiosyncratic
income risk, introduced in Deaton Angus (1991) and Den Haan and De Wind (2012). For
this model we �nd that sample path errors of our method are less than half of those of
pruning and up to six times less than those for �rst order perturbation. This then results
into sample moments of the transformed perturbation method being up to ten times more
accurate than pruning and one-hundred times more accurate than perturbation. The sec-
ond DSGE model we study is a matching model from Den Haan and De Wind (2012).
Here transformed perturbation outperforms pruning up to a factor ten on path errors and
a factor thirty for sample moments. Moreover perturbation has path errors that are up
to twenty-�ve times larger and sample moment errors that are up to one-hundred times
larger compared to transformed perturbation.

The paper is structured as follows. We start by stating the de�nition of the trans-
formed perturbation method in Section 2. Section 3 analyses the statistical properties of
the transformed perturbation system and provides lenient and accessible conditions that
ensure paths are nonexplosive and laws of large numbers can be applied. Section 4 provides
a theoretical foundation and motivation for the transformed perturbation approximation
method. Finally Section 5 discusses the accuracy of the new method. We provide the-
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oretical results that show that transformed perturbation, accuracy wise, matches regular
perturbation locally and strongly outperforms it globally. Moreover, we demonstrate for
two example models that transformed perturbation outperforms pruning and regular per-
turbation on numerous common criteria.

2 Transformed Perturbation

2.1 The state space

Let ȳt be an ny-dimensional vector of control variables, let x̄t be an nx-dimensional vector
of endogenous state variables and let zt be an nz-dimensional vector of exogenous state
variables. We study the general class of DSGE models characterized by a set of �rst-order
dynamic optimality conditions that can be written as

0 = Et(f(ȳt+1, ȳt, x̄t+1, x̄t, zt+1, zt)),(1)

zt+1 = Λzt + σηεt+1.(2)

Here Et denotes the expectation operator conditional on the information at time t, and
f : R2(nx+ny+nz) → Rny+nx is a real function. The matrix Λ is assumed to be invertible
with spectral radius smaller than one. Finally σ is the auxiliary perturbation parameter
and εt+1 is a nz-dimensional vector of exogenous innovations with mean zero and �nite
second moment that takes values in E ⊆ Rnz . Throughout the paper, we will assume that
(εt)t∈N is an independent and identically distributed (iid) stochastic process.

We de�ne the deterministic steady states yss and xss of ȳt and x̄t respectively such
that

f(yss,yss,xss,xss,0nz ,0nz) = 0.

Furthermore, let yt = ȳt−yss and xt = x̄t−xss denote the random variables in deviations
from the steady-state, where yt takes values in Y ⊆ Rny and xt takes values in X ⊆ Rnx .
We write Z ⊆ Rnz for the domain of zt. Following Den Haan and De Wind (2012), the
solution to the model given in equation (1) is of the form

yt+1 = g(xt, zt+1, σ),(3)

xt+1 = h(xt, zt+1, σ).(4)

We refer to (3) and (4) as the observation and state equations respectively. It follows from
our setup that g(0nx ,0nz , 0) = 0ny and h(0nx ,0nz , 0) = 0nx .

Both functions g and h, known as policy functions, are unknown functions that must
be approximated. If the function g in the observation equation is measurable, then the
stability of the solution of a DSGE model depends entirely on the state equation. For this
reason we will focus on approximating the function h in (4).

2.2 Function Approximation Methods

A wide range of techniques have been proposed in the literature to approximate the un-
known policy function h. In most cases, the approximate policy function is obtained as an
element of a vector space spanned by a set of basis functions {φ1, ..., φm}:

h(x, z, σ) ≈
m∑
i=1

Aiφi(x, z, σ),
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where A1, ..., Am are matrices of coe�cients that weight the basis functions φ1, ..., φm.
There exist a multitude of popular sets of basis functions and weight matrix calcu-

lation methods that have been proposed in the function approximation literature. Well
known classes of basis functions include power monomials, which are used with great suc-
cess in Taylor expansions, sigmoid trigonometric functions, that are prominently featured
in Fourier approximations, Chebyshev polynomials, that play an important role on orthog-
onal polynomial function approximation, Legendre polynomials, which are often used for
approximating density functions, and logistic functions, comprehensively explored in arti-
�cial neural network approximations. Popular methods for calculating the weight matrices
include Taylor's method which obtains the matrices as weighted derivatives at a given
expansion point and minimizes the so called Taylor semi-norm (Apostol, 1967), function
colocation methods, which minimize a discrete distance between the true and approximate
policy function at a �nite number of points and spectral approximation methods, that min-
imize a continuous distance between the two functions. See e.g. Powell (1981) for an
overview of approximation literature and Judd (1998) for an application of these methods
to approximating policy functions of dynamic stochastic models.

2.3 Perturbation

Perturbation is a method that approximates the unknown policy function h by using power
monomials as basis functions in combination with Taylor's method to �nd the weighting
matrices. This method is of particular interest in approximating policy functions of DSGE
models as it provides a fast and analytically tractable way of obtaining the weighting
matrices. The expansion point used in Taylor's method is the deterministic steady state
(0nx ,0nz , 0). Choose x ∈ X and z ∈ Z and de�ne v = (x, z) and

⊗
i v = v⊗ · · · ⊗ v︸ ︷︷ ︸

i times

,

where the empty Kronecker product is set to one. Then the m'th order perturbation
approximation of h evaluated at (x, z, σ) can be expressed as

hp(x, z, σ) := H0 +Hxx +Hzz +
m∑
i=2

Hi

⊗
i

v,(5)

where we grouped all terms of v of the same power, regarding σ as a constant. That is,

H0 =

m∑
j=0

1

j!

∂j

∂σj
h(0nx ,0nz , 0)σj Hx =

m−1∑
j=0

1

j!

∂j+1

∂σj∂x
h(0nx ,0nz , 0)σj

Hz =

m−1∑
j=0

1

j!

∂j+1

∂σj∂z
h(0nx ,0nz , 0)σj Hi =

m−i∑
j=0

1

i!j!

∂j+i

∂σj∂vi
h(0nx ,0nz , 0)σj

Thus, H0 is an nx × 1 vector that is the sum of all the derivatives of h with respect to
powers of σ. The matrix Hx is an nx × nx matrix that is the sum of all the derivatives of
h with respect to x and powers of σ. The matrix Hz is an nx × nz matrix that is the sum
of all the derivatives of h with respect to z and powers of σ. Finally, the matrices Hi are
of dimension nx × (nx + nz)

i and given by the sum of all the derivatives of h with respect
to vi and powers of σ.

2.4 The transformed perturbation method

A disadvantage of the power monomial set of basis functions, and therefore of perturba-
tion, is that the derivative of the approximation function tends to in�nity away from the
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steady state if m > 1. This creates highly explosive regions in the state space which in
practice means that sample paths eventually diverge to in�nity with probability one. The
transformed perturbation method solves this problem by using another set of basis func-
tions called the transformed power monomials. This set of basis functions satis�es all the
advantageous properties that classical power monomials do. Blasques (2014) shows that
transformed polynomials with unrestricted weighting matrices can be used to approximate
continuous functions with arbitrary accuracy, in the same way as classical polynomials, by
application of the Stone-Weierstrass Theorem (Stone, 1937, 1948). Additionally, Blasques
(2014) characterizes the convergence rates of transformed polynomials on Sobolev spaces
of smooth n-times continuously di�erentiable functions with nth derivative bounded in
Lp norm, through the application of Plesniak's extension of Jackson's Theorem (Plesniak,
1990).

The set of transformed power monomials is obtained by multiplying the monomials of
order greater than one with an exponentially fast decaying function Φτ : X → R that is a
multivariate adaptation of the transformed function of Blasques (2014) and is de�ned as

Φτ (x) = e−τ‖x‖
2
e ,(6)

where ‖x‖e denotes the Euclidean norm of x. Figure 1 plots the second and third order one
dimensional transformed monomials for varying values of τ . Note that the case τ is zero

-5 0 5
x

0.5

1

1.5

2

2.5
τ = 0

τ =
1

5

τ =
1

2

-4 -2 0 2 4
x

0

τ = 0

τ =
1

5

τ =
1

2

Figure 1: Plots of the second, respective third, order one dimensional transformed monomial in the
left, respective right, panel for values of τ ∈ {0, 0.2, 0.5}.

sets the transformed monomials equal to the regular monomial basis functions. The �gure
shows that the transformed monomials are almost identical to regular monomials close to
the steady state at zero. However, the derivatives of transformed monomials vanish away
from the steady state, which implies that no explosive regions are created in the state
space. In Section 5 we will further show that transformed perturbation has the same lo-
cal approximation properties as classical perturbation. In particular, local approximation
rates are the same as for classical perturbation, and transformed perturbation approxi-
mations converge uniformly on compact analytic domains, just like perturbation methods
do. A large number of additional advantages of transformed perturbation over classical
perturbation and pruning methods are documented in Section 3 and Section 5.
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State variables can be of di�erent orders in size, so we replace the vector x in (6) by
the relative di�erences from the steady state x̃ = x/xss, where dividing is done entry wise,
to ensure all variables have equal e�ect. This de�nition works poorly if an entry of xss
is close to zero. For such an entry we take the simple transformation x 7→ ex ≈ 1 + x,
which is almost linear close to zero, and de�ne x̃ = (ex+xss − exss)/exss . The m'th order
transformed perturbation approximation of h evaluated at (x, z, σ) is then de�ned as

htp(x, z, σ) = H0 +Hxx +Hzz +

(
m∑
i=2

Hi

⊗
i

v

)
Φτ (x̃),(7)

where all the H matrices are obtained using Taylor's method and thus they are identical
to those in the regular perturbation function (5).

The constant τ determines the speed at which the higher order terms in (7) are going
to zero when moving away from the origin. Its value in�uences the shape of the resulting
policy function, and thus requires careful consideration. We o�er two methods to set τ . The
�rst method is to �nd the optimal τ , denoted τ∗, by minimizing some criterion function.
In this paper we chose to minimise the maximum Euler errors on a relevant set around
the steady state. The advantage of this method is that we get the best possible value for
τ , according to the criterion function. The disadvantage is that minimizing the criterion
function potentially is time-consuming. In an estimation setting we �x the optimal τ∗ at
the start and then estimate the remaining parameters while τ∗ remains �xed. This means
that the possibly time consuming task of �nding τ∗ has to be executed only once, making
the method almost as fast as perturbation, still viable for estimation and very accurate
if the optimal τ∗ does not vary too much with the parameters. The second method is
designed to avoid the optimization completely and is characterised by a plug-in τ , denoted
τ̂ , which is less precise, but found immediately. The plug-in value is given by

τ̂ =
1

c
log

(
1

1− ρ(Hx)

)
,(8)

where ρ(Hx) is the spectral value of the autoregressive part of the regular perturbation
solution and c is an approximation of the average range that the state variables take place
in. This range could be set according to prior knowledge on the variables, or approximated
by another solution method. In our case we used linear perturbation to simulate a series
and �nd the approximate range of our variables. In an estimation setting we update τ̂ as
the parameters are updated, since its calculation is very fast. See Section 4 for a detailed
discussion on the choice for our plug-in value.

3 Probabilistic analysis of the solutions

Throughout this paper we work with norms ‖ · ‖ on Euclidean space and their induced
matrix norms, which we will denote with the same notation ‖ · ‖ as there should be no
confusion in their use. Note that all matrix norms are equivalent, so that our statements
will work for any chosen norm.

Let x0 ∈ X and z0 ∈ Z be �xed and de�ne the exogenous sample paths (zt)t≥0 and
the transformed perturbation sample paths (xt)t≥0 recursively by

zt+1 = Λzt + σηεt+1,

xt+1 = htp(xt, zt+1, σ).
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In this section we analyse the dynamics of the transformed perturbation system and provide
two results on the stability of sample paths. To do so we split the perturbation updating
equation (7) into the sum of its linear part H0 +Hxx +Hzz and its nonlinear part

D(x, z) :=

(
m∑
i=2

Hi

⊗
i

v

)
Φτ (x̃).(9)

Our results are based on the observation that the transformed perturbation policy func-
tion (7) is asymptotically equal to its linear part as ‖x‖ → ∞. This follows because an
exponential function decays at greater speed than a polynomial, see Figure 1, and thus for
any 0 ≤ i ≤ m we have

lim
‖x‖→∞

(⊗
i

x

)
Φτ (x̃) = 0ni

x
.

We therefore study the transformed perturbation method as its asymptotic linear process
plus a deviation (9). Linear autoregressive processes and their stability have been exten-
sively studied. They are much easier to analyse compared to their nonlinear counterparts,
because we get an analytical closed form when we expand the expressions for xt and zt
back in time. It can be shown that if backwards expanding converges, then the limit is
a stationary ergodic solution to the system. See Theorem 3.1 in Bougerol (1993) for a
general result on the stability of contracting systems that uses this approach. In our �rst
result we closely mimic this technique by bounding the deviation from the linear process.
We require the following assumptions.

Assumption A.

A1. The spectral radius ρ(Λ) < 1.

A2. The spectral radius ρ(Hx) < 1.

A3. There exists an r > 0 such that E‖εt‖rm <∞.

Our �rst result shows that solution paths generated by the transformed perturbation
solution are non-explosive almost surely if Assumption A holds. The conditions in Assump-
tion A are very lenient. Assumption A2 is close to being both su�cient and necessary.
The spectral radius is a measure for the maximal scale at which Hx can stretch a vector.
Therefore, if ρ(Hx) > 1, then an eigenvector belonging to the eigenvalue that is greater
than one in absolute value is expanded by Hx. If the space spanned by this vector is
reachable from the exogenous variable space Z, then expanding backwards will explode
and thus diverge. Assumption A3 is satis�ed for any r if, for example, the εt have �nite
support, or are normally distributed, or have sub-exponential tails. Additionally, for fat
tailed distributions, the moments of xt and zt are a fraction of those of the innovations.

Theorem 3.1 (Non explosive paths). Suppose that Assumption A holds. Then the dynamic

system de�ned in (2) and (4), featuring the transformed perturbation policy function given

in (7), produces sample paths that are non explosive almost surely, i.e. the paths (zt)t∈N
and (xt)t∈N satisfy

lim inf
t→∞

‖zt‖ <∞ and lim inf
t→∞

‖xt‖ <∞ a.s.

8



Theorem 3.1 shows that the transformed perturbation method does not produce explo-
sive paths, unlike regular perturbation sample paths. However, we can show much more.
Our stability results are based on Markov chain theory as developed in Meyn and Tweedie
(1993). We are in a Markov chain setting, because we have assumed that (εt)t∈N is an iid
sequence. We provide two sets of assumptions, the �rst of which is more general and harder
to verify, while the second set imposes additional constraints that are straightforward to
verify.

A point x∗ ∈ X is called reachable if for every open set x∗ ∈ O ⊆ X and starting value
x0 ∈ X there exists a t ∈ N such that P(xt ∈ O) > 0. A subset of X is called reachable if
all the points in it are reachable. We will need the following additional assumptions.

Assumption B.

B1. X has an open reachable subset.

B2. The innovation εt is absolutely continuous with respect to the Lebesque measure on
E with strictly positive density on a connected subset of E .

Our second result establishes the stationarity and ergodicity of the transformed per-
turbation solution. Additionally, it shows that the solution paths have fading memory in
the sense of geometric ergodicity and absolutely regularity (or β-mixing) of the process.
Finally, it also shows that the solution paths have �nite r-th moment. Stationarity, fading
memory, and bounded moments are all important ingredients in the statistical analysis of
DSGE models, from estimation to probabilistic analysis.

Theorem 3.2. (Stationarity, fading-memory and bounded moments) Suppose that As-

sumptions A and B hold. Then there exists a unique stationary ergodic solution (x∗t , z
∗
t )t≥0

to the dynamic system de�ned in (2) and (4), featuring the transformed perturbation policy

function given in (7). Additionally,

(i) the solution has fading memory, i.e. it is geometrically ergodic and absolutely regular

(or β-mixing);

(ii) the solution has �nite moments µr := E‖x∗t ‖r and νrm = E‖z∗t ‖rm;

(iii) laws of large numbers apply to the sample paths, that is, almost surely

lim
T→∞

1

T

T∑
t=1

‖xt‖r = µr and lim
T→∞

1

T

T∑
t=1

‖zt‖rm = νrm.

Assumption B imposes additional conditions on our state space system. Assumption
B2 is quite weak and is satis�ed for all distributions that are used in practice. The stronger,
and also harder to check, condition is Assumption B1. We present Assumption B, because
simplifying Assumption B1 will require us to assume that the innovations have full support.
This is not always the case, as we might, for example, have strictly positive innovations.
If we can make the assumption of full support, then we get an easier set of conditions.

Assumption C.

C1. There exists an integer t ≥ 1 such that the matrix
[
Ht−1

x Hz · · · HxHz Hz

]
has

rank nx.

9



C2. The matrix Hx is invertible.

C3. The innovation εt is absolutely continuous with respect to the Lebesque measure on
Rnz with strict positive density on the whole space Rnz .

Proposition 3.3. Assumption C implies Assumption B.

Assumption C2 ensures that the transformed perturbation policy function does not
move to lower dimensional subspaces of X . Condition C1 implies that the e�ect of the
innovations is not contained in a lower dimensional subspace. This means that, together
with Assumption C3, they make sure that the transformed perturbation policy function
can reach any point in X and thus Assumption B1 is satis�ed.

4 The plug-in τ̂

In this section we motivate our choice for τ̂ , the plug in value of τ , as de�ned in (8).
As mentioned in Section 2, its value in�uences the shape of the transformed perturbation
policy function and thus has an e�ect on sample path behaviour in the resulting trans-
formed perturbation dynamic system. We want to ensure two important properties for
this dynamic system. Firstly, we want sample paths to be stable and non locally explosive.
In Section 4.1 we argue that this requires relatively large values of τ . Secondly, nonlinear
dynamics must be preserved, which needs τ to take on somewhat small values, see Section
4.2. Together these two conditions specify a rather narrow collection of available functions,
resulting in (8), as derived in Section 4.3.

4.1 Ensuring stability

The transformed perturbation method guarantees stable and nonexplosive paths regardless
of the choice of τ , as proved in Section 3. However, picking τ very small can create locally
explosive dynamics. Locally explosive dynamics originate when the jacobian of the policy
function with respect to x has expected spectral radius greater than one on a large enough
subset of X . A spectral radius greater than one implies that the policy function expands
on some subspace, which can create multiple �xed points, as happens with the regular
perturbation policy function. Sample paths then typically move around one �xed point,
until a large innovation pushes it to another �xed point after which the path moves around
the new one. These jumps can locally look very similar to explosive sample paths, even
though the dynamic system is stable. We illustrate this e�ect with the following example
updating equation

xt+1 = 0.3xt + zt+1 + 2x3t e
−0.5x2t ,(10)

where the (zt)t∈N are updated as in (2). Note that this is a univariate example of (7) with
τ = 0.5. Figure 2a plots the expected value E(xt+1 | xt) as a function of xt. This function
has large intervals on which its absolute derivative exceeds one, which has resulted in a
total of �ve �xed points. The smallest one at -2.35, the middle one at zero and the largest
one at 2.35 are attractors while the other two are repellers. A sample path produced while
using (10) will jump between the neighbourhoods around the three attractors. Figure 2b
plots an example sample paths that �rst spends some time around -2.35, then jumps to
a neighbourhood of the origin and then quickly moves on to the area around the largest
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Figure 2: The expected policy function (left panel) and an example sample path (right panel) for
the updating equations de�ned in (10) and (2).

attractor. Notice the similarity with an explosive sample path, even though this path will
almost surely eventually come down to the lowest attractor again.

We wish to keep the spectral value of the Jacobian of the transformed perturbation
policy function typically below one (in expectation) to avoid locally explosive behaviour.
This Jacobian is of the form

J = Hx + P (x, z)Φτ (x̃),

where P is a m'th order multivariate polynomial function. We can only control the non-
linear part of the derivative, i.e. the second part of the summation, with our choice for τ .
Any norm of P goes to in�nity as ‖x‖ goes to in�nity. Hence, if we choose τ too small, then
P (x, z)Φτ (x̃) creates large areas on the state space with expected spectral radius greater
than one. If we were only concerned with ensuring stability, then ideally we would choose
τ =∞, so that Assumption A2 ensures that ρ(J) < 1 on the entire state space. Doing so,
however, cancels all nonlinear e�ects making the transformed perturbation method equal
to linear perturbation, which as discussed in the introduction has many �aws. Therefore
we conclude that we would like to make τ as large as possible, while preserving as much
nonlinear dynamics as possible close to the steady state. If we choose τ unequal to in�nity,
then its size generally must depend on ρ(Hx). The closer ρ(Hx) is to one, the less room
remains available for P (x, z)Φτ (x̃). Accordingly we have to impose that τ goes to in�nity
as ρ(Hx) gets closer to one. Therefore we must �nd a function f : (0, 1) → [0,∞) such
that τ = f(ρ(Hx)) and

lim
ρ(Hx)→1

f(ρ(Hx)) =∞.(11)

4.2 Preserving nonlinear dynamics

We have concluded that we want to choose large τ to avoid locally explosive behaviour,
but not so large as to destroy relevant nonlinear dynamics. In this section we formalise
what we mean with preserving nonlinear dynamics. To do so we expand xt back in time,

11



mimic the proof of Theorem 3.1 and use Proposition A.1 to �nd the upper bound

‖xt‖ ≤ c̃+
∞∑
k=0

‖Hx‖k‖Hz‖‖z∗t−k‖+ c
m∑
j=0

∞∑
k=0

‖Hx‖kτ−j/2
(
m−j∑
i=0

‖z∗t−k‖i
)
.

for some constants c, c̃ > 0. The �rst, respective second, summation here is the approximate
total e�ect over time of the linear, respective nonlinear, terms in (7). The �rst summation

∞∑
k=0

‖Hx‖k‖Hz‖‖z∗t−k‖,

is the familiar term that arises in autoregressive processes.2 The autoregressive part Hxx
of the policy function (7) introduces memory into the system, so that past innovations
‖zt−k‖ in�uence the value of ‖xt‖. The strength of the memory depends on the size of
ρ(Hx). If it is close to zero, then memory fades away fast and past innovations are of
little weight to xt. As ρ(Hx) increases, past innovations matter more up to the limit case
ρ(Hx) = 1, where memory does not fade anymore, at which point every past innovation is
equally important and the sum diverges for all matrix norms.

We would like the impact of past innovations through the nonlinear terms of the trans-
formed perturbation policy function to be of the same magnitude as those of the linear
e�ect, so that both the linear and nonlinear dynamics are present in the solution paths.
Speci�cally, we want the rate at which τ goes to in�nity to be restricted such that the
series

∞∑
k=0

‖Hx‖kτ−j/2
(
m−j∑
i=0

‖z∗t−k‖i
)

diverge for all 0 ≤ j ≤ m as ρ(Hx) → 1. If this were not the case, then they would
converge and thus we would restrict some nonlinear e�ects so much that the linear e�ect
is in�nitely stronger as ρ(Hx) increases. To ease notation we de�ne δt =

∑m−j
i=0 ‖z∗t ‖i. The

argument above then amounts to the following desired result: for all j ∈ N we have

lim
ρ(Hx)→1

∞∑
k=0

ρ(Hx)kτ−j/2δt−k = lim
ρ(Hx)→1

f(ρ(Hx))−j/2
∞∑
k=0

ρ(Hx)kδt−k =∞.(12)

It is not immediately clear what divergence rates for f(ρ(Hx)) satisfy (12). Therefore we
include the following result to simplify the expression.

Lemma 4.1. Suppose that E‖εt‖m <∞. Then the limit

lim
ρ(Hx)→1

(1− ρ(Hx))

∞∑
k=0

ρ(Hx)kδt−k

converges to a �nite and nonzero value.

It now follows from Lemma 4.1 that (12) is equivalent to

lim
ρ(Hx)→1

f(ρ(Hx))j/2(1− ρ(Hx)) = 0.(13)

2Note that it converges by Assumption A, Proposition 2.5.1 of Straumann (2005) and Proposition 4.3
of Krengel (1985).
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4.3 Choice for τ̂

We need a function f : (0, 1)→ (0,∞) that satis�es both (11) and (13). To simplify these
equations further we de�ne f̃ : (0,∞)→ [0,∞) as f̃( 1

1−ρ(Hx))
) = f(ρ(Hx)) and substitute

y = 1
1−ρ(Hx))

. Equations (11) and (13) then can be rewritten as

lim
y→∞

f̃(y) =∞ and lim
y→∞

f̃(y)j/2

y
= 0.

These two equations together specify a fairly small collection of functions. To �nd the
function that diverges fastest we consider families of familiar functions in decreasing order
of rate of divergence. Note that any exponential, polynomial or radical function diverges to
in�nity too fast to satisfy the rightmost limit for all j ∈ N. The next natural candidate in
line for the rate of divergence is the logarithmic function, which leads to the speci�cation

f(ρ(Hx)) = log

(
1

1− ρ(Hx))

)
.

This is the function we used for our choice in (8).
The constant τ should also depend on the size of the range on which the state variables

take place. Suppose that we increase the scale of our dynamic system while keeping the
exact same dynamics. Then τ should become smaller as regions farther away from the
steady-state are visited more often. Therefore we include the c parameter to make sure
that as we make the scale larger, τ becomes smaller. Many of the other elements involved
in the perturbation updating function, such as σ or Hi for i ≥ 2 seem to be omitted in
calculating the plug in τ . However, these elements have an e�ect on the range of the state
variables and thus are implicitly included via c.

5 Accuracy

In this section we evaluate the accuracy of the transformed perturbation solution. In
Section 5.1 we prove theoretic results on both global and local accuracy. We show that
the optimal transformed perturbation solution is always at least as accurate as regular
perturbation and demonstrate that transformed polynomials, like regular polynomials can
perfectly approximate the real policy function h as we let the approximation order m go
to in�nity. Moreover, we prove that transformed perturbation is locally as accurate as
standard perturbation and present common situations in which transformed perturbation
globally outperforms regular perturbation. Section 5.2 discusses two DSGE models from
Den Haan and De Wind (2012) and compares all discussed solution methods according
to several criteria such as path errors, euler errors and produced moments. It shows
that transformed perturbation outperforms pruning and regular perturbation for both the
optimal τ∗ and the plug in τ̂ .

5.1 Theoretical results

In order to analyse the accuracy of our approximation method we de�ne the pointwise
approximation errors attained by the perturbation and transformed perturbation methods
respectively, at (x, z, σ) ∈ X × Z × R≥0 as

Ep(x, z, σ) := ‖hp(x, z, σ)− h(x, z, σ)‖,
Etp(x, z, σ) := ‖htp(x, z, σ)− h(x, z, σ)‖.
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We begin by showing that the function approximation by transformed perturbation con-
verges on analytic domains, like the standard perturbation approximation. This result
implies that we can arbitrarily accurately approximate the true policy function by increas-
ing the order m.

Proposition 5.1. Suppose that the true policy function is analytic over a compact set

S ⊆ X × Z × R≥0. Then m-order transformed perturbation errors vanish uniformly over

S for any sequence τ → 0 as the perturbation order diverges to in�nity. That is,

lim
m→∞,τ→0

sup
(x,z,σ)∈S

E
(m)
tp (x, z, σ) := ‖h(m)

tp (x, z, σ)− h(x, z, σ)‖ = 0.

Next, we prove that transformed perturbation is always able to outperform regular
perturbation.

Proposition 5.2. For any policy function h there exists a τ ≥ 0 such that Etp(x, z, σ) ≤
Ep(x, z, σ) for all possible values of x, z and σ.

Note that this result makes no assumptions on the true policy function and implies that
using the optimal τ∗ for the transformation guarantees an equal or better approximation
compared to regular perturbation. This result is true even when regular perturbation
sample paths do not seem to explode. Therefore, it may be argued that transformed
perturbation should always be used over regular perturbation.

We proceed by studying the accuracy properties of the transformed perturbation method
for arbitrary values of the constant τ . First we show that locally the transformed polyno-
mials inherit the excellent approximation qualities of perturbation methods. This follows
because the exponential function Φτ (x̃) is asymptotically quadratic as ‖x‖ goes to zero.
A consequence of the proposition below is that, close to the steady state, errors between
the transformed perturbation paths and the true paths are of the same magnitude as the
errors between the regular perturbation paths and the true paths for m = 2, 3.

Proposition 5.3. Suppose that x0 = 0nx and z0 = 0nz . Let (xt)t≥0 be the path generated

by the true policy function (4) and let (x̂t)t≥0 be the path generated by the m'th order

transformed perturbation policy function, both initialised at these same starting values.

Then it holds for all t ∈ N that

‖x̂t − xt‖ =

{
O
(
σ3
)

if m = 2

O
(
σ4
)

if m > 2
as σ → 0.

Transformed perturbation has the same local properties as regular perturbation, but
on a global scale it is almost guaranteed to perform much better. Clearly if the true
policy function produces explosive sample paths, then our method, which does not, cannot
be assured to work well. The next result exhibits a very general set up in which the
true policy function is ensured to produce nonexplosive sample paths making transformed
perturbation in�nitely more accurate in the tails than regular perturbation.

Proposition 5.4. Suppose that Assumptions A1, A3 and C3 hold and that the true policy

function h satis�es

lim sup
‖x‖→∞

E(‖h(x, z1, σ)‖ | z0 = z)

‖x‖
< 1(14)
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for all possible values of z and σ. Then the true policy function almost surely produces

nonexplosive sample paths and if hp(x, z, σ) contains a nonzero higher order monomial in

x, then

lim
‖x‖→∞

Etp(x, z, σ)

Ep(x, z, σ)
= 0(15)

for all possible values of z and σ outside of a set of Lebesque measure zero.

Moreover, condition (14) is implied by each of the following common conditions that

are found in the literature on stable stochastic dynamic systems. The true policy function

h

(i) is eventually bounded by the 45 degree line for all possible values of z and σ. That is,

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

< 1.

(ii) is uniformly contracting for all possible values of z and σ. That is,

sup
x1,x2∈X

‖h(x1, z, σ)− h(x2, z, σ)‖
‖x1 − x2‖

< 1.

(iii) is slowly varying at in�nity for all possible values of z and σ. That is, for all a > 0
we have

lim
‖x‖→∞

h(ax, z, σ)

h(x, z, σ)
= 1.

5.2 Applications

In this section, we revisit two DSGE models used in Den Haan and De Wind (2012) to
compare transformed perturbation to pruning and other solution methods. Below, we
will show that the transformed perturbation approximation signi�cantly outperforms both
the regular perturbation approximation and the pruning method. For the purpose of
comparing the performance of di�erent solution methods, the true policy function will be
approximated to an arbitrary level of accuracy on a relevant set using techniques such as
projection methods or value function iteration, see Aruoba et al. (2006). We can then
compare the solution methods by analysing sample paths between the �true" solutions and
the approximated ones. The length of our time paths are T = 104, with a burn in period
of 500 observations.

We compare sample paths according to three di�erent criteria. The �rst one measures
the distance between a period t variable generated by an approximation versus the one
generated by the true policy function as in Den Haan and De Wind (2012). Let xt be a
generalisation of a univariate variable according to the true solution, let ẋt be generated
according to some approximation and let M be the mean of the path (xt)

T
t=1. Then we

de�ne the error at time t as

min

{∣∣∣∣ ẋt − xtxt

∣∣∣∣ , ∣∣∣∣ ẋt − xtM

∣∣∣∣} ,
that is, we take the minimum of the absolute percentage error and the absolute error
relative to the mean of the true solution path. The minimum between these two is chosen
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because the percentage error in�ates the error when xt is close to zero, while the error
scaled by the mean overestimates inaccuracy when variables take on values far away from
their mean.

The second criteria that we use are Euler errors. The equilibrium condition (1) is typ-
ically unequal to zero when we use an approximation method instead of the true solution.
Its size is an indication for accuracy, because the size of the di�erence in supremum norm
on a compact set between an approximate policy function and the true solution is of the
same magnitude as the Euler error, see Theorem 3.3 of Santos (2000). We report the non
normalized sample Euler error. We don't normalize our Euler errors, because we are only
interested in relative accuracy.

Finally we compare sample moments generated by the approximated paths versus the
true ones. DSGE models are often estimated using moment based approaches such as
the (simulated) method of moments or indirect inference. Therefore the accuracy of the
moments will have an impact on the estimated parameters. Let xt and yt be univariate
variables, then we compare the sample moments

µk(xt) =
1

T

T∑
t=1

xkt

and cross moments µ(xity
j
t ).

5.2.1 The Deaton model

The �rst model we consider is a partial equilibrium model in which agents face idiosyncratic
income risk. The original model was proposed in Deaton Angus (1991), however, we use
the modi�ed penalty function that was introduced in Den Haan and De Wind (2012) to
compare pruned and non-pruned perturbation solution methods. The model is therefore
identical to Model 3 in Den Haan and De Wind (2012). The optimization problem is given
by

max
(ct,at)∞t=1

E1

∞∑
t=1

βt−1

(
c1−γt − 1

1− γ
− P (at)

)
,

s.t.

ct + at/(1 + r) = at−1 + ezt ,

zt = z̄ + εt,

εt ∼ N(0, σ2),

a0 given,

where ct stands for the agents consumption, ezt represents exogenous and random income
and r is the exogenous interest rate. The variable at denotes the amount of chosen assets
in period t, we assume that a0 is given. The amount of assets is allowed to be negative, so
the agent can borrow. The function P is given by

P (at) =
η1
η0
e−η0at + η2at.

Note that it is decreasing in its argument and thus penalizes utility when the agent decides
to borrow. We write xt = at−1 + ezt for the amount of cash on hand at time t. Note that
this DSGE model has a univariate state equation in xt, because the zt are independent.

Our calibration is copied from the original paper and given in Table 1. The value of
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r γ z̄ σ β η0 η1 η2
0.03 3 0.4 0.1 0.9 20 0.04464 0.00352

Table 1: The choice of parameter values for the Deaton model.

β is low to make agents impatient and ensure that borrowing constraints have su�cient
e�ect on the decision process. The value of σ is chosen large, because the model describes
single agent/household behavior and thus works with idiosyncratic uncertainty. The values
of η1 and η2 are chosen such that at has the same moments as in Deaton Angus (1991).
We refer to Den Haan and De Wind (2012) for a more detailed discussion on the model
and choice of parameters.

We use a second order perturbation approximation to obtain

xt+1 − xss = 0.01 + 0.42(xt − xss) + 1.02(xt − xss)2 + ezt+1

and values for τ given by τ∗ = 1.08 and τ̂ = 0.98. The innovations in the model are strictly
positive, so we cannot use Assumption C to ensure stability of transformed perturbation
sample paths. Instead we use Assumption B, which is easy to check in univariate cases.
Note that all parameters are positive and the autoregressive parameter is smaller than
one. It immediately follows that the transformed perturbation approximation is able to
reach any su�ciently large point and thus we have an open interval of reachable points
and Assumption B1 is satis�ed. All the other Assumptions in A and B are easily checked.
Therefore we obtain all the desired stability results from Theorem 3.2.

To compare the approximate policy functions we plot in Figure 3a the expected value of
next-period's cash on hand E(xt+1 | xt), because this directly reveals whether the dynamics
are stable or not. The true policy function has a single stable �xed point (an attractor). In
contrast, the second order perturbation policy function has a second �xed point (a repeller).
This second intersection with the y = x line is located above the true steady state. Sample
paths produced by the second order perturbation function eventually reach the state space
to the right of the repeller, after which they are expected to diverge, and eventually do
with probability one. Since the second �xed point is relatively close to the true steady
state this also frequently occurs in our �nite time simulated paths, making second order
perturbation infeasible. The transformed perturbation policy function solves the problem
as it negates the second order monomial fast enough to ensure that no second �xed-point
is created. The optimal and plug in values for τ , while irrelevant for stability, therefore
create a policy function that generates very similar dynamics as the true policy function.
Figure 3c displays the same functions as in Figure 3a, but focussed on the relevant part of
the state space when using stable methods. In addition we have added a scatter plot of the
pruning sample path. From this plot it becomes immediately apparent that pruning does
not deliver a policy function on the original state space, as we have di�erent updates for
the same starting value. Moreover, it can be seen that pruning on average is less accurate
than both the transformed perturbation methods. The policy function corresponding to
the optimal τ∗ can be seen to be slightly more accurate than the plug in τ̂ . This is extra
apparent when we look at the pointwise errors between the true path and the perturbation
respective transformed perturbation approximations in Figure 3b.

It's not surprising that the resulting transformed perturbation sample paths are very
close to the true ones. The sample path accuracy results are summarised in Table 2,
where we report maximum and mean absolute path errors in addition to Euler errors.
Here we see that second order perturbation explodes, so sample paths created by this
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Figure 3: Expected policy functions for xt in the Deaton model generated by a second order per-
turbation approximation and the transformed perturbation method for both the optimal τ∗ and the
plug in τ̂ . Figure 3a shows the actual policy functions, Figure 3b shows the pointwise errors with
respect to a close approximation of the true policy function and Figure 3c zooms in on the relevant
part of the state space to compare the previous methods to pruning.

approximation are unusable. Therefore we need a stable approximation approach. The
transformed perturbation approximation performs better than pruning and much better
than linear approximation on all criteria. Note that the maximum and mean path errors
for the transformed perturbation are about half of those for the pruning approximation,
in both the asset and consumption paths.

The di�erence in accuracy is extra apparent when we look at the cumulative path
errors, see Figure 4, which are signi�cantly smaller for our method. This accumulation
of inaccuracy then leads to larger errors when we compute some of the sample moments,
which can be found in Table 3. Here we see that �rst order perturbation performs a
lot worse than the other methods on the asset moments, which was to be expected, as it
missed the nonlinear e�ects. Transformed perturbation is more accurate than pruning for
all moments, especially for ones concerning the assets where we see improvement up to a
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Path errors Euler errors
at ct

max mean max mean

Perturbation 1 132 38.4 10.7 1.06 3.11
Perturbation 2 ∞ ∞ ∞ ∞ -
Transformed 2 optimal 53.0 6.54 3.29 0.31 0.28

Transformed 2 plug-in 54.4 6.50 3.40 0.31 0.29
Pruning 2 123 13.6 6.42 0.69 0.51

Table 2: Absolute sample path and Euler errors for the Deaton model. Path errors are compared
to a projection approximation and given in percentages. Euler errors are also scaled by 102. The
results are based on a time path of 104 observation with a burn in time of 500 observations.
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Figure 4: Cumulative paths errors for the number of assets in the left panel and consumption in
the right panel. Errors are calculated by a close approximation of the true policy function.

factor ten. Surprising is that the plug-in τ̂ transformed policy function performs better on
the moments than the optimal τ∗ transformed policy function.

Performance in a parameter estimation scenario

When researchers are interested in estimating parameters, it is important to ensure that
the employed approximation method is accurate across a wide range of parameter values.
It is thus important to investigate what happens to the accuracy of our approximation
methods when we move the parameters away from an initial calibrated parameter value.
Figure 5 plots the expected Euler errors for varying values of β and γ. Note that, as de-
scribed in Section 2.4, for the optimal transformed perturbation method we have kept the
initial calculated optimal τ∗, while the plug in transformed perturbation method updates
τ̂ along with the parameters. We see in Figure 5 that the expected Euler errors for both
the transformed perturbation methods are smaller than those for the pruning method on
a signi�cant area around the calibration. This implies that each transformed perturbation
method outperforms the pruning method in an estimation setting when the initial param-
eters have been set su�ciently close to the true ones. The two transformed perturbation
methods have such similar Euler errors, because the plug-inτ̂ does not vary much as we
change the parameters and stays especially close to the optimal τ∗.
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Sample moments
µ(at) µ2(at) µ3(at) µ4(at) µ(ct) µ2(ct) µ3(ct) µ4(ct)

True 0.083 0.016 0.004 0.001 1.502 2.264 3.423 5.192

Perturbation 1 58.1 62.2 84.2 89.7 0.09 0.11 0.03 0.16

Transformed 2 optimal 0.70 7.58 7.83 6.79 0.00 0.03 0.09 0.17
Transformed 2 plug-in 0.43 6.89 6.25 3.77 0.00 0.03 0.09 0.17
Pruning 2 5.88 23.50 31.66 38.27 0.01 0.06 0.20 0.40

Cross moments
µ(atct) µ(atc

2
t ) µ(atc

3
t ) µ(a2t ct) µ(a2t c

2
t ) µ(a3t ct)

True 0.13 0.20 0.31 0.03 0.04 0.006

Perturbation 1 57.3 56.5 55.7 63.0 63.6 84.1
Transformed 2 optimal 0.96 1.18 1.35 7.45 7.30 7.65
Transformed 2 plug-in 0.69 0.90 1.07 6.73 6.57 6.03

Pruning 2 6.30 6.58 6.75 23.2 22.8 31.1

Table 3: Sample and cross moments up to fourth order for the Deaton model. The true row presents
the moments given by a close approximation. The other moments are given as absolute percentage
di�erences from the true ones. The results are based on a time path of 104 observation with a burn
in time of 500 observations.
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Figure 5: Expected Euler errors for the Deaton model on an area around the calibrated parameter
values. Figure 5a portrays the results when changing β and Figure 5b when changing γ.

5.2.2 The Matching model

The second model we examine is a matching model also featured in Den Haan and De Wind
(2012). The model has two types of agents, workers and entrepreneurs, both of which are
members of the same representative household. The household earns wages and �rm pro�ts
from its members at the end of each period. These are then distributed among the members
for consumption.

Firms: The main decision is made by a representative entrepreneur who tries to max-
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imise future discounted �rm pro�ts. The maximisation problem is given by

max
(nt,vt)∞t=1

E1

∞∑
t=1

βt−1
(
ct
c1

)−γ
((ezt − w)nt−1 − ψvt) ,

s.t.

nt = (1− ρn)nt−1 + pf,tvt,

zt =

{
zt−1 with probability ρz

−zt−1 with probability 1− ρz
,

n0, z1 given.

Here ct is the consumption level of the household, nt is the number of employees at the
end of period t, vt is the number of vacancies set by the �rm, pf,t is the number of matches
per vacancy, w is the wage rate, ψ is the cost of placing a vacancy and ρn is the exogenous
separation rate. Each worker produces ezt , which means that the pro�t per worker is given
by ezt − w. The random variable zt can only take on two values, which we denote −ζ
and +ζ. This is an arti�cial simpli�cation introduced in Den Haan and De Wind (2012)
enabling us to easily analyse the approximation methods to the model in a graphical
manner. Alternatively, one can use a standard autoregressive updating function for zt.
Finally, the �rm takes the number of matches pf,t as given.

Consumers: The household consumes the whole income earned by its members. That
is,

ct = wnt−1 + (ezt − w)nt−1 − ψvt = eztnt−1 − ψvt.

Matching market : The number of hires per vacancy is determined on a matching market
where the �rms and 1 − nt−1 unemployed workers search for a match. The total number
of matches is given by

mt = φ0(1− nt−1)φv1−φt .

This implies that the total number of matches per vacancy is given by

pf,t =
mt

vt
= φ0

(
1− nt−1

vt

)φ
.

The model requires some restrictions on the parameters to ensure that a solution in the
interior of the domain exists and thus that the policy function is smooth. Our choice of
parameter values is again taken from Den Haan and De Wind (2012) and given in Table
4. See the original paper for a detailed discussion on the matching model, the parameter
values and further references.

γ w ψ ρn ρz ζ σ β φ0 φ

4.5 0.973 0.4026 0.0368 0.975 0.0224 0.007 0.99 0.7 0.5

Table 4: The choice of parameter values for the Matching model.

A second order perturbation approximation of the state equation delivers

nt+1 − nss = 0.95 + 0.46(nt − nss) + 0.52zt+1

− 2.92(nt − nss)2 − 6.57(nt − nss)zt+1 − 1.01z2t+1
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and we �nd

τ∗ = 26.1 and τ̂ = 13.6.

The updating equation for the exogenous state variable zt is not of the type (2). One can
extend the theory in a rather straightforward way to also apply to general Markov chain
updating equations for the exogenous state variables, but we chose not to do this to keep
the assumptions and proofs relatively clear and concise. Note that if we would have chosen
a standard autoregressive process of order one for (zt)t≥0, then Assumptions A and C can
easily seen to be satis�ed as we have a univariate system. Therefore, in that case, we would
have obtained all the desired stability results from Theorem 3.2.

The control variables can be explicitly calculated once the path for the single state vari-
able, the number of employees, is known. We therefore compare the approximation meth-
ods according to their best performance: either calculating the control variables directly,
or approximating the observation equation. We compare the transformed perturbation
and regular perturbation approximation in Figure 6. Figure 6a shows the policy functions
for the number of employees in the two possible scenarios for zt. The case zt = −ζ is the
crucial one here, as the regular perturbation approximation stays below the y = x line
and therefore does not intersect it. This implies that the second order perturbation sample
paths for nt tend to minus in�nity if zt is equal to −ζ for many consecutive times. The case
zt = +ζ goes to minus in�nity for values of nt much smaller than portrayed in the �gure.
Hence, once nt has become small enough it has no chance of recovering and thus sample
paths diverge to minus in�nity with probability one. As in the previous example, the
explosive behaviour is encountered in our �nite time sample paths with a high frequency,
rendering regular perturbation infeasible. The transformed perturbation policy function
avoids the problem described for both values of τ as they both scale down the second order
monomial fast enough to ensure that the policy functions cross the y = x line at a unique
point, like the true policy function. The dynamics of our approximated systems therefore
closely mimic the true dynamics for nt. Figure 6c again zooms in on the relevant part
of the state space when using the stable solution methods and includes a scatter plot of
the pruning sample path. Again, we are reminded that pruning does not provide a policy
function on the original state space. Moreover, pruning provides less accurate updates,
especially for large value of nt in the case zt = +ζ and small values in the case zt = −ζ.
The policy function corresponding to the optimal τ∗ is clearly the most accurate method in
our comparison, which is extra clear when we look at the pointwise errors between the true
path and the perturbation respective transformed perturbation approximations in Figure
6b.

The graphical results are strengthened by studying the sample path errors in Table
5. Here we see that the transformed perturbation approximation is both in extreme cases
and on average performing better than both perturbation and pruning. The improvement
compared to perturbation is not surprising given the nonlinearity of the plots in Figure
6. This time the optimal transformed perturbation method performs better than the plug
in approximation. It is also more than a factor ten times better on average than pruning
for the number of employees and more than a factor three times better on average than
pruning on consumption paths.

We emphasize the gravity of the di�erence in accuracy by plotting the cumulative path
errors in Figure 7. This total di�erence in accuracy then again leads to a large di�erence
in sample moment accuracy, which is summarised in Table 6. Like before we see that
the transformed perturbation method, especially the optimal one, is best at mimicking the
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Figure 6: Policy functions for nt in the matching model generated by a second order perturbation
approximation and the transformed perturbation method. Figure 6a shows the actual policy func-
tions, Figure 6b shows the pointwise errors with respect to a close approximation of the true policy
function and Figure 3c zooms in on the relevant part of the state space to compare the previous
methods to pruning.

dynamics of the sample paths. Note that both the optimal and transformed perturbation
method outperform pruning on all moments, especially for the higher order moments,
where pruning loses relatively more accuracy by ignoring higher order e�ects. Optimal
transformed perturbation outperforms pruning up to a factor forty for the fourth order
moments of consumption, while plug-in transformed perturbation outperforms pruning by
a factor three for most moments.

Performance in a parameter estimation scenario

Once more we investigate the accuracy of the discussed methods in an area around the
calibrated parameter values. Figure 8 plots the expected Euler errors for varying values of
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Path errors Euler errors
nt ct

max mean max mean

Perturbation 1 3.20 1.89 3.53 1.80 0.26
Perturbation 2 ∞ ∞ ∞ ∞ -
Transformed 2 optimal 0.26 0.07 0.64 0.32 0.08
Transformed 2 plug-in 0.71 0.25 0.97 0.23 0.04

Pruning 2 1.79 0.95 1.76 0.95 0.10

Table 5: Absolute sample path and Euler errors for the matching model. Path errors are compared
to a close approximation of the truth and given in percentages. Euler errors are also scaled by 102.
The results are based on a time path of 104 observation with a burn in time of 500 observations.
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Figure 7: Cumulative paths errors for the number of employees in the left panel and consumption
in the right panel. Errors are calculated by a close approximation of the true policy function.

β and γ while keeping the steady state values for the number of employees, the number
of matches per unemployed worker and the number of matches per vacancy equal. As in
the previous example we �x the optimal τ∗ at the initial derived value at the calibrated
parameters, while the plug in τ̂ is updated along with the parameters. Figure 8 shows us
that the expected Euler errors for each transformed perturbation method is smaller than
those for the pruning method on a relevant area around the calibration. Therefore, we
again conclude that an estimation procedure using the transformed perturbation method
improves accuracy over using either linear perturbation or pruning when the starting values
are decently close to the true parameters.
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Sample moments
µ(nt) µ2(nt) µ3(nt) µ4(nt) µ(ct) µ2(ct) µ3(ct) µ4(ct)

True 0.93 0.87 0.81 0.76 0.91 0.83 0.76 0.70

Perturbation 1 1.90 3.77 5.62 7.43 1.81 3.57 5.27 6.91
Transformed 2 optimal 0.03 0.05 0.07 0.10 0.02 0.04 0.05 0.06

Transformed 2 plug-in 0.23 0.45 0.65 0.83 0.20 0.39 0.55 0.70
Pruning 2 0.68 1.30 1.88 2.40 0.65 1.23 1.73 2.16

Cross moments
µ(ntct) µ(ntc

2
t ) µ(ntc

3
t ) µ(n2

t ct) µ(n2
t c

2
t ) µ(n3

t ct)

True 0.85 0.78 0.71 0.79 0.73 0.74

Perturbation 1 3.67 5.39 7.04 5.50 7.17 7.30
Transformed 2 optimal 0.04 0.06 0.07 0.07 0.08 0.09

Transformed 2 plug-in 0.42 0.59 0.73 0.62 0.77 0.80
Pruning 2 1.27 1.78 2.22 1.83 2.28 2.34

Table 6: Sample and cross moments up to fourth order for the matching model. The true row
presents the moments given by a close approximation. The other moments are given as absolute
percentage di�erences from the true ones. The results are based on a time path of 104 observation
with a burn in time of 500 observations.

A Appendix

A.1 Proofs of Section 3

We study the transformed perturbation method, as indicated in Section 3, as its asymptotic
linear process plus a deviation (9). The deviation is bounded in x as Φτ (x̃) dominates the
function far away from the origin. The following result gives a uniform upper bound to
the size of the deviation over X .

Proposition A.1. There exists a constant c ≥ 0 that does not depend on τ , such that

sup
x∈X
‖D(x, z)‖ ≤ c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z‖i
)
.

Proof. In this proof we speci�cally choose ‖ · ‖ equal to the Euclidean matrix norm ‖ · ‖e.
This matrix norm is a crossnorm, i.e. it is multiplicative on Kronecker products, see for
example Lancaster and Farahat (1972). This implies, together with sub-additivity and
sub-multiplicativity, that

‖D(x, z)‖ ≤
m∑
i=2

‖Hi‖‖v‖iΦτ (x̃)

≤
(

max
2≤i≤m

‖Hi‖
) m∑
i=2

i∑
j=0

‖x‖j‖z‖i−jΦτ (x̃)

≤
(

max
2≤i≤m

‖Hi‖
) m∑
j=0

‖x‖jΦτ (x̃)

(
m−j∑
i=0

‖z‖i
)
.

Next, note that

‖x‖jΦτ (x̃) ≤ ‖x‖je−τ‖x‖2e/max{xss},
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Figure 8: Expected Euler errors for the matching model on an area around the calibrated parameter
values. Figure 8a portrays the results when changing β and Figure 8b when changing γ while keeping
the steady state values for the number of employees, the number of matches per unemployed worker
and the number of matches per vacancy equal.

which is a univariate function in ‖x‖e, since we chose ‖·‖ equal to ‖·‖e. It is straightforward
to verify that this function is maximised at ‖x‖2e = jmax{xss}

2τ and thus there exists a
constant c̃ that does not depend on τ or x such that

sup
x∈X
‖x‖jΦτ (x̃) ≤ c̃τ−j/2 for all 0 ≤ j ≤ m.

�

A.1.1 Proof of Theorem 3.1

Assumptions A1 and A3 imply by Theorem 3.1 in Bougerol (1993) and the monotone
convergence theorem that there exists a unique stationary ergodic solution (z∗t )t∈N to (2)
with E‖z∗t ‖rm <∞. Moreover, ‖zt − z∗t ‖ converges exponentially almost surely to zero as
t→∞, which implies that

lim inf
t→∞

‖zt‖ <∞ a.s.

and that, for every realisation, there exists a constant d > 0 such that ‖zt‖i ≤ ‖z∗t ‖i + d
for all t ≥ 0 and 0 ≤ i ≤ m.

Next, we repeatedly expand the term Hxx in (7) to obtain the following expression for
the transformed perturbation path:

xt = Ht
xx0 +

t−1∑
k=0

Hk
x (H0 +Hzzt−k +D(xt−1−k, zt−k)) .

We now use Proposition A.1 to bound the deviation terms and then use the bounds on the
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path (zt)t≥0 to obtain

‖xt‖ − ‖Hx‖t‖x0‖

≤
t−1∑
k=0

‖Hx‖k
‖H0‖+ ‖Hz‖‖zt−k‖+ c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖zt−k‖i
)

≤
t−1∑
k=0

‖Hx‖k
‖H0‖+ ‖Hz‖(‖z∗t−k‖+ d) + c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z∗t−k‖i + d

)(16)

Next we arti�cially extend (z∗t )t≥0 to a stationary ergodic sequence (z∗t )t∈Z and then note
that (16) is bounded by

Yt :=
∞∑
k=0

‖Hx‖k
‖H0‖+ ‖Hz‖(‖z∗t−k‖+ d) + c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z∗t−k‖i + d

) .

The term within the brackets is stationary ergodic by Krengel's lemma, see Proposition 4.3
in Krengel (1985), and the fact that (z∗t )t∈Z is stationary ergodic. Moreover it has a �nite
log moment since E‖z∗t ‖rm <∞. Next, we can choose a matrix norm such that ‖Hx‖ < 1
by Assumption A2. Therefore, the in�nite sum converges almost surely by Proposition
2.5.1 of Straumann (2005). Again, the sequence (Yt)t∈Z is stationary ergodic by Krengel's
lemma and thus there almost surely exists an M > 0 such that {Yt ≤ M} occurs for
in�nitely many t > 0. We conclude that

lim inf
t→∞

||xt|| ≤M <∞.

A.1.2 Proof of Theorem 3.2

We study the processes (zt)t≥0 and (xt)t≥0 as a joint Markov process. This section will
make extensive use of Meyn and Tweedie (1993). We will �rst assume that (zt,xt)t≥0 is
a ψ-irreducible and aperiodic T -chain. See sections 4.2, 5.4 and 6.2 of Meyn and Tweedie
(1993) for a detailed discussion on these properties.

Proposition A.2. Suppose (zt,xt)t≥0 is a ψ-irreducible and aperiodic T -chain and let

Assumptions A and B hold. Then all the results of Theorem 3.2 hold.

Proof. We will check the drift condition for t-step transitions, which is described in
condition (iii) of Theorem 1 in Saïdi and Zakoian (2006), adapted from Theorem 19.1.3
in Meyn and Tweedie (1993) and originally suggested by Tjøstheim (1990). The condition
states that we need to �nd a non-negative function V : X ×Z → R and a t ∈ N such that

E (V (xt, zt) | x0 = x, z0 = z)

V (x, z)
(17)

is �nite on a compact set C ⊆ X × Z and smaller than one outside of C. Note that the
set C actually has to be petite, but all compact sets are petite in a ψ-irreducible T -chain,
Theorem 6.2.5 in Meyn and Tweedie (1993). It then follows by Theorem 1 in Saïdi and
Zakoian (2006) that there exists a unique stationary ergodic solution (x∗t , z

∗
t )t≥0 that is

geometrically ergodic and has the required moments, given our choice for V . Absolute
regularity follows from Theorem 1 in Davydov (1974) and the laws of large numbers follow
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from Theorem 17.0.1 in Meyn and Tweedie (1993). The reason that we resort to t-step,
instead of 1-step, transitions is that Assumption A1 and Assumption A2 do not guarantee
that there exists a matrix norm such that both ‖Λ‖ < 1 and ‖Hx‖ < 1. Assumption A1
can ensure that there exists a matrix norm such that ‖Λ‖ < 1, but then Assumption A2
only provides the existence of a t ∈ N such that ‖Ht

x‖ < 1 by Gelfand's formula.
We adopt the ideas of Cline and Pu (1999) and use the test function

V (x, z) = 1 + (‖x‖+ ω‖z‖m)r ,

where we will choose ω > 0 su�ciently large. If r ≤ 1, then (‖x‖ + ω‖z‖m)r ≤ ‖x‖r +
ωr‖z‖rm. We prove the theorem for the case r ≥ 1, as it is the harder case. In that case
Minkowski's inequality provides the upper bound

E((‖xt‖+ ω‖zt‖m)r | x0, z0) ≤
(
E(‖xt‖r | x0, z0)

1
r + ωE(‖zt‖rm | x0, z0)

1
r

)r
.

We start by bounding the second expectation. Note that the expectations E‖σηεs‖rm are
bounded for all s ∈ {1, . . . , t} by Assumption A3. Expanding backwards and working out
brackets then gives

E (‖zt‖rm | z0) ≤ E
((
‖Λtz0‖+ ‖Λt−1ε1‖+ · · · ‖εt‖

)rm | z0)
≤ ‖Λ‖trm‖z0‖rm + o (‖z0‖rm) as ‖z0‖ → ∞.

(18)

Next, by Proposition A.1 there exist constants c1, c2 > 0 such that ‖D(xs−1, zs)‖ < c1 +
c2(1 + ‖zs‖m) for all s ∈ {1, . . . , t}. It then follows again by backwards expansion and the
fact that ‖zs‖ ≤ 1 + ‖zs‖m that there exist constants d1, d2 > 0 such that

E (‖xt‖r | x0, z0) ≤ E

(∥∥∥∥∥Ht
x
x0 +

t−1∑
k=0

Hk
x

(H0 +Hzzt−k +D(xt−1−k, zt−k))

∥∥∥∥∥
r

| x0, z0

)

≤ E

((
‖Ht

x
‖‖x0‖+ d1 + d2

t−1∑
k=0

‖zt−k‖m
)r
| x0, z0

)
≤
(
‖Ht

x
‖‖x0‖+O (‖z0‖m)

)r
as ‖z0‖ → ∞.

The last inequality follows by repeated application of Minkowski's inequality in combina-
tion with the same calculations as in (18). Filling everything in then upper bounds (17)
by

1 +
(
‖Ht

x
‖‖x‖+ (‖Λ‖tm + ω−1O (1))ω‖z‖m + o (‖z‖m)

)r
1 + (‖x‖+ ω‖z‖m)r

as ‖z‖ → ∞.

Recall that ‖Ht
x‖ < 1 and ‖Λ‖ < 1 and choose ω large enough such that ‖Λ‖tm +

ω−1O(1) < 1 as ‖z‖ → ∞. Then we can make the fraction smaller than one if we choose
‖x‖, ‖z‖ > M for a su�ciently large M . Let C = {(x, z) ∈ X × Z | ‖x‖, ‖z‖ ≤ M}, then
(17) is bounded over C and smaller than one outside of C. �

It remains to be proven that (zt,xt)t≥0 is a ψ-irreducible and aperiodic T -chain, which
follows from the results of sections 6.0 - 1 of Meyn and Tweedie (1993). We have, similarly
to Proposition 6.1.2 and 6.1.3, that Assumption B2 ensures that the Markov chain is strong
Feller. It then follows by Proposition 6.1.5 and Assumption B1 that the Markov chain is
ψ-irreducible. Finally, we conclude that (xt)t≥0 is an aperiodic T -chain by Lemma 6.1.4
and part (iii) of Theorem 6.0.1.
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A.1.3 Proof of Proposition 3.3

It is clear that Assumption C3 implies Assumption B2, so it remains to prove Assumption
C also implies Assumption B1. We will prove a stronger statement: Fix any x∗ ∈ X then
that point is reachable. Let t be the smallest integer such that assumption C1 holds. The
approach will be to show that we can �nd values for z1, . . . , zt that bring xt arbitrarily
close to x∗. It then follows by Assumption C3 that we have positive probability of xt being
arbitrarily close to x∗.

To �nd the values for the exogenous state variables, we start by expanding xt back in
time as

xt =
t−1∑
k=0

Hk
xH0 +Ht

xx0

+
[
Ht−1

x Hz · · · HxHz Hz

] [
z
′
1 z

′
2 · · · z

′
t

]′
+

t−1∑
k=0

Hk
xD(xt−1−k, zt−k).

Assumption C1 ensures that we can select nx linearly independent columns from the ma-
trix

[
Ht−1

x Hz · · · HxHz Hz

]
, which we denote a1, . . . ,anx . Let A =

[
a1 . . . anx

]
and let δ =

[
δ1 . . . δnx

]′
be the vector consisting of the univariate stochastic variables

inside
[
z
′
1 z

′
2 · · · z

′
t

]′
that correspond to the columns a1, . . . ,anx . Then, by setting the

random variables corresponding to the other columns equal to zero, we get

xt =
t−1∑
k=0

Hk
xH0 +Ht

xx0 +Aδ +
t−1∑
k=0

Hk
xD(xt−1−k, zt−k).(19)

Suppose all the deviations are zero, then we immediately obtain that we need to choose

δ = A−1

(
x∗ −

t−1∑
k=0

Hk
xH0 −Ht

xx0

)
.(20)

Generally, the deviations are nonzero, so that the choice (20) does not guarantee that xt
is close to x∗. In fact we would obtain

xt = x∗ +
t−1∑
k=0

Hk
xD(xt−1−k, zt−k).(21)

The idea is then as follows. We show that sample paths can reach arbitrarily large values,
and then take such a large value to be our starting point x0. We then show that as the
starting point gets larger our choice for δ will get larger according to (20) and the whole
path from x0 to xt will be arbitrarily large. Since deviations converge to zero away from
the steady state we conclude that we can get xt arbitrarily close to x∗.

Formally, the deviations in (19) are nonlinear, which together with Assumption C2 and
the fact that A is invertible means that we can for any starting point x0 reach a point
xt ∈ X such that Ht

xxt =
∑nx

i=1 λiai has all λi ∈ R arbitrarily large. Therefore we can
assume the same for our starting point x0, that is, for all d > 0 we can choose x0 such
that Ht

xx0 =
∑nx

i=1 λiai with |λi| > d for all 1 ≤ i ≤ nx. It immediately follows from (20)
that each |δi| goes to in�nity linearly in d as we increase d.
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Next, we show that increasing d ensures that each ‖xt−j‖ for 0 < j < t becomes
arbitrarily large. Let A(j) and δ(j) be the sub-matrix respective sub-vector of A and δ
such that for partially expanding xt we have

xt =

j−1∑
k=0

Hk
xH0 +Hj

xxt−j +A(j)δ(j) +

j−1∑
k=0

Hk
xD(xt−1−k, zt−k).

Note that A(j) and δ(j) are nonempty since we chose t as small as possible. Combining
this with (21) gives

Hj
xxt−j = x∗ −

j−1∑
k=0

Hk
xH0 −A(j)δ(j) +

t−1∑
k=j

Hk
xD(xt−1−k, zt−k).

It then follows, since ‖xt−j‖ ≥ ‖Hj
x‖−1‖Hj

xxt−j‖, that we get

‖xt−j‖ ≥ ‖Hj
x‖−1

∥∥∥A(j)δ(j)
∥∥∥− ‖x∗‖ − ∥∥∥∥∥

j−1∑
k=0

Hk
xH0

∥∥∥∥∥−
∥∥∥∥∥∥
t−1∑
k=j

Hk
xD(xt−1−k, zt−k)

∥∥∥∥∥∥
 .

(22)

The remaining part of the proof is a recursive argument. We start at j = t − 1, in which
case (22) gives

‖x1‖ ≥ d1
(∥∥∥A(t−1)δ(t−1)

∥∥∥− ‖D(x0, z1)‖
)

+ d2.

This goes to in�nity linearly in d as we increase d, as the �rst norm increases linearly with
d while

lim
d→∞

D(x0, z1) = 0,

because the deviation is exponentially fast decreasing in its �rst argument and increasing
at only a polynomial rate in its second argument. Next, since ‖x1‖ goes to in�nity linearly
in d, it follows by a similar argument

‖x2‖ ≥ d2
(∥∥∥A(t−2)δ(t−2)

∥∥∥− ‖D(x1, z2) +HxD(x0, z1)‖
)

+ d3

goes to in�nity linearly in d as we increase d. Iterate until xt−1 to conclude that each
‖xt−j‖ for 0 < j ≤ t increases linearly with d to in�nity and thus we can always choose d
large enough to ensure that the deviations in (21) are arbitrarily close to zero.

A.2 Proofs of Section 4

A.2.1 Proof of Lemma 4.1

We can rewrite

∞∑
k=0

ρ(Hx)kδt−k = (1− ρ(Hx))

∞∑
k=0

δt−k

∞∑
j=k

ρ(Hx)j = (1− ρ(Hx))

∞∑
j=0

ρ(Hx)j
j∑

k=0

δt−k.
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Next, (δt)t∈Z is a stationary ergodic sequence by Krengel's lemma, Proposition 4.3 in
Krengel (1985), and Eδt−k < ∞ by the assumption that E‖εt‖m < ∞ and part (ii) of
Theorem 3.2. Therefore a law of large numbers holds and thus

lim
ρ(Hx)→1

(1− ρ(Hx))
∞∑
k=0

ρ(Hx)kδt−k = lim
ρ(Hx)→1

(1− ρ(Hx))2
∞∑
j=0

ρ(Hx)j
j∑

k=0

δt−k

= lim
ρ(Hx)→1

(1− ρ(Hx))2
∞∑
j=0

ρ(Hx)j(j + 1)Eδt−k

= Eδ0.

A.3 Proofs of Section 5

A.3.1 Proof of Proposition 5.1

Note that

‖h(m)
tp (x, z, σ)− h(x, z, σ)‖ ≤ ‖h(m)

tp (x, z, σ)− h(m)
p (x, z, σ)‖+ ‖h(m)

p (x, z, σ)− h(x, z, σ)‖.
Now,

lim
m→∞

sup
(x,z,σ)∈S

‖h(m)
tp (x, z, σ)− h(m)

p (x, z, σ)‖ = 0,

because S is compact and τ → 0 as m→∞ and

lim
m→∞

sup
(x,z,σ)∈S

‖h(m)
p (x, z, σ)− h(x, z, σ)‖ = 0,

by the assumptions that the true policy function is analytic over a compact set S and the
Weierstrass M-test.

A.3.2 Proof of Proposition 5.2

This result follows immediately by noticing that setting τ = 0 makes the transformed
polynomials equal to the regular polynomials. Therefore we can always �nd a τ for which
transformed perturbation performs equally or better than regular perturbation.

A.3.3 Proof of Proposition 5.3

Let (x̄t)t≥0 be the path generated by the m'th order perturbation policy function, also
initialised at the origin. Additionally, let vt = (xt−1, zt) and v̄t = (x̄t−1, zt). Throughout
this proof we let ‖ · ‖ be the in�nity norm, or maximum norm.

It follows from the exogenous variable updating function in (2) and the fact that z0 =
0nz that

‖zt‖ ≤ ‖Λ‖‖zt−1‖+ σ‖ηεt‖ = ‖Λ‖‖zt−1‖+O(σ) = ‖Λ‖t‖z0‖+O(σ) = O(σ), ∀t ∈ N.

Next, we proof by induction that ‖x̄t‖ = O(σ) for all t ∈ N. It is true for t = 1, since
x0 = 0nx and thus

‖x̄1‖ ≤ ‖H0‖+ ‖Hz‖‖z1‖+
m∑
i=2

‖Hi‖‖v̄1‖i

= O(σ) +O(σ) +

m∑
i=2

‖Hi‖‖z1‖i = O(σ),
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where we used that ‖z1‖ = O(σ) by the previous derivation and ‖H0‖ = O(σ) by the
de�nition of H0. Similarly, if ‖x̄t−1‖ = O(σ), then

‖x̄t‖ ≤ ‖H0‖+ ‖Hx‖‖x̄t−1‖+ ‖Hz‖‖zt‖+

m∑
i=2

‖Hi‖‖v̄t‖i = O(σ).

We proceed by showing via induction that ‖x̄t − xt‖ = O(σm+1) and ‖xt‖ = O(σ) for all
t ∈ N. This is true for t = 1, since by the reverse triangle inequality and the properties of
a Taylor approximation we have that

|‖x̄1‖ − ‖x1‖| ≤ ‖x̄1 − x1‖ = ‖hp(v1, σ)− h(v1, σ)‖
= O

(
‖(v1, σ)‖m+1

)
= O

(
‖(z1, σ)‖m+1

)
= O

(
σm+1

)
.

If the statement hold for t− 1, then likewise

|‖x̄t‖ − ‖xt‖| ≤ ‖x̄t − xt‖ = ‖hp(v̄t, σ)− h(vt, σ)‖
≤ ‖hp(v̄t, σ)− hp(vt, σ)‖+ ‖hp(vt, σ)− h(vt, σ)‖

The second term is of O
(
σm+1

)
by the same argument as before. The �rst term requires

a bit more work

‖hp(v̄t, σ)− hp(vt, σ)‖ ≤ ‖Hx‖‖x̄t−1 − xt−1‖+

m∑
i=2

‖Hi‖

∥∥∥∥∥⊗
i

v̄t −
⊗
i

vt

∥∥∥∥∥ ,
which is O

(
σm+1

)
since∥∥∥∥∥⊗

i

v̄t −
⊗
i

vt

∥∥∥∥∥ ≤ i‖v̄t − vt‖max{‖v̄t‖, ‖vt‖}i−1

= i‖x̄t−1 − xt−1‖‖(v̄t,vt)‖i−1 = O
(
σm+1

)
.

The next step is to show that ‖x̄t − x̂t‖ = O
(
σmin{m+1,4}) and ‖x̂t‖ = O(σ) for all t ∈ N.

Since x0 = 0nx we have ‖x̄1 = x̂1‖. Let v̂t = (x̂t−1, zt) and suppose the statement holds
for t− 1, then similarly as before we have

|‖x̄t‖ − ‖x̂t‖| ≤ ‖x̄t − x̂t‖ ≤ ‖Hx‖‖x̄t−1 − x̂t−1‖

+
m∑
i=2

‖Hi‖

∥∥∥∥∥⊗
i

v̄t−1 −
⊗
i

v̂t−1

∥∥∥∥∥+
m∑
i=2

‖Hi‖‖v̂t−1‖i−1
∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥
= O

(
σmin{m+1,4}

)
+O

(
σmin{m+1,4}

)
+O

(
σ2
) ∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥ .
Note that ∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥ =
∥∥∥1− e−τ‖˜̂xt−1‖2e

∥∥∥ = O(‖x̂t−1‖2) = O
(
σ2
)
,

so that the result follows. The proposition is now proved by putting everything together:

‖x̂t − xt‖ ≤ ‖x̂t − x̄t‖+ ‖x̄t − xt‖ = O
(
σmin{m+1,4}

)
+O

(
σm+1

)
= O

(
σmin{m+1,4}

)
.

32



A.3.4 Proof of Proposition 5.4

We start by showing that condition (14) ensures that the true policy function produces
nonexplosive sample paths. This follows from Theorem 9.4.1 in Meyn and Tweedie (1993),
which states that we have to �nd a non-negative function V : X × Z → R such that

E (V (x1, z1) | x0 = x, z0 = z)

V (x, z)
< 1(23)

for all x and z outside of a compact C ⊆ X ×Z. We use the function V (x, z) = ‖x‖+ ‖z‖
and obtain similarly to the proof of Theorem 3.2 that there exists a constant d such that
(23) is bounded by

E(‖h(x, z1, σ)‖ | z0 = z) + ‖Λ‖‖z‖
‖x‖+ ‖z‖

+
d

‖x‖+ ‖z‖
.

Increasing x can make the �rst fraction smaller than one by condition (14), while the
second fraction can be made arbitrarily small. Therefore there exists an M > 0 such that
(23) is satis�ed for all x, z > M .

Next we show that condition (14) implies (15). Note that condition (14) and Assump-
tion C3 imply that

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

<∞

for all possible values of z and σ outside of a set of Lebesque measure zero. However, since
hp(x, z, σ) contains a nonzero higher order monomial in x we have

lim inf
‖x‖→∞

‖hp(x, z, σ)‖
‖x‖

=∞.

for all nonzero values of z and σ. Finally, since the deviations in transformed perturbation
go to zero away from the steady state we have

lim sup
‖x‖→∞

‖htp(x, z, σ)‖
‖x‖

= ‖Hx‖ <∞.

It immediately follows that the di�erence between the true and the perturbed policy func-
tions become in�nitely many times larger than the errors between the true and the trans-
formed perturbation policy functions as ‖x‖ goes to in�nity.

In the last part we show that conditions (i), (ii) and (iii) imply (14). Condition (i)
follows from the reverse Fatou lemma as

lim sup
‖x‖→∞

E(‖h(x, z1, σ)‖ | z0 = z)

‖x‖
< E

(
lim sup
‖x‖→∞

‖h(x, z1, σ)‖
‖x‖

∣∣∣∣∣ z0 = z

)
< 1.

Condition (ii) immediately implies condition (i) and condition (iii) implies condition (i)
since

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

= lim sup
‖x‖→∞

‖h(ax, z, σ)‖
‖ax‖

≤ lim sup
‖x‖→∞

‖h(ax, z, σ)‖
‖h(x, z, σ)‖

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖ax‖

=
1

a
lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

= 0.
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