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Abstract

In finance, durations between successive transactions are usually modeled by the autoregressive con-

ditional duration model based on a continuous distribution omitting frequent zero values. Zero

durations can be caused by either split transactions or independent transactions. We propose a

discrete model allowing for excessive zero values based on the zero-inflated negative binomial distri-

bution with score dynamics. We establish the invertibility of the score filter. Additionally, we derive

sufficient conditions for the consistency and asymptotic normality of the maximum likelihood of the

model parameters. In an empirical study of DJIA stocks, we find that split transactions cause on

average 63% of zero values. Furthermore, the loss of decimal places in the proposed model is less

severe than incorrect treatment of zero values in continuous models.

Keywords: Financial High-Frequency Data, Autoregressive Conditional Duration Model,

Zero-Inflated Negative Binomial Distribution, Generalized Autoregressive Score Model

JEL: C22, C41, C58

1. Introduction

An important aspect of financial high-frequency data analysis is the modeling of durations between

events. This includes the modeling of the recording of transactions (trade durations), price changes

by a given level (price durations) and volume reaches by a given level (volume durations). Financial

durations exhibit strong serial correlation, i.e. long durations are usually followed by long durations

and short durations are followed by short durations. To capture this time dependence, Engle and

Russell (1998) proposed the autoregressive conditional duration (ACD) model. The ACD model is

analogous to the GARCH volatility model and enjoys similar popularity in the financial durations

1Corresponding author: Vladimı́r Holý, University of Economics, Prague, W. Churchill Square 1938/4,
130 67 Prague 3, Czech Republic. Telephone: +420 224 095 445. Email: vladimir.holy@vse.cz.
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field. For the survey of duration analysis, see Pacurar (2008), Bauwens and Hautsch (2009), Hautsch

(2011) and Saranjeet and Ramanathan (2018).

Traditional duration models are based on continuous distributions. Table 1 reviews continuous

distributions used in the ACD literature. The ACD specification is traditionally based on a time-

varying mean with some additional constant shape parameters. The data is, however, inherently

discrete. This is also the case for financial durations, whether they are recorded with a precision

of seconds or milliseconds. Discreteness of real data is the first motivation of our paper. Generally,

there are three ways of dealing with discrete values of observed variables.

1. The first approach considers random variables with a continuous distribution and ignores the

discreteness of the data. This is a valid approach, and often the best solution, when data

are recorded with a high precision (e.g. durations with millisecond precision). However, if the

precision is low (e.g. durations with second precision), the bias in estimators increases and

the size of hypothesis tests is distorted (see Schneeweiss et al., 2010). Tricker (1984) and

Taraldsen (2011) explore the effects of rounding on the exponential distribution while Tricker

(1992) deals with the gamma distribution. In autoregressive processes, the rounding errors can

further accumulate making continuous models unreliable (see Zhang et al., 2010 and Li and

Bai, 2011).

2. The second approach considers random variables with a continuous distribution and takes

into account the partial identification and interval uncertainty of the observations caused by

rounding or grouping (see Manski, 2003). In financial volatility analysis, discrete values of

prices are often (among other effects) captured by the market microstructure noise (see Hansen

and Lunde, 2006). To our knowledge, Grimshaw et al. (2005) is the only paper addressing the

issue of rounding in financial durations analysis. They found that ignoring the discreteness of

data leads to a distortion of time-dependence tests in financial durations.

3. The third approach considers random variables with discrete distribution. In financial analysis,

prices are directly modeled by discrete distributions; see e.g. Russell and Engle (2005) and

Koopman et al. (2015). Kabasinskas et al. (2012) use discrete distributions to count zero

changes in prices. In our paper, we follow the discrete approach to financial durations and

utilize time series models of counts.

There are many trade durations that are exactly zero or very close to zero. Zero durations can be

caused by split transactions, i.e. large trades broken into two or more smaller trades. Veredas et al.

(2002) offer another explanation as they notice that many simultaneous transactions occur at round
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prices suggesting many traders post limit orders to be executed at round prices. Zero durations can

as well just be independent transactions executed at very similar times and originating from different

sources. Whatever the reason for zero durations, ignoring them can cause problems in estimation

as many widely used distributions have strictly positive support and zero values have therefore zero

density. Liu et al. (2018) examine the effect of zero durations on integrated volatility estimation.

The presence of zero durations is the second motivation of our paper. The literature suggests several

different ways of dealing with zero durations.

1. The most common approach dating back to Engle and Russell (1998) is to discard zero dura-

tions. Specifically, observations with the same timestamp are merged together with the resulting

price calculated as an average of prices weighted by volume. This helps with estimation, but the

distribution of durations is distorted as zero-durations that are just independent transactions

executed at similar times should be kept in the dataset.

2. Instead of discarding, Bauwens (2006) set zero durations to a small given value. Again, this

helps with estimation but the distribution of durations is distorted as zero-durations that

correspond to split transactions should be omitted from the dataset.

3. The information about zero durations can also be utilized in a model. Zhang et al. (2001)

include an indicator of multiple transactions as an explanatory variable in their regression

model.

4. Another way of incorporating zero durations in a model is to directly include excessive zero

values in the underlying distribution. For continuous distributions, zero-augmented models

proposed by Hautsch et al. (2014) can be used.2. However, in high-precision data, there are no

exact zero values but rather very small positive values, many of which should be considered as

zeros. Grammig and Wellner (2002) suggest to treat successive trades with either non-increasing

or non-decreasing prices within one second as one large trade (i.e. as zero durations). The issue

with this approach is that these successive trades can as well be independent and originate from

different sources. Therefore, it is an uneasy task to identify whether close-to-zero durations

indicate actual split transactions.

5. It is more convenient to model zero durations in a discrete framework. When the values are

grouped, zero durations corresponding to split transactions manifest themselves as an excessive

2The use of zero-augmented models was also suggested by Prof. T. V. Ramanathan during the 3rd Conference and

Workshop on Statistical Methods in Finance, Chennai, December 16–19, 2017.
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probability of the group containing zero values. For discrete distributions, a zero-inflated

extension of Lambert (1992) can be used. This is the approach we suggest in this paper.

Given the discussion above, we propose in this paper a new zero-inflated autoregressive conditional

duration (ZIACD) model. We directly take into account a discreteness of durations and utilize the

negative binomial distribution to accommodate for overdispersion in durations (see Boswell and Patil,

1970; Cameron and Trivedi, 1986; Christou and Fokianos, 2014). The excessive zero durations caused

by split transactions are captured by the zero-inflated modification of the negative binomial distri-

bution (see Greene, 1994). The time-varying location parameter follows the specification of general

autoregressive score (GAS) models, also known as dynamic conditional score models (see Creal et al.,

2008, 2013; Harvey, 2013). In the GAS framework, time-varying parameters are dependent on their

lagged values and a scaled score of the conditional observation density. GAS models belong to the

class of observation-driven models (Cox 1981). Koopman et al. (2016) find that observation-driven

models based on the score perform comparably to parameter-driven models in terms of predictive

accuracy. Observation-driven models (including the GAS model) can be estimated in a straightfor-

ward manner by the maximum likelihood method. In this paper, we establish the invertibility of

the GAS filter for the ZIACD model and the consistency and asymptotic normality of the maximum

likelihood estimator.

In an empirical study, we analyze 30 stocks that form the Dow Jones Industrial Average (DJIA)

index with values of trade durations rounded down to seconds. We compare the Poisson, geometric

and negative binomial distributions together with their zero-inflated modifications. We find that the

proposed ZIACD model is a good fit as it captures both overdispersion and excessive zero values.

The portion of zeros caused by split transactions ranges from 37% up to 90% depending on the stock

with the average of 63%.

We also compare the proposed ZIACD model with continuous models based on the exponential,

Weibull, gamma and generalized gamma distributions. In a simulation study, we find that when data

are rounded, the estimates of the continuous model are biased while the proper use of the discrete

model identifies true parameters. Furthermore, our empirical duration data has very high precision

and as we round them to seconds for the discrete model, we lose some information. The use of the

continuous approach, however, also causes a loss of information as close-to-zero durations need to be

removed or set to a given threshold value for estimation purposes. We find that the loss of decimals

is significantly less severe than the loss of zeros imposed by the continuous approach. Finally, we find

that the proposed ZIACD model outperforms the continuous models in terms of predictive accuracy.
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Parameters

Article Distribution Time-Varying Constant

Engle and Russell (1998) Exponential Mean 0

Engle and Russell (1998) Weibull Mean 1

Lunde (1999) Generalized gamma Mean 2

Grammig and Maurer (2000) Burr Mean 2

Hautsch (2001) Generalized F Mean 3

Bhatti (2010) Birnbaum-Saunders Median 1

Xu (2013) Log-normal Mean 1

Leiva et al. (2014) Power-exponential B-S Median 2

Leiva et al. (2014) Student’s t B-S Median 2

Zheng et al. (2016) Frchet Mean 1

Table 1: The use of continuous distributions in ACD models.

The rest of the paper is structured as follows. In Section 2, we propose the ZIACD model based

on the zero-inflated negative binomial distribution with time-varying location parameter and prove

its asymptotic properties. In Section 3, we describe characteristics of financial durations data and

fit the proposed model within a discrete framework. In Section 4, we compare the proposed discrete

model with continuous models. We conclude the paper in Section 5.

2. Discrete Duration Model

Let T0 ≤ T1 ≤ · · · ≤ Tn be random variables denoting times of transactions. Trade durations are

then defined as Xi = Ti − Ti−1 for i = 1, . . . , n. As we operate in a discrete framework, we assume

Ti ∈ N0, i = 0, . . . , n and Xi ∈ N0, i = 1, . . . , n. We further assume trade durations Xi to follow some

given discrete distribution with conditional probability mass function P [Xi = xi|fi, θ], where xi are

observations, fi = (fi,1 . . . , fi,k)
′ are time-varying parameters for i = 1, . . . , n and θ = (θ1, . . . , θl)

′ are

static parameters. First, we consider trade durations to follow the negative binomial distribution.

Next, we extend the negative binomial distribution to capture excessive zeros using the zero-inflated

model. For time-varying parameters, we use the generalized autoregressive score model. The model

utilizes the score for time-varying parameters fi defined as

∇(xi, fi) =
∂ log P[Xi = xi|fi, θ]

∂fi
(1)
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and the Fisher information for time-varying parameters fi defined as

I(fi) = E
[
∇(xi, fi)∇(xi, fi)

′
∣∣∣fi, θ] = −E

[
∂2 log P[Xi = xi|fi, θ]

∂fi∂f ′i

∣∣∣∣∣fi, θ
]
. (2)

Note, that the latter equality requires some regularity conditions (Lehmann and Casella, 1998).

2.1. Negative Binomial Distribution

Non-negative integer variables are commonly analyzed using count data models based on specific

underlying distribution, most notably the Poisson distribution and the negative binomial distribution

(see Cameron and Trivedi, 2013). A distinctive feature of the Poisson distribution is that its expected

value is equal to its variance. This characteristic is too strict in many applications as count data often

exhibit overdispersion, a higher variance than the expected value. A generalization of the Poisson

distribution overcoming this limitation is the negative binomial distribution with one parameter

determining its expected value and another parameter determining its excess dispersion.

The negative binomial distribution can be derived in many ways (see Boswell and Patil, 1970).

We use the NB2 parameterization of Cameron and Trivedi (1986) derived from the Poisson-gamma

mixture distribution. It is the most common parametrization used in the negative binomial regression

according to Cameron and Trivedi (2013). We consider the location parameter µi > 0 to be time-

varying, i.e. fi = µi, while the dispersion parameter α ≥ 0 is static. The probability mass function

is

P[Xi = xi|µi, α] =
Γ(xi + α−1)

Γi(xi + 1)Γ(α−1)

(
α−1

α−1 + µi

)α−1 (
µi

α−1 + µi

)xi
for xi = 0, 1, 2, . . . . (3)

The expected value and variance is

E[Xi] = µi,

var[Xi] = µi(1 + αµi).
(4)

The score for the parameter µi is

∇(xi, µi) = µ−1
i (xi − µi)(αµi + 1)−1 for xi = 0, 1, 2, . . . . (5)

The Fisher information for the parameter µi is

I(µi) = µ−1
i (αµi + 1)−1. (6)

Special cases of the negative binomial distribution include the Poisson distribution for α = 0 and the

geometric distribution for α = 1.
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2.2. Zero-Inflated Distribution

The zero-inflated distribution is an extension of a discrete distribution allowing the probability

of zero values to be higher than the probability given by the original distribution. In the zero-

inflated distribution, values are generated by two components – one component generates only zero

values while the other component generates integer values (including zero values) according to the

original distribution. Lambert (1992) proposed the zero-inflated Poisson model and Greene (1994)

used zero-inflated model for the negative binomial distribution.

The zero-inflated negative binomial distribution is a discrete distribution with three parameters.

We consider the location parameter µi > 0 to be time-varying, while the dispersion parameter α ≥ 0

and the probability of excessive zero values π ∈ [0, 1) are static, i.e. fi = µi and {α, π} ∈ θ. The

variable Xi follows the zero-inflated negative binomial distribution if

Xi ∼ 0 with probability π,

Xi ∼ NB(µi, α) with probability 1− π.
(7)

The first process generates only zeros and corresponds to split transactions, while the second process

generates values from the negative binomial distribution and corresponds to regular transactions.

The probability mass function is

P[Xi = 0|µi, α, π] = π + (1− π)

(
α−1

α−1 + µi

)α−1

,

P[Xi = xi|µi, α, π] = (1− π)
Γ(xi + α−1)

Γ(xi + 1)Γ(α−1)

(
α−1

α−1 + µi

)α−1 (
µi

α−1 + µi

)xi
for xi = 1, 2, . . . .

(8)

The expected value and variance is

E[Xi] = µi(1− π),

var[Xi] = µi(1− π)(1 + πµi + αµi).
(9)

The score for the parameter µi is

∇(0, µi) = (π − 1)(αµi + 1)−1
(

1 + π(αµi + 1)α
−1 − π

)−1
,

∇(xi, µi) = µ−1
i (xi − µi)(αµi + 1)−1 for xi = 1, 2, . . . .

(10)

The Fisher information for the parameter µi is

I(µi) =
π(π − 1)

(αµi + 1)2
(
π(αµi + 1)α−1 − π + 1

) +
1− π

µi(αµi + 1)
. (11)

Special cases of the zero-inflated negative binomial distribution include the the negative binomial

distribution for π = 0, zero-inflated Poisson distribution for α = 0 and the zero-inflated geometric

distribution for α = 1.
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2.3. Generalized Autoregressive Score Dynamics

Generalized autoregressive score (GAS) models (Creal et al., 2008, 2013), also known as dy-

namic conditional score models (Harvey, 2013), capture dynamics of time-varying parameters fi =

(fi,1, . . . , fi,k)
′ by the autoregressive term and the scaled score of the conditional observation density

(or the conditional observation probability mass function in the case of discrete distribution). The

time-varying parameters fi follow the recursion

fi+1 = C +Bfi +AS(fi)∇(xi, fi), (12)

where C = (c1, . . . , ck)
′ are the constant parameters, B = diag(b1, . . . , bk) are the autoregressive

parameters, A = diag(a1, . . . , ak) are the score parameters, S(fi) is the scaling function for the score

and ∇(xi, fi) is the score. As the scaling function, we consider

• unit scaling, i.e. S(fi) = I,

• square root of inverse of the Fisher information scaling, i.e. S(fi) = I(fi)
− 1

2 ,

• inverse of the Fisher information scaling, i.e. S(fi) = I(fi)
−1.

Note that each scaling function results in a different GAS model. The long-term mean and uncondi-

tional value of the time-varying parameters is f = (I−B)−1C. The parameters fi in (12) are assumed

to be unbounded. However, some distributions require bounded parameters (e.g. variance greater

than zero). The standard solution in the GAS framework is to use an unbounded parametrization

f̃i = H(fi), which follows the GAS recursion instead of the original parametrization fi, i.e.

f̃i+1 = C̃ + B̃f̃i + ÃS̃(f̃i)∇̃(xi, f̃i), (13)

where C̃ = (c̃1, . . . , c̃k)
′ are the constant parameters, B̃ = diag(b̃1, . . . , b̃k) are the autoregressive pa-

rameters, Ã = diag(ã1, . . . , ãk) are the score parameters, S̃(f̃i) is the reparametrized scaling function

for the score and ∇̃(xi, f̃i) is the reparametrized score. The reparametrized score equals to

∇̃(xi, f̃i) = Ḣ−1(fi)∇(xi, fi), (14)

while the Fisher information of the reparametrized model equals to

Ĩ(f̃i) = Ḣ ′−1(fi)I(fi)Ḣ
−1(fi), (15)

where Ḣ(fi) = ∂H(fi)/∂f
′
i is the derivation of H(fi).
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The GAS specification includes many commonly used econometric models. For example, the GAS

model with the normal distribution, the inverse of the Fisher information scaling and time-varying

variance results in the GARCH model while the GAS model with the exponential distribution, the

inverse of the Fisher information scaling and time-varying expected value results in the ACD model

(Creal et al., 2013). The GAS framework can be utilized for discrete models as well. Koopman

et al. (2015) used discrete copulas based on the Skellam distribution for high-frequency stock price

changes. Koopman and Lit (2017) used the bivariate Poisson distribution for a number of goals in

football matches and the Skellam distribution for a score difference. Gorgi (2018) used the Poisson

distribution as well as the negative binomial distribution for offensive conduct reports.

2.4. Zero-Inflated Autoregressive Conditional Duration Model

In our model, we consider observations to follow the zero-inflated negative binomial distribu-

tion with the time-varying parameter µi and static parameters α, π specified in (8). We use a

reparametrization with the exponential link for the location parameter fi = H(µi) = log(µi). Pa-

rameter log(µi) then follow recursion

fi+1 = c+ bfi + as(xi, fi), (16)

where c is the constant parameter, b is the autoregressive parameter, a is the score parameter and

s(xi, fi) = S̃(fi)∇̃(xi, fi) is the scaled score. Note that both the scaling function S̃(fi) and the score

∇̃(xi, fi) are with respect to the reparametrization H(µi), which can be obtained from (14) and (15).

The long-term mean and unconditional value of fi is then f = (1 − b)−1c and µ = e(1−b)−1c in the

original restricted parametrization.

In the rest of the paper, we focus on the unit scaling Ŝ(fi) = 1. In Section 3.4, we compare the

unit scaling with the square root of inverse of the Fisher information scaling and the inverse of the

Fisher information scaling and show that differences between estimated coefficients are negligible.

The scaled score for the zero-inflated negative binomial distribution with the unit scaling is given by

s(0, fi) =
(π − 1) exp(fi)

(α exp(fi) + 1)
(
1 + π(α exp(fi) + 1)α−1 − π

) ,
s(xi, fi) =

xi − exp(fi)

α exp(fi) + 1
for xi = 1, 2, . . . .

(17)

2.5. Estimation and Asymptotic Properties

Let us denote θ = (α, π, c, b, a)′ the static parameter vector which defines the dynamics of the

GAS model proposed in (16). The static parameter vector θ is estimated by the method of maximum
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likelihood

θ̂n ∈ arg max
θ∈Θ

L̂n(θ), (18)

where L̂n(θ) denotes the log likelihood function. The log likelihood is obtained from a sequence of n

observations x1, . . . , xn, which depends on the filtered time-varying parameter f̂1(θ), ..., f̂n(θ), and is

given by

L̂n(θ) =
1

n

n∑
i=1

ˆ̀
i(xi, θ) =

1

n

n∑
i=1

log P[Xi = xi|f̂i(θ), θ]. (19)

In our case, the log likelihood is based on the zero-inflated negative binomial distribution

log P[Xi = 0|f̂i(θ), θ] = log

π + (1− π)

(
α−1

α−1 + exp(f̂i)

)α−1
 ,

log P[Xi = xi|f̂i(θ), θ] = log(1− π) + log
Γ(xi + α−1)

Γ(xi + 1)Γ(α−1)
+

1

α
log

(
α−1

α−1 + exp(f̂i)

)

+ xi log

(
exp(f̂i)

α−1 + exp(f̂i)

)
for xi = 1, 2, . . . .

(20)

Below, we show that the maximum likelihood estimator of the ZIACD model is consistent and

asymptotically normal. The proof follows the structure laid down in Blasques et al. (2014), but

we focus in the particular case of discrete data {xi}i∈N with a probability mass function P[Xi =

xi|fi(θ), θ]. In contrast, Blasques et al. (2014) treat a general case for continuous data with a smooth

probability density function.

Filter invertibility is crucial for statistical inference in the context of observation-driven time-

varying parameter models; see e.g. Straumann and Mikosch (2006), Wintenberger (2013), and

Blasques et al. (2014). The filter {f̂i(θ)}i∈N initialized at some point f̂1 ∈ R is said to be invertible

if f̂i(θ) converges almost surely exponentially fast to a unique limit strictly stationary and ergodic

sequence {fi(θ)}i∈Z,

|f̂i(θ)− fi(θ)|
eas→ 0 as i→∞.

Let Ln(θ) denote the log likelihood which depends on the limit time-varying parameter f1(θ), ..., fn(θ)

Ln(θ) =
1

n

n∑
i=1

`i(xi, θ) =
1

n

n∑
i=1

log P[Xi = xi|fi(θ), θ],

and let L∞ denote the limit log likelihood function

L∞(θ) = E[`i(θ)] = E [log P[Xi = xi|fi(θ), θ]] .

Proposition 1 appeals to the results in Blasques et al. (2014) to establishes the invertibility of the

score filter. The proof is presented in Appendix A. In Example 1, we illustrate how the invertibility

10



can be verified in the current context. Below, we let Exi>0 denote the conditional expectation

Exi>0[·] = E[·|xi > 0].

Proposition 1 (Filter invertibility). Let the observed data {xi}i∈N be strictly stationary and ergodic

and let Θ be a compact set which ensures that

(i) log+ supθ∈Θ |s(0, f̂1(θ), θ)| <∞;

(ii) Exi>0

[
log+ supθ∈Θ |s(xi, f̂1(θ), θ)| <∞

]
;

(iii) P[xi = 0]·log supf supθ∈Θ

∣∣∣a∂s(0,f,θ)∂f +b
∣∣∣+P[xi > 0]·Exi>0

[
log supf supθ∈Θ

∣∣∣a∂s(xi,f,θ)∂f + b
∣∣∣] < 0.

Then the filter {f̂i(θ)}i∈N defined as f̂i+1 = c+ bf̂i + as(xi, f̂i) is invertible, uniformly in θ ∈ Θ.

Example 1. Consider the case of the score model for the zero-inflated negative binomial distribution

with the unit scaling. We note that the conditions of Proposition 1 are easily satisfied for strictly

stationary data {xi}t∈Z with a logarithmic moment E[log+ |xi|] < ∞, and for a compact parameter

space

Θ = [π−, π+] · [α−, α+] · [c−, c+] · [a−, a+] · [β−, β+]

satisfying restrictions
a+(π− − 1)2

2α−
+
a+|π− − 1|

(α−)2
+ b+ < 1,

Exi>0

[
log

(
a+(α+xi + 1)

4α−
+ b+

)]
< 0.

We note that condition (i) of Proposition 1 holds since

E

[
log+ sup

θ∈Θ
|s(0, f̂1, θ)|

]
= log+ sup

θ∈Θ
|s(0, f̂1, θ)|

= log+ sup
θ∈Θ

∣∣∣(π − 1) exp(f̂1)(α exp(f̂1) + 1)−1

·
(

1 + π(α exp(f̂1) + 1)α
−1 − π

)−1 ∣∣∣
≤ log+ sup

θ∈Θ
|π − 1|+ log+ sup

θ∈Θ
| exp(f̂1)|+ log+ sup

θ∈Θ
|(α exp(f̂1) + 1)−1|

+ log+ sup
θ∈Θ

∣∣∣(1 + π(α exp(f̂1) + 1)α
−1 − π

)−1∣∣∣
<∞,

which holds as the parameter vector θ lies on the compact set Θ, and f̂1 is a given point in R.
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Condition (ii) of Proposition 1 holds as

Exi>0

[
log+ sup

θ∈Θ

∣∣∣s(xi, f̂1, θ)
∣∣∣] = Ex1>0

[
log+ sup

θ∈Θ

∣∣∣x1 − exp(f̂1)(α exp(f̂1) + 1)−1
∣∣∣]

≤ Ex1>0

[
log+ sup

θ∈Θ

∣∣∣x1 − exp(f̂1)
∣∣∣]

≤ 2 log(2) + Ex1>0

[
log+ |x1|

]
+ log+ | exp(f̂1)|

<∞,

since x1 has a logarithmic moment, Θ is compact and f̂1 ∈ R. Finally, the contraction condition (iii)

in Proposition 1 is satisfied uniformly in θ ∈ Θ since

E

[
log sup

f̂

sup
θ∈Θ

∣∣∣∣∣a∂s(xi, f̂ , θ)∂f̂
+ b

∣∣∣∣∣
]
< 0

⇔ P[xi = 0] · log sup
f̂

sup
θ∈Θ

∣∣∣∣∣a∂s(0, f̂ , θ)∂f̂
+ b

∣∣∣∣∣
+ P[xi > 0] · Exi>0

[
log sup

f̂

sup
θ∈Θ

∣∣∣∣∣a∂s(xi, f̂ , θ)∂f̂
+ b

∣∣∣∣∣
]
< 0

⇔

πi + (1− πi)

(
α−1
i

α−1
i + f̂i

)α−1
i


· log sup

f̂

sup
θ∈Θ

∣∣∣∣∣− a (π − 1)2 exp(2f̂)

(α exp(f̂) + 1)2
(
π(α exp(f̂) + 1)1/α − π + 1

)2

− a (π − 1) exp(f̂)(exp(f̂)− 1)

(α exp(f̂) + 1)2
(
π(α exp(f̂) + 1)1/α − π + 1

) + b

∣∣∣∣∣
+

1− πi − (1− πi)

(
α−1
i

α−1
i + f̂i

)α−1
i

 · Exi>0

[
log sup

f̂

sup
θ∈Θ

∣∣∣∣∣−a(αxi + 1) exp(f̂)

(α exp(f̂) + 1)2
+ b

∣∣∣∣∣
]
< 0

⇐ log

[
sup
θ∈Θ

∣∣∣∣a(π − 1)2

2α

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣a(π − 1)

α2

∣∣∣∣+ sup
θ∈Θ
|b|
]

+ Exi>0

[
log

(
sup
θ∈Θ

∣∣∣∣aαxi + 1

4α

∣∣∣∣+ sup
θ∈Θ
|b|
)]

< 0.

This can be simplified by noting that

exp(2f̂)

(α exp(f̂) + 1)2
≤ 1

2α
,(

π(α exp(f̂) + 1)1/α − π + 1
)2
≥ 1,

exp(f̂)(exp(f̂)− 1)

(α exp(f̂) + 1)2
≤ 1

α2
.

12



This, in turn, implies that

E

[
log sup

f̂

sup
θ∈Θ

∣∣∣∣∣a∂s(xi, f̂ , θ)∂f̂
+ b

∣∣∣∣∣
]
< 0

⇐
{

sup
θ∈Θ

a
(π − 1)2

2α
+ sup
θ∈Θ

a
|π − 1|
α2

+ sup
θ∈Θ

b+ < 1 ∧ Exi>0

[
log

(
sup
θ∈Θ

a
αxi + 1

4α
+ b+

)]
< 0

}
⇐

{
a+(π− − 1)2

2α−
+
a+|π− − 1|

(α−)2
+ b+ < 1 ∧ Exi>0

[
log

(
a+(α+xi + 1)

4α−
+ b+

)]
< 0

}
.

Proposition 1 gives us sufficient elements to characterize the asymptotic behavior of the ML

estimator. Theorem 1 below establishes the strong consistency of the ML estimator θ̂n as the sample

size n diverges to infinity. The proof is presented in Appendix A and is based on the theory laid

down in Blasques et al. (2014). The proof relies on the shape of the log likelihood function for

the zero inflated negative binomial model. Theorem 1 uses the invertibility properties established

in Proposition 1 for our zero-inflated negative binomial score model, and obtains the consistency

of the ML estimator by imposing some additional moment conditions. The moment conditions in

Theorem 1 are written as high-level conditions that apply to most ML estimator settings. These

include a bounded moment for the log likelihood E[`i(xi, θ)] < ∞ and a logarithmic moment for

the score E[log+ supf |∇(xi, f)|] < ∞. The high-level formulation of these assumptions gives us

flexibility in applying these results to a wide range of designs of our score model. However, it can

also be unfortunately abstract. Luckily, in Example 2 below, we note that the moment assumptions

are directly implied by a single moment bound on the data E[xi] < ∞. The derivations in this

example also make clear that the same result applies to many formulations of the score model for

the zero-inflated negative binomial distribution.

Theorem 1 (Consistency of the ML estimator). Let the conditions of Proposition 1 hold, the likeli-

hood have one bounded moment and the score have a logarithmic moment,

E[`i(xi, θ)] <∞ and E[log+ sup
f
|∇(xi, f)|] <∞.

Finally, suppose θ0 be the unique maximizer of the limit log likelihood function E[`i(xi, ·)] : Θ → R

over the parameter space Θ; i.e. E[`i(xi, θ0)] > E[`i(xi, θ)] ∀ θ ∈ Θ : θ 6= θ0. Then θ̂n
as→ θ0 ∈ Θ as

n→∞.

Example 2. Consider again the score model for the zero-inflated negative binomial distribution with

the unit scaling. The bounded moment for the log likelihood stated in Theorem 1 E[`i(xi, θ)] < ∞

holds trivially if the data has a bounded moment E[xi] <∞. This follows directly from the fact that

13



log `i(xi, θ) is bounded in µi and bounded by a linear function in xi,

`i(0, θ) = log P[Xi = 0|f̂i(θ), θ]

= log

π + (1− π)

(
α−1

α−1 + exp(f̂i(θ))

)α−1
 ,

`i(xi, θ) = log P[Xi = xi|f̂i(θ), θ]

= log(1− π) + log
Γ(xi + α−1)

Γ(xi + 1)Γ(α−1)

+
1

α
log

(
α−1

α−1 + exp(f̂i(θ))

)
+ xi log

(
exp(f̂i(θ))

α−1 + exp(f̂i(θ))

)
for xi > 0.

Additionally, the logarithmic moment E[log+ supf |∇(xi, f)|] < ∞ stated in Theorem 1, was already

shown to hold under E[xi] <∞ in Example 1,

E
[
log+ |s(0, f̂i)|

]
= E

log+

∣∣∣∣∣∣ exp(f̂i)(π − 1)

(α exp(f̂i) + 1)
(

1 + π(α exp(f̂i) + 1)α−1 − π
)
∣∣∣∣∣∣
 <∞,

Exi>0

[
log+ |s(xi, f̂i)|

]
=

∣∣∣∣∣ xi − exp(f̂i)

α exp(f̂i) + 1

∣∣∣∣∣ <∞ for xi > 0.

Note that since we use unit scaling in Theorem 1, we have that ∇(xi, f) = s∇(xi, f).

Finally, Theorem 2 establishes the
√
n-consistency rate of θ̂n and the asymptotic normality of the

standardized estimator
√
n(θ̂n−θ0) as n→∞. We follow Blasques et al. (2014) closely, but formulate

somewhat higher-level assumptions that allow us to be more concise than the primitive assumptions

explored in Blasques et al. (2014). The proof is presented in Appendix A. After Theorem 2, we use

an example to illustrate how these conditions can be verified in the current context.

Theorem 2 (Asymptotic normality of the ML estimator). Let the conditions of Theorem 1 hold.

Furthermore, let the zero-inflated negative binomial score model be correctly specified and θ0 ∈ int(Θ).

Additionally, assume that

(i) the first-order derivatives of the log likelihood have four bounded moments at θ0,

E

[∥∥∥∥∂`i(xi, θ0)

∂fi

∥∥∥∥4
]
<∞ and E

[∥∥∥∥∂`i(xi, θ0)

∂θ

∥∥∥∥4
]
<∞;

(ii) the second-order derivatives of the log likelihood have one uniform bounded moment,

E

[
sup
θ∈Θ

∥∥∥∥∂2`i(xi, θ)

∂fi∂θ′

∥∥∥∥] <∞, E

[
sup
θ∈Θ

∥∥∥∥∂2`i(xi, θ)

∂f2
i

∥∥∥∥] <∞ and E

[
sup
θ∈Θ

∥∥∥∥∂2`i(xi, θ)

∂θ∂θ′

∥∥∥∥] <∞;
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(iii) the third-order derivatives of the log likelihood have a uniform logarithmic bounded moment,

E

[
log+ sup

θ∈Θ

∥∥∥∥∂3`i(xi, θ0)

∂f2
i ∂θ

′

∥∥∥∥] <∞, E

[
log+ sup

θ∈Θ

∥∥∥∥∂3`i(xi, θ0)

∂f3
i

∥∥∥∥] <∞,
and E

[
log+ sup

θ∈Θ

∥∥∥∥∂3`i(xi, θ0)

∂θ∂θ′∂f

∥∥∥∥] <∞;

(iv) the first and second derivatives of the filtering process converge almost surely, exponentially

fast, to a limit stationary and ergodic sequence,∥∥∥∥∥∂f̂i(θ0)

∂θ
− ∂fi(θ0)

∂θ

∥∥∥∥∥ eas→ 0 and sup
θ∈Θ

∥∥∥∥∥∂2f̂i(θ)

∂θ∂θ′
− ∂2fi(θ)

∂θ∂θ′

∥∥∥∥∥ eas→ 0 as i→∞,

with four bounded moments

E

[∥∥∥∥∂fi(θ0)

∂θ

∥∥∥∥4
]
<∞ and E

[
sup
θ∈Θ

∥∥∥∥∂2fi(θ)

∂θ∂θ′

∥∥∥∥4
]
<∞.

Then the estimator is asymptotically Gaussian

√
n(θ̂n − θ0)

d→ N(0, I(θ0)−1) as n→∞,

where I(θ0)−1 denotes the inverse Fisher information.

Example 3. Let us revisit once again the score model for the zero-inflated negative binomial distribu-

tion with the unit scaling. The bounded moments imposed in conditions (i), (ii) and (iii) of Theorem

2 can be verified by taking the appropriate derivatives of the log likelihood and applying standard

moment inequalities. For example, it is easy to see that the four bounded moments for score term

∂`i(xi, θ0)/∂fi can be obtained if the data has four bounded moments, E[x4
i ] <∞, by noting that

E

[
sup
θ∈Θ
‖s(0, f̂i, θ)‖4

]
≤ sup

µ
sup
θ∈Θ
‖s(0, f̂i, θ)‖4

= sup
µ

sup
θ∈Θ

∣∣∣∣(π − 1) exp(f̂i)(α exp(f̂i) + 1)−1
(

1 + π(α exp(f̂i) + 1)α
−1 − π

)−1
∣∣∣∣4

<∞,

since s(0, f̂i, θ) is uniformly bounded in f̂i. Furthermore, by application of the so-called cn-inequality,

there exists a finite constant k such that,

Exi>0

[
sup
θ∈Θ
|s(xi, f̂i, θ)|4

]
= Exi>0

[
sup
θ∈Θ

∣∣∣xi − exp(f̂i)(α exp(f̂i) + 1)−1
∣∣∣4]

≤ k sup
θ∈Θ

1

α
Exi>0[x4

i ] + k|α−1|4

<∞.
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Similarly, the invertibility conditions stated in condition (iv) of Theorem 2 can be verified by applying

Theorem 2.10 in Straumann and Mikosch (2006) to the derivative filters. This Theorem is analogue

to Theorem 3.1 of Bougerol (1993), also used in the proof of Proposition 1 above, but it applies to

perturbed stochastic sequences. For example, the updating equation for derivative process ∂fi/∂c =

∂f̂i/∂c takes the form

∂f̂i+1

∂c
= 1 + b

∂f̂i
∂c

+
∂s(xi, f̂i)

∂f̂i

∂f̂i
∂c

= 1 +

(
b+

∂s(xi, f̂i)

∂f̂i

)
∂f̂i
∂c

.

Hence, by application of Theorem 2.10 in Straumann and Mikosch (2006), the invertibility of this filter

is ensured by (a) the invertibility of the filter {f̂i}i∈N (shown in Proposition 1); (b) the contraction

condition E[log |b+∂s(xi, f̂i)/∂f̂i|] < 0; and a logarithmic moment for ∂2s(xi, f̂i)/∂f̂
2
i which is covered

the moment required in condition (ii) of Theorem 2.

3. Data Characteristics and Model Fit

In an empirical study, we analyze transaction data extracted from the NYSE TAQ database. The

NYSE TAQ database contains intraday transactions data for all securities listed on the New York

Stock Exchange (NYSE), American Stock Exchange (AMEX) and Nasdaq Stock Market (NASDAQ).

The data are taken from April to May of the 2018. We analyze 30 stocks that form Dow Jones Indus-

trial Average (DJIA) index. Their basic statistical characteristics after data cleaning are presented

in Table 2. We give a special attention to the IBM stock as many other studies including Engle and

Russell (1998). Figure 1 shows trading intensity during trading hours for several trading days of the

IBM stock. We can see that there is clear autocorrelation, although each day has a different course.

Generally, more trades occur both at the beginning and at the end of a day while the lunch-time is

a quiet period with less trades. This behavior is well captured by the ACD models.

3.1. Data Cleaning

Careful data cleaning is one of the most important aspects of high-frequency data volatility and

duration analysis (Hansen and Lunde, 2006). We clean the high-frequency data using the standard

procedure for the NYSE TAQ dataset described in Barndorff-Nielsen et al. (2009) and add one more

step. The procedure consists of the following steps.

1. Delete entries with the timestamp outside the 9:30 – 16:00 window when the exchange is open.

2. Delete entries with the transaction price equal to zero.
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April 2018 May 2018

Stock Mean Var. n n0/n Mean Var. n n0/n

AAPL 0.3325 1.2398 1 033 149 0.8553 0.4801 2.4949 816 757 0.8328

AXP 4.8469 107.9742 95 618 0.5306 6.4839 162.4193 75 848 0.4912

BA 2.6756 50.5394 170 401 0.6826 3.1278 59.5706 153 908 0.6605

CAT 3.1267 51.0194 145 195 0.6020 4.0331 72.0750 119 633 0.5611

CSCO 1.1183 16.7652 399 797 0.8270 1.2048 24.6283 394 975 0.8467

CVX 3.0356 33.2949 147 191 0.5309 3.1524 42.1781 150 090 0.5713

DIS 2.6397 24.0900 166 417 0.5275 2.3905 22.6665 191 029 0.5553

DWDP 2.9671 38.7329 151 087 0.5548 3.7913 67.6563 126 805 0.5735

GE 2.1086 29.1117 206 774 0.6332 2.5770 39.3522 179 714 0.5870

GS 2.8363 48.6788 159 905 0.6408 3.9585 80.4010 122 094 0.5854

HD 3.2071 45.2574 140 834 0.5647 3.5334 49.5467 134 424 0.5400

IBM 3.1991 47.0185 141 173 0.5665 4.5602 70.0383 105 697 0.4835

INTC 0.6562 5.6652 630 689 0.8367 1.0788 14.0168 427 737 0.8143

JNJ 2.6894 29.1461 164 944 0.5564 3.6135 47.0778 131 119 0.5035

JPM 1.0586 4.9859 368 021 0.6508 1.5880 10.0435 274 251 0.5938

KO 3.7592 73.1405 121 132 0.5439 4.8639 108.7622 99 634 0.5195

MCD 4.6241 93.0448 99 920 0.5275 5.6159 116.5453 86 826 0.4791

MMM 3.9806 76.2675 115 427 0.5751 6.0409 146.2070 81 086 0.5102

MRK 2.2550 24.0990 191 893 0.5724 2.7490 35.0742 169 067 0.5683

MSFT 0.4358 2.2432 860 371 0.8452 0.6300 4.8465 676 757 0.8313

NKE 3.3765 45.2257 133 242 0.5118 3.9377 63.5151 121 253 0.5070

PFE 2.9778 41.5950 149 534 0.5527 3.3798 65.5733 140 374 0.5881

PG 2.5414 28.9706 172 395 0.5565 3.3726 43.9835 139 142 0.5067

TRV 9.4651 389.7584 50 208 0.4810 10.6297 423.1976 46 946 0.4385

UNH 3.8590 74.8488 119 276 0.5849 5.3471 130.9015 91 672 0.5573

UTX 4.2728 78.2773 107 689 0.5386 5.8129 133.8689 8 3 967 0.4886

V 2.4218 26.5329 182 851 0.5991 3.3445 44.5483 142 026 0.5543

VZ 2.9317 42.0215 152 214 0.5574 3.7413 69.2588 127 330 0.5403

WMT 3.1127 32.1728 143 003 0.4904 2.7936 28.5493 165 904 0.5227

XOM 1.8195 1 4.6438 232 388 0.5896 1.8329 16.4846 243 875 0.6141

Table 2: The sample mean of durations, sample variance of durations, number of observations n and ratio of durations

shorter than 1 second n0/n.
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Figure 1: Daily trading intensity estimated by the Epanechnikov kernel density for the IBM stock.

3. Retain entries originating from a single exchange, delete other entries. In our case study we

have 26 constituents of the NYSE exchange and 4 constituents of the NASDAQ exchange.

4. Delete entries with corrected trades (trades with the correction indicator other than 0).

5. Delete entries with abnormal sale condition (trades in which the sale condition is a letter code

other than ’E’, ’F’ and ’I’).

6. Delete entries for which the price deviated by more than 10 mean absolute deviations from a

rolling centred median (excluding the observation under consideration) of 50 observations (25

observations before and 25 after).

7. Delete entries which are identified as preferred or warrants (trades with the non-empty SUFFIX

indicator).

Steps 1-3 correspond to the P1-P3 rules of the cleaning procedure of Barndorff-Nielsen et al. (2009).

The first step identifies the entries relevant for our analysis, which focuses on trade durations during

trading hours. The second step removes errors in the database. By far, the most important rule here

is the third one. Brownlees and Gallo (2010) stated that they prefer not to discard transaction prices

that did not occur on the single exchange. However, in some cases this is not advisable as discussed

e.g. by Dufour and Engle (2000). In our empirical work, this cleaning step is used to reduce the

impact of time-delays in the trade updates reporting. Steps 4 and 5 correspond to the T1 and T2

rules of the cleaning procedure of Barndorff-Nielsen et al. (2009). The fourth step removes trades

that were corrected, changed, or signified as cancel or error. The fifth step rules out data points
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that the NYSE TAQ database is flagging up as a problem. The sixth step corresponds to the Q4

rule of Barndorff-Nielsen et al. (2009) for quote data which is adjusted for trade data by replacing

the mid-quote with the actual price. This step is closely related to the procedure of Brownlees and

Gallo (2010) which advocates removing outliers. We do not use the T3 rule: ”If multiple transactions

have the same timestamp, use the median price.” of Barndorff-Nielsen et al. (2009) as our aim is to

avoid such significant information loss. Barndorff-Nielsen et al. (2009) argue that the T3 rule seems

inevitable (at least in a volatility analysis) despite the fact that it leads to the largest deletion of

data. We show that in a duration analysis we can retain these observations and directly utilize them

in the proposed duration model.

All cleaning steps, except step 3, have a negligible impact on the data. The percentage of discarded

data is less than 1% for each of those steps. However, the third step causes a huge reduction of the

data. Utilizing all steps of the cleaning procedure, we lose 85.6% of transactions on average among

all DJIA constituents ranging from 81.5% for MMM to 93.2% for GE. The number of observations

after data cleaning are reported in Table 2.

3.2. In-Sample Performance

We fit durations rounded down to seconds of the 30 DJIA stocks using data from April, 2018. We

compare models based on the Poisson, geometric and negative binomial distribution together with

their zero-inflated versions. We focus only on the unit scaling. In Section 3.4, we argue that there

are not significant differences between the three considered scaling functions as the results are very

similar in our application.

To evaluate in-sample fit of the models, we use the Akaike information criterion (AIC) (Akaike,

1974) defined as

AIC = 2q − 2nL̂n(θ̂), (21)

where q = 3k + l is the number of parameters. Models with lower AIC are preferred. The choice of

AIC as the in-sample evaluation criterion is explained in Appendix B.

We find that the model based on the zero-inflated negative binomial distribution is the best fit.

Estimated parameters are reported in Table 3. There is clear evidence of overdispersion, i.e. the

variance higher than expected value. Table 2 shows that sample variance is much higher than sample

mean. According to Table 3, the estimated value of dispersion parameter α in the zero-inflated

negative binomial model ranges between 1.37 and 2.78 depending on the stock. This favors the

negative binomial distribution over Poisson distribution with fixed α = 0 and geometric distribution
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Figure 2: Deviation of average in-sample conditional probability mass of duration models based on the negative binomial

and zero-inflated negative binomial distributions from data for the IBM stock.

with fixed α = 1. Overdispersion is also supported by AIC of the models reported in Table 4.

The Poisson distribution has the highest AIC for all stocks followed by the geometric distribution.

One possible reason for overdispersion could just be the presence of excessive zeros. Zero-inflated

Poisson and geometric distributions perform better than the original distributions. However, they are

inferior to the zero-inflated negative binomial distribution suggesting there is overdispersion present

in non-zero values as well.

Our analysis also reveals the presence of excessive zeros suggesting the existence of the process

generating only zero values (i.e. split transactions) alongside the process generating regular durations.

According to Table 3, the estimated probability of excessive zeros π in the zero-inflated negative

binomial model ranges between 0.21 and 0.75 depending on the stock. This corresponds to the ratio

of excessive zeros to all zeros ranging between 0.37 and 0.90. Again, the presence of excessive zeros

is supported by a decrease in AIC in the zero-inflated distributions as reported in Table 4. Table

5 and figures 2 and 3 illustrate shortcomings of the regular negative binomial distribution. In this

model, the probability of zero values is underestimated while probabilities of values equal to 1 and 2

are overestimated. The zero-inflated negative binomial distribution better captures probabilities of

zero as well as positive values.
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Stock c b a µ α π πn/n0

AAPL -0.0005 0.9992 0.1365 0.5536 2.1981 0.5423 0.6341

AXP 0.0023 0.9986 0.1043 5.2194 1.5091 0.3406 0.6421

BA 0.0015 0.9989 0.0746 4.3259 1.5896 0.5531 0.8105

CAT 0.0013 0.9989 0.0864 3.2437 1.6095 0.3946 0.6555

CSCO 0.0009 0.9992 0.0909 3.0562 1.6550 0.7468 0.9031

CVX 0.0033 0.9973 0.0683 3.4714 1.4882 0.3240 0.6106

DIS 0.0025 0.9979 0.0443 3.2370 1.4352 0.3174 0.6019

DWDP 0.0027 0.9978 0.0758 3.4297 1.5376 0.3544 0.6388

GE 0.0011 0.9986 0.1234 2.1912 2.3913 0.2963 0.4681

GS 0.0019 0.9986 0.0958 4.0308 1.6823 0.4753 0.7419

HD 0.0025 0.9981 0.0575 3.7249 1.5584 0.3783 0.6701

IBM 0.0013 0.9991 0.0781 3.8894 1.4851 0.3619 0.6389

INTC -0.0000 0.9997 0.1022 0.9973 1.8114 0.6785 0.8109

JNJ 0.0016 0.9986 0.0923 3.0145 1.5536 0.3168 0.5695

JPM 0.0003 0.9976 0.0950 1.1269 1.6171 0.2746 0.4220

KO 0.0023 0.9983 0.0938 3.8186 1.7727 0.3350 0.6161

CD 0.0029 0.9981 0.0974 4.6377 1.6524 0.3277 0.6214

MMM 0.0019 0.9988 0.0466 4.9913 1.5057 0.4231 0.7358

MRK 0.0019 0.9975 0.0629 2.1716 2.2495 0.2106 0.3680

MSFT -0.0006 0.9986 0.1834 0.6531 2.7830 0.5261 0.6225

NKE 0.0043 0.9967 0.0921 3.6153 1.5318 0.3029 0.5920

PFE 0.0014 0.9988 0.0361 3.1641 1.9766 0.3014 0.5455

PG 0.0015 0.9984 0.0420 2.5336 1.8560 0.2657 0.4776

TRV 0.0135 0.9945 0.0768 11.8486 1.5690 0.3745 0.7789

UNH 0.0021 0.9986 0.0866 4.7575 1.6127 0.4194 0.7172

UTX 0.0044 0.9972 0.0787 4.9029 1.6319 0.3650 0.6779

V 0.0013 0.9988 0.0746 2.8667 1.3962 0.4026 0.6721

VZ 0.0011 0.9987 0.0718 2.2735 1.7328 0.3017 0.5413

WMT 0.0014 0.9987 0.0673 2.9697 1.3694 0.2639 0.5383

XOM 0.0018 0.9973 0.0577 1.9454 1.8167 0.2764 0.4688

Table 3: Estimated parameters of duration model based on the zero-inflated negative binomial distribution.
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Stock P G NB ZIP ZIG ZINB

AAPL 1 752 835 1 436 127 1 274 892 1 329 073 1 324 993 1 273 668

AXP 1 116 440 453 481 405 616 692 445 427 167 402 954

BA 1 714 949 671 432 530 018 793 071 545 287 525 603

CAT 1 251 216 589 332 516 469 764 941 541 448 513 647

CSCO 2 242 102 1 108 899 741 638 970 148 753 770 735 754

CVX 1 292 853 626 788 574 269 776 359 588 582 571 962

DIS 1 276 179 681 546 631 054 807 139 643 547 628 753

DWDP 1 380 739 631 931 568 598 794 463 586 941 566 040

GE 1 585 084 729 731 640 220 892 066 674 969 639 487

GS 1 599 302 646 101 535 237 797 104 553 623 531 869

HD 1 391 154 605 618 536 811 773 215 551 925 534 074

IBM 1 409 646 587 759 527 272 762 254 551 672 524 298

INTC 2 156 336 1 275 969 988 674 1 134 875 1 025 972 984 691

JNJ 1 352 421 655 228 600 622 800 594 623 946 598 487

JPM 1 425 972 983 194 935 525 1 020 591 970 479 934 605

KO 1 240 075 547 311 483 538 776 119 503 712 481 649

MCD 1 138 054 475 858 424 350 710 930 443 140 422 252

MMM 1 241 189 528 115 455 307 721 713 469 907 451 916

MRK 1 413 460 717 368 656 316 876 315 682 954 655 864

MSFT 2 007 496 1 398 027 1 183 376 1 274 651 1 229 614 1 182 340

NKE 1 294 371 589 112 539 781 766 888 556 507 537 530

PFE 1 399 374 634 262 565 807 824 666 583 032 564 604

PG 1 378 713 673 862 619 087 834 969 643 021 618 046

TRV 1 125 310 308 609 263 795 643 669 271 665 261 338

UNH 1 271 795 538 710 460 092 736 672 476 276 456 995

UTX 1 209 229 514 266 450 870 733 816 463 881 448 394

V 1 434 679 694 257 622 431 809 263 643 856 618 864

VZ 1 211 910 617 784 561 035 805 736 587 971 559 527

WMT 1 222 539 608 654 574 724 762 183 595 135 572 621

XOM 1 400 264 802 635 743 016 905 705 766 784 742 016

Table 4: In-sample Akaike information criterion of duration models based on the Poisson (P), geometric (G), negative

binomial (NB), zero-inflated Poisson (ZIP), zero-inflated geometric (ZIG) and zero-inflated negative binomial (ZINB)

distributions.
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Duration Value

Distribution 0 1 2 3 4 5

Observed Data 0.5664 0.0865 0.0595 0.0437 0.0350 0.0279

Negative Binomial 0.5521 0.1220 0.0664 0.0442 0.0322 0.0248

Zero-Inflated Negative Binomial 0.5625 0.0954 0.0618 0.0448 0.0344 0.0274

Table 5: Average in-sample conditional probability mass for the IBM stock.
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Figure 3: Deviation of average in-sample tail conditional probability mass of duration models based on the negative

binomial and zero-inflated negative binomial distributions from data for the IBM stock.
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3.3. Out-of-Sample Performance

We forecast durations during May, 2018 for 30 DJIA stocks. We use the models estimated using

April, 2018 durations and perform one-step-ahead forecasts. Again, we compare models based on

the Poisson, geometric and negative binomial distributions together with their zero-inflated versions

and we restrict ourselves to the unit scaling.

Let n denote the number of in-sample observations and m the number of out-of-sample observa-

tions. We evaluate forecasting accuracy of the models using a score rule based on the out-of-sample

likelihood. For a single prediction at time i, we use the logarithmic score (LS) (see e.g. Amisano and

Giacomini, 2007; Bao et al., 2007; Diks et al., 2011) defined as

LSi = log P[Xi = xi|f̂i(θ̂), θ̂], i = n+ 1, . . . , n+m, (22)

where P[Xi = xi|f̂i(θ̂), θ̂] is the forecasted probability of the actual value xi at time i. Higher values of

LS indicate higher prediction accuracy. For a comparison of models A and B, we adopt the Diebold-

Mariano test (Diebold and Mariano, 1995). Let LSAi denote the logarithmic score for the model A

and LSBi for the model B at time i. Let us define difference between logarithmic scores of the two

models as

DA,B
i = LSAi − LSBi , i = n+ 1, . . . , n+m, (23)

with the mean and standard deviation

D
A,B

=
1

m

n+m∑
n+1

DA,B
i , σA,BD =

√√√√ 1

m− 1

n+m∑
n+1

(
DA,B
i −DA,B

)2
. (24)

Diebold-Mariano test statistic is then defined as

DMA,B =
√
m
D
A,B

σA,BD

. (25)

Under the null hypothesis of equal performance of both models, the statistic has asymptotically

standard normal distribution. For further details, see Appendix B.

We compare the zero-inflated negative binomial distribution with the other considered distri-

butions. Diebold-Mariano test statistics are reported in Table 6. All values are positive, which

means that the zero-inflated negative binomial distribution outperforms all the other distributions.

The values are also quite high, which means that the zero-inflated negative binomial distribution is

significantly better at any reasonable significance level. These out-of-sample results together with

in-sample results from Section 3.2 clearly show that the duration model based on the zero-inflated

negative binomial distribution is the most suitable model among the considered candidates.
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Figure 4: Deviation of average out-of-sample conditional probability mass of duration models based on the negative

binomial distribution and zero-inflated negative binomial distributions from data for the IBM stock.

However, there are some shortcomings in predictive ability of our models. Table 7 and Figure

4 illustrate forecasted probability mass of the negative binomial and zero-inflated negative binomial

distributions. We can see that the zero-inflated negative binomial distribution is a very good fit for

positive values but overestimates zero value for the IBM stock. This could be explained by a decrease

in probability of excessive zeros in May, 2018. Indeed, we can see in Table 2 that the ratio of all

zero values decreased from 57% to 48% from April to May for the IBM stock. We leave the analysis

of long-term dynamics of excessive zero probability as a topic for future research. In the context

of financial duration modeling, nonstationary ACD models were studied by Bortoluzzo et al. (2010)

and Mishra and Ramanathan (2017).

3.4. Scaling Function

Sections 3.2 and 3.3 use only the unit scaling. In this section, we compare the unit scaling with

the square root of inverse of the Fisher information scaling and the inverse of the Fisher information

scaling. The results of both in-sample and out-of-sample analysis are reported in Table 8. It is evident

that there is no universally best scaling. Each of the three considered scalings leads to the lowest AIC

for some stocks and the highest AIC for other stocks. Out-of-sample analysis is also inconclusive.

For some stocks (e.g. AXP and KO), Diebold-Mariano test shows no significant differences between

the models. For some stocks (e.g. BA, CVX), a single model is significantly preferred. However, this

may be inconsistent with the in-sample preference as in the case of CVX suggesting the choice of
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Stock ZINB/P ZINB/G ZINB/NB ZINB/ZIP ZINB/ZIG

AAPL 182.6095 182.7811 22.9323 78.5214 110.7903

AXP 116.7725 97.0725 19.2860 78.2483 31.5584

BA 122.6371 164.7156 29.1190 80.7895 31.5362

CAT 137.0735 127.0594 27.7917 83.5686 47.1496

CSCO 121.9222 230.0715 36.7724 71.1828 47.6283

CVX 138.1669 123.9111 16.7692 84.9286 24.4014

DIS 147.2722 103.5195 14.4460 75.0423 40.0487

DWDP 111.6772 139.3729 28.7878 78.4778 37.4006

GE 102.2640 101.3909 9.2927 74.7982 73.1739

GS 104.2343 128.0335 26.5007 79.8998 50.4813

HD 125.3915 85.2530 14.8932 77.9376 23.4781

IBM 111.4394 91.4346 23.4384 88.2387 49.8152

INTC 126.7347 233.6059 46.4575 76.5541 54.6382

JNJ 115.4911 91.8415 17.0701 85.7032 46.5001

JPM 133.5494 107.1435 21.8151 84.5418 80.2947

KO 116.0503 110.0412 19.3464 75.4929 49.2069

MCD 119.3942 93.0403 21.0761 79.8904 41.5543

MMM 115.9969 80.4366 12.1684 78.3872 26.0296

MRK 113.5194 100.2440 15.2540 68.4814 28.4557

MSFT 143.1199 211.3403 21.9804 78.4489 73.6277

NKE 109.3419 111.8271 24.1253 79.8502 51.2108

PFE 107.0852 115.4612 12.7901 75.2372 44.2632

PG 105.6457 72.6883 16.7427 69.5813 34.0538

TRV 90.0728 62.7401 19.8402 64.8239 30.7718

UNH 118.2081 117.8648 26.2378 74.8625 39.2313

UTX 108.5396 79.4963 11.1877 73.6593 29.6606

V 122.8782 119.7647 23.7352 88.0254 55.6638

VZ 115.9128 110.8392 15.2525 72.5115 43.6104

WMT 147.7816 105.3120 17.0288 85.8218 75.0586

XOM 137.5378 105.4905 9.3978 72.0103 37.6252

Table 6: Out-of-sample Diebold-Mariano test statistic comparing duration model based on the zero-inflated negative

binomial distribution (ZINB) with duration models based on the Poisson (P), geometric (G), negative binomial (NB),

zero-inflated Poisson (ZIP) and zero-inflated geometric (ZIG) distributions.
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Duration Value

Distribution 0 1 2 3 4 5

Observed Data 0.4833 0.0824 0.0595 0.0456 0.0392 0.0330

Negative Binomial 0.4904 0.1181 0.0681 0.0473 0.0357 0.0283

Zero-Inflated Negative Binomial 0.5141 0.0836 0.0593 0.0459 0.0370 0.0306

Generalized Gamma with Discarding 0.4349 0.1139 0.0748 0.0555 0.0436 0.0354

Generalized Gamma with Truncating 0.5462 0.0908 0.0575 0.0421 0.0329 0.0267

Table 7: Average out-of-sample conditional probability mass for the IBM stock.

scaling may change in time. Overall, differences between estimated coefficients are quite negligible.

For these reasons, we use only the unit scaling throughout the paper.

4. Continuous vs. Discrete Approach

We assess both motivations for the discrete approach by comparing discrete distributions with

the exponential, Weibull, gamma and generalized gamma distributions within the GAS framework.

We describe the generalized gamma distribution and its special cases in Appendix C. The ex-

ponential distribution and the Weibull distribution were proposed to model financial durations by

Engle and Russell (1998), while the generalized gamma distribution was proposed by Lunde (1999).

Both Bauwens et al. (2004) and Fernandes and Grammig (2005) found that the generalized gamma

distribution is more adequate than the exponential, Weibull and Burr distributions. The study Xu

(2013) shows that the log-normal distribution does not outperform the generalized gamma distri-

bution either. For these reasons, the generalized gamma distribution is our main candidate for the

competing continuous distribution. In our comparison, we do not consider the generalized F dis-

tribution as it has 4 parameters and in most cases of financial durations reduces to the generalized

gamma distribution as discussed by Hautsch (2003) and Hautsch (2011). We also do not consider

Birnbaum-Saunders distribution as it models median instead of mean and therefore does not strictly

belong to the traditional ACD class.

First, in a simulation study, we study discretness of data and show how various degrees of rounding

affect discrete and continuous models. Second, in an empirical study, we study zero durations and

show how various treatments of zero values induce loss of information. We find that the proposed

discrete approach is superior from both perspectives.
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In-Sample AIC Out-of-Sample DM

Stock I I− 1
2 I−1 I/I− 1

2 I/I−1

AAPL 1 273 668 1 274 470 1 273 668 15.3206 1.3221

AXP 402 954 402 740 402 866 0.6763 -1.3888

BA 525 603 525 655 525 603 5.6978 3.6410

CAT 513 647 513 687 513 647 -2.5933 4.0843

CSCO 735 754 735 724 735 754 -1.1811 -13.9296

CVX 571 962 572 371 571 958 12.5461 2.1536

DIS 628 753 629 133 628 762 4.3508 0.4103

DWDP 566 040 566 272 566 033 2.2668 -3.5294

GE 639 487 639 493 639 487 -3.8839 6.6827

GS 531 869 531 811 531 869 -2.8932 -2.2265

HD 534 074 534 448 534 080 8.8983 0.1088

IBM 524 298 524 168 524 248 -6.7754 -15.5891

INTC 984 691 984 638 984 691 -12.4427 -3.5159

JNJ 598 487 598 264 598 427 2.0586 -6.7557

JPM 934 605 934 760 934 623 -3.3771 -8.4668

KO 481 649 481 611 481 649 0.9593 -0.1152

MCD 422 252 422 307 422 219 -5.2202 -10.3754

MMM 451 916 452 175 451 915 7.2350 5.3239

MRK 655 864 656 471 655 866 4.9090 -0.9545

MSFT 1 182 340 1 182 245 1 182 306 -8.7383 -5.2511

NKE 537 530 537 322 537 401 -0.3547 -2.9612

PFE 564 604 564 857 564 604 9.4416 -1.9040

PG 618 046 619 369 618 049 15.0810 -1.8765

TRV 261 338 261 409 261 342 3.6553 2.1572

UNH 456 995 456 830 456 995 -1.5005 2.8147

UTX 448 394 448 594 448 399 7.0043 5.7113

V 618 864 618 927 618 854 -6.0081 -6.4800

VZ 559 527 559 931 559 546 4.3381 -2.3639

WMT 572 621 572 373 572 418 -7.1384 -8.6033

XOM 742 016 742 818 742 028 12.1894 -2.5186

Table 8: In-sample Akaike information criterion and out-of-sample Diebold-Mariano test statistic for duration models

based on the zero-inflated negative binomial distribution with the unit scaling I, the square root of inverse of the Fisher

information scaling I− 1
2 and the inverse of the Fisher information scaling I−1.
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Estimate G(0) G(1) G(2) E(0) E(1) E(2) E(∞)

c 0.005 0.005 0.005 0.055 0.007 0.005 0.005

b 0.039 0.037 0.037 0.039 0.037 0.037 0.037

a 0.029 0.027 0.027 0.031 0.027 0.026 0.026

β 0.051 0.051 0.051 0.424 0.067 0.051 0.051

Table 9: Mean absolute errors of the parameters estimated from a simulated GAS model based on the geometric (G)

and exponential (E) distributions with data rounded down to a given precision as denoted in parentheses.

4.1. Simulation Study

In a simulation study, we explore the influence of rounding on estimation of a GAS model based

on discrete and continuous distributions. For this purpose we restrict ourselves to a comparison of the

exponential distribution (a special case of the generalized gamma distribution) with the geometric

distribution (a special case of the negative binomial distribution) as the geometric distribution is the

discrete analogue of the exponential distribution. Specifically, if a random variable Xi follows the

exponential distribution with the scaling parameter βi, the variable rounded down to the nearest

integer bXic follows the geometric distribution with the parameter µi. The parameters βi and µi are

then related by

µi =
(
eβ

−1
i − 1

)−1
, βi =

(
log(µ−1

i + 1)
)−1

. (26)

We use the geometric distribution reparametrized according to (26) so both GAS specifications model

the same parameter.

We simulate 1000 observations following the GAS specification based on the exponential distri-

bution with true parameters c = 0, b = 0.9, a = 0.1 and the unconditional scale equal to 1. Then,

we round down the observations to a given number of decimal places. Finally, we estimate the GAS

model using rounded observations. The simulation is performed 1000 times.

In Figure 5 and Table 9, we see the results of the simulation experiment. Both exponential dis-

tribution and geometric distribution identify the autoregressive parameter b and the score parameter

a under any degree of rounding. The model with geometric distribution also estimates the constant

parameter c and the unconditional scale with a minimal error under any degree of rounding. The

model with the exponential distribution, however, gives a biased estimate of the constant parameter

c and therefore the biased unconditional scale when the rounding is significant. The results show that

it is more appropriate to use correctly specified discrete distribution when the continuous process has

rounded values.
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Figure 5: Mean absolute error of the unconditional scale estimated from a simulated GAS model based on the geometric

and exponential distributions with data rounded down to a given precision.

4.2. Out-of-Sample Comparison

We resume the empirical analysis with the continuous approach. For this purpose, we use the

original unrounded durations. As they have a precision of 6 decimal places or more for some stocks, it

is quite safe and suitable to model them using continuous distributions. However, a numerical problem

with close-to-zero values arises. There are two ways how to deal with close-to-zero durations. The

first option is to discard close-to-zero values. This is a very common approach dating back to Engle

and Russell (1998). The second option is to truncate close-to-zero values. This is a less used approach

proposed by Bauwens (2006). We compare proposed discrete approach with the continuous approach

that discards and truncates close-to-zero values. In all cases, the original data are modified. All three

approaches alter values of observations while discarding close-to-zero values also reduces the number

of observations. For this reason, we focus on the out-of-sample forecasts, in which we do not discard

observations.

In the estimation process, we face some numerical issues. We consider close-to-zero values lower

than 0.001. This is an empirically selected threshold that leads to convergence for the most stocks.

When the close-to-zero values are present, the likelihood function increases far above a reasonable

limit for the Weibull, gamma and generalized gamma distributions. This is more significant for

frequently traded stocks such as AAPL, CSCO, INTC and MSFT. Note that these are the four

stocks in the DJIA index traded on NASDAQ while the rest is traded on NYSE. The estimation of

the exponential distribution is unaffected by close-to-zero values as it contains zero in its support.

As the estimation procedure, we use a combination of the Nelder-Mead (NM) algorithm and the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm implemented in the open-source NLopt library
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(Johnson, 2018). In the case of the 4 most traded stocks and truncating close-to-zero values, neither

algorithm does converge. This is because of a huge number of close-to-zero values. Specifically 54%

for AAPL, 70% for CSCO, 65% for INTC and 59% for MSFT. JPM is also frequently traded stock

but has only 22% of close-to-zero values and its convergence is therefore unaffected.

For evaluation, we use the logarithmic score with Diebold-Mariano test statistic as in Section 3.3.

To be able to compare the discrete ZINB model with continuous models, we evaluate all models on

the same discrete grid. For continuous distributions, we modify the logarithmic score (22) to

LSi = log P[xi < Xi ≤ xi|f̂i, θ̂], i = n+ 1, . . . , n+m, (27)

where xi is the value of the actual observation rounded down to the nearest integer while xi is its

value rounded up to the nearest integer.

Table 10 reports the Diebold-Mariano test statistic which compares the ZIACD model with models

based on continuous distributions. For most stocks, the values are positive and quite high indicating

the ZIACD model produces more precise forecasts. For the GE stock, the test statistic indicates

similar performance of the ZIACD model with models discarding close-to-zero values based on the

gamma and generalized gamma distributions. For the DWDP, MRK and PFE stocks, the test

statistic indicates similar performance of the ZIACD model with models truncating close-to-zero

values based on the gamma and generalized gamma distributions. Overall, the results imply that

the loss of decimal places in the discrete approach is of less importance than the loss of close-to-zero

values in the continuous approach. With regard to continuous distributions, the results do not clearly

show which zero treatment is the best in terms of predictive accuracy. When truncating close-to-zero

values in frequently traded stocks, however, the estimation does not converge as previously discussed.

Table 7 and Figure 6 show us the shortcomings of both zero treatments. Discarding close-to-zero

values leads to underestimation of zero values while truncating them results in overestimation. In

both cases, the distributions are significantly distorted.

5. Conclusion

We analyze trade durations with split transactions manifesting themselves as zero duration val-

ues. We approach this problem within a discrete framework. To capture excessive zero values and

autocorrelation structure in durations, we propose a model based on the zero-inflated negative bi-

nomial distribution with GAS specification for the time-varying location parameter. We label this

model the zero-inflated autoregressive conditional duration model or ZIACD model for short. The

paper has three main contributions.
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Discard Truncate

Stock ZINB/E ZINB/W ZINB/G ZINB/GG ZINB/E ZINB/W ZINB/G ZINB/GG

AAPL 106.9908 67.8638 52.8650 60.0127 - - - -

AXP 73.2643 17.9373 15.4072 16.6935 73.1534 27.3467 9.4732 8.1273

BA 140.3922 39.4326 50.5946 50.5621 133.6607 114.4500 59.6291 38.0899

CAT 114.6549 32.9050 24.4430 23.5386 109.7037 56.2401 14.2042 8.8725

CSCO 129.4904 81.3149 107.4502 118.5973 - - - -

CVX 109.4995 14.2293 22.3204 35.2534 108.1999 21.3970 7.1023 19.5490

DIS 96.5620 12.1016 11.9358 17.1803 94.7389 42.1165 17.4469 15.8197

DWDP 111.6567 29.2596 38.8707 41.7382 112.3021 27.3929 1.6377 1.7461

GE 66.1663 10.9305 -1.3031 -1.4056 68.3601 50.8589 16.9671 54.1558

GS 102.1125 31.3903 22.3592 22.1285 100.4230 59.2803 11.0896 83.9239

HD 93.6815 15.4376 17.9416 17.7019 92.7702 31.8002 31.1084 30.3689

IBM 64.6579 26.8612 5.5353 5.7665 65.1237 71.4568 29.2430 20.5622

INTC 117.5481 74.0000 90.9294 105.2006 - - - -

JNJ 66.9729 18.5150 15.9069 13.7316 66.4611 65.0253 24.9040 23.5725

JPM 79.1881 22.9344 1.4320 12.6533 80.5696 84.5780 37.5159 30.4522

KO 101.5418 21.3555 22.6800 20.5254 102.3197 44.7889 10.8268 8.4080

MCD 75.8810 22.3171 7.9754 7.8753 71.3971 48.3043 18.5807 10.0202

MMM 79.3406 17.1030 13.7454 13.1427 81.3998 28.1204 13.8402 12.8514

MRK 103.9809 10.3362 21.5666 15.5205 103.4981 21.2388 -1.4653 -1.3740

MSFT 112.6267 69.5370 78.2352 86.7501 - - - -

NKE 80.1893 24.5685 19.0817 23.7879 88.6302 52.3342 12.6283 16.2392

PFE 117.6369 5.2013 22.2919 18.7775 114.1245 14.8362 -1.1426 0.4174

PG 90.6864 10.4339 8.5639 8.2226 89.8912 31.9824 18.6263 18.9892

TRV 60.9655 17.5976 9.2966 9.5009 60.9610 33.5640 18.0302 12.4438

UNH 92.3429 28.6549 20.5646 23.0692 86.6440 40.1384 13.9099 8.8888

UTX 70.2034 11.6773 7.9131 9.1428 68.0445 34.1515 17.9190 18.3269

V 86.0509 29.1858 14.2810 21.9443 82.1849 65.5784 22.2183 18.2378

VZ 102.1814 10.9463 18.2628 17.8147 100.3199 27.4085 4.9086 5.0960

WMT 71.2637 16.7298 4.0405 12.2646 75.9355 61.6785 19.6004 12.4074

XOM 117.5449 6.0814 15.2313 11.3587 111.3729 28.1351 8.6675 9.2472

Table 10: Out-of-sample Diebold-Mariano test statistic comparing duration model based on the zero-inflated negative

binomial distribution (ZINB) with duration models based on the exponential (E), Weibull (W), gamma (G) and

generalized gamma (GG) distributions with close-to-zero values either discarded or truncated.
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Figure 6: Deviation of average out-of-sample conditional probability mass of duration model based on the generalized

gamma distribution from data with close-to-zero values either discarded or truncated for the IBM stock.

1. We extend the theory of GAS models for the zero-inflated negative binomial distribution.

Specifically, we establish the invertibility of the score filter. We also derive sufficient condi-

tions for the consistency and asymptotic normality of the maximum likelihood of the model

parameters.

2. We argue that zero or close-to-zero durations should not be removed from the data as they

contain important information and their removal distorts the estimated distribution. This

is because only part of them is actually caused by split transactions while the rest is due to

execution of independent transactions at similar times. In an empirical analysis of DJIA stocks,

we find that on average 63% of zero durations are caused by split transactions.

3. We compare the proposed discrete approach with the commonly used continuous approach.

In a simulation study, we find that when duration values are recorded with low precision, the

continuous approach results in a significant bias of estimates and the discrete approach should

be used. In an empirical study, we find that even when the duration values are virtually contin-

uous, the proposed discrete model estimated from rounded durations outperforms traditional

continuous models based on unrounded data due to its correct treatment of zero values.

Our proposed model can be utilized in a joint modeling of prices and durations. It also allows to

study the trading process from the market microstructure perspective.
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Appendix A. Proofs of Asymptotical Properties

Proof of Proposition 1: Following Straumann and Mikosch (2006) and Blasques et al. (2014), we

obtain invertibility by verifying that the conditions of Theorem 3.1 of Bougerol (1993) hold uniformly

on a non-empty set Θ, for any initialization f̂1(θ). In particular, we note that a log+ bounded moment

holds at i = 1 since

E

[
log+ sup

θ∈Θ

∣∣∣c+ bf̂1(θ) + as(x1, f̂1(θ))
∣∣∣] ≤ 4 log 2 + E

[
log+ sup

θ∈Θ
|c|
]

+ E

[
log+ sup

θ∈Θ

∣∣∣bf̂1(θ)
∣∣∣]

+ E

[
log+ sup

θ∈Θ

∣∣∣as(x1, f̂1(θ))
∣∣∣]

≤ 4 log 2 + E

[
log+ sup

θ∈Θ
|c|
]

+ E

[
log+ sup

θ∈Θ
|b|
]

+ E

[
log+ sup

θ∈Θ

∣∣∣f̂1(θ)
∣∣∣]+ E

[
log+ sup

θ∈Θ
|a|
]

+ E

[
log+ sup

θ∈Θ

∣∣∣s(x1, f̂1(θ))
∣∣∣]

<∞,

where the three inequalities follow by norm sub-additivity, as well as the log+ sub-additive and

sub-multiplicative inequalities in Lemma 2.2 of Straumann and Mikosch (2006), and the last bound

follows since c, b, a are strictly positive and lie on the compact Θ and f̂1(θ) is a given real number.
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We also have that E
[
log+ supθ∈Θ |s(x1, f̂1(θ))|

]
<∞ as

E

[
log+ sup

θ∈Θ

∣∣∣s(xi, f̂1(θ), θ)
∣∣∣] = P[xi = 0] · log+ sup

θ∈Θ

∣∣∣s(0, f̂1(θ), θ)
∣∣∣

+ P[xi > 0] · Exi>0

[
log+ sup

θ∈Θ

∣∣∣s(xi, f̂1(θ), θ)
∣∣∣]

≤ log+ sup
θ∈Θ

∣∣∣s(0, f̂1(θ), θ)
∣∣∣+ Exi>0

[
log+ sup

θ∈Θ

∣∣∣s(xi, f̂1(θ), θ)
∣∣∣]

<∞.

Finally, the contraction condition of Bougerol (1993) is satisfied uniformly in θ ∈ Θ since

E

[
log sup

f
sup
θ∈Θ

∣∣∣∣a∂s(xi, f, θ)∂f
+ b

∣∣∣∣
]
< 0

⇔ P[xi = 0] · log sup
f

sup
θ∈Θ

∣∣∣∣a∂s(0, f, θ)∂f
+ b

∣∣∣∣
+ P[xi > 0] · Exi>0

[
log sup

f
sup
θ∈Θ

∣∣∣∣a∂s(xi, f, θ)∂f
+ b

∣∣∣∣
]
< 0.

Proof of Theorem 1: This proof follows that of Blasques et al. (2014, Theorem 4.6). The existence

and measurability of θ̂n is obtained through an application of White (1994, Theorem 2.11) or Gallant

and White (1988, Lemma 2.1, Theorem 2.2), as Θ is compact and the log likelihood is continuous

in θ and measurable in xi. The consistency of the ML estimator, θ̂n(f̂1)
as→ θ0, is obtained by White

(1994, Theorem 3.4) or Gallant and White (1988, Theorem 3.3). Below, we note that we satisfy the

sufficient conditions of uniform convergence of the log likelihood function

sup
θ∈Θ
|L̂n(θ)− L∞(θ)| as→ 0 ∀ f̂1 ∈ F as n→∞,

and the identifiable uniqueness of the maximizer θ0 ∈ Θ introduced in White (1994),

sup
θ:‖θ−θ0‖>ε

L∞(θ) < L∞(θ0) ∀ ε > 0.

The uniform convergence of the criterion is obtained since, by norm sub-additivity, we can split the

log likelihood as follows

sup
θ∈Θ
|L̂n(θ)− L∞(θ)| ≤ sup

θ∈Θ
|L̂n(θ)− Ln(θ)|+ sup

θ∈Θ
|Ln(θ)− L∞(θ)|. (A.1)

The first term on the right-hand-side of (A.1) vanishes if |l̂i(θ)− li(θ)|
as→ 0 since

|L̂n(θ)− Ln(θ)| ≤ 1

n

n∑
|l̂i(θ)− li(θ)|

as→ 0,
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and we have that

sup
θ∈Θ
|l̂i(θ)− li(θ)| ≤ sup

θ∈Θ
sup
f
|∇(xi, f, θ)| · sup

θ∈Θ
|f̂i(θ)− fi(θ)|

as→ 0 ∀ f̂1 ∈ F as n→∞,

where supθ∈Θ |f̂i(θ)−fi(θ)|
as→ 0 follows from the invertibility of the filter (proved in Proposition 1) and

the product vanishes by the bounded logarithmic moment of the score E[log+ supf |∇(xi, f)|] < ∞

(see Lemma 2.1 in Straumann and Mikosch 2006). The uniform convergence of the second term on

the right-hand-side of (A.1)

sup
θ∈Θ
|Ln(θ)− L∞(θ)| as→ 0 ∀ f̂1 ∈ F as n→∞,

follows by application of the ergodic theorem for separable Banach spaces in Rao (1962). We note

that the {Ln(·)}t∈N has strictly stationary and ergodic elements as it depends on the limit strictly

stationary and ergodic filter taking values in the Banach space of continuous functions C(Θ,R)

equipped with sup norm. We also note that Ln(·) has one bounded moment since E[Ln(θ)] ≤
1
n

∑n E[li(θ)] <∞. The identifiable uniqueness (see e.g. White, 1994) follows from the compactness

of Θ, the assumed uniqueness of θ0, and the continuity of the limit likelihood function E[`i(θ)] in

θ ∈ Θ.

Proof of Theorem 2: This proof follows Blasques et al. (2014, Theorem 4.14). In particular, we

obtain the asymptotic normality using the usual expansion argument found e.g. in White (1994,

Theorem 6.2) by establishing:

(i) The consistency of θ̂n
as→ θ0 ∈ int(Θ), which follows immediately by Theorem 1.

(ii) The as twice continuous differentiability of Ln(θ, f̂1) in θ ∈ Θ, which holds trivially for our

zero-inflated score model.

(iii) The asymptotic normality of the score, which can be shown to hold by verifying that,

√
n
∂Ln(θ0)

∂θ

d→ N(0, I(θ0)
)

as n→∞, (A.2)

and
√
n
∣∣∣∂L̂(θ0)

∂θ
− ∂L(θ0)

∂θ

∣∣∣ as→ 0 as n→∞. (A.3)

The asymptotic normality in (A.2) is obtained by application of a central limit theorem for

martingale difference sequences to the score, after noting that the score has two bounded
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moments. We have

∂Ln(θ0)

∂θ
=

1

n

n∑(
∂`i(xi, θ0)

∂θ
+
∂`i(xi, θ0)

∂fi

∂fi(θ0)

∂θ

)
.

Hence,

E

[∥∥∥∥∂Ln(θ0)

∂θ

∥∥∥∥2
]
≤ E

[∥∥∥∥∂`i(xi, θ0)

∂θ

∥∥∥∥2
]

+ E

[∥∥∥∥∂`i(xi, θ0)

∂fi

∂fi(θ0)

∂θ

∥∥∥∥2
]
<∞,

where

E

[∥∥∥∥∂`i(xi, θ0)

∂θ

∥∥∥∥2
]
<∞,

which holds by condition (i) of Theorem 2 and

E

[∥∥∥∥∂`i(xi, θ0)

∂fi

∂fi(θ0)

∂θ

∥∥∥∥2
]
<∞,

which is implied by

E

[∥∥∥∥∂`i(xi, θ0)

∂fi

∥∥∥∥4
]
<∞ and E

[∥∥∥∥∂fi(θ0)

∂θ

∥∥∥∥4
]
<∞,

which holds by condition by condition (i) of Theorem 2. Additionally, following the argument

of Blasques et al. (2014, Theorem 4.14) and Straumann and Mikosch (2006, Lemma 2.1), the

as convergence in (A.3) follows by the invertibility of the filter and its derivatives (condition

(iv) of Theorem 2), as well as the bounded moments in condition (ii) of Theorem 2.

(iv) The uniform convergence of the Hessian, is obtained through the invertibility of the filter and its

derivative processes (condition (iv) of Theorem 2), the logarithmic moments for cross derivatives

(condition (iii) of Theorem 2), and by application of the ergodic theorem for separable Banach

spaces in Rao (1962) to the limit Hessian (see also Blasques et al. 2014 and Straumann and

Mikosch 2006, Theorem 2.7 for additional details). We have

sup
θ∈Θ

∥∥∥∥∂2Ln(θ)

∂θ∂θ′
− E

[
∂2`i(θ)

∂θ∂θ′

]∥∥∥∥ as→ 0 as n→∞. (A.4)

(v) The non-singularity of the limit L′′∞(θ) = E[`′′i (θ)] = I(θ) follows by the uniqueness of θ0 and

the independence of derivative processes (Straumann and Mikosch 2006, Theorem 2.7).
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Appendix B. Model Evaluation

It is well know that ranking models based on their expected log likelihood E`i(θ0) evaluated

at the best (pseudo-true) parameter θ0 is equivalent to model selection based on minimizing the

expected Kullback-Leibler divergence between the true distribution of the data and the model-implied

distribution. The sample log likelihood is however an asymptotically biased estimator of the expected

log likelihood. Under restrictive conditions, Akaike (1973, 1974) showed that the bias is approximately

given by the number of parameters of the model dim(θ). Since then, the AIC has been shown to

consistently rank models according to the KL divergence under considerably weaker conditions (Sin

and White 1996; Konishi and Kitagawa 2008). Unfortunately, model specification and identification

issues still exert a strong influence over the performance of in-sample information criteria. For

this reason, it could be interesting to consider criteria based on a validation sample. Lemma 1

highlights that log likelihood based on an independent validation sample of m observations, nL̂m(θ̂n),

is asymptotically unbiased for nE`i(θ0).3 A proof can be found in Andrée et al. (2017).

Lemma 1. Let The conditions of Theorem 1 hold. Then limn,m→∞ E
[
nL̂m(θ̂n)− nE[`i(θ0)]

]
= 0.

Lemma 2 uses a Diebold-Mariano test statistic (Diebold and Mariano, 1995) to test for differences

in log likelihoods across different models obtained from the validation sample (see Andrée et al., 2017,

for a proof). This test is also known as a logarithmic scoring rule, see e.g. Diks et al. (2011); Amisano

and Giacomini (2007); Bao et al. (2007). Given two models, A and B, let ˜̀A
m(θA

0 ) and ˜̀B
m(θB

0 ) denote

their respective log likelihood contributions at a certain time m (the validation sample) evaluated at

each model’s pseudo-true parameter. Define the log likelihood difference

DA,B
m := ˜̀A

m(θA0 )− ˜̀B
m(θB0 )

Finally, define the Diebold-Mariano test statistic

DMm,n :=
√
m

1

m

n+m∑
n+1

DA,B
i

σA,BD

Lemma 2. (Validation-sample test) Let Theorem 1 hold for both models A and B, such that θ̂An
as→ θA0

and θ̂Bn
as→ θB0 as n→∞. Then we have that

DMm,n
d→ N (0, 1) as n,m→∞,

3For time-series data with fading memory, a burn-in period between the estimation and the validation samples can

be the approximate independence between the two samples. Proofs then rely on expanding estimation, burn-in and

validation samples.
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under the null hypothesis H0 : E[DA,B
m ] = 0, where σA,BD is a consistent estimator of the standard

deviation of DA,B
m . If E[DA,B

m ] > 0 then DMm,n → ∞ as n,m → ∞. Finally, if E[DA,B
m ] < 0, then

DMm,n → −∞.

Appendix C. Generalized Gamma Distribution

The generalized gamma distribution is a continuous probability distribution and a three-parameter

generalization of the two-parameter gamma distribution (Stacy, 1962). It also contains the expo-

nential distribution and the Weibull distribution as special cases. We consider the scale parameter

βi > 0 to be time-varying, while the shape parameters ψ > 0 and ϕ > 0 are static, i.e. fi = βi and

g = (ψ,ϕ)′. The probability density function is

p(xi|βi, ψ, ϕ) =
1

Γ (ψ)

ϕ

βi

(
xi
βi

)ψϕ−1

e
−
(
xi
βi

)ϕ
for xi ∈ (0,∞). (C.1)

The expected value and variance is

E[Xi] = βi
Γ
(
ψ + ϕ−1

)
Γ (ψ)

,

var[Xi] = β2
i

Γ
(
ψ + 2ϕ−1

)
Γ (ψ)

−

(
βi

Γ
(
ψ + ϕ−1

)
Γ (ψ)

)2

.

(C.2)

The score for the parameter βi is

∇(xi, βi) = ϕβ−1
i

(
xϕi β

−ϕ
i − ψ

)
for xi ∈ (0,∞). (C.3)

The Fisher information for the parameter βi is

I(βi) = β−2
i ψϕ2. (C.4)

Special cases of the generalized gamma distribution include the gamma distribution for ϕ = 1, the

Weibull distribution for ψ = 1 and the exponential distribution for ψ = 1 and ϕ = 1.
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