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Abstract

This paper studies the role of a lender of last resort (LLR) in a monetary

model where a shortage of bank’s monetary reserves (or a banking panic) occurs

endogenously. We show that while a discount window policy introduced by the LLR

is welfare improving, it reduces the banks’ ex ante incentive to hold reserves, which

increases the probability of a panic, and causes moral hazard in asset investments.

We also examine the combined effect of other related policies such as a penalty in

lending rate, liquidity requirements and constructive ambiguity.
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1 Introduction

The 2007-09 financial crisis has renewed interest in the role of the lender of last resort (LLR).

After interbank markets stopped functioning properly, central banks in several developed coun-

tries conducted large-scale interventions beyond the traditional scope of open market opera-

tions. For example, the Federal Reserve began purchasing mortgage-backed securities and

transferred emergency liquidity to troubled financial institutions. However, as Fischer (1999,

p.86) stated, “While there is considerable agreement on the need for a domestic lender of last

resort, some disagreements persist about what the lender of last resort should do.”

In this paper, we study the economic role and consequence of the LLR. We develop a

monetary model in which individual agents face idiosyncratic uncertainty about the payment

method, that is, whether credit can be used in the decentralized market, and therefore banks

are beneficial as liquidity insurance providers. Given aggregate uncertainty of money demand,

banks are sometimes short of cash reserves and fail to satisfy their depositors’ needs. In such a

situation, which shall be referred to as a banking panic, there is room for emergency liquidity

assistance by the LLR.

In our model, banks allocate their deposits between cash and long-term assets. In the

benchmark without the LLR, banks invest all their deposits in cash reserves because non-

monetary assets have no use in the decentralized trade. In the presence of LLR, we consider

discount window borrowing which is available only to those banks that hold a pledgeable long-

term asset. This implies that with the LLR, long-term assets have a liquidity value during

panics, and therefore banks invest a positive fraction of the deposits in it. This leads to a lower

level of cash reserves and, thus, to a higher ex ante probability of banking panics relative to

the benchmark without the LLR. Nevertheless, the introduction of the LLR improves welfare

because cash and assets are substitutes during panics, and it mitigates losses associated with

banking panics.

To examine asset choice, we consider two types of long-term assets: safe and risky assets.

The safe asset is risk free. The risky asset yields a higher return if the gamble succeeds,

but a lower return if not. We show that due to limited liability, which frees their payment

2



responsibility in the case of default, banks can be induced to invest in the risky asset rather

than the safe asset. Hence, the LLR can create moral hazard in asset investments, that is,

banks take more financial risk in terms of long-term assets, resulting in a default on their

discount window loans with a positive probability.

We examine two additional policies, liquidity requirements and constructive ambiguity,

which are often implemented in practice together with discount window lending. We find

that both of these policies can increase bank’s cash reserves, which eventually lowers the

probability of banking panics and reduces the bank’s risk-taking incentives, with accompanying

higher welfare costs. This result may suggest the limitations of the central bank’s credible

commitment on preventing banking panics and moral hazard, due to its welfare deteriorating

nature, which in turn causes the time consistency problem.

Our paper points to the tension in public debate among economists and policy makers

between the classical doctrine (or the Bagehot principle) versus the moral hazard problem.

The former suggests that the LLR should give liquid loans to illiquid but solvent banks at a

high interest rate (or a “penalty” rate) against their good collateral (Thornton, 1802; Bagehot,

1873), while the latter concerns high financial risks taken by illiquid banks. This is one of the

central issues of the LLR policy debates. The conventional view is that a high loan rate on

the discount window prevents not only borrowing of unnecessary amounts of liquidity but also

taking excessive risks. For example, Solow (1982) states that “the penalty rate is a way of

reducing moral hazard (p.247),” and Fischer (1999) comments that “the lender of last resort

should seek to limit moral hazard by imposing costs on those who have made mistakes. Lending

at a penalty rate is one way to impose such costs (p.93).” Our results do not concur this view

for several reasons. First, we show that if the expected return on the risky asset is sufficiently

high, changing the lending rate has no influence on asset choice. Second, the penalty rate

could reduce welfare if another policy such as liquidity requirements or constructive ambiguity

is combined. Finally, things are not so simple once the banks’ asset choice is taken into

account. For instance, a higher lending rate can lower the probability of banking panics but

leads to a switch in banks’ investment from the safe asset to the risky asset, leading to possible
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defaults. Hence, a penalty rate aimed at reducing the probability of banking panic can cause

an adverse effect on risk-taking investments and defaults. The description of breadth (banking

panics) and depth (defaults) of financial fragility is possible in the presence of the LLR only in

a framework where investments in the risky asset are allowed. To the best of our knowledge,

our paper is the first to point out this possibility.

1.1 Related Literature

The LLR policy has a long history; its concept was elaborated in the 19th century by Thornton

(1802) and Bagehot (1873). The classical doctrine has been criticized on two grounds. First,

Goodfriend and King (1988), Kaufman (1991), and Schwartz (1992) argue that with efficient

interbank markets, central banks should not lend to individual banks, but instead provide

liquidity via open market operations. However, others argue that interbank markets may

fail to allocate liquidity efficiently due to asymmetric information (Flannery, 1996; Freixas

and Jorge, 2007; Heider, Hoerova, and Holthausen, 2015), free-riding (Bhattacharya and Gale,

1987), coordination failures (Freixas, Parigi, and Rochet, 2000), incomplete network (Allen and

Gale, 2000), incomplete contracts (Allen, Carletti, and Gale, 2009), or market power (Acharya,

Gromb, and Yorulmazer, 2010), which can justify the role of the LLR. In this paper, we do

not model interbank markets explicitly, but consider a situation where a shortage of liquidity

in a whole banking system occurs endogenously due to aggregate demand shocks that market

capacity cannot satisfy.

Second, Goodhart (1987, 1999) argue that there is no clear-cut distinction between illiquid-

ity and insolvency during a crisis and banks that require the LLR assistance are already under

suspicions of insolvency. See also Solow (1982) and Schwartz (1992) for some more related

issues. Our model captures Goodhart’s emphasis well because in our setup the central bank

must lend money to illiquid banks without knowing whether they would be insolvent.

In practice, central banks in many countries have expanded their LLR function beyond the

classical Bagehot rule since the 1970s.1 For example, Bordo (2014) points out that since the

1According to Bordo (1990), major central banks in European countries generally followed the classical
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bailout of Franklin National Bank in 1974, the Fed’s LLR policy has adopted the too-big-to-

fail doctrine to prevent systemic risk and contagion irrespective of the classical doctrine. In

addition, Giannini (1999) claims that most LLR policies adopted a non-penalty rate or even a

subsidized rate without having stated it clearly in advance. There is no doubt that the moral

hazard associated with these LLR policies is a serious concern. However, we do not have any

theory taking into account monetary liquidity supports and moral hazard. We propose a new

theory to fill this gap.

Our study is related to the following three strands of literature. The first strand focuses

on financial crises and the role of the LLR in a standard non-monetary banking model, for

example, Allen and Gale (1998), Freixas, Parigi, and Rochet (2000), Rochet and Vives (2004),

Repullo (2005), Martin (2006, 2009), Allen, Carletti, and Gale (2009), and Acharya, Gromb,

and Yorulmazer (2010). Some of them regard LLR policies as real tax-transfer schemes without

monetary considerations, while others consider monetary transfers but while treating nominal

assets as an exogenous restriction. In contrast, our approach is to take monetary factors as

the main driving force, because we believe that banking panics should represent a widespread

attempt by the public to convert their deposits into currency and a suspension of convertibility

(Calomiris and Gorton, 1991; Champ, Smith, and Williamson, 1996), and that the abilities of

creating high-powered money and distributing it quickly authorize a central bank to act as a

lender of last resort (Schwartz, 2002).

The second strand examines monetary factors of the LLR in an overlapping-generations

model with random relocation along the lines of Champ, Smith, and Williamson (1996) and

Smith (2002). See also Antinolfi, Huybens and Keister (2001), Antinolfi and Keister (2006) and

Matsuoka (2012). Unlike our model, these models do not consider risky financial technologies

and moral hazard associated with the LLR. We offer a new and simple approach to make the

moral hazard problem, which is potentially very complicated, tractable.

The third strand considers banking with a New Monetarist approach along the lines of

doctrine between 1870 and 1970. In contrast, the Bank of Japan provided liquidity support to large illiquid and
insolvent banks at a non-penalty rate based on the too-big-to fail doctrine in response to the financial panic of
1927 (Yokoyama, 2018).
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Lagos and Wright (2005) and Rocheteau and Wright (2005). This strand includes Andolfatto,

Berentsen, and Martin (2017), Berentsen, Camera, and Waller (2007), Ferraris and Watanabe

(2008, 2011), Bencivenga and Camera (2011), Williamson (2012, 2016), Gu, Mattesini, and

Wright (2013), and Matsuoka and Watanabe (2017). None of them considers the economic

role and consequences of the LLR and other related policies.

The rest of the paper is organized as follows. Section 2 describes the basic environment.

Section 3 analyzes the case without the LLR. Section 4 analyzes the case with the LLR and

explores the condition of moral hazard. Section 5 considers extensions. Section 6 concludes.

All mathematical proofs are provided in the Appendix.

2 Environment

The model builds on a version of Lagos and Wright (2005). Time is discrete and continues

forever. Each period is divided into two subperiods: day and night. A market is open in each

subperiod. There are two types of [0, 1] continuum of infinitely-lived agents. Agents of the

same type are homogeneous. One type of agents, called sellers, have the production technology

during the day, which allows them to produce perishable and divisible goods, referred to as

special goods. The other type of agents, called buyers, do not have the production technology

during the day but can consume the special goods. Other divisible goods, referred to as

general goods, are produced and consumed during the night. There is also an intrinsically

worthless good, which is perfectly divisible and storable, called fiat money. Agents discount

future payoffs at a rate β ∈ (0, 1) across periods, but there is no discounting between the two

subperiods.

The instantaneous utility functions for buyers and sellers are given by u(qb) + U(x) − h

and −qs + U(x) − h, respectively, where qb represents the amount of special goods that the

buyer consumes, qs is the amount of special goods that the seller produces, h is the nighttime

hours of work, and marginal production costs are constant, normalized to one. The utility

function u(q) is strictly increasing, strictly concave, and twice continuously differentiable with

u(0) = 0, u′(0) = ∞, u′(∞) = 0, and with the property that there exists some q̂ > 0 such that
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u(q̂) = q̂. For analytical tractability, we assume ξ ≡ − qu′′(q)
u′(q) is a positive constant. The utility

function of general goods, U(x), is also strictly increasing, concave, and twice continuously

differentiable. We normalize U(x∗)− x∗ = 0, where x∗ solves U ′(x∗) = 1.

During the day, buyers and sellers can trade special goods in decentralized markets (DM),

which involves bilateral random matching. Just like in Sanches and Williamson (2010) and

Williamson (2012) (see also Section 5 of Williamson and Wright, 2010), we assume that in a

DM, there are a fraction α ∈ (0, 1) of sellers who are engaged in a non-monitored exchange and

a fraction 1− α of sellers who are engaged in a monitored exchange. At the beginning of the

day, sellers meet with their counterparts and buyers learn whether they will trade with sellers

in non-monitored or monitored meetings. In the non-monitored exchanges, exchanges are

anonymous and trading histories are private knowledge, and thus, given the random meeting,

sellers must receive money for immediate compensation of their products. In contrast, there

is a record-keeping technology in the monitored exchange, and perfect commitment is possible

so that buyers can promise credibly that they will make a payment to sellers later during

the night. That individual buyers face randomness in different requirements of the medium

of exchange, plays the role of a “liquidity preference shock.” This is similar in the spirit to

Diamond and Dybvig (1983) to motivate the banks’ risk sharing role. In any meeting, we

assume for simplicity that buyers make a take-it-or-leave-it offer to sellers.

The fraction α of monitored/non-monitored meetings is a random variable. It is publicly

observable and identically distributed over time. Let F = F (α) represent the distribution

function, which is assumed to be continuous, differentiable, and strictly increasing, and f =

f(α) > 0 is the associated density function. As mentioned earlier, this randomness will play a

key role in our model.

One can imagine several interpretations of the stochastic fluctuations of α. First, it is

typically thought of as a seasonal variation in the demand for money. Historically, large sea-

sonal pressures, mostly in the spring planting season and fall crop moving season, have caused

banking panics in agricultural economies (e.g., Sprague, 1910; Miron, 1986; Calomiris and

Gorton, 1991). Second, small changes in the cost of information acquisition about counter-
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party or asset quality used as collateral in an imperfect credit system would have large effects

on credit transactions (Lester, Postlewaite, and Wright, 2012). Finally, unexpected events

such as large-scale natural disasters, blackouts, and September 11, 2001, would damage social

communication tools necessary for credit transactions and suddenly increase the aggregate

demand for money. As these seem potentially relevant, we are agnostic about the exact nature

of stochastic fluctuations.

During the night, general goods are traded in the centralized market (CM), which is Wal-

rasian. Buyers have access to a storage technology which allows them to hold long-term assets

across periods. We consider two types of assets. A safe asset transforms one unit of the general

good into R > 1 units of the general good in the next period. We consider the case βR < 1

to avoid an explosive solution or indeterminacy. A risky asset yields a stochastic return, λR,

with probability η, or zero with probability 1− η, where λ > 1 and ηλ ≤ 1.2 Thus, risk-averse

and risk-neutral agents strictly prefer the safe asset to the risky asset, and moral hazard is

said to occur if the risky asset is selected. In addition, we assume that only a fraction R of the

successful return on the risky asset, λR, is observable and verifiable, implying that only this

fraction can be used as collateral when needed for discount window borrowing (see below).

The remaining fraction (λ− 1)R of the return is neither observable nor verifiable by outsiders

(e.g., the central bank). This unobservable extra return can be interpreted as “private benefit”

as in a standard moral hazard model (e.g., Holmstrom and Tirole, 1997). The asymmetric

information implies that outsiders cannot observe whether the bank chooses the safe or risky

asset until the risky asset produces nothing. The term “investment in the risky assets” can be

interpreted broadly to include low efforts for screening projects, monitoring projects, or man-

agement of financial risks. Typically, these efforts are costly and not observable by outsiders,

implying that there is private benefit from shirking.

In a CM, buyers form private banks. A bank offers a contract to each of its depositors

which stipulates a repayment plan as specified below. Depositors are buyers who deposit

general goods in the CM and may need cash in the following DM. The bank stocks m money

2A similar assumption is made in Cooper and Ross (2002) and Martin (2006).
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(or z ≡ ϕ−1m real cash balances) and k safe and l risky assets in the CM. Any credit contracts

in the DM are settled in the CM of the same period. The timing of events is illustrated in

Figure 1.

Fig 1: Timing of events

The stock of money available in a period is denoted by M . It grows (or shrinks) at a

constant rate π, that is, M+ = πM , through injection to (or withdrawing it from) buyers in a

lump-sum manner in the CM, where the subscript “+” stands for the next period. The price

of money is denoted by ϕ in terms of general goods. Then, we consider that the rate of return

on money is dominated by the returns on both safe and risky assets:

ϕ+

ϕ
< ηλR (= min{ηλR,R}).

Finally, the money market clears in each period so that the return on money must be equal

to the inverse of the inflation rate, ϕ+

ϕ = 1
π .

The first-best solution in our economy is straightforward. The socially optimal level of

long-term assets, both safe and risky, equals 0 since βmax{ηλR,R} = βR < 1. The socially

optimal levels of consumption equal q∗ ≡ u−1′(1), that is, the marginal utility of special goods

consumption (= u′(q∗)) is equal to the marginal cost (= 1), and x∗ ≡ U−1′(1), that is, the

marginal utility of general goods consumption (= U ′(x∗)) is equal to the marginal cost (= 1).
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3 Monetary equilibrium without LLR

We first derive a monetary equilibrium without an LLR. Given that perfect credit is avail-

able, a buyer in a monitored exchange can purchase and consume any quantity they wish to

irrespective of their daytime money holdings, since the payment can be made later at night.

Hence, in each period, a buyer in the monitored exchange consumes the first best quantity,

that is, qm = q∗. As the buyers in a monitored meeting do not need cash during the day,

banks do not allocate cash to these buyers.

Banks’ repayment schedules should determine how much money to allocate to each non-

monitored buyer. At the beginning of a day, before buyers find out the type of their meeting,

banks choose a payment schedule given their holdings of cash, m, selected in the previous CM

(see below). The payment can be contingent on the realized aggregate state. We assume com-

petitive banks with free entry, so that each maximizes the expected value of its representative

depositor (i.e., buyer). Denote by qn = qn(α) the consumption of a non-monitored buyer,

and by θ = θ(α) the fraction of its cash reserves that a bank pays out to non-monitored buy-

ers. Without loss of generality, the remaining cash reserves are distributed uniformly among

monitored buyers after the day market closes. For each realized value α ∈ (0, 1), a bank’s

maximization problem in the DM can be written as:

max
θ∈[0,1]

αu(qn) + (1− θ)
z

π
,

subject to

αqn =
θz

π
,

where z ≡ ϕ−1m is the real reserve balances. The first term in the objective function represents

the daytime utility of non-monitored buyers, who need cash for the daytime trade, and the

second term, the nighttime real value of the remaining cash reserves. The constraint states

that each individual non-monitored buyer receives θm
α units of cash from the bank and, given

take-it-or-leave-it offers, exchanges it with the matched seller for θmϕ
α = θz

πα units of special

goods.
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The first order condition is

z

π

{
u′(qn)− 1

}
≥ 0 ( = if θ < 1). (1)

This condition shows that two situations are possible in a monetary equilibrium (i.e., with

z > 0). The first condition, θ < 1, implies qn = qm (= q∗ = u−1′(1)), that is, consumption

smoothing. The other, θ = 1, implies that the bank exhausts all its cash reserves and fails

to achieve consumption smoothing, that is, qn < qm. We refer to such an event as a banking

panic. This definition captures the situation where a significant number of depositors suddenly

demand to redeem bank debt for cash, leading to a shortage of the overall amount of reserves

in the banking system and a suspension of convertibility. It follows:

Lemma 1 (Banks’ Optimal Payment Plan) Given cash reserves z > 0, the optimal pay-

ment plan of banks is described by qm = q∗ and

qn(α) =


q∗ if 0 < α < α∗,

z
απ if α∗ ≤ α < 1,

where α∗ ≡ z
πq∗ > 0, and

θ(α) =


α
α∗ if 0 < α < α∗,

1 if α∗ ≤ α < 1.

The lemma shows that the occurrence of a banking panic can be stated in terms of realized

values of α. For low values of α < α∗, the realized aggregate demand for money is relatively

low, so that banks’ cash reserves are sufficient to cover the needs of the non-monitored buyers,

leading to qn = q∗ and θ < 1. For high values of α ≥ α∗, the realized aggregate demand for

money is relatively high and, thus, banks’ cash reserves are not enough to cover the needs of

non-monitored buyers, leading to qn ≤ q∗ and θ = 1. This results in a banking panic. Figure

2 illustrates this lemma.
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Fig 2: Consumption in a non-monitored exchange

Since qn ≤ qm for any α, the allocation is clearly incentive-compatible or truth-telling,

which states that monitored buyers weakly prefer their own consumption to that of non-

monitored buyers, for any state.

Given the total deposit, denoted by d > 0, and the repayment plan qn = qn(α) and

θ = θ(α), described in Lemma 1, the banks’ portfolio choice problem in the CM can be

written as

V (d) = max
z,k,l≥0

∫ 1

0

[
α {u(qn) +W (0, k, l, 0)}+ (1− α)

{
u(q∗) +W

(
(1− θ)z

(1− α)π
, k, l, q∗

)}]
f(α)dα, (2)

subject to the balance sheet constraint,

d = z + k + l.

In this expression, notice that a non-monitored (monitored) buyer consumes qn (q∗) in the

DM, and the bank’s long-term assets, k and l, are distributed uniformly among all buyers.

W (z′, k, l, c) represents the expected value of a buyer entering the next night market with

holdings of z′ real cash balances, k safe assets, l risky assets, and c debt from the DM and is

given by

W (z′, k, l, c) = max
x,h,d+≥0

U(x)− h+ βV (d+)
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subject to

x+ d+ + c = h+R(k + ηλl) + z′ + T,

and the usual non-negativity constraints, where T denotes the real value of the monetary

transfers (or taxes) from the central bank, that is, T = ϕ(M+ − M) =
(
1− 1

π

)
ϕM+, and

V (d+) is the expected value in the next DM with deposits d+. Substituting for h,

W (z′, k, l, c) = R(k + ηλl) + z′ + T − c+max
x≥0

{U(x)− x}+ max
d+≥0

{−d+ + βV (d+)},

implies that the choice of d+ is independent of the wealth R(k + ηλl) + z′ + T − c as in the

Lagos and Wright model.

Define

Υ(z) ≡ F (α∗) +

∫ 1

α∗
u′ (qn) f(α)dα.

Then, the marginal benefit from real cash balances holding is given by

1

π
Υ(z),

since when α ≤ α∗, cash is useful only in the CM, where a unit of cash yields a real value 1
π

(as captured in the first term in Υ), while when α > α∗, cash is useful in the DM, where a

unit of cash yields u′(qn)
π (as captured in the second term in Υ).

Lemma 2 (Banks’ Optimal Portfolio Choice) Given deposit d > 0, the optimal portfolio

of banks is described by k = d− z ≥ 0, l = 0, and

z =


z(d) if Υ(d) ≤ πR,

d if Υ(d) > πR,

where z(d) ∈ (0, d) is a solution to Υ(z(d)) = πR.

Note that since the risky asset is strictly dominated by the safe asset, the bank does not

invest in the risky asset at all, that is, l = 0. Note also that the marginal benefit from cash

holdings is positive and is monotonically decreasing in z (see the proof of Lemma 2). Hence,
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if the marginal benefit from holding real balances, 1
πΥ, is greater than the marginal cost, R,

at z = d, then Υ(z) > πR for all z ≤ d and the bank holds cash only, hence, z = d and k = 0.

Otherwise, the bank’s portfolio includes not only cash z = z(d) ∈ (0, d), but also assets k > 0.

The last step is to determine the optimal deposits of the buyers, given the deposit contract

offered by the banks, (qn, z, k, l), as described above. The buyer’s problem is

max
d≥0

{−d+ βV (d)},

where V (d) is the buyer’s expected value entering the DM with deposit d > 0 as described

above.

For d < Υ−1(πR), we have z = d and the Euler equation is 1 = βV ′(d) or

π

β
= F

(
d

πq∗

)
+

∫ 1

d
πq∗

u′
(

d

πα

)
f(α)dα (= Υ(d)) , (3)

while for d ≥ Υ−1(πR), we have z = z(d) ∈ (0, d) and V ′(d) = R, that is, the marginal value

of deposits hits the lower bound R for high values of d. We therefore have the following result.

Theorem 1 (Monetary Equilibrium without LLR) A monetary equilibrium exists with-

out an LLR, and is unique, where the deposit and cash holdings, denoted by dN and zN , satisfy

dN = zN ∈ (0, πq∗), and a banking panic occurs with probability 1 − F (α∗) ∈ (0, 1), where

α∗ = dN
πq∗ .

Not surprisingly, without an LLR, banks hold deposits only as cash and no long-term assets,

that is, dN = zN ∈ (0, πq∗), because both long-term assets, safe and risky, generate a real

return less than the associated costs, βmax{ηλR,R} = βR < 1, and there is no use for them

in the DM trade. With aggregate money demand uncertainty, the probability of a panic is

positive. This creates a situation in which in the absence of an LLR, non-monitored buyers

are unable to consume the first best quantity because the bank runs out of cash reserves. The

probability of a panic goes to zero following the Friedman rule, that is, α∗ = dN
πq∗ → 1 as

π → β.

The result on the effects of inflation is as follows:
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Corollary 1 (Effects of Inflation) If ξ > 0 is not too big, the equilibrium deposit level, dN ,

is monotonically decreasing in inflation, and the probability of a banking panic, 1− F (α∗), is

monotonically increasing in inflation.

A higher inflation yields both a substitution effect and an income effect. The substitution effect

occurs because higher inflation raises the cost of holding cash reserves, and, therefore, banks

will attempt to economize on such holdings, leading to a lower deposit level. Higher inflation

also implies that banks can obtain the same amount of returns by increasing their reserves. In

this manner, the income effect leads to an increase in the demand for cash reserves, leading to

a higher deposit level. If ξ is not too big, the substitution effect dominates the income effect,

which is assumed to be the case throughout this paper, implying that the bank’s reserves are

decreasing in inflation. As a result, the likelihood that the entire banking system will run out

of liquidity increases. This result is consistent with empirical studies (e.g., Demirgüç-Kunt

and Detragiache 1998, 2005).

Discussions. Banking panics in our model are a monetary event resulting from a bank’s

reserve shortage and suspensions of convertibility instead of banking insolvency, like in Champ,

Smith, and Williamson (1996) and many others. Our definition captures the situation where

a significant number of depositors suddenly demand to redeem bank debt for cash, leading

to a shortage of the overall amount of reserves in the banking system and a suspension of

convertibility.

So far, we have considered the baseline model with perfect credit and without an LLR,

long-term assets are not used in the DM, and banks never invest in them in equilibrium. If

perfect credit is not available, the bank’s portfolio choice is not trivial. Our earlier paper,

Matsuoka and Watanabe (2017), considers secured credit where these assets are used as a

collateral in the DM monitored meeting, and shows that banks actually invest in long-term

assets even in the absence of an LLR. In this paper, we assume away this channel. Instead,

we will consider the role of long-term assets as collateral to obtain loans from the central

bank in case of panics. We conjecture, however, that our main insight is not affected by this
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simplification.

Finally, one of the important criticisms of Bagehot’s rule is that there is no clear-cut

distinction between illiquidity and insolvency during a crisis (e.g., Goodhart, 1987; 1999). We

capture this point well because in our model the timings of bank’s illiquidity and insolvency

are different; illiquidity can occur during a day, while insolvency can occur at the beginning

of a night. Thus, the LLR must decide whether to lend its funds to illiquid banks before their

asset returns are realized. In such an environment, the banks have an incentive to borrow and

default, as we will see below.

4 The Lender of Last Resort

In this section, we extend our basic framework and allow the central bank to act as the LLR.

After the realization of α, the central bank opens a discount window at the beginning of

the DM, and offers private banks an intra-day cash loan with a gross interest rate. The central

bank can limitlessly prepare cash for private banks, and so there is no limit to the quantity the

central bank can lend. Clearly, private banks do not need additional cash if they have enough

cash reserves to cover their depositors’ needs, and so the discount window will be activated

only when a banking panic occurs. Note that since private banks operate subject to limited

liability, the central bank needs a guarantee for their loans’ repayment given a possible default

by the private banks. That is, the central bank’s loans are fully collateralized as in current

practice. We assume that the revenue (or loss) earned by the LLR through this lending policy

is rebated to (or taxed on) the buyers in a lump sum manner. Finally, we also assume that

the members of the central bank committee serve for only one period and are replaced by new

members at the end of each period.3

With the LLR, a private bank’s deposit contract is modified to (qn, z, b, k, l), where b is

the amount of real balances a private bank borrows from the LLR in the event of a banking

panic. Note that safe and risky assets are substitutes. In what follows, we therefore consider

3This allows the economy to sustain a stationary monetary equilibrium with risky assets. Under this as-
sumption, any information about banking defaults in the past would not affect the current LLR policy.
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two extreme cases, one with only the safe asset, that is, k ≥ 0 = l, and the other with only

the risky asset, that is, l ≥ 0 = k. Banks compare the expected utilities of these two cases and

choose the one with the higher utility in equilibrium.

4.1 Safe Asset

We first consider the case where private banks invest only in the safe asset. It is now assumed

that4

RC > max{πR, 1}.

If RC ≤ πR, banks would avoid the cost of holding cash reserves by not transferring money

over time (i.e., by setting z = 0), and so a monetary equilibrium would not exist. In addition,

the assumption RC > 1 guarantees the “pecking order” that the banks first use their cash

reserves and next borrow from the LLR. If RC ≤ 1, the bank would have an incentive to use

the discount window loan before using own cash reserves. To derive the monetary equilibrium

with the LLR, we follow the same steps as in the previous section.

As mentioned above, since private banks operate subject to limited liability, the central

bank needs a guarantee of repayment. We assume that private banks can use their long-term

assets as collateral.5 Formally, if a private bank holds k ≥ 0 safe assets and borrows b ≥ 0 real

cash balances, then it should satisfy the borrowing constraint,

RCb ≤ Rk. (4)

The constraint states that a bank that demands and borrows b
ϕ+

yen (in nominal terms) from

the central bank after the realization of α, must pay back RCb
ϕ+

yen (R
Cϕ+b
ϕ+

= RCb real balances)

during the following night. This quantity must be no greater than the expected return on safe

4This assumption also captures the view of Bagehot (1873) that “[a very high interest rate] will operate as a
heavy fine on unreasonable timidity, and will prevent the greatest number of applications by persons who don’t
require it. The rate should be raised early in the panic, so that the fine may be paid early; that no one may
borrow out of idle precaution without paying well for it; that the banking reserve may be protected as far as
possible”(p. 199).

5Equivalently, we can assume that the central bank makes a repurchase agreement with a troubled bank,
whereby the bank sells some of its long-term assets to the central bank during the day in exchange for money
and buys them back for a price of RC during the night.
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assets Rk
ϕ+

yen. Note that since the central bank loans are intra-day, its marginal cost is free

from inflation.

Since the revenue earned by the LLR is rebated to the buyers, the government budget

constraint in a given period is now modified as follows:

T = ϕ(M+ −M) + (RC − 1)b,

where b is determined by the banks in the previous DM. The first term on the left-hand side

(L.H.S.) represents seigniorage, while the second is the profit on the discount window loans.

Given values of z > 0 and k ≥ 0, for each realization of α ∈ (0, 1), a private bank’s problem

of choosing the payment schedule in the DM is described as follows:

max
θ∈[0,1], b≥0

αu(qn) + (1− θ)
z

π
−RCb,

subject to the borrowing constraint (4) and

αqn =
θz

π
+ b.

The first order conditions are (1) and

u′(qn)−RC + µb − µkR
C = 0, (5)

where µb ≥ 0 is the Lagrange multiplier of the non-negativity constraint b ≥ 0 and µk ≥ 0 is

the Lagrange multiplier of the borrowing constraint (4). The occurrence of a banking panic is

described by the same critical value as before, α∗ ≡ z
πq∗ , determined by the same condition (1).

The condition (5) determines two more critical values (see below) that describe the borrowing

quantity of private banks in the case of panics.

Lemma 3 (Banks’ Optimal Payment Plan with the LLR and the Safe Asset) Given

z > 0, k ≥ 0 = l, the optimal payment plan of banks with the safe asset in the presence of the
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LLR is described by qm = q∗ and θ = θ(α), similar to that in Lemma 1, and

b(α) =


0 if 0 < α ≤ α∗∗,

αu−1′(RC)− z
π if α∗∗ < α < α∗∗∗,

Rk
RC if α∗∗∗ ≤ α < 1,

and qn(α) =



q∗ if 0 < α < α∗,

z
απ if α∗ ≤ α ≤ α∗∗,

u−1′(RC) if α∗∗ < α < α∗∗∗,

RC

π
z+Rk

RCα
if α∗∗∗ ≤ α < 1,

where

α∗ ≡ z

πq∗
, α∗∗ ≡ min

{
z

πu−1′(RC)
, 1

}
, and α∗∗∗ ≡ min

{
RC

π z +Rk

RCu−1′(RC)
, 1

}
.

As in the model without the LLR, banking panics will never occur when α ∈ (0, α∗) and

private banks do not need to borrow from the central bank. A banking panic occurs when

α ∈ [α∗, 1) in any one of the following three cases: for α ∈ [α∗, α∗∗], banks exhaust cash reserves

but do not borrow because the benefit of the LLR is relatively low; for α ∈ (α∗∗, α∗∗∗), banks

borrow cash as much as they want; for α ∈ [α∗∗∗, 1), the borrowing constraint is binding and

banks borrow the maximum level, Rk. Note that the assumption RC > 1 guarantees the

condition α∗ < α∗∗ for any z > 0.

Given the repayment plan, we now consider the portfolio choice. A bank’s problem is

described by the same value function as in (2), but now the value function in the CM is given

by

W (z′, k, 0, c, b) = Rk + z′ + T − c−RCb+max
x≥0

{U(x)− x}+ max
d+≥0

{−d+ + βV s(d+)},

where the payment amount of RCb will be made to the LLR. Applying this, θ = min{1, α
α∗ },

the result in Lemma 3 and the balance sheet constraint, d = z + k, to the value function (2),

we have:

V s(d) = max
0≤z≤d

∫ α∗

0

[
αu(q∗) +

(
1− α

α∗

) z

π

]
f(α)dα+

∫ α∗∗

α∗
αu
( z

απ

)
f(α)dα

+

∫ α∗∗∗

α∗∗

[
αu
(
u−1′(RC)

)
−RC

(
αu−1′(RC)− z

π

)]
f(α)dα+

∫ 1

α∗∗∗

[
αu

(
RC

π z +R(d− z)

RCα

)
−R(d− z)

]
f(α)dα

+ {1− E(α)} {u(q∗)− q∗}+R(d− z) + T +max
x≥0

{U(x)− x}+ max
d+≥0

{−d+ + βV s(d+)},
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where E(α) ≡
∫ 1
0 αf(α)dα.

Let us define

Ψz(z, d) ≡ F (α∗) +

∫ α∗∗

α∗
u′
( z

απ

)
f(α)dα+ [F (α∗∗∗)− F (α∗∗)]RC +

∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα,

Ψk(z, d) ≡ F (α∗∗∗) +
1

RC

∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα.

Then, noting α∗∗∗ ≤ 1, the first order condition of the optimal portfolio choice is:

Ψ(z, d) ≡ 1

π
Ψz(z, d)−RΨk(z, d) ≥ 0 (= if z < d). (6)

Denote by z = z(d) a solution to (6) and k(d) ≡ d − z(d). Then, given the optimal portfolio

(z(d), k(d)), the deposit choice of depositors is described by the Euler equation, −1+βV s′(d) =

0, where

V s′(d) =
∂z

∂d

∂V s(d)

∂z
+

∂V s(d)

∂d
.

There are two cases. For z = z(d) ∈ (0, d) (an interior solution), by applying the envelope

condition, we have Ψ(z, d) = ∂V s(d)
∂z = 0 and V s′(d) = ∂V s(d)

∂d = RΨk(z, d), and so the Euler

equation is

Ψk(z, d) =
1

βR
. (7)

Hence, an equilibrium, denoted by (zS , dS) > 0, is identified by (7) and

Ψz(z, d) =
π

β
. (8)

For z = d (the corner solution), we have α∗∗ = α∗∗∗, Ψ(z, d) = ∂V s(d)
∂z > 0 and V s′(d) =

Ψ(z, d) + RΨk(z, d) =
Ψz(z,d)

π , and so the Euler equation is given by (3); since the bank does

not hold any long-term assets, it cannot borrow from the LLR, b = 0.

Proposition 1 (Monetary Equilibrium with the LLR and the Safe Asset) With the

LLR and the safe asset, a monetary equilibrium with bank deposits exists and is unique such

that cash reserves and bank deposits satisfy

z =


zS (< dS) for RC ∈ (πR,RC∗],

zN (= dN ) for RC ∈ (RC∗,∞),

20



Fig 3: Monetary equilibrium with LLR and safe asset

with some critical value RC∗ ∈ (πR,∞), and zS ≤ zN and dS ≥ dN . Further, whenever

RC < RC∗, it holds that α∗∗∗ < 1.

As illustrated in Figure 3, a monetary equilibrium with a positive amount of the safe asset

can be identified using two curves: z̃ = z̃(d), which is constructed using the Euler equation

(7), and z = z(d), which is constructed using the first order condition (8). Both these curves

are downward sloping, because intuitively, cash and long-term assets are substitutes when the

LLR lending is available during panics. As long as the loan rate from the LLR is not too

high, that is, RC ∈ (πR,RC∗], the z̃(d) curve intersects the z(d) curve at z = zS < zN and

d = dS > dN where the bank invests in a long-term safe asset dS − zS > 0, and the discount

window lending is activated in case of panics. In contrast, if the rate is sufficiently high, that is,

RC > RC∗, banks will never borrow from the discount window, and the equilibrium allocation

is identical to the one without the LLR as described in Theorem 1.

In the presence of the LLR, a long-term asset has a benefit in the DM that allows the bank

to use the discount window lending during a banking panic. To derive the liquidity premium
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on the safe asset, rewriting (7) yields

1− βR

βR
=

∫ 1

α∗∗∗

{
u′(qn)

RC
− 1

}
f(α)dα. (9)

The left-hand side of this equation represents the cost of investing an additional unit of the

safe asset, and the right-hand side represents the liquidity premium. When the borrowing

constraint (4) is not binding, which occurs with probability F (α∗∗∗), an additional unit of the

safe asset has no effects in the DM, and thus the liquidity return is zero. When the borrowing

constraint (4) is binding, which occurs with probability 1 − F (α∗∗∗), a bank can use 1
R unit

of the safe asset to borrow 1
RC units of real cash balances, which allows each non-monitored

buyer to acquire 1
αRC units of special goods with a total marginal utility of αu′(qn)

αRC .

The banks always have the option not to borrow from the discount window, and, thus,

the LLR must be welfare improving if it is used. It mitigates the loss of banking panics

by providing liquidity, leading to a higher level of deposit and consumption in the DM non-

monitored meeting. The LLR will, however, reduce the incentive of banks to invest in liquid

assets. As a result, banks hold a lower amount of cash reserves, and thus the LLR will increase

the probability of banking panics. In Figure 4, the critical value without the LLR is represented

by α∗
N , and those with the LLR are represented by α∗

S , α
∗∗
S , and α∗∗∗

S .

Corollary 2 (Implication of LLR) The LLR is welfare improving, but increases the prob-

ability of a banking panic.

We now study the consequences of changing π and RC . With corner solutions, since

all deposits are invested in cash reserves and banks do not borrow from the central bank,

that is, (zS , dS) = (zN , dN ), the comparative static results are identical to those described in

Proposition 1. Using interior solutions, we obtain:

Corollary 3 (Effects of Inflation and Loan Rate) Suppose that ξ > 0 is not too big.

Then, the interior solutions with the safe asset (zS , dS) satisfy

∂zS
∂π

< 0,
∂dS
∂π

> 0,
∂zS
∂RC

> 0, and
∂dS
∂RC

< 0.
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Fig 4: Monetary equilibrium with versus without LLR

Furthermore,

∂α∗

∂π
< 0,

∂α∗∗

∂π
< 0,

∂α∗∗∗

∂π
= 0,

∂α∗

∂RC
> 0,

∂α∗∗

∂RC
> 0, and

∂α∗∗∗

∂RC
= 0.

If ξ > 0 is not too big (i.e., the substitution effect dominates the income effect), a higher

inflation leads to a higher money holding cost, and a higher incentive for banks to economize

their cash reserves, leading to a positive effect of inflation on the probability of a banking

panic and the likelihood that banks borrow from the central bank. Somewhat surprisingly, the

effect of an increase in π on d differs depending on the presence of the LLR. In the case with

the LLR, at a higher inflation, banks attempt to rely more on the central bank loans to avoid

higher money holding costs. To do this, they have to collect more deposits and invest more

in long-term assets as collateral for loans. In contrast, there is no such channel without the

LLR, and, thus, the deposit level is simply decreasing in inflation, as most monetary general

equilibrium models predict. Inflation has no effect on α∗∗∗ because the negative impact on

reserves and the positive impact on the safe asset cancel out. An increase in RC gives the bank

an incentive to be self-guarding and increase their cash reserves, leading to positive impacts

on α∗ and α∗∗, but since it makes the deposit contracts less attractive the deposit level will
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be lower.

4.2 Risky Asset

Consider next the case of the risky asset. An important difference is that given limited liability,

banks must default when the risky asset produces nothing. Since banks are able to honor their

promise to repay the central bank loans only if the project is successful, the expected payment

rate of the discount window loan with the risky asset is reduced to ηRC . In line with the

previous analysis, we assume that

RC > max

{
RC ,

1

η

}
,

where RC ≡ πR/{1−βη(λ−1)R} > πR. If RC ≤ RC , the demand for cash reserves would then

be zero, and money would not circulate between periods. As before, the condition RC > 1/η

guarantees the “pecking order” of the banks’ use of cash reserves.

Note that given the information structure associated with the observability of the risky

asset returns, banks face the same borrowing constraint as described in (4) for the discount

window borrowing.

With a risky asset, there is an issue of who should take on the financial burden of losses

associated with banking defaults on the discount window loan. Ultimately, additional taxes

levied on agents should compensate for these losses. This implies, together with the constant

money supply rule, that the expected lump sum tax is given by

E(T ) = ϕ(M+ −M) + (ηRC − 1)b.

With a risky asset, the optimal payment plan of private banks is modified as follows.

Lemma 4 (Banks’ Optimal Payment Plan with the LLR and the Risky Asset) Given

z > 0, l ≥ 0 = k, the optimal payment plan of banks with the risky asset in the presence of
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the LLR is described by qm = q∗ and θ = θ(α), the same as in Lemma 1, and

b(α) =


0 if 0 < α ≤ α∗∗

η ,

αu−1′(ηRC)− z
π if α∗∗

η < α < α∗∗∗
η ,

Rl
RC if α∗∗∗

η ≤ α < 1,

and qn(α) =



q∗ if 0 < α ≤ α∗,

z
απ if α∗ ≤ α ≤ α∗∗

η ,

u−1′(ηRC) if α∗∗
η < α < α∗∗∗

η ,

RC

π
z+Rl

RCα
if α∗∗∗

η ≤ α < 1,

where

α∗ ≡ z

πq∗
, α∗∗

η ≡ min

{
z

πu−1′(ηRC)
, 1

}
, and α∗∗∗

η ≡ min

{
RC

π z +Rl

RCu−1′(ηRC)
, 1

}
.

The solutions are quite similar to the ones of Lemma 3, except that, since the borrowing cost

associated with the discount window is reduced, that is, u−1′(ηRC) > u−1′(RC), the bank

increases the amount of borrowing compared to the case with a safe asset.

Given the repayment plan with a risky asset, the value function in the DM is modified to

V r(d) = max
0≤z≤d

∫ α∗

0

[
αu(q∗) +

(
1− α

α∗

) z

π

]
f(α)dα+

∫ α∗∗
η

α∗
αu
( z

απ

)
f(α)dα

+

∫ α∗∗∗
η

α∗∗
η

[
αu
(
u−1′(ηRC)

)
− ηRC

(
αu−1′(ηRC)− z

π

)]
f(α)dα

+

∫ 1

α∗∗∗
η

[
αu

(
RC

π z +R(d− z)

RCα

)
− ηR(d− z)

]
f(α)dα

+ {1− E(α)} {u(q∗)− q∗}+ ηλR(d− z) + T +max
x≥0

{U(x)− x}+ max
d+≥0

{−d+ + βV r(d+)}.

Based on this value function, a monetary equilibrium, denoted by (zR, dR), with lR = dR−zR >

0 is characterized by the following two implicit equations:

Φz(z, d) ≡ F (α∗) +

∫ α∗∗
η

α∗
u′
( z

απ

)
f(α)dα+ [F (α∗∗∗

η )− F (α∗∗
η )]ηRC +

∫ 1

α∗∗∗
η

u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα =

π

β
,

(10)

Φl(z, d) ≡ ηF (α∗∗∗
η ) +

1

RC

∫ 1

α∗∗∗
η

u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα+ η(λ− 1) =

1

βR
. (11)
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According to the Euler equation (11), the liquidity premium on the risky asset should

satisfy:

1− βηλR

βηλR
=

1

λ

∫ 1

α∗∗∗
η

{
u′(qn)

ηRC
− 1

}
f(α)dα. (12)

The cost of investing an additional unit of the risky asset should equal the liquidity premium.

When the borrowing constraint is not binding, which occurs with probability F (α∗∗∗
η ), the

liquidity return is zero since an additional unit of the risky asset has no effect in the DM.

When the borrowing constraint is binding, which occurs with probability 1 − F (α∗∗∗
η ), the

liquidity return is positive since a bank can use 1
ηλR units of the risky asset to borrow 1

ηRC

units of real cash balances, which allows each non-monitored buyer to acquire 1
αηRC units of

special goods and its total marginal utility is αu′(qn)
αηRC . Finally, since only a fraction R

λR of the

successful return of the risky asset can be pledgeable, the liquidity return is simply discounted

by 1
λ .

Identifying a monetary equilibrium will follow the same steps as before.

Proposition 2 (Monetary Equilibrium with the LLR and the Risky Asset) With the

LLR and risky asset, a monetary equilibrium with bank deposits exists and is unique so that

the cash reserve balances and the bank’s deposits satisfy

z =


zR (< dR) for RC ∈ (RC , R̂C∗],

zN (= dN ) for RC ∈ (R̂C∗,∞),

with some critical value R̂C∗ ∈ (RC ,∞), and zS < zR and dR > dN for any η ∈ (0, 1). Further,

whenever RC < R̂C∗, it holds that α∗∗∗
η < 1.

As in the case with a safe asset, a monetary equilibrium with a positive amount of the

risky asset can be identified by using two curves: z̃ = z̃η(d), which is constructed using (11),

and z = zη(d), which is constructed using (10), as illustrated in Figure 5. The zη(d) curve

with a risky asset pivots down, centered at the monetary equilibrium allocation with no LLR,

(zN , dN ), relative to that with a safe asset. This occurs because the expected payment cost
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Fig 5: Monetary equilibrium with LLR and risky asset

of the discount window lending is lower with the risky asset than the safe asset, and so given

values of d > 0, the bank has a higher incentive to invest in long-term asset, leading to a

higher crowding out of cash reserves. Whether the z̃ = z̃η(d) curve with the risky asset is

located below or above the one with the safe asset is determined by the relative size of the

cost advantage versus the lower expected return of the risky asset. The figure illustrates a

situation where the former benefit outweighs the latter cost.

As before, the LLR is beneficial since it mitigates the loss of banking panics, dR > dN and

zR < zN , but accompanies a higher probability of banking panics in the first place.

The following comparative static results and their intuitions are quite similar to the ones

with a safe asset. The proof is lengthy but is quite similar to the one offered in Corollary 3.

We therefore do not provide it here (available upon request).

Corollary 4 (Effects of Inflation and Loan Rate) Suppose that ξ > 0 is not too big.

Then, the interior solutions with the risky asset satisfy

∂zR
∂π

< 0,
∂dR
∂π

> 0,
∂zR
∂RC

> 0, and
∂dR
∂RC

< 0.
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Furthermore,

∂α∗

∂π
< 0,

∂α∗∗
η

∂π
< 0,

∂α∗∗∗
η

∂π
= 0,

∂α∗

∂RC
> 0,

∂α∗∗
η

∂RC
> 0, and

∂α∗∗∗
η

∂RC
= 0.

4.3 Asset Choice

We now study the optimal asset choice of private banks in the presence of the LLR. As

mentioned before, safe and risky assets are substitutes, and so depositors choose the higher

expected utilities of these two assets. Hence, the problem is

max{−dS + βV s(dS),−dR + βV r(dR)}. (13)

Let us define the difference between the net expected values of the safe and risky assets as:

∆(RC , η) ≡ (1− β)[{−dS + βV s(dS)} − {−dR + βV r(dR)}]. (14)

Clearly, the safe asset is selected if ∆(RC , η) > 0, while the risky asset is selected if ∆(RC , η) <

0.

The next lemma establishes some properties of ∆(RC , η).

Lemma 5 1. If RC > max{RC∗, R̂C∗}, then ∆(RC , η) = 0.

2. If RC ∈ [RC∗, R̂C∗), then ∆(RC , η) < 0.

3. If RC ∈ [R̂C∗, RC∗), then ∆(RC , η) > 0.

4. limη→1∆(RC , η) = 0.

5. limη→1
∂∆
∂RC (R

C , η) = 0.

6. If ηλ and βR are very close to 1, then limRC→RC ∆(RC , η) < 0.

The first property follows immediately from the above discussion and Propositions 1 and 2.

If RC > max{RC∗, R̂C∗}, it follows that −dS+βV s(dS) = −dR+βV r(dR) = −dN+βV (dN ), so

that the discount window lending is not used, and asset choice becomes irrelevant. To examine

the second property, suppose RC ∈ [RC∗, R̂C∗). Then, since the loan rate RC is greater than

the threshold rate at which the safe asset is used as collateral (RC∗), but less than the threshold
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rate at which the risky asset is used (R̂C∗), the bank is willing to invest in the risky asset.

That is, moral hazard occurs. Banks can borrow from the discount window and default with

probability 1−η. To analyze the third property, suppose RC ∈ [R̂C∗, RC∗). Then, applying an

argument to the second, RC is greater than the threshold rate of the risky asset but less than

the rate of the safe asset, and so banks use the safe asset to borrow money from the discount

window. Banks behave prudently and never default on the loans. The intuition for the fourth

property is that if η is very close to unity, the safe and risky assets are fundamentally the

same and the net expected values are equalized. Note here that η → 1 implies that the only

admissible parameter value is λ → 1 given λ > 1 and ηλ ≤ 1. The fifth property states that

the effect of the lending rate on the choice of investment becomes negligible as η gets closer to

unity. This property is in sharp contrast to the conventional view that a higher lending rate

has an impact on moral hazard. The final property states that if RC is close to RC , banks

with risky assets will hold almost no cash reserves and rely on the discount window because it

is free from inflation costs. On the other hand, banks with the safe asset will hold a positive

amount of cash reserves since RC > πR and will use the discount window loan only when

they exhaust the reserves. Since the safe asset’s advantage in returns will disappear if ηλ is

sufficiently close to unity, and banks can avoid inflation costs by investing in the risky asset,

the risky asset will dominate the safe asset as RC → RC . This advantage of the risky asset

becomes greater as the cost of holding collateral becomes small, that is, R → 1
β . The last two

properties of Lemma 5 are the key building blocks for Proposition 3.

The next lemma provides a characterization of RC∗ ≷ R̂C∗.

Lemma 6 There exists (ηλ)∗ ∈ ( 1
πR , 1) such that RC∗ < R̂C∗ if ηλ ∈ ((ηλ)∗, 1] and RC∗ >

R̂C∗ if ηλ ∈ (0, (ηλ)∗).

Combining Lemmas 5 and 6, we can say that if the expected return on the risky asset,

ηλ, is sufficiently high, the risky asset is also selected for RC ∈ [RC , R̂C∗). In this case, since

the risky asset is always selected whenever the discount window is activated, controlling the

lending rate is not effective in preventing the banks from taking excessive risks.
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To summarize, we provide the following proposition.

Proposition 3 (Moral Hazard) In a monetary equilibrium with the LLR, the discount win-

dow is activated if and only if the lending rate is low, RC < max{RC∗, R̂C∗}. When LLR

lending is used, private banks will invest in the risky asset rather than the safe asset if the

expected return of the risky asset is sufficiently high and the cost of holding the collateral is

sufficiently small.

Relative to the safe asset, the risky asset has a cost advantage, but a relatively lower

expected return. Thus, if the expected return of the risky asset is not too low, the risky asset

will be selected, and banking defaults can occur in equilibrium. Notice here that banking

panics and banking defaults are correlated. The risky asset leads to a higher deposit level

than the safe asset does, but to lower cash reserves, zR < zS , leading to a higher probability

of banking panics. Thus, despite the higher probability of banking panics, the risky asset can

better mitigate the loss of panics since the banks can borrow more during a panic, that is,

u−1′(ηRC) > u−1′(RC).

Historically, discount window loans made during banking crises are often defaulted par-

tially (sometimes totally) or their payback dates are extended since it is difficult for the LLR

to distinguish between an illiquid and an insolvent bank. For example, the Bank of Japan

provided emergency special loans (called toku-yu) to 114 selected banks in response to the

panic of 1927, but about half of the rescued banks had been insolvent and were overdue in

their repayments in 1933. Furthermore, the Bank of Japan could not collect more than 52

million yen in loans even in 1952 (see Yokoyama, 2018). Since, in the model, the timings of

illiquidity and insolvency are different and there is asymmetric information about the quality

of a bank’s portfolio, our model captures some of the important elements of the LLR policy.

To further explore the equilibrium outcomes, we use some numerical examples. We assume

u(q) = q1−ξ/1 − ξ with ξ > 0, and α is uniformly distributed, with the following parameter

values: β = 0.96, R = 1.03, λ = 1.1, ξ = 1.3, and π = 1.03. The top panel of Table 1

summarizes the result with η = 0.9 (ηλ = 0.99), where the risky asset is selected for any
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RC < R̂C∗ = 1.3308, that is, ∆(RC , η) < 0. The lower panel of Table 1 illustrates the result

with η = 0.8925 (ηλ = 0.9818) where the safe asset is selected for any RC < RC∗ = 1.2911 and

∆(RC , η) > 0. Clearly, for values of ηλ < 0.9818, equilibrium allocations with the safe asset

are not affected by η and λ. In any case, an increase in RC raises the bank’s cash reserves

and reduces deposits, leading to higher cutoffs, α∗
R and α∗∗

R , or α∗
S and α∗∗

S , but α∗∗∗
R or α∗∗∗

S

remains unchange. Once RC exceeds the threshold R̂C∗ or RC∗, banks will no longer use the

central bank loans.

RC ηλ (zR, dR) (α∗
R, α

∗∗
R , α∗∗∗

R ) ∆(RC , η) Types of Equilibrium

1.20 0.99 (0.4082, 0.8557) (0.3963, 0.4205, 0.8280) -0.0039 Risky
1.23 0.99 (0.5578, 0.8255) (0.5416, 0.5856, 0.8280) -0.0022 Risky
1.26 0.99 (0.6432, 0.7988) (0.6245, 0.6879, 0.8280) -0.0014 Risky

1.20 0.9818 (0.6734, 0.8000) (0.6538, 0.7523, 0.8772) 0.0002 Safe
1.23 0.9818 (0.7046, 0.7810) (0.6840, 0.8021, 0.8772) 0.0004 Safe
1.26 0.9818 (0.7264, 0.7620) (0.7052, 0.8424, 0.8772) 0.0006 Safe

Table 1: Monetary equilibria with safe and risky assets

Finally, we examine the effect of inflation on the choice of investment. Table 2 summarizes

the result with π = 1.06. Comparing the top panels of Tables 1 and 2, we can see that inflation

has a negative effect on cash reserves, leading to a high probability of a banking panic, but a

positive effect on the deposit level. Comparing the lower panels of Table 1 and 2, we can see

that asset change occurs at RC = 1.20, switching from the safe to risky as inflation increases.

Technically, an increase in the inflation rate shifts the function ∆(RC , 0.8925) down slightly,

so that the range of parameters for which moral hazard occurs, that is, ∆(RC , 0.8925) < 0,

is likely to emerge. Intuitively, because a bank holds more cash with the safe asset than with

the risky asset, investing in the safe asset incurs greater inflation costs than investing in the

risky asset. However, the effect of inflation on the choice of investment seems to be relatively

small because asset change occurs only when ηλ is near the threshold. The reason for this

is that with the LLR a bank can avoid money holding cost of higher inflation by investing

more in long-term assets and relying more on the discount window for repayments during the

day. That is, the effect of inflation is mitigated to some extent by a bank’s inflation-avoiding

31



behavior. On the other hand, too much reliance on the discount window due to higher inflation

rates implies higher threshold values of RC∗ and R̂C∗ so that banks tend to use loans even at

relatively high lending rates.

RC ηλ (zR, dR) (α∗
R, α

∗∗
R , α∗∗∗

R ) ∆(RC , η) Types of Equilibrium

1.20 0.99 (0.0183, 0.9074) (0.0173, 0.0183, 0.8280) -0.0078 Risky
1.23 0.99 (0.2766, 0.8794) (0.2610, 0.2822, 0.8280) -0.0046 Risky
1.26 0.99 (0.4268, 0.8537) (0.4026, 0.4435, 0.8280) -0.0030 Risky

1.20 0.9818 (0.0338, 0.8812) (0.0319, 0.0336, 0.8004) -0.0004 Risky
1.23 0.9818 (0.5926, 0.8183) (0.5590, 0.6555, 0.8772) 0.0006 Safe
1.26 0.9818 (0.6315, 0.8010) (0.5958, 0.7117, 0.8772) 0.0009 Safe

Table 2: Monetary equilibria with higher inflation: π = 1.06

4.4 Discussions

From our analysis so far, we can summarize the main implications of the economic roles and

consequences of the LLR as follows.

(i) The LLR reduces a bank’s cash reserves and increases the likelihood of depletion of the

liquid reserves (a banking panic). However, the magnitude of a panic is mitigated.

(ii) The LLR may create moral hazard, that is, private banks may take more financial risks

in terms of long-term assets.

(iii) The occurrence of moral hazard is determined mainly by the expected relative returns

of the safe and risky assets and the cost of holding collateral given the asymmetric

information about the quality of a bank’s assets that can be used as collateral.

From (i) and (ii), we can conclude that the existence of a credible LLR can make a financial

system unstable but it is potentially welfare improving. In this sense, there is a trade-off

between efficiency and financial stability. Furthermore, in contrast to conventional wisdom,

from (iii), high (penalty) lending rates cannot have much impact on moral hazard when the
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expected return on the risky asset is sufficiently high, the cost of holding collateral is low, and

the problem of asymmetric information is severe.

One might think that if the LLR could commit in advance regarding the quality of accept-

able collaterals during a crisis, based on its efforts to keep track of banks’ portfolio strategies

and eliminate asymmetric information about their assets (i.e., audit and stress test), it would

increase the banks’ incentives to behave prudently. While we admit the significance of efforts

for overcoming the asymmetric information problem, there is an important time-inconsistency

problem, as discussed in Kydland and Prescott (1977) and Ennis and Keister (2009). The

central bank would like banks to believe that it will accept only safe assets (e.g., T-bills) as

collateral for the discount window loans during a panic. However, if a panic actually occurred,

the central bank would find it optimal to lend liquidity to troubled banks against even their

risky assets (e.g., equity shares and mortgage-backed securities). If so, banks will be willing

to hold risky assets in advance, and as a result, the lack of commitment leads to moral hazard

and banking defaults.

Our results are related to some existing literature on the LLR policy and moral hazard.

Martin (2006) shows that a liquidity provision policy by the central bank can prevent panics

without creating moral hazard. In his model, which is based on a banking model of Cooper and

Ross (1998), risk-averse depositors prefer the safe asset to the risky asset because borrowing

strategies and portfolio choices are dichotomized. In contrast, in our model the risky asset has

a comparative advantage in borrowing money from the central bank due to limited liability,

which gives banks an incentive to choose the risky asset in advance. Repullo (2005) also shows

that the existence of the LLR does not increase bank’s risk-taking incentives, but simply

reduces their liquid reserves. His paper and our paper share a common view that the expected

return on the risky asset is the main factor in determining the risk of a bank’s portfolio.

However, in our model the existence of the LLR still matters since the collateralized LLR

lending creates a liquidity premium on illiquid long-term assets.

Finally, we have abstracted from reputation effects by assuming that banks live only for

one period and the central bank committee members are replaced in each period. These
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assumptions make the analysis simple and highlight banks’ risk-taking investment behavior in

the presence of the LLR. If banks lived infinitely and committee members were not renewed,

the LLR could use history-dependent lending policies that have a positive effect on banks’

incentives for prudent behavior. However, once the LLR adopts the too-big-to-fail doctrine

or fail to make a strong commitment, the reputation effect would be weakened so that our

analysis still remains relevant.

5 Extensions

In this section, we examine some policies to curb moral hazard. As stated earlier, the presence

of the LLR improves welfare but decreases financial stability. Though not modelled explicitly

here, a government would place more value on financial stability than ex ante efficiency, because

a crisis may have significant negative impacts on the real sector (e.g., increasing unemployment,

decreasing output, etc.). Can the government eliminate banking defaults or moral hazard at

the expense of welfare? To answer this question, we consider two policies that are often

implemented in practice: a liquidity requirement and constructive ambiguity.

5.1 Liquidity Requirement

Under the liquidity requirement, all banks must hold a certain proportion of liquid reserves

in their portfolio. The liquidity coverage ratio is envisioned by Basel III. Specifically, the

government forces banks to invest at least a fraction κ ∈ [0, 1] of their deposits d in liquid

reserves in the CM, so it has to hold that

z ≥ κd.

The liquidity requirement imposes a lower bound of cash reserves z banks should hold. A

higher κ implies a tighter constraint for banks.

Suppose now that the liquidity requirement is severe enough to be binding only with the

risky asset, but not with the safe asset, that is, κ satisfies

zR
dR

< κ <
zS
dS

,
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where (zR, dR) and (zS , dS) are the unconstrained equilibrium allocation, obtained in Propo-

sition 1 and 2, respectively, without imposing the liquidity requirement. Remember that the

point (zS , dS) is in the northwestern area of (zR, dR) in Figure 5, implying that (zR, dR) is

more likely to be restricted by the requirement. Then, the first order condition of the optimal

portfolio choice with risky asset must be

Φ(z, d) ≡ 1

π
Φz(z, d)−RΦl(z, d) < 0,

with z = κd. The Euler equation now becomes, −1 + βV ′(d) = 0 where

V ′(d) =
∂z

∂d

∂V (d)

∂z
+

∂V (d)

∂d
= κΦ(z, d) +RΦl(z, d) =

κ

π
Φz(z, d) + (1− κ)RΦl(z, d).

Thus, the solutions with a binding liquidity requirement, denoted by (zκR, d
κ
R), should satisfy

zκR = κdκR where dκR is the unique solution to

κΦz(κd, d) + (1− κ)πRΦl(κd, d) =
π

β
. (15)

The effects of the liquidity constraint on the optimal values of deposits and cash reserves

are summarized as follows.

Proposition 4 The optimal value of dκR is strictly decreasing in κ. The effect of κ on zκR is

negative if ξ is sufficiently small, and positive otherwise.

A tighter liquidity requirement (i.e., a higher κ) makes the deposit contract less attractive

so that the buyers reduce their deposits. The effect on the reserves is ambiguous because it

increases the required reserves but discourages depositing. The proposition shows that the

latter effect dominates the former if the degree of relative risk aversion is sufficiently small

(the substitution effect is strong) and vice versa.

We now examine the effect of the liquidity requirement on the choice of asset investments.

Suppose that ξ is not so small that zκR is strictly increasing in κ. Then, a gradual increase in κ

decreases dκR and increases zκR, reducing the probability of a panic and welfare. If the expected

return on the risky asset is sufficiently high (i.e., ηλ ≈ 1), the risky asset will be adopted
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even when
zκR
dκR

= κ ≈ zS
dS
. On the other hand, the effect of a tighter liquidity requirement is

ambiguous. We demonstrate it using numerical examples in which the parameter values are

the same as in the top panel of Table 1, that is, with η = 0.9.

Table 3 compares two situations where the liquidity requirement is slack with κ = 0, and

sufficiently tight with κ = zS
dS
. Note that the equilibrium outcomes with κ = 0 are the same

as in the top panel of Table 1. Observe that the safe asset is selected when RC = 1.2, while

the risky asset continues to be selected even in the presence of the liquidity requirement when

RC = 1.23 and 1.26. The liquidity requirement reduces the benefit of the risky asset used as

collateral. This result suggests that a proper combination of the liquidity regulation and the

lending rate can reduce not only the likelihood of a banking panic but also control the moral

hazard problem at the expense of ex-ante welfare.

RC κ (z, d) (α∗, α∗∗, α∗∗∗) ∆(RC , η) Types of Equilibrium

1.20 0.0000 (0.4082, 0.8557) (0.3963, 0.4205, 0.8280) -0.0039 Risky
1.23 0.0000 (0.5578, 0.8255) (0.5416, 0.5856, 0.8280) -0.0022 Risky
1.26 0.0000 (0.6432, 0.7988) (0.6245, 0.6879, 0.8280) -0.0014 Risky

1.20 0.8418 (0.6734, 0.8000) (0.6538, 0.7523, 0.8772) 0.0003 Safe
1.23 0.9022 (0.7212, 0.7994) (0.7002, 0.7571, 0.8280) -0.0001 Risky
1.26 0.9533 (0.7435, 0.7799) (0.7219, 0.7952, 0.8280) -0.0003 Risky

Table 3: Monetary equilibria with liquidity requirement: κ = zS
dS

5.2 Constructive Ambiguity

Constructive ambiguity is defined as not declaring in advance and being ambiguous about

which banks would be regarded as large enough to fail and be rescued. Some economists

and policymakers are positive about its effectiveness in controlling the moral hazard problem.

For example, Giannini (1999, p.14) states that “the task of curbing moral hazard appears to

have been performed largely by constructive ambiguity,” while Schwartz (2002, p.452) puts

“Constructive ambiguity supposedly constrains excessive risk taking by banks.”6

6See also Corrigan (1990) and Freixas et al. (2000).
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To address this issue, we now consider the LLR policy with constructive ambiguity and

assume that discount window lending is available with probability ρ ∈ [0, 1]. This probability

is known to depositors and banks. Clearly, when ρ = 1 the analysis is identical to the one

given so far, while when ρ = 0 the model is identical to the basic model without the LLR. We

can think of 1− ρ as measuring the degree of policy ambiguity and controllable by the central

bank.

Suppose that ρ ∈ (0, 1) and consider first the case of the safe asset. Note that the bank’s

solutions after the realization of α are the same as that in Lemma 2 when the bank has access

to the LLR and that in Lemma 3 when the bank does not. Then, the value function at the

beginning of a day can be modified as follows:

Vρ(d) = max
0≤z≤d

ρ

{∫ α∗

0

[
αu(q∗) +

(
1− α

α∗

) z

π

]
f(α)dα+

∫ α∗∗

α∗
αu
( z

απ

)
f(α)dα

+

∫ α∗∗∗

α∗∗

[
αu
(
u−1′(RC)

)
−RC

(
αu−1′(RC)− z

π

)]
f(α)dα

+

∫ 1

α∗∗∗

[
αu

(
RC

π z +R(d− z)

RCα

)
−R(d− z)

]
f(α)dα

}

+ (1− ρ)

{∫ α∗

0

[
αu(q∗) +

(
1− α

α∗

) z

π

]
f(α)dα+

∫ 1

α∗
αu
( z

απ

)
f(α)dα

}
+ {1− E(α)} {u(q∗)− q∗}+R(d− z) + T +max

x≥0
{U(x)− x}+ max

d+≥0
{−d+ + βV (d+)}.

Since a bank has an opportunity to borrow form the LLR with probability ρ, the value

function is a convex combination of the expected utility with and without access to the LLR

with weights ρ and 1− ρ. The first order condition with respect to z yields

Ψρ(z, d) ≡ ρ

[
1

π
Ψz(z, d)−RΨk(z, d)

]
+ (1− ρ)

[
1

π
Υ(z)−R

]
≥ 0

with equality if z < d.

The Euler equation becomes βV ′
ρ(d) = 1 where

V ′
ρ(d) =

∂z

∂d

∂Vρ(d)

∂z
+

∂Vρ(d)

∂d
.

Thus, an interior solution, denoted by (zρS , d
ρ
S), must satisfy the Euler equation, βV ′

ρ(d) =
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β
∂Vρ(d)
∂d or

ρΨk(z, d) + (1− ρ) =
1

βR
, (16)

and the first order condition

ρΨz(z, d) + (1− ρ)Υ(z) =
π

β
. (17)

The effects of ρ on the equilibrium allocations are characterized in the following proposition.

Proposition 5 The optimal cash reserves zρS are decreasing in ρ, and the optimal deposits dρS

are increasing in ρ.

This result shows that constructive ambiguity gives banks an incentive to insure themselves

by increasing their cash reserves, thus reducing the probability of a banking panic, while the

deposit level decreases since the deposit contract becomes less attractive.

We next examine the effect of ρ on the threshold for the activated LLR. Let RC∗
ρ be defined

by Ψ̃ρ(R
C∗
ρ ) = 0 where

Ψ̃ρ(R
C) ≡ πΨρ(d, d) = ρ {Ψz(d, d)− πRΨk(d, d)}+ (1− ρ) {Υ(d)− πR}

=
π

β
− πR

[
ρ

{
F (α∗∗∗) +

1

RC

∫ 1

α∗∗∗
u′
(

d

απ

)
f(α)dα

}
+ (1− ρ)

]
.

From this it follows that RC∗
ρ is increasing in ρ and RC∗

ρ → RC∗ as ρ → 1. This result shows

that the parameter set (πR,RC∗
ρ ], when the discount window is activated, becomes smaller as

ρ decreases, implying that constructive ambiguity (low ρ) will be inconsistent with a higher

(penalty) lending rate. If both the policies were implemented rigorously, banks might stop

borrowing from the LLR even when there is a banking panic.

Not surprisingly, similar results are obtained in the case of the risky asset. The proof is

quite similar to that of Proposition 5 and hence omitted here (available upon request).

Proposition 6 The optimal cash reserves zρR are decreasing in ρ, and the optimal deposits dρR

are increasing in ρ. In addition, the threshold, R̂C∗
ρ is also increasing in ρ.
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To illustrate the effect of constructive ambiguity on the choice of investment, we use nu-

merical examples. We compare two regimes, ρ = 0.7 and ρ = 1. Notice that the case of ρ = 1

is identical to the upper panel of Table 1. Table 4 illustrates that constructive ambiguity gives

the banks an incentive to insure themselves by increasing their cash reserves. Thus, by reduc-

ing the probability of a banking panic, constructive ambiguity can prevent banks from taking

risks. This occurs when RC = 1.2 and 1.23. Intuitively, since a bank relies more heavily on

the discount window with the risky asset than with the safe asset, the ambiguity reduces the

value of investing in the risky asset more drastically than in the safe asset. These numerical

results imply that constructive ambiguity may be an effective policy tool to curb moral hazard,

supporting the view of Giannini and Schwartz, but depositors bear the welfare cost of such a

policy.

RC ρ (z, d) (α∗, α∗∗, α∗∗∗) ∆(RC , η) Types of Equilibrium

1.20 1.0 (0.4082, 0.8557) (0.3963, 0.4205, 0.8280) -0.0039 Risky
1.23 1.0 (0.5578, 0.8255) (0.5416, 0.5856, 0.8280) -0.0022 Risky
1.26 1.0 (0.6432, 0.7988) (0.6245, 0.6879, 0.8280) -0.0014 Risky

1.20 0.7 (0.7247, 0.7710) (0.7036, 0.8096, 0.8553) 0.0004 Safe
1.23 0.7 (0.7361, 0.7537) (0.7146, 0.8380, 0.8553) 0.0001 Safe
1.26 0.7 (0.7244, 0.7652) (0.7033, 0.7748, 0.8115) -0.0001 Risky

Table 4: Monetary equilibria with constructive ambiguity

Finally, it is worth noting that our results raise an important time-inconsistency problem

again. If constructive ambiguity is effective, the central bank would like banks to believe that

they cannot be certain if they will be rescued during a panic. However, if a panic occurred,

the central bank would find it optimal to provide liquidity to troubled banks even in a state

where it should not. If so, banks will believe that they will be rescued for sure during a panic

ex ante, ending up making this policy ineffective. Constructive ambiguity requires a strong

commitment to future actions of the LLR.
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6 Conclusion

We developed a monetary model of banking panics that allows us to investigate the economic

role and consequence of the lender of last resort. Given that private banks operate subject to

limited liability, collateralized assets have liquidity values so that cash and long-term assets

become substitutes during panics in the presence of the LLR. We showed that the LLR’s

liquidity provision will diminish banks’ incentive to hold liquid assets, which in turn increases

the probability of a banking panic. Despite this unpleasant side effect, the LLR will mitigate

the loss from banking panics and is beneficial. We also showed limited liability frees them

from their payment responsibility in case of a default; hence, private banks can be induced

to invest in risky assets rather than safe assets. That is, the LLR can create moral hazard in

investment where private banks take more financial risk in terms of long-term assets.

Our results point to the public debate on the classical doctrine versus the moral hazard

problem. To the best of our knowledge, our paper is the first to consider the effect of the LLR’s

liquidity provision to influence banks’ portfolio decision, which eventually increases the ex ante

probability of banking panics, and causes the moral hazard problem that increases financial

risks in long-term assets. We have done this in a monetary framework where the role of

liquidity is made explicit in the occurrence of a banking panic. Our results are negative about

the conventional view that a high rate on the discount window can prevent banks from taking

excessive risks. Additional policies such as liquidity requirements and constructive ambiguity

can give banks self-guarding incentives and increase cash reserves, reducing the likelihood of

a shortage of reserves, and in addition can influence the choice of investments.

The next step would be to use our model to evaluate the impact of a capital requirement on

the choice of investments as discussed in Repullo (2004, 2005). This issue could be addressed

by adding risk-neutral investors who provide equity capital to the banks. Another possibility

would be to extend our model to an open economy to assess the need of an international LLR.
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Appendix

Proof of Lemma 1

The first order condition with respect to θ is as follows:

z

π

{
u′
(
θz

απ

)
− 1

}
≥ 0,

with equality if θ < 1. There are two possible cases for the solution. If θ < 1, then u′ (qn) =

1 ⇔ qn = q∗. This case is true when θ = απq∗

z < 1 ⇔ α < z
πq∗ ≡ α∗. If θ = 1, then

u′ (qn) ≥ 1 ⇔ qn = z
απ ≤ q∗, leading to α ≥ α∗. The lemma follows. �

Proof of Lemma 2

Applying the optimal payment plan qn = min{ z
απ , q

∗} and θ = min{ α
α∗ , 1} with the critical

value α∗ = z
πq∗ described in Lemma 1, the value function in the CM, W (·), and the balance

sheet constraint, d = z + k + l, the banks’ portfolio choice problem can be written as

V (d) = max
z,k,l≥0

∫ 1

0

[
α {u(qn) +W (0, k, l, 0)}+ (1− α)

{
u(q∗) +W

(
(1− θ)z

(1− α)π
, k, l, q∗

)}]
f(α)dα,

= max
z,l≥0

∫ z
πq∗

0

[
u(q∗)− (1− α)q∗ +

(
1− απq∗

z

)
z

π

]
f(α)dα

+

∫ 1

z
πq∗

[
αu
( z

απ

)
+ (1− α){u(q∗)− q∗}

]
f(α)dα

+R[(d− z − l) + ηλl] + T +max
x≥0

{U(x)− x}+ max
d+≥0

{−d+ + βV (d+)}.

The first order conditions yield l = 0 (since ηλ < 1) and

1

π
Υ(z) ≡ 1

π

[
F (α∗) +

∫ 1

α∗
u′ (qn) f(α)dα

]
≥ R,

with equality if Υ(d) < πR. Since

Υ′(z) =

∫ 1

α∗

1

απ
u′′ (qn) f(α)dα < 0

and Υ(0) = +∞ > πR, there exists a unique solution z = z(d) ∈ (0, d) to Υ(z(d)) = πR, if

Υ(d) < πR. Otherwise, Υ(d) ≥ πR for all z ∈ (0, d] and so we must have a corner solution,

z = d. The quantity of long-term safe assets is given by k = d− z ≥ 0. �
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Proof of Theorem 1

The Euler equation is

−1 + βV ′(d) = 0

where

V ′(d) =
∂z

∂d

∂V (d)

∂z
+

∂V (d)

∂d
.

There are two cases. For d ≥ Υ−1(πR) we have z = z(d) ∈ (0, d) (an interior solution) and

Υ(z(d)) = πR, which implies

V ′(d) =
∂V (d)

∂d
= R,

and, thus, the Euler equation is −1 + βR = 0, which is impossible under our assumption

βR < 1. Hence, d ≥ Υ−1(πR) with z = z(d) ∈ (0, d) (an interior solution) cannot be an

equilibrium.

For d < Υ−1(πR), we have z = d (the corner solution), and so the Euler equation is

−1 + βV ′(d) = −1 + β
[{

1
πΥ(d)−R

}
+R

]
= 0 or

π

β
= F

(
d

πq∗

)
+

∫ 1

d
πq∗

u′
(

d

πα

)
f(α)dα (= Υ(d)), (A.1)

where the R.H.S. is the marginal value of cash holdings at z = d. It satisfies: Υ(0) =

∞ > π
β > 1 = Υ(πq∗) and Υ′(·) < 0 (see above). Hence, there exists a unique solution

d ∈ (0, πq∗) to (A.1). Since d < πq∗ implies α∗ < 1, the probability of banking panics is

positive, 1− F (α∗) ∈ (0, 1), in equilibrium. �

Proof of Corollary 1

Differentiating (A.1) with respect to π and using (A.1) yields

∂dN
∂π

=

1
β + 1

π

∫ 1
dN
πq∗

u′′(dNπα )
dN
απ f(α)dα∫ 1

dN
πq∗

u′′(dNπα )
f(α)
απ dα

= −
1
β − ξ

π

{
π
β − F

(
dN
πq∗

)}
ξ
dN

∫ 1
dN
πq∗

u′(dNπα )f(α)dα
< 0 (A.2)

if ξ < ξ̂ ≡
π
β

π
β
−F

(
dN
πq∗

) . Clearly, if ξ < ξ̂, α∗ = dN
πq∗ is decreasing in π, it implies that 1− F (α∗)

is increasing in π. �
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Proof of Lemma 3

We have the following system of equations induced by the first order conditions:

u′
(
θz

απ
+

b

α

)
− 1 =

µπ

z
, (A.3)

u′
(
θz

απ
+

b

α

)
−RC(1 + µk) = −µb, (A.4)

where µ ≥ 0 is the Lagrange multiplier of θ ≤ 1, µb ≥ 0 is the Lagrange multiplier of the non-

negativity constraint b ≥ 0, and µk ≥ 0 is the Lagrange multiplier of the borrowing constraint

(4), RCb ≤ Rk.

There are four cases for the solution to the above equations (A.3) and (A.4).

Case 1: θ < 1 and b = 0. Since θ < 1 implies µ = 0, we have in (A.3),

u′
(
θz

απ
+

b

α

)
= 1.

This implies in (A.4) that we must have µb > 0, leading to b = 0. Note that b = 0 and

u′(qn) = 1 further lead to

θ =
απq∗

z
,

and θ < 1 ⇐⇒ α < α∗ ≡ z
πq∗ . Hence, for α ∈ (0, α∗), the solution is θ < 1 and b = 0.

Case 2: θ = 1 and b = 0. θ = 1 and b = 0 lead to µ ≥ 0, µk = 0, and µb ≥ 0, which yield

u′
( z

απ

)
≥ 1 ⇐⇒ α ≥ α∗,

u′
( z

απ

)
≤ RC ⇐⇒ α ≤ α∗∗,

where α∗∗ ≡ z
πu−1′(RC)

> z
πq∗ ≡ α∗ with RC > 1. Hence, for α ∈ [α∗, α∗∗], the solution is θ = 1

and b = 0.

Case 3: θ = 1 and b ∈
(
0, Rk

RC

)
. µk = 0 and µb = 0 lead to

u′
(

z

απ
+

b

α

)
= RC ⇐⇒ b = αu−1′(RC)− z

π
.

This implies that b > 0 ⇐⇒ α > α∗∗ ≡ z
πu−1′(RC)

and RCb < Rk ⇐⇒ α < α∗∗∗ ≡
RC

π
z+Rk

RCu−1′(RC)
.

Hence, for α ∈ (α∗∗, α∗∗∗), the solution is θ = 1 and b ∈
(
0, Rk

RC

)
.

Case 4: θ = 1 and b = Rk
RC . R

Cb = Rk leads to µk ≥ 0 and µb = 0, which yield

u′
(

z

απ
+

Rk

αRC

)
≥ RC ⇐⇒ α ≥ α∗∗∗ ≡

RC

π z +Rk

RCu−1′(RC)
.

Hence, for α ∈ [α∗∗∗, 1), the solution is θ = 1 and b = Rk
RC .

The above covers all the possible cases and completes the proof. �
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Proof of Proposition 1

First, we identify the parameter space in which k = d− z > 0. In the first order condition (6),

observe that

Ψ(0, d) =

(
RC

π
−R

)[
F (α∗∗∗|z=0) +

1

RC

∫ 1

α∗∗∗|z=0

u′
(

Rd

RCα

)
f(α)dα

]
=

1

βR

(
RC

π
−R

)
> 0,

where α∗∗∗|z=0 ≡ Rd
RCu−1′(RC)

, and the last expression uses the Euler equation (7). Differenti-

ating (6) with respect to z yields

π
∂Ψ(z, d)

∂z
=

∫ α∗∗

α∗

1

απ
u′′
( z

απ

)
f(α)dα+

(
1− πR

RC

)∫ 1

α∗∗∗

RC

π −R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0.

Further, evaluating (6) at z = d and d > 0 satisfying (3), we have:

πΨ(d, d) = F (α∗|z=d) +

∫ 1

α∗|z=d

u′
(
dN
πα

)
f(α)dα− πR

[
F (α∗∗∗|z=d) +

1

RC

∫ 1

α∗∗∗|z=d

u′
(
dN
πα

)
f(α)dα

]

=
π

β
− πR

[
F (α∗∗∗|z=d) +

1

RC

∫ 1

α∗∗∗|z=d

u′
(
dN
πα

)
f(α)dα

]
≡ Ψ̃(RC),

where α∗|z=d = dN
πq∗ , α

∗∗∗|z=d = dN
πu−1′(RC)

and dN = zN is the equilibrium deposit without

the LLR as described in Theorem 1. In the last expression, we have:

Ψ̃(RC) → π

β
− πR

[
F (α∗∗∗|z=d) +

1

πR

∫ 1

α∗∗∗|z=d

u′
(
dN
πα

)
f(α)dα

]
< 0

as RC → πR, since the above term goes to zero as R → 1
π and is decreasing in R; Ψ̃(RC) =

π
β − πR > 0 for RC ≥ u′(dNπ ) satisfying α∗∗∗|z=d = min

{
dN

πu−1′(RC)
, 1
}
= 1;

Ψ̃′(RC) =
πR

(RC)2

∫ 1

α∗∗∗|z=d

u′
(
dN
πα

)
f(α)dα > 0. (A.5)

Hence there exists a unique critical value, denoted by RC∗ ∈ (πR, u′(dNπ )) satisfying Ψ̃(RC∗) =

0, Ψ̃(RC) > 0 for RC > RC∗ and Ψ̃(RC) < 0 for RC < RC∗. We showed that z = d for

RC ≥ RC∗, hence, the solution has to be an interior one if z < d for RC < RC∗ (if it exists).

We now show the existence and uniqueness of an equilibrium solution (zS , dS) > 0 given

RC ∈ (max{πR, 1}, RC∗).
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The solution has to satisfy the following system of equations:

Ψz(z, d) ≡ F (α∗) +

∫ α∗∗

α∗
u′
( z

απ

)
f(α)dα+ [F (α∗∗∗)− F (α∗∗)]RC

+

∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα =

π

β
(A.6)

Ψk(z, d) ≡ F (α∗∗∗) +
1

RC

∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα =

1

βR
. (A.7)

Observe that:

∂Ψz(z, d)

∂z
=

∫ α∗∗

α∗

1

απ
u′′
( z

απ

)
f(α)dα+

∫ 1

α∗∗∗

RC

π −R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0; (A.8)

∂Ψz(z, d)

∂d
=

∫ 1

α∗∗∗

R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0; (A.9)

Ψz(zN , dN ) = π
β ; Ψz(z, d) =

π
β for sufficiently high values of d such that α∗∗∗ = min

{
RC

π
z+R(d−z)

RCu−1′(RC)
, 1

}
=

1 with some lower bound z ∈ (0, zN ). Hence, the implicit equation (A.6) determines a function

z = z(d) that satisfies z′(d) < 0, z(dN ) = zN and z(d) = z > 0 at some d ∈ (dN ,∞) that leads

to α∗∗∗ = 1.

Observe also that

∂Ψk(z, d)

∂z
=

1

RC

∫ 1

α∗∗∗

RC

π −R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0; (A.10)

∂Ψk(z, d)

∂d
=

1

RC

∫ 1

α∗∗∗

R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0. (A.11)

Further,

Ψk (d, d) = F (α∗∗∗|z=d) +
1

RC

∫ 1

α∗∗∗|z=d

u′
(
dN
πα

)
f(α)dα >

1

βR

for RC < RC∗ and d = dN (satisfying (3)). In this expression, since Ψk(d, d) is decreasing in all

d > dN , we must have Ψk(d, d) =
1
βR (i.e., condition (A.7) holds true with z = d) for RC < RC∗

only when d > dN . Finally, since 1
βR > 1, it is impossible to hold the condition (A.7) for values

of d > dN that lead to α∗∗∗ = min

{
RC

π
z+R(d−z)

RCu−1′(RC)
, 1

}
= 1 and hence to Ψk(z, d) = 1. Therefore,

we must necessarily have z = 0 at some upper bound d̄ ∈ (dN ,∞), and so condition (A.7)

holds true only when d ∈ (dN , d̄]. Hence, the implicit equation (A.7) determines a function

z̃ = z̃(d) that satisfies z̃′(d) < 0, z̃(d) = d at some d > dN and z̃(d̄) = 0.
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Combining the above analysis, with some low d ∈ (dN , d̄), we have z̃(d) = d > z(d), while

with d = d̄, we have z̃(d̄) = 0 < z(d̄). Further,

∂

∂d
[z̃(d)− z(d)] = −

∫ α∗∗

α∗
1
απu

′′ ( z
απ

)
f(α)dα× ∂Ψz

∂d∫ 1
α∗∗∗

RC

π
−R

RCα
u′′
(

RC

π
z+R(d−z)

RCα

)
f(α)dα× ∂Ψz

∂z

< 0.

Therefore, the two curves, z = z(d) and z̃ = z̃(d), must intersect once, at d ∈ (dN , d̄) and

z ∈ (z, zN ), implying that there exists a unique solution to (A.6) and (A.7). �

Proof of Corollary 2

The claim follows from zS ≤ zN and dS ≥ dN . �

Proof of Corollary 3

Remember that the solutions satisfy equations (A.6) and (A.7). Observe that

∂Ψz(z, d;π,R
C)

∂π
= −

∫ α∗∗

α∗

z

απ2
u′′
( z

απ

)
f(α)dα−

∫ 1

α∗∗∗

z

απ2
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα > 0;

(A.12)

∂Ψz(z, d;π,R
C)

∂RC
= [F (α∗∗∗)− F (α∗∗)]−

∫ 1

α∗∗∗
u′′

(
RC

π z +R(d− z)

RCα

)
R(d− z)

(RC)2α
f(α)dα > 0; (A.13)

∂Ψk(z, d;π,R
C)

∂π
= − 1

RC

∫ 1

α∗∗∗

z

απ2
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα > 0; (A.14)

∂Ψk(z, d;π,R
C)

∂RC
=

1

(RC)2

(
−1 +

R(d− z)ξ
RC

π z +R(d− z)

)∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα. (A.15)

These implicit equations determine two continuous and differentiable functions d = dS(π,R
C)

and z = zS(π,R
C) which are characterized as follows:

(
∂zS
∂π
∂dS
∂π

)
= −

(
∂Ψk
∂z

∂Ψk
∂d

∂Ψz
∂z

∂Ψz
∂d

)−1( ∂Ψk
∂π

∂Ψz
∂π − 1

β

)

= − 1

Λ

(
∂Ψz
∂d −∂Ψk

∂d

−∂Ψz
∂z

∂Ψk
∂z

)(
∂Ψk
∂π

∂Ψz
∂π − 1

β

)
(A.16)(

∂zS
∂RC

∂dS
∂RC

)
= − 1

Λ

(
∂Ψz
∂d −∂Ψk

∂d

−∂Ψz
∂z

∂Ψk
∂z

)(
∂Ψk

∂RC

∂Ψz

∂RC

)
(A.17)
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where

Λ ≡ det

(
∂Ψk
∂z

∂Ψk
∂d

∂Ψz
∂z

∂Ψz
∂d

)
=

∂Ψk

∂z

∂Ψz

∂d
− ∂Ψk

∂d

∂Ψz

∂z

=
ξ

RCz

[∫ α∗∗

α∗
u′
( z

απ

)
f(α)dα

][∫ 1

α∗∗∗

R

αRC
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα

]
< 0,

using (A.8)–(A.11).⊙
The effect of π on zS . Now, inserting (A.9), (A.11), (A.12), and (A.14) into (A.16) and

rearranging, we get

Λ
∂zS
∂π

= −∂Ψz

∂d

∂Ψk

∂π
+

∂Ψk

∂d

(
∂Ψz

∂π
− 1

β

)
=

1

πRC

[∫ 1

α∗∗∗

R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα

][
ξ

∫ α∗∗

α∗
u′
( z

απ

)
f(α)dα− π

β

]
> 0,

if ξ < ξ̌ ≡
π
β∫ α∗∗

α∗ u′( z
απ )f(α)dα

. Since Λ < 0, we have, if ξ < ξ̌,

∂zS
∂π

< 0. (A.18)

In addition, we will make use of the following result.

π

z

∂zS
∂π

− 1 =
1

ξ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

[
(ξ − 1)

∫ α∗∗

α∗
u′
( z

απ

)
f(α)dα− F (α∗)

− [F (α∗∗∗)− F (α∗∗)]RC −
∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα

]
−1

= −
π
β

ξ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

< 0.

The last equality follows from the first order condition (8).⊙
The effect of π on dS . Similarly, inserting (A.8), (A.10), (A.12), and (A.14) into (A.16),

using the first oder condition (8), and rearranging terms, we have

Λ
∂dS
∂π

=
∂Ψz

∂z

∂Ψk

∂π
− ∂Ψk

∂z

(
∂Ψz

∂π
− 1

β

)
=

[∫ 1

α∗∗∗

1

RCπα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα

][
ξR

RC

∫ α∗∗

α∗
u′
( z

απ

)
f(α)dα+

RC

π −R

RC

π

β

]
< 0.

Since Λ < 0, we obtain
∂dS
∂π

> 0. (A.19)
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In addition, we will make use of the following result later.

Λ

(
∂dS
∂π

− ∂zS
∂π

)
=

1

πβR

[∫ 1

α∗∗∗

R

αRC
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα

]
< 0,

which leads to

R

(
∂dS
∂π

− ∂zS
∂π

)
=

RCz
πβ

ξ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

> 0.

Thus, using the above results, we have

∂α∗

∂π
=

π ∂z
∂π − z

(π)2q∗
< 0,

∂α∗∗

∂π
=

π ∂z
∂π − z

(π)2u−1′(RC)
< 0,

{RCu−1′(RC)}∂α
∗∗∗

∂π
=

RCz

π2

(
π

z

∂z

∂π
− 1

)
+R

(
∂d

∂π
− ∂z

∂π

)
= −

RCz
π2

π
β

ξ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

+

RCz
πβ

ξ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

= 0.

⊙
The effect of RC on zS . Similarly, substituting (A.9), (A.11), (A.13), and (A.15) into

(A.17), and rearranging, we get

Λ
∂zS
∂RC

= −∂Ψz

∂d

∂Ψk

∂RC
+

∂Ψk

∂d

∂Ψz

∂RC

=

[∫ 1

α∗∗∗

R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα

]

×

[
1

(RC)2

∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα+

F (α∗∗∗)− F (α∗∗)

RC

]
< 0.

Since Λ < 0, we have
∂zS
∂RC

> 0. (A.20)

In addition, we will make use of the following result.

RC

zS

∂zS
∂RC

=

∫ 1
α∗∗∗ u

′
(

RC

π
z+R(d−z)

RCα

)
f(α)dα+RC [F (α∗∗∗)− F (α∗∗)]

ξ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

> 0.
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⊙
The effect of RC on dS . Similarly, inserting (A.8), (A.10), (A.13), and (A.15) into (A.17),

we obtain

Λ
∂dS
∂RC

=
∂Ψz

∂z

∂Ψk

∂RC
− ∂Ψk

∂z

∂Ψz

∂RC

=
1

(RC)2

(
−1 +

R(d− z)ξ
RC

π z +R(d− z)

)[∫ α∗∗

α∗

1

απ
u′′
( z

απ

)
f(α)dα

][∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα

]

+
1

(RC)2
ξ(R

C

π −R)
RC

π z +R(d− z)

[∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα

]2

+

[
ξ

RC

RC

π −R
RC

π z +R(d− z)

∫ 1

α∗∗∗
u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα

]
[F (α∗∗∗)− F (α∗∗)] > 0,

if ξ < 1 + RCz
πR(d−z) . Since Λ < 0, we have

∂dS
∂RC

< 0, (A.21)

if ξ is not too big. Using the above results, some long but straightforward calculations show

that

∂kS
∂RC

=
∂dS
∂RC

− ∂zS
∂RC

= −
RC

π z + (1− ξ)R(d− z)

ξRRC
−

z
∫ 1
α∗∗∗ u

′
(

RC

π
z+R(d−z)

RCα

)
f(α)dα

ξRπ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

−
RC

π z{F (α∗∗∗)− F (α∗∗)}
ξR
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

< 0.

Further, we have

∂α∗

∂RC
=

1

πq∗
∂z

∂RC
> 0,

∂α∗∗

∂RC
=

∂z
∂RC u

−1′(RC)− z ∂u−1′(RC)
∂RC

π[u−1′(RC)]2
> 0,

∂α∗∗∗

∂RC
=

{RC

π
∂z

∂RC +R( ∂d
∂RC − ∂z

∂RC )}RCu−1′(RC)

[RCu−1′(RC)]2
−

R(d− z)u−1′(RC) + {RC

π z +R(d− z)}RC ∂u−1′(RC)
∂RC

[RCu−1′(RC)]2
.
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Since RC

u−1′(RC)
∂u−1′(RC)

∂RC = u′(u−1′(RC))
u−1′(RC)u′′(u−1′(RC))

= −1
ξ , we have

{RCu−1′(RC)}∂α
∗∗∗

∂RC
=

RC

π

∂z

∂RC
+R

(
∂d

∂RC
− ∂z

∂RC

)
+

(
1

ξ
− 1

)
R(d− z)

RC
+

z

πξ
,

=
z

π


∫ 1

α∗∗∗ u
′
(

RC

π z+R(d−z)

RCα

)
f(α)dα

ξ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

+
RC [F (α∗∗∗)− F (α∗∗)]

ξ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

+
1

ξ



+

[
−

RC

π z + (1− ξ)R(d− z)

ξRC
−

z
∫ 1

α∗∗∗ u
′
(

RC

π z+R(d−z)

RCα

)
f(α)dα

ξπ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

−
RC

π z{F (α∗∗∗)− F (α∗∗)}
ξ
∫ α∗∗

α∗ u′
(

z
απ

)
f(α)dα

+
R(d− z)(1− ξ)

ξRC

]
= 0.

This completes the proof of the corollary. �

Proof of Lemma 4

We have the following system of equations derived from the first order conditions:

u′
(
θz

απ
+

b

α

)
− 1 =

µπ

z
, (A.22)

u′
(
θz

απ
+

b

α

)
−RC(η + µz) = −µb, (A.23)

where µ ≥ 0 is the Lagrange multiplier of θ ≤ 1, µb ≥ 0 is the Lagrange multiplier of the non-

negativity constraint b ≥ 0, and µl ≥ 0 is the Lagrange multiplier of the borrowing constraint,

Rl ≥ RCb.

There are four cases for the solution to the above equations (A.22) and (A.23).

Case 1: θ < 1 and b = 0. Since θ < 1 implies µ = 0, we have in (A.22),

u′
(
θz

απ
+

b

α

)
= 1.

This implies in (A.23) that we must have µb > 0, leading to b = 0. Note that b = 0 and

u′(qn) = 1 further lead to

θ =
απq∗

z
,

and θ < 1 ⇐⇒ α < α∗ ≡ z
πq∗ . Hence, for α ∈ (0, α∗), the solution is θ < 1 and b = 0.

Case 2: θ = 1 and b = 0. θ = 1 and b = 0 lead to µ ≥ 0, µz = 0 and µb ≥ 0, which yield

u′
( z

απ

)
≥ 1 ⇐⇒ α ≥ α∗

u′
( z

απ

)
≤ ηRC ⇐⇒ α ≤ α∗∗

η
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where α∗∗
η ≡ z

πu−1′(ηRC)
> z

πq∗ ≡ α∗ with ηRC > 1. Hence, for α ∈ [α∗, α∗∗
η ], the solution is

θ = 1 and b = 0.

Case 3: θ = 1 and b ∈
(
0, Rl

RC

)
. µz = 0 and µb = 0 lead to

u′
(

z

πα
+

b

α

)
= ηRC ⇐⇒ b = αu−1′(ηRC)− z

π
.

This implies that b > 0 ⇐⇒ α > α∗∗
η ≡ z

πu−1′(ηRC)
and RCb < Rl ⇐⇒ α < α∗∗∗

η ≡
Rl+RC

π
z

RCu−1′(ηRC)
. Hence, for α ∈ (α∗∗

η , α∗∗∗
η ), the solution is θ = 1 and b ∈

(
0, Rl

RC

)
.

Case 4: θ = 1 and b = Rl
RC . µl ≥ 0 and µb = 0 lead to RCb = Rl and

u′
(

z

απ
+

Rl

αRC

)
≥ ηRC ⇐⇒ α ≥ α∗∗∗

η ≡
RC

π z +Rl

RCu−1′(ηRC)
.

Hence, for α ∈ [α∗∗∗
η , 1), the solution is θ = 1 and b = Rl

RC .

The above covers all the possible cases and completes the proof. �

Proof of Proposition 2

First of all, we shall identify the parameter space in which l = d − z > 0. In the first order

condition,

Φ(z, d) ≡ 1

π
Φz(z, d)−RΦl(z, d) ≥ 0 (= if z < d),

where Φz,Φl are given by (10) and (11), respectively. Observe that

Φ(0, d) =

(
ηRC

π
− ηR

)[
F

(
Rd

RCu−1′(ηRC)

)
+

1

ηRC

∫ 1

Rd

RCu−1′(ηRC )

u′
(

Rd

RCα

)
f(α)dα

]
− ηR(λ− 1)

=
1

β

[
RC{1− ηβR(λ− 1)}

πR
− 1

]
≡ Φ̄(RC),

where the second expression uses the Euler equation (11). Clearly, Φ̄(RC) is linear and strictly

increasing in RC , and Φ̄(RC) = −ηR(λ − 1) < 0 as RC → πR. There exists a unique value

such that Φ̄(RC) = 0, or

RC =
πR

1− ηβR(λ− 1)
≡ RC . (A.24)

Then it follows that Φ̄(RC) < 0 if RC < RC and Φ̄(RC) > 0 if RC > RC .
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Further,

π
∂Φ(z, d)

∂z
=

∫ α∗∗
η

α∗

1

απ
u′′
( z

απ

)
f(α)dα+

(
1− πR

RC

)∫ 1

α∗∗∗
η

RC

π −R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0,

and with d > 0 satisfying (3),

πΦ(d, d) = F (α∗|z=d) +

∫ 1

α∗|z=d

u′
(

d

πα

)
f(α)dα− πηR

[
F (α∗∗∗

η |z=d) +
1

ηRC

∫ 1

α∗∗∗
η |z=d

u′
(

d

πα

)
f(α)dα+ λ− 1

]

=
π

β
− πηR

[
F (α∗∗∗

η |z=d) +
1

ηRC

∫ 1

α∗∗∗
η |z=d

u′
(
dN
πα

)
f(α)dα+ λ− 1

]
≡ Φ̃(RC). (A.25)

In the last expression, we have: Φ̃′(RC) > 0; Φ̃(RC) > 0 for RC ≥ 1
ηu

′(dNπ ) leading to

α∗∗∗
η |z=d = min

{
dN

πu−1′(ηRC)
, 1
}

= 1. Since Φ(0, d) = 0 at RC = RC and Φ(z, d) is strictly

decreasing in z, we must have Φ̃(RC) < 0. Thus, there exists a value R̂C∗(> RC) such that

Φ̃(RC) = 0. We have Φ̃(RC) > 0 if RC > R̂C∗ and Φ̃(RC) < 0 if RC < R̂C∗.

We now show the existence and uniqueness of an equilibrium solution (zR, dR) > 0 given

RC ∈ (max{RC , 1/η}, R̂C∗).

The solution has to satisfy the following system of equations:

Φz(z, d) ≡ F (α∗) +

∫ α∗∗
η

α∗
u′
( z

απ

)
f(α)dα+ [F (α∗∗∗

η )− F (α∗∗
η )]ηRC +

∫ 1

α∗∗∗
η

u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα =

π

β

(A.26)

Φl(z, d) ≡ ηF (α∗∗∗
η ) +

1

RC

∫ 1

α∗∗∗
η

u′

(
RC

π z +R(d− z)

RCα

)
f(α)dα+ η(λ− 1) =

1

βR
. (A.27)

We first examine (A.26). Observe that:

∂Φz(z, d)

∂z
=

∫ α∗∗
η

α∗

1

απ
u′′
( z

απ

)
f(α)dα+

∫ 1

α∗∗∗
η

RC

π −R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0;

∂Φz(z, d)

∂d
=

∫ 1

α∗∗∗
η

R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0;

Φz(zN , dN ) = π
β where dN = zN ; Φz(zη, d) = π

β for sufficiently high values of d such that

α∗∗∗
η = min{

RC

π
z+R(d−z)

RCu−1′(ηRC)
, 1} = 1 with some lower bound zη ∈ (0, zN ). Hence, the implicit

equation (A.26) determines a function z = zη(d) that satisfies z′η(d) < 0, zη(dN ) = zN and

zη(d) = zη > 0 at some d ∈ (dN ,∞) that leads to α∗∗∗
η = 1. Notice that with η → 1, this curve
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becomes identical to the one with the safe asset, but when η < 1, it gives a lower z with the

risky asset than with the safe asset, for any given values of d > dN .

Consider next (A.27). Observe also that

∂Φl(z, d)

∂z
=

1

RC

∫ 1

α∗∗∗
η

RC

π −R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0;

∂Φl(z, d)

∂d
=

1

RC

∫ 1

α∗∗∗
η

R

RCα
u′′

(
RC

π z +R(d− z)

RCα

)
f(α)dα < 0.

Further,

Φl (d, d) = ηF (α∗∗∗
η |z=d) +

1

RC

∫ 1

α∗∗∗
η |z=d

u′
(

d

πα

)
f(α)dα+ η(λ− 1) >

1

βR

for RC < R̂C∗ and d = dN . Just like in the previous analysis with the safe asset, since Φl(d, d)

is strictly decreasing in d > dN , we have Φl(d, d) =
1
βR (i.e., the condition (A.27) holds true

with z = d) for RC < R̂C∗ only if d > dN . Finally, since 1
βR > 1, it is impossible to hold the

condition (A.27) for values of d > dN that lead to α∗∗∗
η = min

{
RC

π
z+R(d−z)

RCu−1′(ηRC)
, 1

}
= 1 and hence

to Φl(z, d) = 1. Therefore, we must necessarily have z = 0 at some upper bound d̄η ∈ (dN ,∞)

and so the condition (A.27) has a solution (z, d) > 0 only with d ∈ (dN , d̄η]. Hence, the implicit

equation (A.27) determines a function z̃ = z̃η(d) that satisfies z̃′η(d) < 0, z̃η(d) = d at some

d > dN and z̃η(d̄η) = 0.

Finally, combining the above analysis, with some low d ∈ (dN , d̄η), we have z̃η(d) = d >

zη(d), while with d = d̄, we have z̃η(d̄) = 0 < zη(d̄). Further,

∂

∂d
[z̃η(d)− zη(d)] = −

∫ α∗∗
η

α∗
1
απu

′′ ( z
απ

)
f(α)dα× ∂Φz

∂d∫ 1
α∗∗∗
η

RC

π
−Rϕ

RCα
u′′
(

RC

π
z+R(d−z)

RCα

)
f(α)dα× ∂Φz

∂z

< 0.

Therefore, the two curves, z = zη(d) and z̃ = z̃η(d), must intersect once, at d ∈ (dN , d̄η) and

z ∈ (zη, zN ), implying that there exists a unique solution to (A.26) and (A.27). �

Proof of Lemma 5

Part 1 of the Lemma follows from Propositions 1 and 2. Part 2 of the Lemma follows since

−dS + βV S(dS) = −dN + βV (dN ) < −dR + βV R(dR) for RC ∈ [RC∗, R̂C∗) from Proposition

1 and 2. Similarly, part 3 of the Lemma follows since −dS + βV S(dS) > −dR + βV R(dR) =

−dN + βV (dN ) for RC ∈ [R̂C∗, RC∗) from Propositions 1 and 2.
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To prove parts 4 and 5, it is necessary to derive ∆(RC , η) as a function of RC and η. In

a stationary monetary equilibrium, the net expected values of depositing in a bank with the

safe and risky assets are given by

−dS + βV s(dS) = − dS
1− β

+
β

1− β

[∫ α∗

0

{
α(u(q∗)− q∗) +

zS
π

}
f(α)dα+

∫ α∗∗

α∗
αu
( z

απ

)
f(α)dα

+

∫ α∗∗∗

α∗∗

{
αu
(
u−1′(RC)

)
−
(
αu−1′(RC)− zS

π

)}
f(α)dα

+

∫ 1

α∗∗∗

{
αu

(
RC

π zS +R(dS − zS)

RCα

)
− R

RC
(dS − zS)

}
f(α)dα

+ {1− E(α)} {u(q∗)− q∗}+R(dS − zS) +

(
1− 1

π

)
zS

]
,

and

−dR + βV r(dR) = − dR
1− β

+
β

1− β

[∫ α∗

0

{
α(u(q∗)− q∗)− zR

π

}
f(α)dα+

∫ α∗∗
η

α∗
αu
( zR
απ

)
f(α)dα

+

∫ α∗∗∗
η

α∗∗
η

{
αu
(
u−1′(ηRC)

)
−
(
αu−1′(ηRC)− zR

π

)}
f(α)dα

+

∫ 1

α∗∗∗
η

{
αu

(
RC

π zR +R(dR − zR)

RCα

)
− R

RC
(dR − zR)

}
f(α)dα

+ {1− E(α)} {u(q∗)− q∗}+ ηλR(dR − zR) +

(
1− 1

π

)
zR

]
,

respectively. Using the two above equations, we have

∆(RC , η) = (1− βηλR)(dR − dS) + βR(1− ηλ)dS − β(R− 1)zS + β(ηλR− 1)zR

+ β

[∫ α∗

α∗
η

α {u(q∗)− q∗} f(α)dα+

∫ α∗∗

α∗
α
{
u
( zS
απ

)
− zS

απ

}
f(α)dα

+

∫ α∗∗∗

α∗∗
α
{
u
(
u−1′(RC)

)
− u−1′(RC)

}
f(α)dα

+

∫ 1

α∗∗∗
α

{
u

(
RC

π zS +R(dS − zS)

RCα

)
−

RC

π zS +R(dS − zS)

RCα

}
f(α)dα

−
∫ α∗∗

η

α∗
η

α
{
u
( zR
απ

)
− zR

απ

}
f(α)dα−

∫ α∗∗∗
η

α∗∗
η

α
{
u
(
u−1′(ηRC)

)
− u−1′(ηRC)

}
f(α)dα

−
∫ 1

α∗∗∗
η

α

{
u

(
RC

π zR +R(dR − zR)

RCα

)
−

RC

π zR +R(dR − zR)

RCα

}
f(α)dα

]
, (A.28)

where α∗
η ≡ zR/πq

∗ ≤ α∗ = zS/πq
∗. Since dR → dS and zR → zS as η → 1 from Proposition

2, then limη→1∆(RC , η) = 0, which proves part 4 of the Lemma.

To prove the fifth claim, differentiating ∆(RC , η) with respect to RC and using the envelop
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theorem imply that

∂∆

∂RC
(RC , η) = (1− β)β

{
∂V s(dS)

∂RC
− ∂V r(dR)

∂RC

}
=

RC − 1

u′′(u−1′(RC))

∫ α∗∗∗

α∗∗
αf(α)dα− R(dS − zS)

(RC)2

∫ 1

α∗∗∗

{
u′

(
RC

π zS +R(dS − zS)

RCα

)
− 1

}
f(α)dα

− η(ηRC − 1)

u′′(u−1′(ηRC))

∫ α∗∗∗
η

α∗∗
η

αf(α)dα+
R(dR − zR)

(RC)2

∫ 1

α∗∗∗
η

{
u′

(
RC

π zR +R(dR − zR)

RCα

)
− 1

}
f(α)dα.

Since dR → dS and zR → zS as η → 1, it follows that limη→1
∂∆
∂RC (R

C , η) = 0.

To prove the final claim, taking the limit as RC → RC yields zR → 0 by Proposition 2,

which leads to α∗
η → 0, α∗∗

η → 0, α∗∗∗
η → RdR

RCu−1′(ηRC)
, and

∆(RC , η) → (1− βηλR)(dR − dS) + βRdS(1− ηλ)− β(R− 1)zS

+ β

[∫ α∗

0

α {u(q∗)− q∗} f(α)dα+

∫ α∗∗

α∗
α
{
u
( zS
απ

)
− zS

απ

}
f(α)dα

+

∫ α∗∗∗

α∗∗
α
{
u
(
u−1′(RC)

)
− u−1′(RC)

}
f(α)dα

+

∫ 1

α∗∗∗
α

{
u

(
RC

π zS +R(dS − zS)

RCα

)
−

RC

π zS +R(dS − zS)

RCα

}
f(α)dα

−
∫ α∗∗∗

η

0

α
{
u
(
u−1′(ηRC)

)
− u−1′(ηRC)

}
f(α)dα−

∫ 1

α∗∗∗
η

α

{
u

(
RdR

RCα

)
− RdR

RCα

}
f(α)dα

]
.

(A.29)

The latter big blanket is negative, and if ηλ ≈ 1 and βR ≈ 1, the first line of (A.29) becomes

−(1− β)zS < 0, leading to ∆(RC , η) < 0. This completes all the proofs of Lemma 5. �

Proof of Lemma 6

Denote the expected return of the risky asset by RE(η)R ≡ ηλR (≤ R). Then, equation

(A.25), Φ̃(R̂C∗) = 0, which determines R̂C∗ > RC , can be rewritten as

−η{1− F (α∗∗∗
η )}+ 1

R̂C∗

∫ 1

α∗∗∗
η

u′
(

d

πα

)
f(α)dα+RE(η) =

1

βR
. (A.30)

Note that, in the limit as η → 1, R̂C∗ → RC∗ (i.e., the critical value with the risky asset

approaches to the one with the safe asset) and RE(η) → 1. For our purpose, we consider a

fixed amount of decrease in η away from η = 1 to η = 1− ϵ, with some admissible ϵ > 0, and a

varying decrease in RE(η) away from 1 to 1− ϵη, with some arbitrary ϵη > 0, and its influence

on (A.30). Differentiating the L.H.S. of (A.30) with respect to η,

−{1− F (α∗∗∗
η )}+R′

E(η),
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which is negative (positive) when R′
E(η) > 0 is small (large), that is, when ϵη is relatively

large (small). This implies that given values of R̂C∗ and η < 1, the L.H.S. of (A.30) is high

(low) when RE(η) is high (low). Therefore, since the L.H.S. of (A.30) is decreasing in R̂C∗,

there exists a unique critical value denoted by R∗
E(η) = (ηλ)∗ < 1 such that R̂C∗ > RC∗ if

ηλ > (ηλ)∗ and R̂C∗ < RC∗ if ηλ < (ηλ)∗. �

Proof of Proposition 3

From Lemma 5, if the expected return on the risky asset, ηλ, is sufficiently high or close to

unity, the set of (RC∗, R̂C∗) is nonempty, and the risky asset is selected for RC ∈ [RC∗, R̂C∗).

In addition, from Lemma 5 and 6, since limRC→RC ∆(RC , η) < 0, ∆(RC∗, η) < 0, and
∂∆
∂RC (R

C , η) ≈ 0 if ηλ and βR are sufficiently high or close to unity, by continuity the risky

asset is also selected for RC ∈ [RC , RC∗). Thus, the risky asset is always selected when the

bank uses the discount window, that is, when RC ∈ [RC , R̂C∗). �

Proof of Proposition 4

Differentiating (15) with respect to κ yields

∂zκR
∂κ

{
κ
∂Φz

∂z
(κd, d) + (1− κ)πR

∂Φl

∂z
(κd, d)

}
+

∂dκR
∂κ

{
κ
∂Φz

∂d
(κd, d) + (1− κ)πR

∂Φl

∂d
(κd, d)

}
= πRΦl(κd, d)− Φz(κd, d) > 0. (A.31)

The last inequality follows from Φ(κdκR, d
κ
R) < 0. Applying

∂zκR
∂κ = dκR+κ

∂dκR
∂κ into (A.31) yields

∂dκR
∂κ

[
κ

{
κ
∂Φz

∂z
(κd, d) + (1− κ)πR

∂Φl

∂z
(κd, d)

}
+

{
κ
∂Φz

∂d
(κd, d) + (1− κ)πR

∂Φl

∂d
(κd, d)

}]
= πRΦl(κd, d)− Φz(κd, d)− dκR

{
κ
∂Φz

∂z
(κd, d) + (1− κ)πR

∂Φl

∂z
(κd, d)

}
.

Since ∂Φz
∂z < 0, ∂Φz

∂d < 0, ∂Φl
∂z < 0, and ∂Φl

∂d < 0, we obtain

∂dκR
∂κ

< 0. (A.32)

In addition, we have

∂zκR
∂κ

= dκR +
κ
[
πRΦl − Φz − dκR

{
κ∂Φz

∂z + (1− κ)πR∂Φl
∂z

}]
κ
{
κ∂Φz

∂z + (1− κ)πR∂Φl
∂z

}
+
{
κ∂Φz

∂d + (1− κ)πR∂Φl
∂d

} ,
=

dκR

{
κ∂Φz

∂d + (1− κ)πR∂Φl
∂d

}
+ κ(πRΦl − Φz)

κ
{
κ∂Φz

∂z + (1− κ)πR∂Φl
∂z

}
+
{
κ∂Φz

∂d + (1− κ)πR∂Φl
∂d

}
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The terms in the denominator are negative. The terms in the numerator can be rewritten as

dκR

{
κ
∂Φz

∂d
+ (1− κ)πR

∂Φl

∂d

}
+ κ(πRΦl − Φz)

=

[
κ

(
πR

RC
− 1

)
− ξ

πR

RC

] ∫ 1

α∗∗∗
η

u′

(
RC

π zκR +R(dκR − zκR)

RCα

)
f(α)dα

+κπR[ηF (α∗∗∗
η ) + η(λ− 1)]− κ

[
F (α∗) +

∫ α∗∗
η

α∗
u′
(
zκR
απ

)
+ [F (α∗∗∗

η )− F (α∗∗
η )]ηRC

]
,

which is positive if ξ is sufficiently small. Thus, we obtain

∂zκR
∂κ

< 0, (A.33)

if ξ is sufficiently small. Otherwise, it is positive. The proposition follows. �

Proof of Proposition 5

The effects of a change in ρ on the optimal values of zρS and dρS are determined by(
∂zρS
∂ρ
∂dρS
∂ρ

)
=

1

ρ

(
∂Ψz
∂z + 1−ρ

ρ Υ′(z) ∂Ψz
∂d

∂Ψk
∂z

∂Ψk
∂d

)−1(
Υ(z)−Ψz(z, d)

1−Ψk(z, d)

)

=
1

ρΛρ

(
∂Ψk
∂d −∂Ψz

∂d

−∂Ψk
∂z

∂Ψz
∂z + 1−ρ

ρ Υ′(z)

)(
Υ(z)−Ψz(z, d)

1−Ψk(z, d)

)
(A.34)

where

Λρ ≡ det

(
∂Ψz
∂z + 1−ρ

ρ Υ′(z) ∂Ψz
∂d

∂Ψk
∂z

∂Ψk
∂d

)

= −
(
∂Ψz

∂d

∂Ψk

∂z
− ∂Ψz

∂z

∂Ψk

∂d

)
+

1− ρ

ρ
Υ′(z)

∂Ψk

∂d
> 0.

The last inequality follows since Υ′(z) < 0, ∂Ψk
∂d < 0 and Λ ≡ (∂Ψz

∂d
∂Ψk
∂z − ∂Ψz

∂z
∂Ψk
∂d ) < 0 (see the

proof of Corollary 3).⊙
The effect of ρ on zρS . From (A.34), using (16) and (17) we obtain

ρΛρ
∂zρS
∂ρ

=
∂Ψk

∂d

{
Υ(zρS)−Ψz(z

ρ
S , d

ρ
S)
}
− ∂Ψz

∂d

{
1−Ψk(z

ρ
S , d

ρ
S)
}

=
1

ρ

[
∂Ψk

∂d

{
Υ(zρS)−

π

β

}
+

∂Ψz

∂d

(
1

βR
− 1

)]
< 0.

The last inequality follows since ∂Ψk
∂d < 0, ∂Ψz

∂d < 0, and Υ(zρS) > Υ(zN ) = π
β .
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⊙
The effect of ρ on dρS . Similarly, from (A.34), we obtain

ρΛρ
∂dρS
∂ρ

= −∂Ψk

∂z

{
Υ(zρS)−Ψz(z

ρ
S , d

ρ
S)
}
+

{
∂Ψz

∂z
+

1− ρ

ρ
Υ′(zρS)

}{
1−Ψk(z

ρ
S , d

ρ
S)
}

= −1

ρ

[
∂Ψk

∂z

{
Υ(zρS)−

π

β

}
+

{
∂Ψz

∂z
+

1− ρ

ρ
Υ′(zρS)

}(
1

βR
− 1

)]
> 0,

since ∂Ψk
∂z < 0, ∂Ψz

∂z < 0, and Υ′(zρS) < 0. The proposition follows. �
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