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Time –Varying Rational Expectations Models:
Solutions, Stability, Numerical Implementation

Klaus Neusser ∗

September 13, 2017

Abstract

While rational expectations models with time–varying (random)
coefficients have gained some esteem, the understanding of their dy-
namic properties is still in its infancy. The paper adapts results from
the theory of random dynamical systems to solve and analyze the
stability of rational expectations models with time–varying (random)
coefficients. This theory develops a “linear algebra” in terms of Lya-
punov exponents defined as the asymptotic growth rates of trajecto-
ries. They replace the eigenvalue analysis used in constant coefficient
models and allow the construction of solutions in the spirit of Blan-
chard and Kahn (1980). The usefulness of these methods and their
numerical implementation is illustrated using a canonical New Key-
nesian model with a time–varying policy rule.
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1 Introduction

Dynamical systems with time–varying (random) coefficients receive an in-
creasing attention in the realm of theoretical macroeconomic modelling (see
the pioneering papers by Farmer, Waggoner, and Zha (2009) and Farmer,
Waggoner, and Zha (2011) and the recent contribution by Barthélemy
and Marx (2017)) as well as in the time series literature where, starting with
the groundbreaking work of Hamilton (1989, 2016) and Kim and Nelson
(1999), regime–switching models have established themselves as a standard
modeling tool. Reasons for the variation in the model coefficients are man-
ifold. First, time–varying coefficient models arise from the linearization of
nonlinear models along solution paths (see Elaydi, 2005, p.219–220).1 Sec-
ond, the relationships describing the economy undergo structural changes
resulting in drifting coefficients as emphasized by Lucas’s critique.2 Third,
policies and policy rules are subject to change. Systematic empirical evi-
dence with regard to U.S. monetary policy has been presented by Cogley
and Sargent (2005), Primiceri (2005), and Chen, Leeper, and Leith
(2015) among many others. While the causes for time–varying coefficients are
quite convincing, the widespread use of these models is, however, hindered
by the fact that the analysis of their dynamical properties requires a higher
mathematical sophistication which goes well beyond the standard tools of
linear algebra. For example, it is well–known that a binary regime switch-
ing model, i.e. a model where the coefficients switch between two alternative
values, may exhibit explosive behavior despite the fact that in each regime
considered separately the eigenvalues of the system matrix suggest a stable
behavior (see Elaydi (2005), Francq and Zaköıan (2001), and in partic-
ular Appendix A for examples and an elaboration of this point). Another
peculiar feature is that the scatter plot of the simulated endogenous variables
has a fractal geometry (see Berger (1993) and Diaconis and Freedman
(1999)).3

Based on the widely acclaimed work of Oseledets (1968) and his Mul-
tiplicative Ergodic Theory (MET), the theoretical mathematical literature
on random dynamical systems has developed in the last decades a “linear
algebra” which allows the computation of explicit solution formulas and the
analysis of stability properties.4 The fundamental concept around which this

1This also called the variation equation.
2An interpretation of drifting parameters in terms of self–confirming equilibria is pro-

vided by Sargent (1999).
3This feature actually provides a probabilistic algorithm for image creation, encoding

and compression (Berger, 1993, pp.157).
4This work builds on the analysis of products of random matrices initiated by Bellman
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theory is built are the Lyapunov exponents. These exponents measure the
asymptotic growth rate of the trajectories and play a similar role as the
eigenvalues in models with constant coefficients. The MET thus provides
the right substitute for the spectral theorem which is the basis for analyz-
ing rational expectations models with constant coefficients. The books by
Arnold (2003) and Colonius and Kliemann (2014) present a clear expo-
sition of the relevant literature and served as a source of inspiration for this
paper.

While the implications of the MET are rather straightforward, the prac-
tical implementation is not. This is due the fact that there are in general no
analytical solution formulas available so that one has to resort to numerical
simulations. These simulations can quickly hit the numerical capabilities of
any computer because some of the trajectories may exhibit explosive behav-
ior. Thus, one has to resort to algorithms which at each step factorizes the
system matrix in such a way that the simulations of the model become nu-
merically stable (see Dieci and Elia (2008) and Froyland et al. (2013)
for details).

The goal of this paper is demonstrate the usefulness of the MET for solv-
ing and analyzing affine rational expectations models with randomly chang-
ing coefficients. As it turns out, the general solution of such models can
be formulated analogously to Blanchard and Kahn (1980) and Klein
(2000), the only difference being that the role of the eigenvalues will be re-
placed the Lyapunov exponents. In this sense the methods presented in this
paper can be interpreted as generalizing the standard approach with constant
coefficients to one with time–varying (random) coefficients. The reliance on
Lyapunov exponents, i.e. on asymptotic growth rates of trajectories, brings
the paper also close in spirit to Sims’ approach (Sims, 2001).

Having presented the general theory, we illustrate the usefulness of the
proposed methods by applying them to a canonical New Keynesian model
where the policy rule switches (deterministically or randomly) between a
simple Taylor rule and a policy rule which takes the path of the nominal
interest rate as exogenously given. The consequences of these two alternative
rules have been analyzed by Gaĺı (2011). He shows that when the latter
rule is adopted the model becomes indeterminate, allowing for a multiplicity
of solutions. Gaĺı also examines the possibility that the central bank reverts
to the Taylor rule after having fixed the interest rate for given number of
periods. However, he does not consider the possibility of systematically or
randomly switching between the two policies. The methods proposed in this
paper will allow a systematic treatment of these cases and pave the way for

(1954) and, in particular, Furstenberg and Kesten (1960).
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a deeper understanding.
There is a related literature which deals with the existence, uniqueness

and properties of solutions to linear stochastic difference equations with ran-
dom changing coefficients. This literature started with the seminal paper by
Brandt (1986) which established moment conditions for the existence of
stationary solutions. Bougerol and Picard (1992) extended these results
to multivariate stochastic processes and Goldie and Maller (2000) give
an almost complete characterization. Finally, Francq and Zaköıan (2001)
provided a necessary and sufficient criterion for the existence of weakly sta-
tionary and causal solution in the context of multivariate Markov-switching
ARMA models. Further results and economic applications along these lines
have been presented by Bhattacharya and Majumdar (2007).

The paper proceeds by first discussing as a way of introduction and at-
tunement the case of a periodic deterministic system in Section 2. This setup
can be dealt within the context of Floquet’s theory and allows to gain some
basic insights which will also be relevant for the stochastic case. This theory
is illustrated in Sections 3 by analyzing a canonical New Keynesian model
with switching policy rules. We then generalize to the stochastic case in Sec-
tion 4 and examine the New Keynesian model again in Section 5. Finally,
we draw some conclusions for further applications.

2 Periodic Linear Deterministic Systems

As a way of introduction, we first examine affine rational expectations model
under perfect foresight. These models can be represented as nonautonomous
deterministic difference equations generated by affine transformations ψt :
Rn → Rn of the state space Rn:

xt+1 = ψt(xt) = Atxt + bt, t ∈ Z, At ∈ GL(n), and bt ∈ Rn. (2.1)

GL(n) denotes the general linear group of order n, i.e. the set of invertible
n×n matrices.5 bt denotes the vector of exogenous variables whose evolution
is known and given. Moreover, we assume that {bt} is bounded, i.e. that
‖bt‖ < m, for all t ∈ Z, for some positive constant m <∞.

We restrict the class of admissible models to those where {At} is periodic.
More specifically, we assume that the matrices {At} are selected from a

5Allowing for singular matrices implies that for points in the range of At there would
exist an xt such that xt+1 = Atxt + bt with xt being not unique. The theory could be
generalized to noninvertible matrices, however, at the cost of considerable technical effort.
As the noninvertibility may be the result of some redundancies, like defining equations,
we stick to the case of nonsingular matrices.
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finite set of matrices with cardinality p ∈ N+. Moreover, they satisfy the
periodicity condition

At+p = At, for all t ∈ Z and p ∈ N+.

We allow for the possibility that some of the matrices repeat themselves
within p periods. Thus, the economy may stay within a particular regime
for some time. Nevertheless, we think of p as being the smallest integer
satisfying the above periodicity condition.6 The theory of this type of dif-
ference equations is known as the Floquet theory and is well–understood.
Excellent expositions can be found in Elaydi (2005, section 3.4) or, more in
line with this paper, Colonius and Kliemann (2014, section 7.1), among
others. Note that equation (2.1) satisfies the superposition principle. This
implies that the solution is given as the sum of the general solution to the
linear nonautonomous equation and a particular solution of the affine equa-
tion (2.1). The linear nonautonomous equation is

xt+1 = Atxt, t ∈ Z. (2.2)

We proceed by first analyzing the linear nonautonomous equation. As
a general remark note that starting with any x ∈ Rn in period 0, xt is
recursively given by

xt = At−1At−2 . . . A1A0x = Φ(t)x

where Φ(t) denotes the corresponding matrix product. Write this solution as
ϕ(t, x), then ϕ : Z×Rn → Rn is linear in the second argument and satisfies
the cocycle property :

ϕ(t+ s, x) = ϕ(s, ϕ(t, x)), for all t, s ∈ Z and x ∈ Rn.

The cocycle property and the invertibility of the At’s imply that

Φ(t) =


At−1At−2 . . . A1A0, t > 0;
In, t = 0;
A−1

0 A−1
1 . . . A−1

t−2A
−1
t−1, t < 0.

The assumption of periodicity leads to the immediate observation that
the nonautonomous equation (2.2) can be reduced to an autonomous one by

6If p = 1, we obtain the standard case where At is constant.
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taking p steps at once. For any solution {xt} define yτ = xτp, τ ∈ Z. Then,

xτp+1 = Aτpxτp = A0yτ ,

xτp+2 = Aτp+1xτp+1 = A1A0xτp = A1A0yτ ,

...

xτp+p =

(
p∏
j=1

Ap−j

)
xτp =

(
p∏
j=1

Ap−j

)
yτ .

This shows that {yτ} is a solution of the autonomous difference equation

yτ+1 = Φ(p)yτ with Φ(p) =

p∏
j=1

Ap−j = Ap−1 . . . A1A0.

Conversely, a solution {yτ} determines a solution of equation (2.2) via the
equations above: xτp+1 = Aτpxτp = A0yτ , x2τ+2 = Aτp+1xτp+1 = A1A0yτ ,
etc.7

The asymptotic behavior of solutions ϕ(t, x) clearly depends on the eigen-
values αj, j = 1, . . . , p, of Φ(p), known as the Floquet multipliers. The Floquet
exponents are defined as

λj =
1

p
log |αj|.

It turns out that they play a crucial in understanding the asymptotic behavior
of solutions of equation (2.2) and the stability of the zero solution.

Define Zp = {0, 1, . . . , p − 1} and denote by ϕ(t, ν, x) the solution of
xt+1 = Atxt with initial condition x0 = x and At = Aθ(t,ν), ν = 0, 1, . . . , p,
where θ(t, ν) : Z × Zp → Zp is defined as θ(t, ν) = (t + ν) mod p. In the
case p = 2, ϕ(t, 0, x) becomes x1 = A0x, x2 = A1A0x, x3 = A0A1A0x,
x4 = A1A0A1A0x, . . . , and ϕ(t, 1, x) is given by x1 = A1x, x2 = A0A1x, x3 =
A1A0A1x, x4 = A0A1A0A1x, . . . The exponential growth rate of ϕ(t, ν, x),
also known as the Lyapunov exponent, is defined as

λ(x, ν) = lim sup
t→∞

1

t
log ‖ϕ(t, ν, x)‖ for (ν, x) ∈ Zp ×Rn.

Because vectors with different Lyapunov exponents are linearly independent,
there are at most n Lyapunov exponents for each ν. Call the number of
different Lyapunov exponents `. Usually, we think of these exponents being
ordered as −∞ ≤ λ` < λ`−1 < . . . < λ1 < ∞ where λ1 is known as the
top Lyapunov exponent. These and further properties can be found f.e. in
Arnold (2003, section 3.2). With these preliminaries we can quote the
following Theorem from Colonius and Kliemann (2014, theorem 7.1.7).

7As usually, the empty product Πn
j=m, m > n, is set to one by convention.
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Theorem 1 (Floquet’s theorem). Consider the p-period linear (nonautonomous)
difference equation (2.2). The Lyapunov exponents coincide with the Floquet
exponents λj, j = 1, . . . , ` ≤ n, and they exist as limits. For each ν ∈ Zp
there exists a decomposition or splitting of the state space

Rn = L(λ1, ν)⊕ · · · ⊕ L(λ`, ν)

into linear subspaces L(λj, ν) called the Floquet or Lyapunov spaces. These
subspaces have the following properties:

(i) The Lyapunov spaces have dimensions independent of ν,

dj = dimL(λj, ν) is constant for ν ∈ Zp;

(ii) they are invariant under multiplication by the principal fundamental
matrix Φ(t, ν) in the following sense:8

Φ(t+ ν, ν)L(λj, ν) = L(λj, θ(t, ν)) for all t ∈ Z and ν ∈ Zp;

(iii) for every ν ∈ Zp, the Lyapunov exponents satisfy

λ(x, ν) = lim
±t→∞

1

t
log ‖ϕ(t, ν, x)‖ = λj

if and only if x ∈ L(λj, ν) and x 6= 0.

Remark 1. The splitting of Rn into subspaces is given as a direct sum. The
subspaces are not necessarily orthogonal to each other. Property (ii) means
that the subspaces are equivariant or covariant. Note that these subspaces
depend on ν whereas their dimensions and the Lyapunov exponents do not.

The Lyapunov subspaces can be collected into subbundles

Ls(ν) =
⊕
λj<0

L(λj, ν), Lc(ν) = L(0, ν), and Lu(ν) =
⊕
λj>0

L(λj, ν)

called the stable subbundle, the center, and the unstable subbundle, respec-
tively. Thus, the zero solution of equation (2.2) is asymptotically stable if and
only if all Lyapunov exponents are negative. This is equivalent to Ls(ν) = Rn

for some (hence for all) ν ∈ Zp. The difference equation (2.2) is called hyper-
bolic if Lc(ν) = ∅ or, equivalently, if all Lyapunov exponent are different from
zero. For a hyperbolic difference equation the zero solution is called a saddle
point if both Ls(ν) and Lu(ν) have dimensions ds = dimLs(ν), respectively
du = dimLu(ν), strictly greater than zero. For the rest of this section, we
make the following assumption:

8This matrix is defined as Φ(t, ν) =
∏t
j=1Aθ(t−j,ν). It is similar to the matrix product

Φ(t), but starts the product with Aν . Thus, for ν = 0, we have Φ(t, ν) = Φ(t).
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Assumption 1. The difference equation (2.2) is hyperbolic.

In economics, especially in the context of rational expectations models,
we are often faced with a reversed boundary value problem: Find an initial
value x0 such that the solution ϕ(t, ν, x0) of equation (2.2) does not explode,
i.e. such that λ(x0, ν) < 0, subject to some initial conditions. These initial
conditions can be written compactly in matrix notation as

initial condition: c = Rx0, c ∈ Rr \ {0} given, (2.3)

where R is a given (r × n)–matrix of rank r and c a given r-vector. The
nonexplosiveness condition is rationalized by the boundedness assumption of
{bt}. The restrictions implied by equation (2.3) usually fix the values of the
predetermined variables. Often R takes the form R = (Ir, 0r,n−r). In this
case, the restriction sets the first r elements of x0 to c. Depending on the
rank of R several cases can be distinguished. If r = 0, the condition (2.3)
makes effectively no restriction. In this situation xt = 0 for all t is the
unique nonexplosive solution if and only if Ls(ν) = ∅. In the case r = n,
the condition (2.3) determines a unique x0. If this x0 lies in Ls(ν) then
ϕ(t, ν, x0) is the unique nonexplosive solution. This is obviously the case if
Ls(ν) = Rn. Consider finally the most interesting case 0 < r < n. Denote
by πs,u(ν) : Rn → Ls(ν) the projection onto Ls(ν) along Lu(ν) and by
πu,s(ν) : Rn → Lu(ν) the projection onto Lu(ν) along Ls(ν). Taking B(ν) as
a basis of Rn obtained from the union of a basis of Ls(ν) and Lu(ν), in that
order, these projections are given by (see Meyer, 2000, chapter 5.9)

πs,u(ν) = B(ν)

(
Ids 0
0 0

)
B−1(ν) and πu,s(ν) = B(ν)

(
0 0
0 Idu

)
B−1(ν).

ϕ(t, ν, x0) then determines a nonexplosive solution if and only if x0 fulfills
the simultaneous equation system consisting of the restriction (2.3) and the
condition πs,u(ν)x0 = x0 , respectively πu,s(ν)x0 = 0. This reasoning leads
to the following proposition.

Proposition 1. The zero solution is the unique nonexplosive solution of the
hyperbolic difference equation (2.2) if and only if

rank

(
R(

0 Idu
)
B(ν)−1

)
= n. (2.4)

If condition (2.4) is satisfied, the difference equation (2.2) is said to be
determinate. Because R has r rows and

(
0 Idu

)
B−1 has du = n− ds rows,

we have the following corollary.
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Corollary 1. A necessary condition for a unique nonexplosive solution is
that r = ds.

If r < ds, there exists a whole family of nonexplosive solutions and the
system (2.2) is then called indeterminate. If r > ds, the equation system is
overdetermined and no nonexplosive solution exists.

Having established the general solution to the linear equation (2.2), we
then have to find a particular solution to the affine equation (2.1). The idea
is to split bt as bt = πs,u(ν)bt + πu,s(ν)bt and to iterate the component in the
stable (unstable) subbundle backward (forward) in time. This then leads to
following particular solution:

x
(p)
t =

(
xb,pt
xf,pt

)
=

 ∑∞
j=0

(∏j
i=1At−i

)
πs,u(θ(t, ν))bt−1−j

−
∑∞

j=0

(∏j
i=0At+i

)−1

πu,s(θ(t, ν))bt+j



= Φ(t, ν)

( ∑∞
j=0 Φ(t− j, ν)−1 πs,u(θ(t, ν))bt−1−j

−
∑∞

j=0 Φ(t+ j + 1, ν)−1 πu,s(θ(t, ν))bt+j

)
. (2.5)

These considerations, finally, lead to the following Theorem.

Theorem 2. The hyperbolic, periodic, and affine deterministic difference
equation (2.1) with bounded {bt} admits a unique nonexplosive solution if and
only if the rank condition (2.4) is satisfied. The solution to the corresponding
boundary value problem then is

xt = Φ(t, ν)

(
x0 +

( ∑∞
j=0 Φ(t− j, ν)−1 πs,u(θ(t, ν))bt−1−j

−
∑∞

j=0 Φ(t+ j + 1, ν)−1 πu,s(θ(t, ν))bt+j

))
(2.6)

where x0 is uniquely determined by the rank condition (2.4).

Appendix B runs a numerical example.

3 A New Keynesian Model as a Canonical

Example

We elucidate the theory developed in the previous Section by applying it to
a simple canonical New Keynesian macroeconomic model. This model was
introduced and analyzed by Gaĺı (2011) to illustrate the role of alternative
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monetary policy rules. The standard model consists of three equations:

yt = yt+1 −
1

σ
(it − πt+1), (IS-equation)

πt = βπt+1 + κyt + ut, (forward-looking Phillips-curve)

it = φπt, (Taylor-rule)

where yt, πt, and it denote income (output gap), inflation and the nominal
interest rate, all measured as deviations from the steady state. ut is an
exogenous, bounded cost-push shock. Furthermore, we assume that σ > 0,
κ > 0, and 0 < β ≤ 1. In addition, φ > 0 measures the aggressiveness of
the central bank against in combatting inflation. Note that in this example
there is no restrictions coming from initial conditions, i.e rankR = 0. We
only require that the solution is nonexplosive.

This model can be solved in terms of (yt+1, πt+1)′ by inserting the Taylor-
rule and the Phillips-curve into the IS-equation:

xt+1 =

(
πt+1

yt+1

)
=

1

β

(
1 −κ

(φβ − 1)/σ β + κ/σ

)(
πt
yt

)
+

(
−ut/β
ut/(σβ)

)
= A0xt + b0,t (3.1)

Denote the characteristic polynomial of A0 by P(α) and the corresponding
eigenvalues by α1 and α2, then we have

P(α) = (α− α1)(α− α2) = α2 − tr(A0)α + detA0

with

trA0 = α1 + α2 = 1 +
1

β
+

κ

σβ
> 2

detA0 = α1α2 =
1

β
+
κφ

σβ
> 1

∆0 = (trA0)2 − 4 detA0 =

(
1− 1

β

)2

+
κ

σβ

(
κ

σβ
+ 2 +

2

β
− 4φ

)
P(1) = (1− α1)(1− α2) =

κ

σβ
(φ− 1) > 0, if φ > 1,

where ∆0 denotes the discriminant of the quadratic equation. Depending on
φ, the roots of P(α) may be complex. We therefore distinguish several cases:

(i) φ is so high such that ∆0 < 0. In this case we have two complex
conjugate roots. Note that this case can only arise if φ > 1. Because
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detA0 > 1, they are both located outside the unit circle.9 The model is
determinate and the unique nonexplosive solution is one where x0 = 0.

(ii) φ is small enough such that ∆0 > 0. In this case both eigenvalues
are real. They must also be of the same sign because the trace and
the determinant of A0 are positive. From the expression of P(1), we
conclude that both eigenvalues are bigger than one if φ > 1.

From this discussion we conclude that the stability of the model is indepen-
dent of the parameters β, κ, and σ and depends solely on φ.

The above results translated in terms of the Lyapunov exponents are
illustrated in Figure 1 for the values β = 0.985, κ = 0.8, and σ = 1. The red
curve labeled “no switching” plots the Lyapunov exponents as a function of φ.
When φ is equal to zero, i.e. when the central bank does not react to inflation
we have two real eigenvalues opposite of one or, equivalently, two Lyapunov
exponents of opposite signs. The model is indeterminate. As the central
bank progressively combats inflation more aggressively the two eigenvalues,
respectively, the two Lyapunov exponents get closer to each other. When
φ becomes greater than one, the Lyapunov exponents become positive and
the model determinate. For a large enough values of φ the roots become
complex and we have only one positive Lyapunov exponent and the model is
still determinate.

When φ > 1, the model is determinate with a unique solution. As both
variables are not predetermined, the boundedness condition alone determines
the unique solution. Thus, x0 = 0 and, because Ls(ν) = ∅, πu,s(ν) = IdRn

and πs,u(ν) = 0. Applying formula (2.6) with Φ(t, ν) = At0 then gives as the
unique bounded solution

xt = −
∞∑
j=1

A−j0 b0,t+j−1 =
∞∑
j=1

Q

(
α−j1 0

0 α−j2

)
Q−1

(
ut−1+j/β

−ut−1+j/(σβ)

)
where the columns of Q consist of the eigenvectors corresponding to α1 and
α2. This is usually regarded to be the standard case.

Consider next the case where the central bank is interested in the future
path of income (output gap) and inflation conditional on an exogenously
given path of the interest rate. This case is of particular concern to Gaĺı
because of his claim that central banks actually performed such thought
experiments to implement theirs policies (Gaĺı, 2011, see for details). In

9Another way to reach this conclusion is by observing that the real part of the roots is
trA0

2 > 1.
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Figure 1: The Dynamics of the New Keynesian Model with and without
Switching (β = 0.985, κ = 0.8, σ = 1)

this scenario the interest rate becomes an exogenous variable and the system
changes to:

xt+1 =

(
πt+1

yt+1

)
=

1

β

(
1 −κ
−1/σ β + κ/σ

)(
πt
yt

)
+

(
−ut/β

i∗t/σ + ut/(σβ)

)
= A1xt + b1,t (3.2)

where i∗t is the exogenous (bounded) path of the interest rate. Note that
A1 is obtained from A0 by setting φ equal to zero. Thus, the magnitude of
trA1 and detA1 are the same as for A0, i.e. trA1 > 2 and detA1 > 1. The
discriminant is now unambiguously positive whereas P(1) becomes negative.
This implies that one eigenvalue is smaller than one whereas the other one
is bigger than one. Thus, the boundedness condition does not determine a
unique solution so that we are faced with a situation of indeterminacy. The
implications of this indeterminacy for monetary policy and possible remedies
are discussed in Gaĺı (2011). Taking the same numerical values as before, i.e.
β = 0.985, σ = 1, and κ = 0.8, the eigenvalues take the values α1 = 0.42 and
α2 = 2.38 and the Lyapunov exponents the corresponding values λ1 = −0.43
and λ2 = 0.44.

Suppose next that the central bank switches deterministically between the
two policies starting with the model with Taylor rule followed by the model
with interest rate fixing. This and similar settings are discussed in Gaĺı
(2011, section 4.1.1) and, in particular, Laséen and Svensson (2011). Of
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course any other deterministic periodic pattern is feasible as well. As shown
in Figure 1 there is still a region of the parameter space for φ where the
model becomes determinate. However, the central bank must be much more
aggressive in combatting inflation when the regime with Taylor rule is in
place. In the numerical example φ must be greater than 2.4 compared to one
in the case with “no switching”.

4 Random Time–Varying Rational Expecta-

tions Models

The theory of random coefficients shares some similarities to the periodic
deterministic case analyzed in Section 2, but requires additional technical
considerations. In analogy to equation (2.1) we analyze the following class of
affine time–varying stochastic rational expectations models (TVRE models):

Etxt+1 = ψt(xt) = Atxt + bt, t ∈ Z, (4.1)

where ψt is a randomly chosen affine map. The sequence {(At, bt)} of random
variables is defined on some probability space (Ω,F,P), i.e. a set Ω endowed
with a σ–algebra F and a probability measure P. The sequence takes values
in the state space GL(n)×Rn where GL(n) denotes the general linear group
of degree n, i.e. the set of nonsingular n × n matrices.10 Define Ft as Ft =
σ{(xs, As, bs) : s ≤ t}, i.e. Ft is the smallest σ–algebra such that (xs, As, bs)
is measurable for all s ≤ t. The sequence of σ–algebras Ft then becomes a
filtration adapted to {xt} and {(At, bt)} with Ft ⊆ F. Etxt+1 denotes the
conditional expectation with respect to Ft, i.e. Etxt+1 = E[xt+1 | Ft].

A solution of this TVRE model is any Rn–valued sequence of random
variables {xt}, t ∈ Z, which satisfies equation (4.1). Associated to the ex-
pectational difference equation (4.1) we investigate the following boundary
value problem:

initial values: c = Rx0, c ∈ Rn \ {0} given;

boundedness: ‖xt‖ < m with probability one for some constant m.

The boundedness requirement is usually rationalized on the assumption that
the sequence {bt} is assumed to be bounded. Thus, it makes sense to look
for solution which are also bounded.

10For the sake of simplicity in the notation, we have omitted the dependence on ω ∈ Ω.
Thus, we have written At for At(ω) = A(θtω) where θ is an ergodic metric dynamical
system (see Arnold, 2003, Appendix A). One can think of θ as being the time–forward
shift. More details are given below.

12



From a conceptual point of view it is important to have a clear under-
standing on the randomness present in {At}. More precisely, we think of
{At} as being generated by a dynamical system in the following way. Let
θ(t, ω), t ∈ Z, be a sequence of measurable maps

θ(t, ω) : Z× Ω→ Ω

such that θ(0, ω) = ω and such that the cocycle property θ(t + s, ω) =
θ(t, θ(s, ω)) is satisfied for all t, s ∈ Z and ω ∈ Ω. Moreover, we assume
that the probability measure P is invariant under θ, i.e. θ(t, .)P = P for all
t ∈ Z. Because of the cocycle property, we can think of θ(t, ω) as being
generated by θ(1, ω) and we write θtω for θ(t, ω). In the same vein, we
denote A(θtω) by At(ω). Sometimes we suppress the dependence on ω and
write just At for short. Dynamical systems with these properties are called
metric dynamical systems. Moreover, we assume θ to be ergodic. Following
Arnold (2003, chapter 1), the evolution of the system on the bundle Ω×Rn

can be envisioned as in Figure 2. While ω is shifted by θ to θω, the point
x0 in the fiber ω × Rn is shifted to x1 = ψ(ω)x0 = A(ω)x0 + b(ω) in the
fiber θω × Rn. In the next period θω is shifted to θ2ω whereas x1 is shifted
to x2 = ψ(θω) = A(θω) + b(θω) and so on. The nice thing is that on each
fiber the system is affine in the usual sense. We treat the random dynamical
system θ as being fixed. Later in the application we specify it to follow a
given Markov chain.

Suppose we are given two solutions {x(1)
t } and {x(2)

t }, then {x(1)
t − x

(2)
t }

satisfies the linear expectational equation

Atxt = Etxt+1. (4.2)

This implies that, as in the deterministic case, the superposition principle
holds and that every solution is of the form:

xt = x
(g)
t + x

(p)
t

where {x(g)
t } denotes the general solution of the linear equation (4.2) and

{x(p)
t } a particular solution of equation (4.1). Thus, the solution can be

found by first finding the general solution to the linear equation (4.2) and
then looking for a particular solution of equation (4.1).

Define {Φ(t)} = {Φ(t, ω)} as the random matrix product:

Φ(t) = Φ(t, ω) =


At−1(ω) . . . A1(ω)A0(ω), t = 1, 2, . . .;
In, t = 0;
At(ω)−1 . . . A−1(ω)−1, t = −1,−2, . . .
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Figure 2: The Evolution of an Affine Random Dynamic System
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Next define a new variable yt as yt = Φ(t)−1xt. It is easy to see that {yt} is
a martingale:

Etyt+1 = Et
(
Φ(t+ 1)−1xt+1

)
= Φ(t+ 1)−1Etxt+1 = Φ(t+ 1)−1Atxt = yt

This implies that the general solution of the linear equation (4.2) can be
represented as

xt = (At−1 . . . A1A0)mt = Φ(t)mt, (4.3)

where {mt} is a martingale with respect to the filtration {Ft}. Similarly,
the time reversed process is also a martingale. This implies without any
additional assumptions that there exists a random variable m∞ such that
limt→∞mt = m∞ a.s. and in mean (see Grimmett and Stirzaker, 2001,
section 12.7). Moreover, the original martingale can be reconstructed from
m∞ by setting mt = E(m∞ | Ft). Thus, the space of martingales can be
continuously parameterized by the space of random variables which are mea-
surable with respect to F∞ where F∞ = σ

(⋃
t∈Z Ft

)
.11 An important special

case arises if mt is constant.
The existence and the stability properties of the solutions (4.3) thus de-

pend crucially on the convergence of the matrix products Φ(t). To study this
issue, we introduce again the Lyapunov exponent as the asymptotic growth
of solutions of the linear random dynamical system xt+1 = Atxt associated
to equation (4.2) (see Section 2 for comparison). Denote by ϕ(t, ω, x) the
trajectory Φ(t, ω)x. The Lyapunov exponent is then defined as

λ(ω, x) = lim sup
t→∞

1

t
log ‖ϕ(t, ω, x)‖. (4.4)

The Lyapunov exponent therefore describes the asymptotic exponential growth
rate of the linear random dynamical system xt+1 = Atxt starting with x0 = x.

Throughout the paper we assume the following integrability condition.

Assumption 2 (Integrability). For every t ∈ Z,

log+ ‖At‖, log+ ‖A−1
t ‖ and log+ ‖bt‖ ∈ L1(Ω,F,P).

Thereby log+ x stands for max{log x, 0}. This assumption will be satisfied if
the random variables would be essentially bounded. Here and in the following
‖.‖ denotes the operator norm induced by the Euclidean metric, i.e. ‖A‖ =
max‖x‖=1 ‖Ax‖ = δ1 where δ1 is the largest singular value of A. Because all
norms are equivalent, the integrability assumption and the limits below are
independent from the norm the chosen provided that it is submultiplicative.

11Compare this to Klein (2000, Definition 4.3 and Assumption 4.2)
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A result analogous to Theorem 1 was originally proven by Oseledets
(1968) for random dynamical systems. This theorem is also known as the
Multiplicative Ergodic Theorem (MET) and provides a substitute for the
spectral theorem which is key in the understanding deterministic difference
equations.12 In particular, the MET postulates the existence of invariant
subspaces and constant asymptotic growth rates (Lyapunov exponents). An
extensive exposition of this theorem with proofs can be found in Arnold
(2003). Here we follow Colonius and Kliemann (2014) and present a more
accessible version.

Theorem 3 (Multiplicative Ergodic Theorem (MET)). Under the integra-
bility assumption 2 and the assumptions on the random dynamical system
θ(t, ω), the linear time–varying system xt+1 = Atxt induces a splitting of Rn

into ` ≤ n linear subspaces Lj(ω) = L(λj, ω), j = 1, . . . , `. These subspaces
have the following properties:

(i) There is a decomposition (splitting)

Rn = L1(ω)⊕ · · · ⊕ L`(ω)

of Rn into ` invariant random linear subspaces Lj(ω), i.e. A(ω)Lj(ω) =
Lj(θω) for j = 1, . . . , `. The linear subspaces Lj(ω) are called Lyapunov
or Osoledets spaces and have constant dimensions dj.

(ii) There are real numbers λ1 > · · · > λ` such that for each x ∈ Rn \ {0}
the Lyapunov exponent λ(ω, x) ∈ {λ1, . . . , λ`} exists as a limit and

λ(ω, x) = lim
t→±∞

1

t
log ‖ϕ(t, ω, x)‖ = λj if and only if x ∈ Lj(ω) \ {0}.

(iii) The limit

Υ(ω) = lim
t→∞

(Φ(t, ω)′Φ(t, ω))
1/2t

(4.5)

exists as a positive definite matrix. The different eigenvalues of Υ(ω)
are constants and can be written as exp(λ1) > · · · > exp(λ`); the cor-
responding random eigenspaces are L1(ω), . . . , L`(ω).

(iv) The Lyapunov exponents are obtained as limits from the singular values
δk of Φ(t, ω): The set of indices {1, 2, . . . , n} can be decomposed into
subsets Sj, j = 1, . . . , `, such that for all k ∈ Sj,

λj = lim
t→∞

1

t
log δk(Φ(t, ω)).

12See Meyer (2000, chapter 7) for a comprehensive account of the spectral theorem.
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If the state space is one–dimensional, i.e. if n = 1, the MET reduces to
Birkhoff’s ergodic theorem.13 To see this, define f(ω) = log |a(ω)| where
a(ω) stands for A(ω) to emphasize that we are dealing with the scalar case.
Assume that f+ = max{0, f} ∈ L1(Ω,F,P) with

∫
Ω
fdP = λ, then the

Birkoff pointwise ergodic theorem asserts

1

t

t−1∑
j=0

f(θjω) −→
∫

Ω

fdP = λ.

Noting that log |ϕ(t, ω, x)| =
∑t−1

j=0 log |a(θjω)| + log |x|, statement (ii) in

the MET corresponds exactly the Birkoff’s theorem because limt→±∞
1
t
|x|

converges to zero.
A remark analogous to Remark 1 also applies in the context of random

time-varying models. The Lyapunov subspaces are not orthogonal and de-
pend on ω. Their dimensions and the Lyapunov exponents, however, are
independent of ω. Note also the invariance (equivariance or covariance) of
these subspaces that is the property A(ω)Lj(ω) = Lj(θω) which becomes
important in the numerical implementation (see Froyland et al., 2013).
There exists an alternative decomposition of Rn into orthogonal subspaces.
These subspaces are, however, no longer invariant.

We collect the Lyapunov subspaces into subbundles:

Ls(ω) =
⊕
λj<0

L(λj, ω), Lc(ω) = L(0, ω), and Lu(ω) =
⊕
λj>0

L(λj, ω)

called the stable subbundle, the center, and the unstable subbundle, respec-
tively. Thus, the zero solution is asymptotically stable if and only if all
Lyapunov exponents are negative. This is equivalent to Ls(ω) = Rn for
some (hence for all) ω. The difference equation (4.1) is called hyperbolic
if Lc(ω) = ∅ or, equivalently, if all Lyapunov exponent are different from
zero. For a hyperbolic difference equation the zero solution is called a saddle
point if both Ls(ω) and Lu(ω) have dimensions ds = dimLs(ω), respectively
du = dimLu(ω), strictly greater than zero. Analogously to the deterministic
case, define by πs,u(ω) : Rn → Ls(ω) the projection onto Ls(ω) along Lu(ω)
and by πu,s(ω) : Rn → Lu(ω) the projection onto Lu(ω) along Ls(ω). Note
that these projections also depend on ω.

As in the deterministic case, consider the inverse boundary problem: find
an initial value x0 such that the trajectory ϕ(t, ω, x0) remains bounded, i.e.
such that λ(ω, x0) < 0 subject to initial conditions given by equation (2.3).

13An introduction to ergodic theory can be found, f.e., Grimmett and Stirzaker
(2001, section 9.5) or Colonius and Kliemann (2014, section 10.1).
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As before a unique solution is obtained if and only if a rank condition similar
to (2.4) is satisfied:

rank

(
R(

0 Idu
)
B(ω)−1

)
= n (4.6)

where B(ω) is a basis of Rn obtained as the union of a basis of Ls(ω) and

Lu(ω). Note that πu,s(ω) = B(ω)

(
0 0
0 Idu

)
B−1(ω). If this equation system

has a unique solution, the TVRE model (4.1) is said to be determinate. As
R has r rows and

(
0 Idu

)
B−1 has du = n − ds rows, a necessary condition

for a unique solution is that r = ds. If r < ds, there is a whole family of
solutions and the model (4.1) is then indeterminate. If r > ds, the equation
system is overdetermined and no solution exists.

Having established the general solution to the linear equation, the objec-
tive is then to find a particular solution to the affine equation. Assuming
hyperbolicity, the idea is to project bt = b(θtω) on the stable and unstable
subbundles Ls(θt+1ω) and Lu(θt+1ω). This effectively decomposes bt into the
direct sum of two components where the first component lies in Ls(θt+1ω)
and the second in Lu(θt+1ω):

bt = b(θtω) = πs,u(θt+1ω)bt + πu,s(θt+1ω)bt.

Using the towering property of conditional expectations (Law of Iterated
Expectations), the next step consists in the iteration of the stable (unsta-
ble) component backward (forward) in time. This then leads to following
particular solution:

x
(p)
t =

(
xb,pt
xf,pt

)
=


∑∞

j=0

(∏j
i=1At−i

)
πs,u(θt−jω)bt−1−j

−Et
[∑∞

j=0

(∏j
i=0At+i

)−1

πu,s(θt+j+1ω)bt+j

]

= Φ(t)

( ∑∞
j=0 Φ(t− j)−1 πs,u(θt−jω)bt−1−j

−Et
[∑∞

j=0 Φ(t+ j + 1)−1 πu,s(θt+j+1ω)bt+j

]) . (4.7)

Theorem 5.6.5 in Arnold (2003) shows that the infinite sums are well–
defined and that equation (4.7) determines the unique ϕ-invariant solution.
It is straightforward to verify that this is indeed a solution to the affine
expectational equation (4.1).

These considerations, finally, lead to the following Theorem which presents
a solution similar in spirit to the analysis of Blanchard and Kahn (1980).
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Theorem 4. Under the integrability assumption 1, the hyperbolic affine ran-
dom rational expectations model (4.1) admits a unique nonexplosive solution
if and only if the rank condition (4.6) is satisfied. The solution to the corre-
sponding boundary value problem then is

xt = Φ(t)

(
x0 +

( ∑∞
j=0 Φ(t− j)−1 πs,u(θt−jω)bt−1−j

−Et
[∑∞

j=0 Φ(t+ j + 1)−1 πu,s(θt+j+1ω)bt+j

])) (4.8)

where x0 is uniquely determined by the rank condition (4.6).

While the above solution formula is appealing from a theoretical perspec-
tive, it hard, if not impossible, to come up with an explicit analytical solution
in a nontrivial context. Thus, one has to resort to numerical solutions. Some
of these algorithms will be introduced by means of the New Keynesian model
with stochastically varying Taylor–rule.

The approach could be equally well applied when the model (4.1) is
brought into the format advocated by Sims (2001). Define for this pur-
pose yt = Etxt+1 and enlarge the state space by introducing the equation
xt = yt−1 + ηt where ηt denotes the expectation error xt − Et−1xt. The
augmented system then is

Γ
(0)
t

(
yt
xt

)
= Γ

(1)
t

(
yt−1

xt−1

)
+

(
bt
ηt

)
(4.9)

where Γ
(0)
t and Γ

(0)
t are defined appropriately as

Γ
(0)
t =

(
In −At
0 In

)
and Γ

(1)
t =

(
0 0
In 0

)
.

Note that Γ
(0)
t is invertible so that we can bring the equation into a standard

format and analyze it from there on using again the tools of the MET. While
the invertible case presents no problem, it is natural to ask to what extent is
it possible to generalize to the singular case. This issue is of some importance
because some equation might not involve expectational variables making Γ

(0)
t

singular.
A possible remedy is to use a generalized inverse. The natural generalized

inverse in the context of difference equations is the Drazin inverse which we
will now define. Let k denote index of the matrix Γ

(0)
t , i.e. the smallest

integer for which rank Γ
(0)
t

k
= rank Γ

(0)
t

k+1
, then there exists a core–nilpotent

decomposition

Γ
(0)
t = Pt

(
Ct 0
0 Nt

)
P−1
t
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where Ct is a nonsingular r × r matrix and Nt is nilpotent matrix of index
k, meaning Nk

t = 0. The Drazin inverse of Γ
(0)
t is then defined as

Γ
(0)
t

D
= Pt

(
C−1
t 0
0 0

)
P−1
t .

If Γ
(0)
t is nonsingular, k = 0 and r = n, so Nt is not present. A detailed

exposition of the Drazin inverse can be found in Campbell and Meyer
(1979, chapter 8 and the application to difference equations in section 9.3)
and Meyer (2000, section 5.10). Because we think that whether or not an
expectational variables appears in a equation is related to structure of the
economic model, we treat the index k as being fixed. In addition, we assume
that there always exists some zt ∈ R such that ztΓ

(0)
t +Γ

(1)
t is invertible. This

assumption is standard in this context (see Sims (2001, footnote 1) or Klein
(2000) for details and economic examples).

With these tools and assumptions at hand, we can decouple the system in
two components. To see this concentrate on the linear case first and multiply
both sides by (ztΓ

(0)
t + Γ

(1)
t )−1:

(ztΓ
(0)
t + Γ

(1)
t )−1Γ

(0)
t Ut = (ztΓ

(0)
t + Γ

(1)
t )−1Γ

(1)
t Ut−1

Γ̂
(0)
t Ut = (I2n − zΓ̂

(0)
t )Ut−1(

Ct 0
0 Nt

)
Ũt =

(
I2n − zt

(
Ct 0
0 Nt

))
Ũt−1.

where Γ̂
(0)
t = (ztΓ

(0)
t + Γ

(1)
t )−1Γ

(0)
t , Ut = (y′t, x

′
t)
′, and Ũt = P−1Ut. This leads

to

CtŨ1t = (In1 − ztCt)Ũ1,t−1

NtŨ2t = (In2 − ztNt)Ũ2,t−1

where Ũt is partitioned conformable into Ũ1t and Ũ2t. The first set of equa-
tions can then be analyzed as set out previously because Ct is invertible. It
is clear that in the case k = 1 which is equivalent to Nt = 0 the only solution
to the second set of equations is Ũ2t = 0. Given the solution for Ũ1t and
Ũ2t one can then work backward to determine the solution for the original
variables. In this endeavor it is important to check the consistency of the
initial condition (Campbell and Meyer, 1979, theorem 9.3.2).
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5 Stability of the Stochastically Time–Varying

New Keynesian Model

We start by exploring the properties of the linear (nonautonomous) equa-
tion (4.2). Suppose that, in contrast to Section 3, the policymaker switches
randomly according to some Markov process between the two policies. Thus,
the system matrices At are chosen randomly from the set{

1

β

(
1 −κ

(φβ − 1)/σ β + κ/σ

)
,

1

β

(
1 −κ
−1/σ β + κ/σ

)}
Both matrices are the same except for the term (At)21 which is (φβ−1)/(βσ)
in one case and −1/(βσ) in the other. We can therefore think of the random
process as being defined on the state space S = {φ, 0} where φ takes a
specific and fixed value. The Markov process is given as a Markov chain with
transition probabilities P where (P)ij denotes the probability of moving from
state i to state j, i, j = 1, 2.14 We assume that all elements of P are strictly
positive implying that the chain is ergodic and aperiodic, i.e. regular, and
admits a unique stationary distribution π = (π1, π2) which fulfills π = πP.
The mean exit time from i is 1/(1 − (P)ii). Following Shorrocks (1978),
we define a mobility index M(P) as

M(P) =
n− trP

n− 1
.

This index is equal to the reciprocal of the harmonic mean of the mean
exit times.15 This index can be interpreted as measuring the randomness or
mobility of the chain.

We specify the parameters β, κ, and σ as before as 0.985, 0.8, and 1,
respectively. The value for φ ranges from 0 to 4 in steps of length 0.01.
Finally, we specify P as

P =

(
p 1− p

0.5 0.5

)
where p ranges from 0.01 to 0.99 in steps of length 0.01. This implies that
the mean exit time from state 1 – the state where the central bank responds
to inflation – ranges from 1.01 to 100 periods and that the mobility index
from 0.1.49 to 0.51.

14As shown in the Appendix C, every Markov chain can be represented as a i.i.d. random
dynamical system. This point becomes important in the simulation exercises.

15The index is actually conceived by Shorrocks (1978) for stochastic matrices with
quasi dominant diagonals. This aspect is, however, irrelevant for our purposes.
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Next we compute the Lyapunov exponents for different values of φ and p,
keeping the other parameters fixed. Because of the exponential growth, the
numerical computation is not a straightforward task. I therefore use the iter-
ative QR procedure as outlined in Dieci and Elia (2008) (see Appendix E).
For the purpose of this specific simulation exercise we can omit the compu-
tation of the Lyapunov spaces because in the case of a determinate model
amounts Lu(ω) = Rn which corresponds to the case where both Lyapunov
exponents are greater than zero. In the case of indeterminacy, Ls and Lu

would be one dimensional and thus nontrivial. However, there is a lack of
boundary condition to achieve a unique solution. Thus, the knowledge of
the Lyapunov spaces are of no help in this situation.16 The results from this
simulation exercise are plotted in Figure 3 which shows the minimal Lya-
punov exponent as a function of φ and p = (P)11. In this plot the black line
shows the combinations of φ and p such that the minimal Lyapunov exponent
equals zero. Below this line the model is indeterminate, above it the model is
determinate. The picture clearly documents the negative trade–off between
the aggressiveness with which the central bank reacts to inflation and the
mean exit time of staying in a regime where the central bank combats infla-
tion: if φ is large the mean exit time from state 1 can be low and vice versa.
A similar message is conveyed by looking at the corresponding contour map
in figure 4. The fuzziness of the zero line (black line in Figure 3) and the
level lines in Figure 4 are due the numerical imprecisions. More iterations
and higher accuracy would lead to smoother lines, however at the expense of
computation time.

6 Conclusion

The purpose of this paper was to present to economists the mathematical
tools which enable them to analyze rational expectations models with time-
varying coefficients. The theoretical core of this methodology evolves around
the concept of Lyapunov exponents which measure the asymptotic growth
rates of trajectories. The Multiplicative Ergodic Theorem by Oseledets then
showed that the Lyapunov exponents play a similar role in the analysis of
the stability of random dynamical systems as the eigenvalues do in the stan-
dard case of constant coefficients. Based in this insight, the paper shows
how to construct solutions and analyze the stability of rational expectations
models with time–varying coefficients. This approach brings the paper close
to the spirit of the standard Blanchard–Kahn analysis of rational expecta-

16Alternative numerical procedure for the computation of Lyapunov spaces have been
proposed by Froyland et al. (2013).
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Figure 3: Trade-off between aggressiveness in reacting to inflation (φ) and
the probability of leaving state 1 (p)
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Figure 4: Contour plot of Figure 3. Each level line corresponds to a certain
minimal Lyapunov exponent
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tions models with constant coefficients. The methodology is also relevant for
the analysis of regime–switching models á la Hamilton and complements the
approach by Francq and Zaköıan (2001).

The application of these tools requires numerical methods as analytical
solutions are almost never available. Fortunately, powerful procedures to
estimate the Lyapunov exponents as well as the corresponding Lyapunov
spaces have been developed (see Dieci and Elia (2008) and Froyland
et al. (2013), f.e.). Finally, the paper runs a simple simulation exercise of a
prototype New Keynesian model with Taylor rule to demonstrate the practi-
cal usefulness of the approach. From this exercise, it becomes clear that there
are no conceptual obstacles to apply this methodology to more sophisticated
models.
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A The Uninformativeness of Eigenvalues

This section presents a systematic way to construct examples of nonau-
tonomous linear difference equations such that the “time frozen” or “local
stability” does not imply overall or global stability. Thus, we generate exam-
ples which “demonstrate without any doubt that eigenvalues do not generally
provide any information about the stability of the nonautonomous difference
systems“ (Elaydi, 2005, p.191).17 Consider the linear nonautonomous de-
terministic difference equation

xt+1 = Atxt with xt ∈ R2

where At = exp(tG(ω))B exp(−tG(ω)), ω > 0, with

G(ω) =

(
0 −ω
ω 0

)
implying exp(tG(ω)) =

(
cosωt − sinωt
sinωt cosωt

)
.

Because At and B are similar matrices, they share the same eigenvalues. Next
define yt = exp(−tG(ω))xt. yt is therefore obtained from xt by a rotation
of angle ωt implying that ‖yt‖ = ‖xt‖. Thus, xt diverges if and only if yt
diverges. Using the defining difference equation for xt, we see that yt follows
the autonomous difference equation

yt+1 = exp(−(t+ 1)G(ω))xt+1

= exp(−(t+ 1)G(ω)) exp(tG(ω))B exp(−tG(ω))︸ ︷︷ ︸
=At

xt

= exp(−G(ω))Byt.

The stability of yt is determined by the product of the matrices exp(−G(ω))
and B. If we can find a matrix B and an ω such that the spectral radii
ρ(exp(−G(ω))B) and ρ(B) are such that ρ(exp(−G(ω))B) > 1 whereas
ρ(B) < 1, we have found an example where each of the “time frozen” coeffi-
cient matrices would imply stability, but where the nonautonomous system
is unstable.

One such specification due to Elaydi (2005, p. 190) is obtained by taking

ω = 1 and B =

(
0 1/2

3/2 0

)
.

17This construction translates the continuous time approach of Colonius and Klie-
mann (2014, p.109–110) to a discrete time framework. Francq and Zaköıan (2001)
provide another ad hoc example.
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In this example the eigenvalues of B are ±
√

3/2, thus they are both smaller
than one in absolute terms, but exp(−G(ω))B has eigenvalues 1.3836 > 1
and −0.5421. xt therefore diverges although every At has eigenvalues with
modulus strictly smaller than one.

Another specification is obtained by taking

ω = 2 and B =

(
1/10 1/2
−3/2 1/10

)
.

In this case the eigenvalues of B are 0.1 ± ı
√

3/2 whose moduli are strictly
smaller than one. The eigenvalues of exp(−G(ω))B, however, are 1.3307 and
−0.5711. Thus again, xt diverges although every At has eigenvalues with
modulus strictly smaller than one.

B Linear Nonautonomous Systems:

A Numerical Example

To get a better understanding of the behavior of periodically switching linear
difference equations, we consider the following numerical example for n = 2
and p = 2:

A0 =

(
1 0.2
1 1

)
, A1 =

(
1 −0.5
3 −2

)
.

These matrices have eigenvalues λ
(0)
1 = 1.4472 and λ

(0)
2 = 0.5528, respectively

λ
(1)
1 = 0.3660 and λ

(1)
2 = −1.3660. The matrices A1A0 and A0A1 are then

given by

A1A0 =

(
0.5 −0.3
1.0 −1.4

)
, A0A1 =

(
1.6 −0.9
4.0 −2.5

)
.

The Lyapunov, respectively the Floquet, exponents in this case can be com-
puted from the eigenvalues α1 and α2 of A1A0, respectively A0A1, as λj =
1
2

log |αj|, j = 1, 2. This gives λ1 = −0.5601 and λ2 = 0.1020. From the
eigenvectors of A1A0 and A0A1 we can compute the stable and the unstable
bundle:

Ls(0) = span

(
0.8653
0.5013

)
Lu(0) = span

(
0.1712
0.9852

)
and

Ls(1) = span

(
0.5770
0.8167

)
Lu(1) = span

(
0.3034
0.9529

)
.
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The corresponding projection matrices are

πs,u(0) =

(
1.1119 −0.1932
0.6442 −0.1119

)
and πu,s(0) =

(
−0.1119 0.1932
−0.6442 1.1119

)
,

and

πs,u(1) =

(
1.8205 −0.5797
2.5766 −0.8205

)
and πu,s(1) =

(
−0.8205 0.5797
−2.5766 1.8205

)
.

Suppose bt = (b, (−1)tb)′, then we can compute the solution (2.6).

C Markov Chains as Random Dynamical Sys-

tems

Denote the state space by S which consists of the matrices {At} used to move
from xt to xt+1 = Atxt + bt. Assume S to be finite with cardinality s = |S|.
Take Ω to be the set of all maps from S into itself. These maps can be
represented by {0, 1}–matrices with exactly one element equal to one in each
row. These matrices are sometimes called deterministic transition matri-
ces. According to the Krein–Milman theorem, respectively the Birkhoff–von
Neumann theorem, (see Rockafellar (1970) or Berman and Plemmons
(1994, p. 49)) every transition matrix P can be represented as a convex
combination of the deterministic transition matrices:

P =
ss∑
j=1

δjDj,
ss∑
j=1

δj = 1 and δj ≥ 0

where Dj are the deterministic transition matrices. Note that this represen-
tation is not unique. In the case s = 2 and p+q < 1, a possible representation
of P is given by

P =

(
p 1− p
q 1− q

)
= p

(
1 0
0 1

)
+ q

(
0 1
1 0

)
+ (1− p− q)

(
0 1
0 1

)
.

Similarly, for the case p+ q > 1. Note that we need only three deterministic
transition matrices to represent P in this case. For a given transition matrix
P, let Ω be the smallest set of deterministic transition matrices necessary to
represent P as a convex combination P =

∑|Ω|
j=1 δjDj with

∑|Ω|
j=1 δj = 1 and

δj > 0. (Ω,P(Ω),∆) is then a probability space where P(Ω) is the σ–algebra
given by all subsets of Ω and ∆ is the discrete probability measure gener-
ated by the point probabilities (δ1, . . . , δ|Ω|). The chain is then generated by
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randomly drawing a deterministic transition matrix where the probabilities
are given by ∆. If Dj is drawn, the system moves deterministically to the
next state according to Dj. These draws are independent from one period to
the next. In this way every Markov chain can be represented as a random
dynamical system with i.i.d increments.

D A Digression: The Case of Triangular Ma-

trices

To get a better understanding of the algorithm used for the estimation of
the Lyapunov exponents, it is instructive to examine the case of triangular
matrices. This section replicates the expositions of Berger (1993, p. 155)
and Arnold (2003, p. 129–130). Let {At} be a sequence of 2 × 2 upper
triangular matrices:

At =

(
at ct
0 bt

)
∈ GL(n).

Φ(t) is then given by

Φ(t) = At−1 . . . A1A0 =

(∏t−1
j=0 aj

∑t−1
k=0 at−1 . . . ak+1 ck bk−1 . . . b0

0
∏t−1

j=0 bj

)
.

Note that Re1 = span(1, 0)′ is an invariant subspace for the Φ(t)’s. We
assume that the sequences {at}, {bt}, and {ct} are ergodic with α = E log |at|,
β = E log |bt|, and γ = E log |ct| ∈ L1. Therefore

1

t

∞∑
j=0

log |at| → α

1

t

∞∑
j=0

log |bt| → β

which implies that

1

t
log | det Φ(t)| → α + β.

α+β is twice the average Lyapunov exponent λΣ defined as λΣ = (λ1+λ2)/2.
Obviously, the Lyapunov exponent of [Φ(t)]11 is α and that of [Φ(t)]22 β.
Because λ(x+ y) ≤ max{λ(x), λ(y)} with equality if λ(x) 6= λ(y) (Arnold,
2003, p. 114),

λ1 = max{α, β} > α + β

2
> λ2 = min{α, β} for α 6= β.
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When α = β, we have λ1 = λΣ = α = β with multiplicity 2.
To compute the Oseledets or Lyapunov spaces, we assume without loss

of generality α > β. For any vector x = (x1, 1)′ to grow at rate β, x must be
an eigenvector with respect to eigenvalue b(t) = [Φ(t)]22. Thus(

a(t) c(t)
0 b(t)

)(
x1

1

)
= b(t)

(
x1

1

)
with a(t) = [Φ(t)]11 and c(t) = [Φ(t)]12. Taking limits and recognizing that
b(t)/a(t)→ 0, we get

x1 = − c(t)
a(t)

= −
∞∑
k=0

ckbk−1 . . . b1b0

ak . . . a1a0

.

This defines the random Lyapunov subspace L(λ2) = span(x1, 1)′. The other
Lyapunov subspace is L(λ1) = Re1. Note that for x to grow at rate β, x
must be random. Moreover, this randomness depends on the entire sequence
{At}.

E Computing Lyapunov Exponents

and Lyapunov Spaces

Although the Lyapunov exponents and the corresponding subspaces are de-
fined in a straightforward manner on the theoretical level, it is not a straight-
forward task to compute them numerically. The reason for this difficulty
stems from the exponential growth of the elements in Φ(t), respectively Υ,
as t becomes large. Trying to compute these matrices directly very quickly
hits the numerical bounds of any computer. To avoid this problem itera-
tive QR and SVD decompositions have been proposed (see Dieci and Elia,
2008).

In this paper, we use the QR approach which is very easy to implement.
Let X(t) be the principal fundamental matrix satisfying X(t+ 1) = AtX(t).
Suppose we initialize the algorithm by taking some X(0) as a starting value.
Let the QR decomposition of X(0) be given as X(0) = Q0R0 where Q0 is
an orthogonal matrix and R0 an upper triangular matrix. Then we compute
X(1) = A0X(0) and perform the QR decomposition of X(1)Q0 = Q1R1.
Obviously, X(1)X(0) = Q1R1R0. Proceeding in this way, we obtain a QR
decomposition of Φ(t) = X(t) . . . X(1)X(0):

Φ(t) = QtRt . . . R1R0.
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Generalizing the arguments of appendix D from 2× 2 triangular matrices to
n× n triangular matrices, one gets

λj = lim
t→∞

1

t

t∑
j=k

log [Rk]jj, j = 1, . . . `,

where [Rk]jj is the j-th diagonal element of Rk. The algorithm stops when
a sufficient precision is obtained. For further details see Dieci and Elia
(2008).
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