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Abstract

This paper provides a rationale for equal sharing in heterogeneous

partnerships. We introduce project choice and information sharing

to a standard team production setting. A team with two agents can

choose whether they want to work on a status quo project or on an

alternative project. If the (expected) quality of the projects is given

and common knowledge, it is optimal for team surplus to give a higher

share to the more productive agent in order to optimally motivate.

If agents have private information, we have to give the higher share

of profits to the less productive agent if we want agents to share this

information, which would allow for better adaptation. Equal revenue-

sharing strikes a balance between the two objectives of adaptation and

motivation and can be efficient even in the presence of considerable

productivity differences across partners.
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1 Introduction

Evidence shows that teams are often organized as partnerships, i.e. team

members work together on a project and share the revenue. Partnerships can

for example be found in service professions (Hansmann, 1996) as law firms

(Leibowitz and Tollison, 1980), medical practices (Encinosa et al., 2007),

architecture firms and accounting firms (Greenwood and Empson, 2003).

If the partners share the revenue, free-riding leads to inefficiently low

effort provision since each partner only considers his own share of revenue.

Experimental evidence for such free-riding can be found in Nalbantian and

Schotter (1997) and Chao and Croson (2013). In case of heterogeneous

partners, this free-riding problem can be mitigated by giving higher shares

to more productive partners. This result is quite robust and also holds if

partners differ in ability and self-select (McAfee and McMillan, 1991) or

when production is of repeated nature (Rayo, 2007; Kobayashi et al., 2016).

However, we often observe equal revenue sharing even in partnerships

in which we would expect heterogeneity.1 Encinosa et al. (2007) find that

54% of small medical-group practices (3 to 5 members) share equally. In

larger practices (16 to 24 members), equal sharing still plays an important

role (24%). Farrell and Scotchmer (1988) find equal shares among partners

of similar seniority in law firms and argue that for example marriage and

coauthorship in economics are close to equal sharing.2

Such equal sharing in partnerships can be rationalized e.g. by prefer-

ences for equality (Bartling and von Siemens, 2010; Gill and Stone, 2015),

concerns for sabotage (Bose et al., 2010) or market reputation and moral

hazard (Jeon, 1996). Farrell and Scotchmer (1988) argue that equal sharing

is a social convention and people want to satisfy some concept of justice.

However, evidence suggests that it might actually be teamwork that leads

to preferences for equal sharing in the first place (Hamann et al., 2011). Fur-

thermore, discussions about how revenue should be shared, if not equally,

could give rise to inefficient rent-seeking.

We show in this paper that in a standard team production setting à la

Holmström (1982) with project quality and effort being complementary in-

1Prat (2002) provides arguments in favor of heterogeneity in a team theory setting à
la Marschak and Radner (1972).

2Ray and Robson (2018) suggest to randomize the order of the names in economic
coauthorship, which is a further step towards equal sharing.
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puts, equal sharing can be optimal for heterogeneous agents if we introduce

team project choice and asymmetric information about projects’ qualities.

The changes we incorporate in the standard model can be justified by obser-

vations in reality. In partnerships, agents do often not only work together

but also decide which project they want to work on. This seems natural

when considering firms or countries working together. Within organiza-

tions, the share of self-managed teams has increased in recent years (Lazear

and Shaw, 2007; Osterman, 2000; Manz and Sims Jr, 1993).

Consider for example a team that is organizing an event and wants to

book a newcomer band. The band’s quality is uncertain but the team ex-

pects it to be better, and hence attract more people, than the alternative

of a well-known local artist. However, one of the partners in the organizing

team might get “bad news” about the quality, as e.g. that the last concert

of the band was a flop. If he reveals this information to the team, they

can adapt to the alternative, which is known to have higher quality in the

presence of such “bad news”.

The possibility to disclose information and the project choice introduce

a trade-off between improving adaptation and motivating effort. The disclo-

sure of information allows the team to choose a better project. However, it

also demotivates the partners if the information is “bad news”. In order to

study this trade-off, we use a similar model of team production as Blanes i

Vidal and Möller (2016). We consider a team which consists of two agents.

They can jointly choose between two projects. Before they decide on a

project, one of them might receive private information about the quality of

the projects. Information is private but verifiable, so an informed agent can

credibly disclose the news to his partner. When an informed agent decides

whether to disclose, he compares the benefit from better adaptation to a

potential loss of his partner’s motivation. A loss of motivation can occur if

the news is bad in the sense that the partner’s expectation about quality

was higher without information. Since the informed agent only takes into

account his own share of revenue, his disclosure strategy might not be opti-

mal for team surplus. By carefully choosing the revenue sharing rule, we do

not only affect motivation but also whether agents disclose their informa-

tion. While Blanes i Vidal and Möller (2016) find the optimal mechanism

for homogeneous agents, we consider heterogeneous agents and restrict at-

tention to the case in which shares are independent of revenue and disclosure
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strategies.

In the benchmark of project selection with symmetric information, the

expected surplus of the team is maximized if the more productive agent

receives a higher share. The percentage loss in surplus if shares are equal

rather than optimal can be substantial, up to 25%.

If we introduce asymmetric information, we have to take into account the

impact of the revenue sharing rule not only on the effort but also on whether

agents disclose private information. Given the optimal sharing rule in the

benchmark case, the less productive agent is less willing to disclose because

the reaction of the more productive agent on changes in expected quality

is stronger. Increasing the share of the less productive agent and thereby

decreasing the share of the more productive agent reduces this reaction

and thus makes it more likely that the less productive agent is willing to

disclose. It turns out that the propensity to share information in the team is

maximized if the shares are just opposite to the shares in the benchmark with

symmetric information: The less productive agent needs a higher share while

the more productive agent gets a lower share. Compared to the optimal

sharing rule with symmetric information, giving a higher share to the less

productive agent can increase surplus since better information sharing leads

to better adaptation.

Our main result characterizes the optimal sharing rule in situations in

which full disclosure is feasible. The optimal sharing rule balances incentives

to disclose information and incentives to provide effort and thus lies between

the optimal information sharing rule and the optimal sharing rule given

symmetric information. Hence, the optimal sharing rule is torn towards

equal shares and it turns out that there exist situations in which sharing

equally amongst unequals is optimal for the partnership even in the presence

of considerable heterogeneity. Where we can determine the optimal sharing

rule, the percentage loss in surplus due to equal sharing is weakly lower than

in the benchmark case.

The rest of the paper is structured as follows. Section 2 reviews the

literature on equal sharing and information problems in teams. Section

3 sets up the model of team production with project choice. In Section

4, we consider the benchmark of symmetric information. In Section 5, we

introduce asymmetric information and consider the effect of the sharing rule

on disclosure strategies. In Section 6, we characterize the optimal sharing
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rule and discuss the optimality of equal sharing. Section 7 examines the

robustness of the model and Section 8 concludes.

2 Literature

In partnerships, the problem of free-riding can be mitigated by carefully

designing the sharing rule (Legros and Matthews, 1993). There are several

papers providing arguments against equal sharing. If a partnership forms

endogenously, equal revenue sharing leads to partnerships that are too small

(Farrell and Scotchmer, 1988) and not diverse enough (Sherstyuk, 1998).

Wilson (1968) shows that equal sharing is not optimal when agents are

heterogeneous in risk preferences. Kräkel and Steiner (2001) adapt the LEN

framework of the standard principal-agent model to partnerships. They

show that equal sharing is not optimal even if agents are homogeneous.

While equal sharing would induce optimal risk-sharing, optimal motivation

pushes the shares towards giving each agent his own profit. Balancing risk-

sharing and motivation, they find that the optimal shares lie between equal

sharing and no sharing (keeping the own profits). Equal sharing would only

be optimal in the extreme case of variance or risk aversion going to infinity.

Similarly, Winter (2004) shows that equal sharing is typically not optimal

even for homogeneous agents in the presence of complementarities in efforts

and asymmetric information about efforts.

Nevertheless, as mentioned in the introduction, we often observe equal

sharing in reality and equal shares are assumed in many papers considering

partnerships (e.g. Huck and Rey-Biel, 2006; Farrell and Scotchmer, 1988;

Levin and Tadelis, 2005). The authors typically argue that equal shares

are a social convention or there is a social preference of agents (Farrell and

Scotchmer, 1988). Theoretically, it has been shown that equal shares can be

optimal in order to foreclose sabotage (Bose et al., 2010) or if there are mar-

ket reputation and moral hazard (Jeon, 1996). Bose et al. (2010) show that

agents would sabotage each other if the principal cannot commit to a reward

structure ex-ante. Hence, the possibility to commit to equal shares could be

beneficial for the principal because agents would not sabotage each other.

They argue that equal sharing is the only distribution to which the princi-

pal could commit since this commitment is facilitated by legal obligations.

Bevia and Corchón (2006) also find that sabotage is rational in cooperative
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production when revenue is shared among the agents. Even though a sabo-

teur suffers from lower revenue, he benefits from a better relative standing.

Such sabotage is more likely under meritocratic systems than under equal

sharing. Jeon (1996) consider a model with two periods in which the effort

in the first period signals higher ability and thus increases the wage in the

second period. It turns out that when the sharing arrangement is such that

revenue from abilities is shared, equal sharing is efficient. Furthermore, so-

cial preferences as inequality aversion, make equal shares more attractive.

Bartling and von Siemens (2010) show that if agents are sufficiently inequal-

ity averse, equal shares are the only renegotiation proof option. We provide

an argument in favor of equal sharing in a simple team setting.

In our model, we find a force driving in the direction of equal shares

when introducing asymmetric information and project selection. Informa-

tion is private but can be shared with the partners. We thus also relate

to the literature on teams and information sharing. In this literature, in-

formation sharing would typically be optimal for surplus but teams fail to

share information because of conflicting preferences (Li et al., 2001; Dessein,

2007), career concerns (Ottaviani and Sørensen, 2001; Levy, 2007; Visser

and Swank, 2007) or distortions by voting rules (Feddersen and Pesendor-

fer, 1996). In some settings, however, restricting information about the

quality of a project is beneficial because it mitigates the free-riding problem

in team production. In Teoh (1997), the social planner can restrict access to

information ex-ante in a public goods game. This is optimal if “bad news”

decrease contributions more than “good news” would increase them. Her-

malin (1998) only informs one agent who can then exert effort first. The

possibility of leading by example increases the informed agent’s effort above

the optimal free-riding effort. Similarly, in our paper, full information shar-

ing is not necessarily optimal. It has the positive effect of better adaptation

and the negative effect of demotivating team members. Agents possibly

fail to share information because it can be optimal to keep the other agent

motivated, rather than realistic.

This trade-off between adaptation and motivation is considered in some

other papers. Banal-Estañol and Seldeslachts (2011) study merger decisions

and the incentives to free-ride on a partner’s post-merger decision. Zábojńık

(2002), Blanes i Vidal and Möller (2007), and Landier et al. (2009) consider

the trade-off in settings in which decision making and execution of effort
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lie at different hierarchical levels. Zábojńık (2002) shows that in case of

liquidity constraints and thus limited punishment possibilities, it might be

optimal to delegate the decision to the worker in order to keep his motivation

high. Landier et al. (2009) find that dissent in the preferences of the decision

maker and the implementer can be beneficial since it implies a better use

of information. This results in better adaptation and higher credibility of

the decision maker but also demotivates the implementer. Blanes i Vidal

and Möller (2007) ask whether a worker should get hard information given

a leader has additional soft information. Giving a worker hard information

might induce the leader to give a too high weight to this hard information

in order to avoid demotivating the worker. These studies consider decision

making and implementation at different hierarchical levels. We contribute

to this literature by considering agents who take decisions and implement

projects jointly.

Similarly, Guo and Roesler (2016) consider the trade-off between adap-

tation and motivation in a dynamic setting with two agents working to-

gether on a project. Agents’ efforts increase the success probability of the

project. While working on the project, an agent might receive private in-

formation about the success probability. He can then either exit the project

and thereby disclose his information or he can stick to the project and shirk

on the other agent’s effort. However, Guo and Roesler (2016) consider homo-

geneous agents who share equally and focus on the effort and exit decisions

in equilibrium.

Campbell et al. (2014) and Gershkov and Szentes (2009) also consider

teams with private information and group members who may not share

their information in order to manipulate beliefs about the marginal return

of effort. Their settings differ from ours since their agents provide effort in

order to acquire information rather than for the implementation of a joint

project.

Our paper adds information sharing in the same way as Blanes i Vidal

and Möller (2016). They introduce asymmetric information about the pro-

duction technology and information sharing into a model of team production.

They use a mechanism design approach and consider homogeneous agents.

But team members, whether they are different firms or different workers,

are often heterogeneous. Given heterogeneous agents, we restrict attention

to partnerships, i.e. team members share the revenue of the project.
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Gershkov et al. (2016) take a similar approach when introducing asym-

metric information in a team production setting with moral hazard. How-

ever, they assume that revenue distribution can depend on a signal about the

ranking of efforts. They find a simple rank-based contract which can imple-

ment first best information sharing and first best efforts given homogeneous

agents in many situations. With heterogeneous agents, first best is possible

if private information is given to one agent only. Without the ranking of

efforts, we find that there is no revenue distribution which implements first

best information sharing and effort choices. In order to minimize free-riding,

we would want to give a higher share to more productive agents. However,

the need to incentivize information sharing promotes giving a higher share

to less productive agents.

Our result thus provides a rationale for why sometimes equal shares

could be preferred given heterogeneous agents: If transfers cannot depend

on the disclosure strategy, information sharing has to be incentivized by the

choice of the shares. Since equal shares always lie between the optimal shares

given symmetric information and the optimal shares for information sharing,

trying to balance the incentives to provide effort and to share information

leads us in the direction of equal shares.

3 Model

Consider a team that consists of two agents i = L,H, who work on a joint

project X. The revenue of the project depends on whether it is successful

or not. A successful project yields revenue 1 while a failed project generates

no revenue. The probability of success of a project depends on the efforts of

the agents, eL and eH , on the productivities of their effort, γL and γH , and

on the quality of the project, which, with slight abuse of notation, we also

denote as X:

RX(eL, eH) = (eLγL + eHγH)X. (1)

Since revenue in case of success is equal to 1, RX(eL, eH) is equivalent to

the expected revenue of a project X. Agents are heterogeneous in the sense

that the effort of agent H is more productive γL < γH ≤ 1. If the project

is successful, the revenue is shared between the two agents according to the
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sharing rule α = (αL, αH) with αL + αH = 1.3 Effort is not contractible.

Effort costs C(ei) are increasing at an increasing rate for both agents i =

L,H:

C(ei) =
1

2
e2i . (2)

Hence, agents differ only in their effort productivity.4 Agents choose effort

in order to maximize their expected utility, which consists of their share of

the expected revenue minus their costs of effort:

Ui = αiRX(eL, eH)− C(ei), i = L,H. (3)

Total expected surplus of a project with quality X is the sum of agents’ ex-

pected utilities. It is thus the total expected revenue of the project, reduced

by the costs of effort of the two team members:

SX(eL, eH) = RX(eL, eH)− C(eL)− C(eH). (4)

Efficiency would require that marginal revenue equals marginal cost for each

agent i = L,H:

R′ei(eL, eH) = C ′(ei). (5)

It is, however, a standard result that team production leads to inefficient

effort provision (Holmström, 1982). To see this, consider the first order

condition of an agent’s utility maximization problem:

αiR
′
ei(eL, eH) = C ′(ei). (6)

Since αi ≤ 1 with strict inequality for at least one of the agents, marginal

cost must remain at a lower level than efficient. At least one of the agents

will thus choose an inefficiently low effort. They only take into account

their own share of the revenue and ignore the impact of their effort on their

3Since revenue is always either 0 or 1, the sharing rule cannot depend on revenue.
Another argument for the sharing rule being independent of revenue would be that team
revenue is not verifiable by a third party. Furthermore, the sharing rule cannot depend
on the probability of success, since it cannot be observed. Such linear contracts are
“particularly suitable for organizations in which individual goals coincide: partnerships,
political parties, NGOs.” (Blanes i Vidal and Möller, 2007)

4The model is equivalent to a model in which agents have equal effort productivity but
differ in their costs with C(ei) = 1

2γ2i
e2i .
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partner’s utility. Given the specific functions for effort costs and revenue,

agents i = L,H choose efforts which maximize their utility:

e∗i = αiγiÊi[X], (7)

where Êi[X] is agent i’s expectation of quality X.

We consider the situation of a team working on a status quo project Q

which can have either low quality Q = q or high quality Q = 1 > q. It is

common knowledge that the states are equally likely ex-ante and hence the

ex-ante expected quality is E[Q] = 1+q
2 . Conditional on the quality of the

status quo project Q being low, one of the agents will receive private and

verifiable information.5 Since information is verifiable, the informed agent

can choose to disclose this new information to his partner. After the decision

of disclosing potential evidence, the team chooses whether to stick to the

status quo project Q or whether to switch to an alternative project P with

quality P .6 We abstract from a specific voting procedure and use the rule

that the team switches to alternative P if and only if evidence was disclosed.

We show at the end of Section 5.3 that this rule can be rationalized as the

outcome of an arbitrary voting procedure.

We assume that project Q has a higher ex-ante expected quality than

project P . However, project P would be preferred to project Q if project Q

is known to be of low quality.

Assumption 1 (Status quo vs. alternative project). P ∈ (q, E[Q]).

This assumption brings us to the interesting case in which project Q is

preferred ex-ante and project P would be preferred in case of evidence for

the low quality of project Q. It would thus be beneficial for the team to

adopt project P in case of receiving evidence. Note that for all relevant

expectations q ≤ Êi[X] ≤ 1, optimal efforts are such that the probability of

success RX(eL, eH) is well defined in [0, 1].

To summarize, the timing is as follows: First, nature decides whether the

quality of project Q is high or low. If quality is low, there is evidence which

5The assumption that there is information only if the quality of project Q is low
simplifies the analysis but is not crucial for the result that optimal information sharing
requires giving a higher share to the less productive agent. Similarly, allowing that both
or none of the agents receives information does not change this result. We will discuss
this in Section 7.1.

6If there was uncertainty about the quality of project P , the analysis would be analo-
gous, with P replaced by E[P ].
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is observed by one of the agents. Second, an informed agent can decide

whether to disclose the information to his partner. Third, agents jointly

choose whether to switch to project P and forth, each agent contributes

with effort to the success of the chosen project. Finally, nature determines

whether the project is successful, in which case the revenue is shared among

the agents according to the sharing rule α.

We assume that the sharing rule is independent of the choice of the

project X ∈ {Q,P} and of the disclosure history D ∈ {0, L,H}.

Assumption 2 (Simple revenue sharing). α(X,D) is independent of X ∈
{Q,P} and D ∈ {0, L,H}.

Rewarding the disclosure of information would provide incentives to dis-

close information (Blanes i Vidal and Möller, 2016). However, we focus

on the problem of a social planner when he has to incentivize efforts and

disclosure with a simple revenue sharing rule.

We use the equilibrium concept of Perfect Bayesian Equilibrium, i.e.

beliefs are consistent given strategies on the equilibrium path and strategies

are sequentially rational given beliefs.

4 Benchmark: Symmetric information

As a benchmark, consider the situation of symmetric information: If the

quality of project Q is low, both agents receive evidence. The disclosure

strategies are thus irrelevant in this benchmark case. Agents will agree to

choose the project with the higher expected quality. Therefore, they stick to

the status quo project Q if there is no evidence and change to the alternative

project P else. Total expected surplus in this situation is

Esym[S(α)] =
1

2
S1(e

∗
L(1), e∗H(1)) +

1

2
SP (e∗L(P ), e∗H(P )). (8)

Maximizing expected surplus (8) given individually optimal effort choices,

we find the optimal shares αsymL and αsymH and characterize them in Propo-

sition 1:
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Proposition 1 (Optimal shares with symmetric information). In the sym-

metric information benchmark, the surplus-maximizing shares are

αsymL =
γ2L

γ2L + γ2H
and αsymH =

γ2H
γ2L + γ2H

. (9)

The more productive agent receives a higher share αsymH > 1
2 .

The proof can be found in the Appendix. In the situation of moral hazard

and symmetric information, it is surplus-maximizing to give a higher share

to the more productive agent H than to the less productive agent L, since

the team benefits more from agent H’s effort. This implies that it is optimal

to let the more productive agent work harder. He works harder not only

because his effort is more productive but also because he gets more than

half of the project’s revenue.

As argued in the Introduction, we often observe equal sharing αequal ≡
(12 ,

1
2) even in the presence of different productivities. In our setting with

symmetric information, equal sharing leads to a loss in surplus relative to

the optimal shares αsym:

∆Esym[S] =
Esym[S(αsym)]− Esym[S(αequal)]

Esym[S(αsym)]
=

(γ2H − γ2L)2

4(γ4H + γ2Hγ
2
L + γ4L)

> 0.

(10)

The percentage loss in surplus increases in the heterogeneity of agents,

i.e. it increases in γH and decreases in γL. It can amount to 25% for γL → 0

and γH → 1.

5 Information sharing

We now consider the case when, conditional on quality of project Q being

low, only one of the agents receives evidence. Hence, the disclosure strategies

of agents become relevant. In this section, we first determine the optimal

revenue shares given disclosure strategies. Then, we show how the individ-

ually optimal disclosure strategies depend on the revenue sharing rule and

find the sharing rule that optimizes information sharing in the sense that

the propensity of full disclosure is maximized. Finally, we characterize the

surplus-maximizing sharing rule under the constraint of full disclosure.
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5.1 Optimal sharing given disclosure strategies

We showed before that with symmetric information, it would be optimal to

reduce free-riding with the distribution αsym. It turns out that the same

distribution is optimal if there is asymmetric information and both agents

choose the same disclosure strategy dL = dH .

Given project X, agents choose their efforts to maximize utility, i.e. ac-

cording to (7). The effort of agent i depends on his expectation about the

quality of the project. Since agents might have asymmetric information,

their expectations about the quality of project Q may differ. An informed

agent knows that the quality of project Q is low. Whenever an agent i

remains uninformed, he updates his belief about the quality of project Q.

He knows that with ex-ante probability 1
2 , quality is high and both agents

remained uninformed. However, with ex-ante probability 1
2 , quality is low

and the other agent was informed but conceals this information. The un-

informed agent i updates his belief on whether project Q has high quality

to

ρi =
1
2

1
4(1− dj) + 1

2

=
2

3− dj
≥ 1

2
, (11)

where dj ∈ [0, 1] is the (equilibrium) probability that the other agent j

discloses information given he receives evidence. Receiving no evidence and

no information of the other agent increases the belief that project Q has high

quality. Given the updated belief, agent i expects the quality of project Q

to be

Êi[Q] =
1− dj
3− dj

q +
2

3− dj
. (12)

The expected quality of project Q with updated beliefs is higher than its

ex-ante expected quality since a higher weight is given to the high quality

state. Since the quality of project P is not affected by the information,

project Q is now even more attractive than ex-ante.

Taking the disclosure strategies dL and dH as given, the ex-ante expected

surplus must take into account several cases. With probability 1
4 the quality

of project Q is low and agent i gets information. If agent i receives informa-

tion, he discloses it with probability di to his uninformed partner j. Project

P is then chosen and both agents know the quality of the project. With

probability (1 − di), the informed agent does not disclose, so project Q is
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chosen. While the informed agent i knows that the quality of the project is

low, the uninformed agent j updates beliefs to Êj [Q]. Finally, with probabil-

ity 1
2 , the quality of project Q is high, agents are not informed and will both

update beliefs. The choice of project Q is optimal in this case. Considering

all these cases, the ex-ante expected surplus is

E[S(α, dL, dH)] = (13)

1

4
[dLSP (e∗L(P ), e∗H(P )) + (1− dL)Sq(e

∗
L(q), e∗H(ÊH [Q]))]

+
1

4
[dHSP (e∗L(P ), e∗H(P )) + (1− dH)Sq(e

∗
L(ÊL[Q]), e∗H(q))]

+
1

2
S1(e

∗
L(ÊL[Q]), e∗H(ÊH [Q])).

This surplus is maximized by the sharing rule α∗(dL, dH), characterized in

Proposition 2.

Proposition 2 (Optimal sharing given disclosure strategies). The surplus-

maximizing sharing rule given disclosure strategies dL and dH is

α∗L(dL, dH) =
γ2Lq̂L

γ2Lq̂L + γ2H q̂H
and α∗H(dL, dH) =

γ2H q̂H
γ2H q̂H + γ2Lq̂L

, (14)

with

q̂i =
1

4

{
(di + d−i)P

2 + (1− di)q2 + [(1− d−i)q + 2]Êi[Q]
}
, i = L,H.

(15)

The less productive agent receives a higher share if and only if heterogeneity

is not too strong γ2L ≥ γ2H
q̂H
q̂L

.

The proof is in the Appendix. For given disclosure strategies dH and

dL, we can determine the optimal distribution of revenue. Whenever both

agents choose the same disclosure strategy dH = dL, the same sharing rule

αsym as in the case of symmetric information is optimal. The reason is that

even though agents do not have symmetric expectations in every situation,

they have ex-ante the same expectation about what situations can arise. It

is then surplus-maximizing to give a higher share to the more productive

agent. Whenever agents differ in their disclosure strategies, the sharing rule

αsym is not optimal anymore. The optimal share for an agent decreases in

his own probability of disclosing and increases in the probability of disclosing

of the other agent. Hence, the optimal share of the less productive agent

13



α∗L(dL, dH) is higher than αsymL whenever dL < dH . The less productive

agent might even get a higher share than the more productive agent if his

effort productivity is high enough.

If we want to find the overall optimal shares, however, we have to take

into account that disclosure strategies depend on the sharing rule and are

chosen by the agents to maximize their expected utility. Therefore, we will

now look at the individually rational disclosure strategies of the agents.

5.2 Disclosure strategies

When an agent decides whether to disclose information or not, he has to

anticipate which project will be chosen and which efforts will be provided

by himself and his partner.

Project P is chosen if and only if information was disclosed. Therefore,

agent i discloses information if he expects a higher utility from project P

than if he conceals and the team sticks to the status quo project Q:

Ei[U
d
i ] ≥ Ei[U ci ] (16)

⇔ αi[e
∗
i (P )γi + e∗j (q)γj ]P −

1

2
e∗i (P )2 ≥ αi[e∗i (q)γi + e∗j (Êj [Q])γj ]q −

1

2
e∗i (q)

2.

If agent i discloses, the team will choose project P and efforts will be in-

dividually optimal given quality P . After concealing, project Q is chosen.

While agent i then knows that the quality of project Q is low, agent j has to

form expectations. As shown before, his expectation Êj [Q], given by (12),

is higher than the quality of project P , so the uninformed agent would be

more motivated when the informed agent did not disclose and they work on

project Q.

Agent i discloses information if and only if the gain in project’s quality

due to switching to project P dominates the loss from lower effort. Hence,

the quality of project P must be high enough to make an agent willing to

disclose. From condition (16), we get two thresholds for P , which depend

on the sharing rule α. If the quality of P is high enough,

P ≥ P di (α) ≡

[
q(αiγ

2
i q + 2αjγ

2
j )

αiγ2i + 2αjγ2j

]1/2
, (17)

agent i is willing to disclose his information. If the quality of P is low,

P ≤ P ci (α) ≡

[
3αiγ

2
i q

2 + 2αjγ
2
j q(2 + q)

3(αiγ2i + 2αjγ2j )

]1/2
, (18)
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agent i would conceal any information he gets. The disclosure decisions, and

hence the thresholds, are independent of the disclosure strategy of the other

agent since an informed agent knows that the other agent did not receive

information. For an agent i the thresholds are thus unique. Furthermore,

P ci < P di because the expectation of the uninformed agent Êj [Q] increases

in the probability of disclosing di and thus incentives to disclose decrease

in di. Therefore, full disclosure di = 1 with Êj [Q] = 1, requires a higher P

to induce disclosure than full concealment di = 0 with Êj [Q] = 2+q
3 . The

following graph shows the thresholds and the optimal disclosure strategy of

agent i on the P -line:

conceal

P ci
q

mix

P di

disclose

E[Q] P

The two thresholds lie in the range [q, E[Q]]. If P = q, agents will

always conceal since adaptation has no benefit and discourages the partner.

If P = E[Q], the benefit of adaptation is always high enough to induce

full disclosure. Between his two thresholds, an agent is not willing to fully

disclose or to fully conceal. If the agent fully discloses, the other agent has

high motivation whenever he does not get any information, since he is then

rather sure that the quality of project Q is high. This makes concealing more

attractive for the informed agent. If the agent fully conceals, the effect on

the other agent’s motivation is weak. Full disclosure would then be better for

the informed agent. Between the thresholds, an equilibrium thus only exists

when the agent partially discloses with probability δi(α) ∈ (0, 1) that makes

him just indifferent between disclosing and concealing. Being indifferent, he

is then also willing to disclose with this probability

δi(α) =
3αiγ

2
i + 2αjγ

2
j

αiγ2i + 2αjγ2j
+

4αjγ
2
j

αiγ2i + 2αjγ2j

P 2 − q
P 2 − q2

. (19)

Hence, agent i’s unique optimal disclosure strategy given P is

d∗i =


1 if P ≥ P di

δi(α) if P ∈ (P ci , P
d
i )

0 if P ≤ P ci .
(20)

Since there is a unique optimal disclosure strategy for each agent (which

is independent of the disclosure strategy of the other agent), there is always
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a unique equilibrium. An equilibrium in which both agents fully disclose

arises whenever adaptation is important enough, i.e. if and only if P is high

and lies above the disclosure thresholds of both agents P ≥ max[P dL, P
d
H ].

Full concealment is the equilibrium when adaptation is not important, i.e.

if and only if P lies below the concealment thresholds of both agents P ≤
min[P cL, P

c
H ]. For intermediate values of P , asymmetric equilibria arise in

which agents adapt different disclosure strategies.

Whether agents want to disclose or conceal depends on the share of

revenue they receive. An increase in the own share (which implies a decrease

in the other’s share) has three effects on the disclosure strategy of an agent.

First, he benefits more from a better adaptation to the state of the world.

Second, the effect on the other agent’s motivation is weaker, since the other

agent reacts less to changes in expected quality. And finally, the agent

benefits more from the difference in motivation of the other agent. While

the first two effects are in favor of disclosure, the third effect is in favor of

concealing. It turns out that the first and second effect always dominate

and an agent is more likely to disclose if he gets a higher share.

Lemma 1. The propensity of an agent to disclose private information in-

creases in his own share of revenue and decreases in the other agent’s share

of revenue.

The thresholds P di and P ci decrease in the own share of revenue. If the

own share increases, budget balance implies that the other’s share decreases,

which lowers P di and P ci even more. The probability of disclosing δi(α) in the

range of P between the thresholds increases in the own share and decreases

in the partner’s share. The proofs can be found in the Appendix.

5.3 Full information sharing

Since the disclosure of information leads to the choice of the project with

higher quality, one question we can ask is which sharing rule is optimal

for information sharing in the sense that it maximizes the probability that

agents fully share their information. The two agents fully disclose if P lies

above their thresholds P dL and P dH . Hence, we want to find the sharing rule

α that minimizes the maximum of the thresholds. As stated in Lemma 1,

any change in the sharing rule α moves the thresholds in opposite directions.

Therefore, the maximum is minimized when the thresholds are equalized,
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i.e. when α is such that P dL(α) = P dH(α). This equation gives us the optimal

shares for information sharing αdisL and αdisH = 1− αdisL :

Proposition 3 (Full Information Sharing). If agents receive private infor-

mation, the partnership’s ability to share information is optimized (i.e. the

range of parameters for which d∗L = d∗H = 1 is maximized) with the shares:

αdisL =
γ2H

γ2L + γ2H
and αdisH =

γ2L
γ2L + γ2H

. (21)

The less productive agent receives a higher share αdisL > 1
2 .

The intuition for this result is as follows. The incentives to conceal are

higher if the other agent reacts strongly to changes in expected quality of the

project. Given equal shares, the more productive agent would react more

strongly than the less productive agent, since his effort has a higher effect

on revenue. The less productive agent thus has a higher incentive to conceal

when sharing equally. Increasing the share of the less productive agent (and

thereby decreasing the share of the more productive agent) balances the

effort reactions to changes in expected quality and thereby the incentives to

disclose.

This result is in contrast to the result from our benchmark case, where

the more productive agent should get a higher share and provide higher effort

in order to maximize surplus. If we want to induce full information sharing,

the less productive agent should get a higher share and will potentially even

provide higher effort. Corollary 1 follows directly from Propositions 1 and

3.

Corollary 1. The revenue allocation that optimizes information sharing is

diametrically opposed to the revenue allocation that maximizes surplus in

the absence of informational asymmetries, i.e. αdisL = 1− αsymL .

Since αdis equalizes the thresholds, both agents will fully disclose if P ≥
P ≡ P dL(αdis) =

[
1
3q(2 + q)

]1/2
. If the quality of project P is high enough

P ≥ P̄ ≡ P dL(αsym) =
[
q(qγ4L+2γ4H)

γ4L+2γ4H

]1/2
, agents would disclose also with the

shares αsym. Figure 1 depicts total expected surplus (13) given optimal

disclosure strategies as a function of P , once with αdis and once with αsym.

In this example with q = 0.1, γL = 0.8 and γH = 1, we find that for

values of P close to P̄ , αsym is preferred to αdis. However, given αsym,
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Figure 1: Surplus with optimal symmetric and optimal disclosure shares. Surplus
as a function of the alternative project’s quality P , given αsym (solid) and αdis (dotted)
when q = 0.1, γL = 0.8 and γH = 1.

agent L starts to conceal when P decreases, which leads to a loss in surplus.

We find a range of P in which inducing full disclosure with αdis is preferred

to αsym.

This observation, Corollary 1 and the fact that αequalL = 1
2 =

αsymL +αdisL
2 ∈

(αsymL , αdisL ), suggest that equal sharing could optimally balance the incen-

tives between information sharing and effort provision.

5.4 Inducing full disclosure

Instead of choosing optimal disclosure shares αdis, a smaller distortion of

the sharing rule αsym might be enough to keep agents disclosing when P

falls below P̄ . In other words, when full disclosure is possible, i.e. P ≥ P , we

can maximize surplus subject to the constraint that both agents are willing

to disclose. Since incentives to disclose increase in the agent’s own share

and decrease in the other’s share, agent L is willing to disclose if his share

is high enough:

αL ≥ α ≡
2γ2H(P 2 − q)

2γ2H(P 2 − q)− γ2L(P 2 − q2)
. (22)
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For values of P below the threshold P̄ , agent L needs a higher share than

αsymL in order to be willing to disclose. Therefore, we know that α > αsymL

if P ∈ [P , P̄ ). Agent H is willing to disclose if the share of agent L is not

too high:

αL ≤ ᾱ ≡
γ2H(P 2 − q2)

γ2H(P 2 − q2)− 2γ2L(P 2 − q)
. (23)

Inducing full disclosure requires choosing a sharing rule for which α ≤
αL ≤ ᾱ. This is possible if α ≤ ᾱ which is true for all P ≥ P .

As shown in Section 5.1, surplus given full disclosure is strictly concave

in αL and maximized at αsymL . In order to maximize surplus under the

constraint of full disclosure, we thus need to get as close as possible to αsymL .

Taking into account that αsymL < α ≤ ᾱ if P ∈ [P , P̄ ) and αsymL ∈ [α, ᾱ] if

P ≥ P̄ , we find the optimal constraint sharing rule αf = (αfL, α
f
H):

Proposition 4 (Optimal sharing rule under the constraint of full disclo-

sure). If it is possible to induce full disclosure with αsym, i.e. P ≥ P̄ , the

optimal shares of revenue under the restriction that we induce full disclosure

are

αfL = αsymL and αfH = αsymH . (24)

If it is not possible to induce full disclosure with αsym but full disclosure is

feasible, i.e. P ∈ [P , P̄ ), the optimal constraint shares are

αfL = α and αfH = 1− α. (25)

The less productive agent gets a higher share, i.e. αfL >
1
2 , if P ∈ [P , P e)

with P e ≡
[
q(qγ2L+2γ2H)

γ2L+2γ2H

]1/2
.

In contrast to αsym and αdis, the optimal constraint distribution of rev-

enue depends on P . When P falls below P̄ , the share for the less productive

agent has to increase compared to αsymL in order to keep him disclosing. For

decreasing P , his share increases from αsymL at P̄ until it reaches αdisL at P .

Equal sharing is constraint optimal at P e, which is defined by αfL(P e) = 1
2

and always lies in [P , P̄ ). Hence, the less productive agent receives a higher

share than the more productive agent whenever P ∈ [P , P e).

Figure 2 depicts the total expected surplus (13) given optimal disclosure

strategies and given αf (P ), αsym and αdis. Whenever it is possible to
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Figure 2: Surplus under the constraint of full disclosure. Surplus as a function of
the alternative project’s quality P , given αsym (solid), αdis (dotted) and αf (P ) (dashed)
when q = 0.1, γL = 0.8 and γH = 1.

induce full disclosure, i.e. P ≥ P , the sharing rule αf (P ) is preferred

to αdis, since both induce full disclosure but αf (P ) is closer to the optimal

sharing rule given full disclosure αsym. In our example, αf (P ) is also weakly

preferred to αsym. However, this is not necessarily general, since it might

be surplus increasing to allow for some concealment. This is true if the loss

of motivation dominates the gain due to better adaptation.

Before considering the overall optimal sharing rule in Section 6, we show

that our assumption with respect to the project selection rule comes without

loss of generality.

Project selection. Take any voting rule such that if an agent votes for

projectX, the probability that this project is chosen increases. Furthermore,

if agents both vote for the same project, that project is chosen. This implies

that both agents would always vote for the project from which they expect

a higher utility.

If one of the agents was informed and discloses this information, both

agents vote in favor of project P . This is implied by Assumption 1 and the

fact that once evidence is disclosed, project Q is known to have low quality

for sure. If an agent does not receive any evidence, it is not immediately clear
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which project he would vote for. On the one hand, no evidence strengthens

the belief that project Q is of good quality. On the other hand, given the

quality is low, the other agent is expected to have evidence and to provide

low effort. An uninformed agent i expects that if project Q is chosen, he

gets utility

UQi =
1− dj
3− dj

αi[γie
∗
i (Êi[Q]) + γje

∗
j (q)]q (26)

+
2

3− dj
αi[γie

∗
i (Êi[Q]) + γje

∗
j (Êj [Q])]− 1

2
e∗i (Êi[Q])2

with Êi[Q] =
(1−dj)q+2

3−dj and Êj [Q] = (1−di)q+2
3−di . Given individually optimal

effort choices and our assumption that P < E[Q], we show in the Appendix

that surplus from project P is strictly lower in this situation. Hence, the

uninformed agent would vote for project Q. An informed agent who did

not disclose will also vote for project Q. Otherwise, he would have made

sure that project P is chosen by disclosing his evidence in the first place.

Consequently, agents will agree on the status quo project Q whenever no

evidence was disclosed.

6 Optimal allocation of revenue

In this section, we first determine the sharing rule α∗ that maximizes total

expected surplus, taking into account that disclosure strategies are chosen

by the agents. Then, we discuss the optimality of equal sharing.

6.1 Optimal sharing rule

Total expected surplus of the two agents takes into account the same cases

as in (13) but now considers the optimal disclosure strategies of the agents:

E[S] =
1

4
[d∗LSP (e∗L(P ), e∗H(P )) + (1− d∗L)Sq(e

∗
L(q), e∗H(ÊH [Q]))] (27)

+
1

4
[d∗HSP (e∗L(P ), e∗H(P )) + (1− d∗H)Sq(e

∗
L(ÊL[Q]), e∗H(q))]

+
1

2
S1(e

∗
L(ÊL[Q]), e∗H(ÊH [Q])).

Figure 3 shows the thresholds P for full disclosure and full concealment

of the two agents as a function of αL. As long as P ≥ P , adaptation is

important enough such that at least one of the agents will fully disclose and
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Figure 3: Disclosure and concealment thresholds. Thresholds P di and P ci for agents
i = L,H as a function of the less productive agent’s share αL given q = 0.1, γL = 0.8 and
γH = 1.

none of the agents would ever fully conceal. For P ≥ √q, both agents fully

disclose independent of the revenue sharing rule α.

Lemma 2. Suppose P ∈ [P ,E[Q]). For any αL ∈ [0, 1], at least one agent

fully discloses and none of the agents fully conceals.

You find the proof in the Appendix. Lemma 2 implies that in the range

of P in which full disclosure is possible to induce, we can restrict attention

to three types of equilibria: both agents fully disclose, agent L partially

discloses while agent H fully discloses and agent H partially discloses while

agent L fully discloses.

In the following, we normalize γL = γ < 1 and γH = 1. Proposi-

tion 5 characterizes the surplus-maximizing sharing rule α∗ = (α∗L, 1− α∗L)

when inducing full disclosure is possible. A question of particular interest is

whether the optimal sharing rule α∗ induces full adaptation, i.e. the certain

adoption of the project with the higher (expected) quality.

Proposition 5. Suppose that P ∈ [P ,E[Q]). The revenue allocation that

maximizes total expected surplus can be characterized as follows:

• If P ∈ [P̄ , E[Q]) then α∗L = αsymL is optimal. The project with the
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higher (expected) quality is always adopted, i.e. d∗L = d∗H = 1.

• If P ∈ [P̂ , P̄ ) then α∗L = αfL is optimal. The project with the higher

(expected) quality is always adopted, i.e. d∗L = d∗H = 1.

• If P ∈ [P , P̂ ) then α∗L ∈ (αsymL , αfL) is optimal. The project with the

higher (expected) quality fails to be adopted with positive probability,

i.e. d∗L < d∗H = 1.

If γ > γ(q) ≡
√

2(2+3q+q2)
7+4q+q2

, then P̂ = P , i.e. inducing full adaptation is

optimal whenever feasible.

If P ≥ √q, agents fully disclose independent of the sharing rule. It is

thus straightforward that αsym is optimal. For P <
√
q, we have to consider

that different sharing rules imply different disclosure strategies. Agents fully

disclose if αL ∈ [α, ᾱ]. We argued in Section 5.4 that within this range of

αL, α would be the optimal choice for total surplus if P ∈ [P , P̄ ) and αsymL

is optimal if P ≥ P̄ . However, it might be surplus increasing to choose a

sharing rule that does not lie in this range, i.e. such that one of the agents

starts concealing, since this could mitigate the free-riding problem of the

team. If αL > ᾱ, agent H starts concealing partially. The surplus is then

decreasing in αL for all P ∈ [P ,
√
q). Hence, the highest surplus we can get

in [ᾱ, 1] is at ᾱ. This brings us back to full disclosure. If αL < α, agent

L starts concealing partially. We can show that the surplus when agent L

is disclosing and agent H partially conceals is concave in αL. Furthermore,

it is strictly increasing at α for P ∈ [P̂ ,
√
q), with P̂ ∈ [P , P̄ ). Hence, for

such P , all αL < α would yield lower surplus than α. α maximizes surplus

and again brings us back to full disclosure. For P ∈ [P , P̂ ), allowing for

some concealment increases the surplus. The proofs can be found in the

Appendix.
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Figure 4 emphasizes the consequences of optimal sharing for adaptation.
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Figure 4: Adaptation. Characterization of the degree of adaptation under the surplus-
maximizing sharing rule α∗ in dependence of the partners’ heterogeneity and the alterna-
tive project’s quality P for given q.

Whether full adaptation is optimal whenever feasible, i.e. for the whole

range [P ,E[Q]), depends on the heterogeneity of agents γ and on the low

quality of project Q. If agents are rather heterogeneous, i.e. γ < γ(q), it is

not optimal to always adopt the project with the higher (expected) quality.

The cost of inducing full adaptation is suboptimal motivation and this cost

is higher if agents are heterogeneous. The threshold γ(q) is increasing in q.

Hence, a higher low quality of project Q implies that full adaptation is less

likely to be optimal. This is intuitive since a higher low quality of project Q

makes disclosure and adaptation less important for surplus. Moreover, the

size of the range in which full adaptation is feasible is decreasing in q and

thus smaller for high q’s.
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6.2 On the optimality of equal sharing

Compared to the optimal shares given symmetric information αsym with

αsymL < 1
2 , equal shares have the advantage that the less productive agent

is rather willing to disclose: From Lemma 1 we know that an increase in

the own share increases the incentives to disclose. On the other hand, equal

shares have the disadvantage that they do not optimally motivate given

full disclosure. The benefit from improved information sharing potentially

outweighs the loss from sub-optimal motivation. In our example with q = 0.1

and γ = 0.8, equal shares are indeed preferred to αsym for a range of values

of P , as we see in Figure 5.
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Figure 5: Surplus with equal sharing rule. Surplus as a function of the alternative
project’s quality P , given αsym (solid), αdis (dotted) and αequal (dashed) when q = 0.1
and γ = 0.8.

Given the distribution αsym, both agents fully disclose for P ≥ 0.291

while they disclose for P ≥ 0.28 with equal sharing. With partial conceal-

ment of the less productive agent, surplus decreases faster if P decreases,

and in our example, this implies equal sharing is preferred to αsym for the

range P ∈ [0.240, 0.287].

Instead of comparing equal shares with αsym, we can directly consider

the optimality of equal shares. There always exists a P e ∈ [P , P̄ ) for which

α∗L(P e) = 1
2 . Hence, α∗L = 1

2 is indeed optimal in some situations.
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Proposition 6 (Optimal equal sharing). If γ > γ̃ ≡ (
√

6−2)1/2 and q < q̃ ≡
(4−γ12−4γ10+9γ8+24γ6+4γ4)1/2

γ2(2+2γ2−γ4) − 1
γ2
∈ (0, 1), there exists a range P ∈ [P̂ , P e)

in which giving a higher than equal share to the less productive agent α∗L >
1
2

is optimal and equal shares α∗L = 1
2 are optimal for P e ∈ [P , P̄ ).

You find the proof in the Appendix. In other words, Proposition 6

states that for some range of P it is optimal to give a higher share to the

less productive agent if agents are rather homogeneous and the low quality

of project Q is rather low. If agents are homogeneous, the loss of motivation

is less severe than the loss due to worse adaptation when agents start to

conceal. Furthermore, it is more likely to benefit from equal sharing if the

low quality of project Q is low since the gain of better adaptation is high. In

such a situation, inducing full disclosure and thereby adaptation is important

and not the costs of sub-optimal motivation are not too high. Optimality

then requires increasing the share of the less productive agent.

Consider the percentage loss of equal sharing relative to optimal shar-

ing in this team situation with asymmetric information. In the symmetric

information benchmark, we found that the percentage loss only depends on

effort productivities and can go up to 25%. In the asymmetric information

case with project selection, the percentage loss is a function of effort pro-

ductivity γ, the low quality of project Q and the quality of project P . In

our range of interest P ∈ [P ,E[Q]), we can calculate the loss whenever we

can determine the optimal α∗:

∆E[S] =
E[S(α∗)]− E[S(αequal)]

E[S(α∗)]
. (28)

For q < q̄ and γ > γ, we can determine α∗ for the full range P ∈
[P ,E[Q]). In such a situation, Figure 6 depicts the percentage loss from

equal sharing in the symmetric information benchmark ∆Esym[S] and in

the asymmetric information case ∆E[S] as a function of quality P .
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Figure 6: Percentage loss in surplus from equal revenue sharing. ∆Esym[S] and
∆E[S] in dependence of the alternative project’s quality P for given γ > γ and q < q̄.

The percentage loss in surplus in the benchmark case is independent

of P . The percentage loss in surplus given asymmetric information and

project selection is lower for P ∈ (P , P̄ ), i.e. in the range of P in which

full information sharing cannot be induced with αsym but would actually

be surplus-maximizing. The loss is zero at P e since equal sharing is then

optimal.

Consider a team that only deviates from equal sharing if the gain is large

enough. Such a decision rule would take into account that there are typi-

cally bureaucratic cost and rent-seeking when deviating from equal shares.

Given asymmetric information and project selection, there is a larger set of

parameters for which a team would stick to the default of equal sharing than

in the symmetric information benchmark. In that sense, our model provides

a rationale for more equal revenue sharing.

7 Robustness

In this section, we relax some assumptions of our model and show that

Propositions 1 and 3 remain unchanged. Hence, our result that optimal

incentives given symmetric information and optimal incentives for informa-

tion sharing are diametrically opposed is robust regarding these assump-

tions. More specifically, we allow agents to differ in their ability to acquire
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information (7.1), we consider unverifiable evidence (7.2) and the possibility

of “good news” (7.3). Finally, we let project success depend non-linearly on

efforts which introduces inter-dependency of efforts (7.4).

7.1 Information acquisition

So far, we assumed that both agents are equally likely to receive information.

In this section, we consider the case when agents differ in their ability to

acquire information, i.e. in the likelihood of receiving information. Given

the quality of project Q is low, agent L receives evidence with probability

πL ∈ (0, 1) while agent H gets evidence with πH ∈ (0, 1). We assume that

these probabilities are independent, i.e. it is possible that both, one or none

of the agents is informed about the low quality of the status quo project.

When an informed agent i decides whether to disclose, he knows that with

some probability πj , the other agent j is informed too and will then disclose

his information with dj . With some probability (1 − dj), the other agent

will not disclose given he is informed. Finally, with probability (1−πj), the

other agent is not informed and updates his beliefs. We assume again that

project P is selected if and only if evidence was disclosed.

If an agent j remains uninformed, his updated beliefs reflect the fact

that being uninformed could mean that quality is high or that quality is low

and the other agent was not informed either or that he was informed but

conceals. These beliefs thus depend on the probabilities of being informed,

πi and πj , of both agents:

Êj [Q] =
(1− diπi)(1− πj)q + 1

(1− diπi)(1− πj) + 1
. (29)

Since the incentives to disclose depend on the uninformed agent’s beliefs,

the threshold for disclosure now also depends on the probabilities of receiving

information. The informed agent i discloses if and only if P ≥ P di , with

P di =

[
q{qαiγ2i [2− πi − πj(1− πi)] + 2αjγ

2
j [1 + (1− πj)(1− πi)q]}

(αiγ2i + 2αjγ2j )[2− πi − πj(1− πi)]

]1/2
.

(30)

As in the case of symmetric ability of information acquisition, this thresh-

old decreases in the own share αi and increases in the other’s share αj . We

show that in the Appendix. Therefore, we again maximize the range of P in
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which both agents disclose by minimizing the maximum of these two thresh-

olds. The range is maximized when the thresholds are just equal which is

true at αdisL =
γ2H

γ2L+γ
2
H

. Hence, our result that the less productive agent needs

a higher share to disclose information holds. The benchmark case does not

change, i.e. αsym would be optimal with symmetric information. Infor-

mation sharing and project selection provide a reason for more balanced

sharing also in this setting. Since the overall optimal shares have to balance

the incentives to provide effort and to disclose information, they are tilted

towards more equality even if one agent is more productive and better at

information acquisition.

7.2 Unverifiability

In this section, we consider the possibility that agents receive unverifiable

and imperfect information about the status quo’s quality. In comparison to

our model with hard evidence, two novelties arise. First, agents are able to

misrepresent their information and truth-telling becomes the issue. Second,

agents are more motivated to exert effort on a given project when their

“opinions” agree rather than disagree.

More specifically, we modify our model as follows. In Stage 1 each agent

i receives a private, unverifiable, imperfect signal si ∈ {q, 1} about the

status quo’s quality. Signals are independent and each signal has the same

probability σ ∈ (12 , 1) of being correct. In Stage 2 agents communicate by

sending a message mi ∈ {q, 1}. As signals are unverifiable, agents may

misrepresent their information by choosing mi 6= si. In Stage 3 the status

quo project is maintained unless both agents report low quality by issuing

mL = mH = q.7

In the following, we derive the conditions that have to be satisfied for

truth-telling mi = si to constitute an equilibrium. In a truth-telling equi-

librium, the status quo’s (updated) expected quality is given by

Êi[Q] =


σ2+(1−σ)2q
σ2+(1−σ)2 ≡ Q̄ if sL = sH = 1

1+q
2 = E[Q] if sL 6= sH

σ2q+(1−σ)2
σ2+(1−σ)2 ≡ Q if sL = sH = q

(31)

7We modify Assumption 1 by requiring P > Q rather than P > q with Q as defined
in (31). This ensures that, as in the model with evidence, the specified project selection
rule can be rationalized as the outcome of an arbitrary voting procedure.
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and agent i with revenue-share αi and productivity γi who expects project

X’s quality to be Êi[X] exerts effort e∗i (Êi[X]) = αiγiÊi[X]. Not surpris-

ingly, agents have no incentive to lie when they observe “good news”, si = 1,

but might be tempted to misrepresent “bad news” by issuing mi = 1 upon

observation of si = q. Agent i’s payoff from truth-telling mi = si = q is

given by

U ti = [σ2 + (1− σ)2]

{
αi[γie

∗
i (P ) + γje

∗
j (P )]P − 1

2
e∗i (P )2

}
(32)

+ 2σ(1− σ)

{
αi[γie

∗
i (E[Q]) + γje

∗
j (E[Q])]E[Q]− 1

2
e∗i (E[Q])2

}
whereas lying by issuing mi = 1 when si = q gives

U li = [σ2 + (1− σ)2]

{
αi[γie

∗
i (Q) + γje

∗
j (E[Q])]Q− 1

2
e∗i (Q)2

}
(33)

+ 2σ(1− σ)

{
αi[γie

∗
i (E[Q]) + γje

∗
j (Q̄)]E[Q]− 1

2
e∗i (E[Q])2

}
.

Truth-telling is optimal for agent i if and only if U ti ≥ U li or equivalently

P > P di with

P di =

 1
2α

2
i γ

2
iQ

2 + αiαjγ
2
jQE[Q] + 2σ(1−σ)

σ2+(1−σ)2αiαjγ
2
j (Q̄− E[Q])E[Q]

1
2α

2
i γ

2
i + αiαjγ2j

1/2

.

(34)

Truth-telling, (mL,mH) = (sL, sH), forms an equilibrium if and only if

P ≥ max{P dL, P dH}. Perhaps surprisingly, the range of parameters for which

truth-telling constitutes an equilibrium is again maximized when αL =
γ2H

γ2L+γ
2
H

= αdisL .

Our analysis in this section shows that Proposition 1 and the correspond-

ing Corollary 1 remain valid in settings with non-verifiable information. In

the model with signals, the economic mechanisms involved are similar to

the ones in the model with evidence. However, there exists one additional

mechanism. This mechanism is similar to a subordinate’s propensity to

conform with the views of his superior (Prendergast, 1993). Each agent has

an incentive to issue a message that reinforces rather than contradicts his

partner’s signal. Since messages are issued simultaneously and signals are

more likely to coincide than to contradict each other, agents therefore have

an additional incentive to tell the truth. It is reassuring that our results

remain unchanged even in the presence of such a propensity to agree.
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7.3 Good news

Assume that agents also get information if there is “good news”, i.e. if the

quality of project Q is high. This means that there is always one agent

informed and one agent uninformed. Given an agent receives “good news”,

he would want to work on project Q and the other agent to provide high

effort. Both can be attained by disclosure and thus the only sub-game

perfect strategy is to disclose whenever there is “good news”. If an agent

gets “bad news” and conceals, the uninformed agent knows that quality of

project Q is low. He will thus provide low effort and the informed agent

prefers to disclose and adopt project P . Hence, if there is always one agent

who gets information, there is always full disclosure.

Alternatively, assume that if there is “good news”, each agent gets in-

formation with independent probability π ∈ (0, 1). Again, if an agent gets

“good news”, he would always disclose since there is no trade-off between

motivation and adaptation. If an agent remains uninformed, he knows for

sure that there was no “good news”. However, he is not sure whether there

was “bad news” or “no news”. With probability 1
2(1 − π)2, the quality of

project Q is high but there was no information. With probability 1
4(1− di),

there was “bad news” but the other agent conceals. Hence, the uninformed

agent expects the quality of project Q to be

Êj [Q] =
1
4(1− di)q + 1

2(1− π)2

1
4(1− di) + 1

2(1− π)2
. (35)

In a full disclosure equilibrium, i.e. when d∗L = d∗H = 1, uninformed agents

are sure again that there was no “bad news”. Hence, the disclosure thresh-

olds of quality P are the same as in the case when only “bad news” is pos-

sible. αdisL > 1
2 maximizes the propensity of full disclosure, while αsymL < 1

2

would maximize surplus given symmetric information.

7.4 Technology

Our model assumes a linear relation between individual efforts and the

projects’ likelihood of success. In the following, we relax this assumption by

requiring that, instead of (1),

RX(eL, eH) = r(Σ)X with Σ = γeL + eH . (36)

The function r is assumed to be increasing and concave and to take values

in [0, 1]. Agents share the revenue according to the sharing rule αL = α and
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αH = 1−α. Note first that when the project’s quality is (commonly) known

to be X then equilibrium efforts, e∗L(X) and e∗H(X), are uniquely defined as

the solution to the system of equations

eL =αγr′(Σ)X (37)

eH =(1− α)r′(Σ)X. (38)

By the definition of Σ it must therefore hold that

Σ

r′(Σ)
= (αγ2 + 1− α)X. (39)

Define the solution to this equation as Σ∗(α) and note that Σ∗(α) is de-

creasing by the concavity of r.

Using Σ∗(α), we can write e∗L = αγ
αγ2+1−αΣ∗(α) and e∗H = 1−α

αγ2+1−αΣ∗(α). In

the symmetric information benchmark, the surplus-maximizing sharing rule

is thus given by

αsym = arg max
α∈[0,1]

r(Σ∗(α))X − 1

2

α2γ2 + (1− α)2

(αγ2 + 1− α)2
Σ∗(α)2. (40)

Using (39), the first order condition of this maximization problem can be

written as[
1− α2γ2 + (1− α)2

αγ2 + 1− α

]
r′(Σ∗(α))X

∂Σ∗(α)

∂α
+

(1− 2α)γ2

(αγ2 + 1− α)3
Σ∗(α)2 = 0.

(41)

As the first term is negative, for the first order condition to hold, the second

term must be positive. This shows that in the symmetric information bench-

mark, αsym < 1
2 , i.e. surplus is maximized by granting the more productive

agent a larger share of revenue.

Next, consider the agents’ disclosure incentives. Full disclosure is an

equilibrium if and only if the following two inequalities are satisfied:

UdL = αr(γe∗L(P ) + e∗H(P ))P − 1

2
e∗L(P )2 (42)

≥ max
eL

αr(γeL + e∗H(1))q − 1

2
e2L = U cL,

UdH = (1− α)r(γe∗L(P ) + e∗H(P ))P − 1

2
e∗H(P )2 (43)

≥ max
eH

(1− α)r(eH + γe∗L(1))q − 1

2
e2H = U cH .
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From (37) and (38) it follows that e∗L(X) = γα
1−αe

∗
H(X) and setting α =

αdis = 1
1+γ2

therefore implies that UdH = γ2UdL and U cH = γ2U cL.8 Hence,

UdL ≥ U cL if and only if UdH ≥ U cH or, in other words, disclosure incentives are

equalized, P dL(α) = P dH(α), when α = αdis. As before, the parameter space

for which full disclosure constitutes an equilibrium is maximized when the

less productive agent receives a larger share of revenue α = αdis > 1
2 .

While for technologies such as (36) a characterization of the partnership’s

surplus-maximizing sharing rule α∗ proves elusive, our analysis in this sec-

tion reveals that optimal incentives for motivation (αsym < 1
2) and optimal

incentives for adaptation (αdis > 1
2) can be expected to be opposed quite

generally.

8 Conclusion

This paper considers a standard situation of team production with effort

substitutes, asymmetric information and project selection. When designing

the optimal sharing rule, we find that there is a trade-off between motivation

and information sharing. Optimal motivation given symmetric information

requires giving a higher share to the more productive agent. Maximizing

the propensity of information sharing requires the opposite distribution of

revenue: to give a high share to the less productive agent. This result is

robust to changes in the assumptions regarding the informational structure.

The trade-off gives a rationale for more equal sharing since there is a

need to balance the incentives to provide effort and to share information.

Our main result characterizes the optimal shares when full disclosure is

feasible. It turns out that if agents are rather heterogeneous and projects do

not differ too much in quality in case of “bad news”, some concealment is

optimal. Furthermore, giving a higher or equal share to the less productive

agent is optimal in a range of parameters, since the team benefits from

improved information sharing.

A limitation of our results comes from the specific form of the revenue

function. We do not consider complementary effort. However, complemen-

tarities would only bring more symmetry into the model and would therefore

work in favor of equal sharing. Hence, we considered the most conservative

8To see that UcH = γ2UcL, transform the maximization variable eH into z = eH
γ

and

use the fact that for α = γ2

1+γ2
, γeL(1) = eH(1).
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case regarding equal sharing. Complementarities are left to future research.

In this paper, we took the organizational form (partnership) as given

and determined the optimal shape (sharing rule). Our model could also be

used to study the benefits of partnerships compared to other organizational

forms.

34



9 Appendix

9.1 Proof of Proposition 1

Total expected surplus under symmetric information is

Esym[S(α)] =
1

2
S1(e

∗
L(1), e∗H(1)) +

1

2
SP (e∗L(P ), e∗H(P )) (44)

=
[
γ2LαL(1− αL

2
) + γ2HαH(1− αH

2
)
] 1 + P 2

2
. (45)

Take αH = 1−αL. We want to choose αL in order to maximize the total

expected surplus. The first order condition is

∂Esym[S(α)]

∂αL
=
[
γ2L(1− αL)− γ2HαL

] 1 + P 2

2

!
= 0

⇔ αsymL =
γ2L

γ2L + γ2H
(46)

The second order condition is

∂2Esym[S(α)]

∂α2
L

= −(γ2L + γ2H)
1 + P 2

2
< 0 (47)

Strictly concave in αL, hence we found the unique maximum.

9.2 Proof of Proposition 2

Total expected surplus given disclosure strategies is

E[S(α, dL, dH)] = (48)

1

4
(dL + dH)[(αLγ

2
LP + αHγ

2
HP )P − 1

2
α2
Lγ

2
LP

2 − 1

2
α2
Hγ

2
HP

2]

+
1

4
(1− dL)[(αLγ

2
Lq + αHγ

2
HÊH [Q])q − 1

2
α2
Lγ

2
Lq

2 − 1

2
α2
Hγ

2
HÊH [Q]2]

+
1

4
(1− dH)[(αLγ

2
LÊL[Q] + αHγ

2
Hq)q −

1

2
α2
Lγ

2
LÊL[Q]2 − 1

2
α2
Hγ

2
Hq

2]

+
1

2
[(αLγ

2
LÊL[Q] + αHγ

2
HÊH [Q])− 1

2
α2
Lγ

2
LÊL[Q]2 − 1

2
α2
Hγ

2
HÊH [Q]2]

We can simplify this expression by separating revenues and costs for each
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agent:

E[S(α, dL, dH)] = (49)

αLγ
2
L[

1

4
(dL + dH)P 2 +

1

4
(1− dL)q2 +

1

4
(1− dH)qÊL[Q] +

1

2
ÊL[Q]]

+αHγ
2
H [

1

4
(dL + dH)P 2 +

1

4
(1− dH)q2 +

1

4
(1− dL)qÊH [Q] +

1

2
ÊH [Q]]

−1

2
α2
Lγ

2
L[

1

4
(dL + dH)P 2 +

1

4
(1− dL)q2 +

1

4
(1− dH)ÊL[Q]2 +

1

2
ÊL[Q]2]

−1

2
α2
Hγ

2
H [

1

4
(dL + dH)P 2 +

1

4
(1− dH)q2 +

1

4
(1− dL)ÊH [Q]2 +

1

2
ÊH [Q]2]

Note that 1
4(1 − di)qÊj [Q] + 1

2Êj [Q] = 1
4(1 − di)Êj [Q]2 + 1

2Êj [Q]2 for

i = L,H. Hence, the expected surplus can be written as

E[S(α, dL, dH)] = αLγ
2
Lq̂L + αHγ

2
H q̂H −

1

2
α2
Lγ

2
Lq̂L −

1

2
α2
Hγ

2
H q̂H (50)

with

q̂i =
1

4

[
(di + d−i)P

2 + (1− di)q2 + (1− d−i)qÊi[Q] + 2Êi[Q]
]

(51)

and

Êi[Q] =
1− d−i
3− d−i

q +
2

3− d−i
, i = L,H. (52)

Take αH = 1−αL. We want to choose αL in order to maximize the total

expected surplus. The optimal shares given disclosure strategies follow from

the first order condition

∂E[S(α, dL, dH)]

∂αL
= γ2Lq̂L − γ2H q̂H − αLγ2Lq̂L + (1− αL)γ2H q̂H

!
= 0 (53)

⇔ α∗L(dL, dH) =
γ2Lq̂L

γ2Lq̂L + γ2H q̂H
. (54)

The second order condition is

∂2E[S(α, dL, dH)]

∂α2
L

= −γ2Lq̂L − γ2H q̂H < 0. (55)

Expected surplus given disclosure strategies is strictly concave in αL, hence

we found the unique maximum.

Note that dL = dH implies that q̂L = q̂H . Hence, if both agents play the

same disclosure strategy, we are back to the shares αsym.

It is optimal to give a higher share to the less productive agent iff

α∗L(dL, dH) ≥ 1

2
⇔ γ2L ≥ γ2H

q̂H
q̂L
. (56)
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9.3 Proof of Lemma 1

P di is strictly decreasing in i’s share αi:

∂P di
∂αi

= −
q(1− q)γ2i γ2j[

(αiγ2i q + 2αjγ2j )q(αiγ2i + 2αjγ2j )3
]1/2 < 0. (57)

P di is strictly increasing in j’s share αj :

∂P di
∂αj

=
q(1− q)γ2i γ2j[

(αiγ2i q + 2αjγ2j )q(αiγ2i + 2αjγ2j )3
]1/2 > 0. (58)

P ci is strictly decreasing in i’s share αi:

∂P ci
∂αi

= −
2
3q(1− q)γ

2
i γ

2
jαj{

[αiγ2i q + 2
3αjγ

2
j (2 + q)]q(αiγ2i + 2αjγ2j )3

}1/2
< 0. (59)

P ci is strictly increasing in j’s share αj :

∂P ci
∂αj

=
2
3q(1− q)γ

2
i γ

2
jαi{

[αiγ2i q + 2
3αjγ

2
j (2 + q)]q(αiγ2i + 2αjγ2j )3

}1/2
> 0. (60)

δi is strictly increasing in i’s share αi:

∂δi
∂αi

=
4q(1− q)γ2i γ2jαj

(P 2 − q2)(αiγ2i + 2αjγ2j )2
> 0. (61)

δi is strictly decreasing in j’s share αj :

∂δi
∂αj

= −
4q(1− q)γ2i γ2jαj

(P 2 − q2)(αiγ2i + 2αjγ2j )2
< 0. (62)

9.4 Proof of Proposition 3

Agent L discloses if P ≥ P dL while agent H discloses if P ≥ P dH . We want to

find the shares αL and αH = 1−αL that maximize the range of P in which

both agents fully disclose. Hence, we need to find the αL that minimizes

the maximum of the two thresholds P dL and P dH . We know from (57) and

(58) that the threshold P dL strictly decreases in αL and P dH strictly increases

37



in αL. A change in αL moves the thresholds in opposite directions. Thus,

max[P dL, P
d
H ] is minimized when the thresholds are just equal:

P dL = P dH

⇔
{
q[αLγ

2
Lq + 2(1− αL)γ2H ]

αLγ2L + 2(1− αL)γ2H

}1/2

=

{
q[(1− αL)γ2Hq + 2αLγ

2
L]

(1− αL)γ2H + 2αLγ2L

}1/2

⇔ αdisL =
γ2H

γ2H + γ2L
. (63)

9.5 Proof of Proposition 4

We show that there exists a P e for which α∗L(P e) = 1
2 and which lies in the

range [P , P̄ ]:

1) Derivation of P e:

α∗L(P e) =
1

2
⇔ P e =

[
q(qγ2L + 2γ2H)

γ2L + 2γ2H

]1/2
. (64)

2) The threshold P e lies in the range [P , P̄ ] for all q ∈ (0, P ) and γL <

γH ≤ 1:

P e ≤ P̄ ⇔
2qγ2Lγ

2
H(γ2H − γ2L)(1− q)

(γ2L + 2γ2H)(γ4L + 2γ4H)
≥ 0 (65)

P e ≥ P ⇔
2q(γ2H − γ2L)(1− q)

3(γ2L + 2γ2H)
≥ 0. (66)

9.6 Proof of generality of voting rule

Take any voting rule in which the probability that a project is chosen in-

creases if an agent votes for that project. We denote the probability that

project P is implemented given agent i votes for project X and given agent

i’s expectation about the other agent’s vote as ρX . ρX is higher if an agent

votes for project P : ρP > ρQ. An agent then chooses project P if and only

if

ρPEi[U
P
i ] + (1− ρP )Ei[U

Q
i ] ≥ ρQEi[UPi ] + (1− ρQ)Ei[U

Q
i ] (67)

⇔ (ρP − ρQ)Ei[U
P
i ] ≥ (ρP − ρQ)Ei[U

Q
i ]

⇔ Ei[U
P
i ] ≥ Ei[UQi ].
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Hence, agent i votes for the project from which he expects a higher utility.

Since the quality of project P is common knowledge, the expected utility

of project P is independent of any additional information agents might have:

Ei[U
P
i ] = αi(αiγ

2
i P + αjγ

2
jP )P − 1

2
α2
i γ

2
i P

2. (68)

In contrast, the expected utility of project Q depends on whether an

agent received evidence about the quality of project Q. If an agent remains

uninformed, his expected utility of project Q takes into account that if the

quality of project Q is low, the other agent was informed:

Ei[U
Q
i ](no info) =

1− dj
3− dj

[αi(αiγ
2
i Êi[Q] + αjγ

2
j q)q −

1

2
α2
i γ

2
i Êi[Q]2] (69)

+
2

3− dj
[αi(αiγ

2
i Êi[Q] + αjγ

2
j Êj [Q])− 1

2
α2
i γ

2
i Êi[Q]2]

with

Ei[Q] =
1− dj
3− dj

q +
2

3− dj
. (70)

The difference Ei[U
Q
i ](no info)−Ei[UPi ] is decreasing in P . There is thus

a threshold P̃ such that the difference is positive for P ≤ P̃ . By Assumption

1 (P ≤ E[Q]) we thus know that Ei[U
Q
i ](no info) > Ei[U

P
i ] for all possible

P since

P̃ > E[Q]⇔ αi[7− dj + q(5− 3dj)](1 + dj)γ
2
i (3− di) (71)

+ 2αj(3− dj)γ2j [(3− di)(3q + 1)dj + (q + 3)di + 7− 3q] > 0.

Hence, if an agent is uninformed, he would vote for project Q.

If an agent is informed and discloses, both agents know the qualities of

both projects and will provide individually optimal efforts. The agent will

then vote for the project with higher quality, i.e. for project P :

Ei[U
P
i ] > Ei[U

Q
i ](info, disclosed) (72)

⇔ αi(αiγ
2
i P + αjγ

2
jP )P − 1

2
α2
i γ

2
i P

2 > αi(αiγ
2
i q + αjγ

2
j q)q −

1

2
α2
i γ

2
i q

2

⇔ P > q.

If an agent is informed and does not disclose, his expected utility of

project Q takes into account that the other agent forms expectations about

the quality of project Q:

Ei[U
Q
i ](info, concealed) = αi(αiγ

2
i q + αjγ

2
HÊj [Q])− 1

2
α2
i γ

2
i q

2. (73)
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If this was lower than the expected utility of project P , he would have

disclosed in the first place, making sure that the other agent also votes for

project P .

He knows, if he discloses, that project P will be chosen. If he conceals,

the other agent will vote for project Q and hence he can make sure that

project Q is chosen by also voting for project Q.

9.7 Proof of Lemma 2

Throughout this proof, we denote αL = α and αH = 1 − α. We show with

a series of lemmata that at least one agent fully discloses and none of them

fully conceals if P ∈ [P ,
√
q) and both disclose if P ≥ √q.

Lemma 3. If P ≥ P , agent L is willing to disclose at least partially.

Proof. P cL(α) is strictly decreasing in α (see 9.3) and P cL(α = 0) = P . Hence,

P cL(α) ≤ P for all α ∈ [0, 1].

Lemma 4. If P ≥ P , agent H is willing to disclose at least partially.

Proof. P cH(α) is strictly increasing in α (see 9.3) and P cH(α = 1) = P .

Hence, P cH(α) ≤ P for all α ∈ [0, 1].

Lemma 5. If P ≥ P , at least one of the agents is willing to fully disclose.

Proof. For α ≤ γ2H
γ2L+γ

2
H

, we have P dH(α) ≤ P . For α ≥ γ2H
γ2L+γ

2
H

, we have

P dL(α) ≤ P . Thus, for all α ∈ [0, 1], min[P dL(α), P dH(α)] ≤ P .

Lemma 6. If P ≥ √q, both agents are willing to fully disclose, independent

of α.

Proof. P dL(α) is strictly decreasing in α (see 9.3) and P dL(α = 0) =
√
q.

Hence, P dL(α) ≤ √q for all α ∈ [0, 1]. P dH(α) is strictly increasing in α (see

9.3) and P dH(α = 1) =
√
q. Hence, P dH(α) ≤ √q for all α ∈ [0, 1].

These Lemmata imply that in the range P ∈ [P ,
√
q), three types of

equilibria can arise: both agents disclose, agent L discloses while agent

H mixes and agent L mixes while agent H discloses. In the range P ∈
[
√
q, E[Q]), both agents always fully disclose information.
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9.8 Proof of Proposition 5

Throughout this proof, we denote αL = α and αH = 1− α.

We showed in Section 5.1 that α is optimal in the range α ∈ [α, ᾱ], i.e.

if there is full disclosure.

If α ≤ α, agent L starts concealing partially. We prove in 1) that the

surplus when agent H is disclosing and agent L partially conceals is concave

in α. We also show that it is strictly increasing at α for P ∈ [P̂ , P̄ ], with

P̂ ∈ [P , P̄ ]. Hence, for such P , α < α would yield lower surplus than α. α

brings us back to full disclosure. For P ∈ [P , P̂ ], α < α would yield higher

surplus than α and hence some concealment is optimal.

If α ≥ ᾱ, agent H starts concealing partially. We prove in 2) that surplus

is decreasing at α ≥ ᾱ for all P ∈ [P , P̄ ). Hence, the maximal surplus we

get for α ∈ [ᾱ, 1] is at ᾱ. Since we are then back to full disclosure, α would

yield a higher surplus.

1) Proof that α is optimal in [0, α] if P ∈ [P̂ ,
√
q).

We denote the surplus if agent L mixes and agent H discloses fully as

Smd =
1

4
(1 + dL)SP [eL(P ), eH(P )] (74)

+
1

4
(1− dL)Sq[eL(q), eH(ÊH [Q])]

+
1

2
S1[eL(ÊL[Q]), eH(ÊH [Q])].

We first show that this surplus is concave in α for P ≥ P . Then we find

conditions for the surplus to be increasing in α at α.
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Surplus Smd is strictly concave in α for P ≥ P

Take the second derivative:

∂2Smd
∂α2

=
1

4

∂2dL
∂α2
{SP [eL(P ), eH(P )]− Sq[eL(q), eH(ÊH [Q])]} (75)

+
1

2

∂2S1[eL(ÊL[Q]), eH(ÊH [Q])]

∂α2

+
1

2

∂dL
∂α

[
∂SP [eL(P ), eH(P )]

∂α
− ∂Sq[eL(q), eH(ÊH [Q])]

∂α

]

+
1

4
(1 + dL)

∂2SP [eL(P ), eH(P )]

∂α2

+
1

4
(1− dL)

∂2Sq[eL(q), eH(ÊH [Q])]

∂α2
.

The second derivative depends on P only via P 2. We therefore replace

P 2 by x and get a new function C(x) where C(P 2) = ∂2Smd
∂α2 (P ). Note

that, if C(x∗) = 0 then ∂2Smd
∂α2 (P ∗) = 0 with P ∗ =

√
x∗. Furthermore

C(x) > 0 ⇔ ∂2Smd
∂α2 (P ) > 0 for P =

√
x. Therefore, by showing that C(x)

is negative for x ∈ [P 2, E[Q]2), we also show that ∂2Smd
∂α2 (P ) is negative for

P ∈ [P ,E[Q]).

We can indeed show that C(x) is negative for x ∈ [P 2, E[Q]2) by proving

that 1) C strictly decreases in x and 2) C is strictly negative at x = P 2.

Hence it is strictly negative also for all x > P 2. This implies that the second

derivative is strictly negative for P ∈ [P ,E[Q]).

1) C strictly decreases in x:

∂C

∂x
= −5

4

[2− (2− γ2)α]3[(γ2 + 2
5)q + 1

5(2− γ2)]
q[αγ2 + 2(1− α)]3

< 0. (76)

2) At x = P 2, C(x) is strictly negative:

T ≡ 4

5
q[αγ2 + 2(1− α)]3C(P 2). (77)

Whenever T is strictly negative, C(P 2) is strictly negative too. We

can show that T is strictly concave in α:

∂2T

∂α2
= −8

5
[αγ2 + 2(1− α)]q(2− γ2)(γ2 + 1)

[(1 + γ2)q2 + 3q(1− γ2) + 2− γ2] < 0. (78)
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At α = 1, T is still increasing and negative:

∂T

∂α

∣∣∣∣
α=1

=
4

5
qγ4(γ2 + 1)[(γ2 + 1)q2 + 3(1− γ2)q + 2− γ2] > 0, (79)

T (α = 1) = − 4

15
qγ6[(3γ2 − 4q + 6)q + γ2(1− q2) + 1] < 0. (80)

Hence, T < 0 for all α ≤ 1. This implies that C(P 2) < 0 for α ∈ [0, 1].

We showed that C(x) is strictly decreasing in x and already strictly negative

at x = P 2. This implies that Smd is strictly concave in α for P ≥ P .

Surplus Smd is increasing in α at α if P ∈ [P̂ ,
√
q] with P̂ ∈ (P , P̄ ).

We want to show that the derivative of Smd wrt α at α (=S′md(α)) is

positive if the quality of project P is high enough. Define

D(x) ≡ 8q(1− q)[2(q − x) + γ2(x− q2)]S′md(α, P ) (81)

with x = P 2. Given x ∈ [P 2, q], in order to show that S′md(α) is positive at

a certain P , we need to show that D(x) is positive at x = P 2.

We first observe (a) that D(x) is strictly increasing in x for x ∈ [P 2, q].

Then we show in (b) that D(x) is strictly positive at x = P̄ 2 and in (c) that

D(x) is strictly negative at x = P 2 if q > q̄. These observations tell us that

if q > q̄ there exists a threshold x̂ = P̂ 2 ∈ (P 2, P̄ 2) such that D(x) > 0 if

and only if x ∈ [P̂ 2, q), which implies S′md(α) > 0 if and only if P ∈ [P̂ ,
√
q).

When q < q̄, D(x) > 0 for all x ∈ [P 2, q) and thus S′md(α) > 0 for all

P ∈ [P ,
√
q).

a) D(x) is strictly increasing in x:

The first derivative of D(x) wrt x is convex x:

∂3D(x)

∂x3
= 18γ2(2− γ2) > 0, (82)

already increasing and positive at x = P 2:

∂2D(x)

∂x2

∣∣∣∣
P 2

= 2(1− q)[(8 + γ4)(1 + q)− 6γ2] > 0. (83)
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∂D(x)

∂x

∣∣∣∣
P 2

=
4

3
q(1− q2)[(4− γ4)q + 4γ4 + 2− 3

2
γ2(1− q)] > 0. (84)

Hence the first derivative with respect to x is strictly positive for all

x ≥ P 2.

b) D(x) is strictly positive at x = P̄ 2:

D(P̄ 2) =
8q2(1− q)3(1 + γ2)γ4[1 + 2γ2 + γ6 + 1

2γ
4(1 + 3q)]

(γ4 + 2)3
> 0.

(85)

c) D(x) is strictly negative at x = P 2 if q > q̄:

D(P 2) =
4

9
(1 + γ2)q2(1− q)2[7γ2 − 4− (2− γ2)q2 − (6− 4γ2)q] < 0

⇔ 0 > 7γ2 − 4− (2− γ2)q2 − (6− 4γ2)q

⇔ γ <

√
2(2 + 3q + q2)

7 + 4q + q2
≡ γ(q). (86)

Homogeneity γ must be low enough to make it negative. If γ is

low enough γ < γ(q), there exists a unique P̂ ∈ (P , P̄ ) for which

S′md(α, P̂ ) = 0. The threshold γ(q) is strictly increasing in q:

∂γ(q)

∂q
=

13 + 10q + q2

21/2(7 + 4q + q2)3/2(2 + 3q + q2)1/2
> 0, (87)

2) Proof that ᾱ is optimal in [ᾱ, 1]

The ex-ante expected total surplus of the team if agent L always discloses

and agent H discloses with probability dH is

Sdm =
1

4
(1 + dH)SP [eL(P ), eH(P )] +

1

4
(1− dH)Sq[eL(ÊL[Q]), eH(q)]

+
1

2
S1[eL(ÊL[Q]), eH(ÊH [Q])]. (88)

We want to show that Sdm is decreasing for α ∈ [ᾱ, 1] in the range

P ∈ [P ,
√
q). αdis is the lowest share for which the equilibrium in which L

fully discloses and H mixes exists given P ≥ P . If α was smaller (α < αdis),

agent H would want to disclose for all P ≥ P , i.e. P dH(α) < P . Hence,
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ᾱ ≥ αdis and therefore it is sufficient to show that Sdm is decreasing for

α ∈ [αdis, 1].

Surplus Sdm is strictly decreasing for α ∈ [αdis, 1]

Consider the first derivative of Sdm with respect to α:

S′dm =
∂Sdm
∂α

=
1

4

∂dH
∂α
{SP [eL(P ), eH(P )]− Sq[eL(ÊL[Q]), eH(q)]} (89)

+
1

4
(1 + dH)

∂SP [eL(P ), eH(P )]

∂α

+
1

4
(1− dH)

∂Sq[eL(ÊL[Q]), eH(q)]

∂α

+
1

2

∂S1[eL(ÊL[Q]), eH(ÊH [Q])]

∂α
.

While the first term is negative, the other terms can be positive or neg-

ative. It is thus difficult to show directly that S′dm is negative. However, we

can show that it is convex in α:

∂2S′dm
∂α2

=
9γ4q(1− q)

[2αγ2 + (1− α)]4
> 0. (90)

We thus only have to show that S′dm is negative at α = αdis and α = 1.

1) S′dm is negative at α = αdis:

S′dm(αdis) =− 1

24(1 + γ2)q2
{(2γ4 − 5)q4 − (γ2 + 7)q3 (91)

+ [12 + (4γ6 − 8γ4 − 15γ2 + 21)P 2]q2

+ P 2(3− 12γ4 + 9γ2)q − 3P 4(2γ2 − 1)γ2}.

We replace x = P 2 and hence have to show that S′dm(αdis) is strictly

negative for all x ∈ [P 2, q]. Take the second derivative wrt to x:

∂2S′dm(αdis)

∂x2
=

1

2

(γ2 − 1
2)γ2

(1 + γ2)q2
. (92)

The second derivative is positive if γ2 > 1
2 and negative if γ2 < 1

2 . If

it is negative ii), S′dm(αdis) is concave in x and we have to show that

it is decreasing and negative at x = P 2. If it is positive iii), S′dm(αdis)

is convex in x and we have to show that it is negative at x = P 2 and

at x = q.
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i) S′dm(αdis) is strictly negative for all x if γ2 = 1
2 :

S′dm(αdis, γ2 =
1

2
) = (93)

− 3q(1− q2) + 5q(1− q) + (8q + 3)x

24q
< 0.

ii) S′dm(αdis) is strictly negative for all x ∈ [P 2, P̄ 2] if γ2 < 1
2 :

If γ2 < 1
2 , S′dm(αdis) is strictly concave in x. In this case we have

to show that S′dm(αdis) is a) decreasing in x at x = P 2 and b)

negative at x = P 2.

a) S′dm(αdis) is strictly decreasing in x at x = P 2 for q > 0:

∂S′dm(αdis)

∂x

∣∣∣∣
P 2

< 0

⇔− 3 + 13γ2 − 20γ4 + q(4γ6 − 12γ4 − 13γ2 + 21)

24(1 + γ2)q
< 0

⇔q > 20γ4 − 13γ2 − 3

4γ6 − 12γ4 − 13γ2 + 21
. (94)

This threshold for q is strictly negative for γ2 < 1
2 : De-

fine T (z) ≡ 20z2−13z−3
4z3−12z2−13z+21

. Then we have to show that

T (z) < 0 for z < 1
2 . The denominator DN is always strictly

positive since it is concave in z (DN ′′ = −24(1 − z)) and

it is strictly positive at z = 0 (DN(z=0)=21) and at z = 1
2

(DN(z=1/2)=12). The nominator N is strictly negative since

it is convex in z (N ′′ = 40) and strictly negative at z = 0

(N(z = 0) = −3) and z = 1
2 (N(z = 1/2) = −9

2) and hence

also for all z = γ2 ∈ (0, 12).

b) S′dm(αdis) is strictly negative at x = P 2:

S′dm(αdis, P 2) = − 1

36(1 + γ2)
[(2q2 + 4q)γ6 (95)

− (2q2 + 18q + 16)γ4

+ (11− 7q2 − 10q)γ2 + 3q2 + 12q + 21].
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We replace z = γ2 and then have to show that R is strictly

positive for z < 1
2 :

R ≡ (2q2 + 4q)z3 − (2q2 + 18q + 16)z2 (96)

+ (11− 7q2 − 10q)z + 3q2 + 12q + 21 > 0.

R is strictly concave in z (R′′ = −[4(8−3q2z)+12q(3−2z)+

4q2]) and strictly positive at z = 0 (R(z = 0) = 3q2+12q+21)

and at z = 1 (R(z = 1) = 16− 4q2 − 12q). Hence, R > 0 for

all z ∈ [0, 1].

It follows that S′dm(αdis, P 2) < 0 for q ∈ [0, p] and z ∈ [0, 1].

iii) S′dm(αdis) is strictly negative for all x ∈ [P 2, q] if γ2 > 1
2 :

If γ2 > 1
2 , S′dm(αdis) is strictly convex in x. We just showed that

S′dm(αdis) is strictly negative at x = P 2 for γ2 ∈ [0, 1]. Hence, we

are left to show that S′dm(αdis) is also strictly negative at x = q.

Convexity then implies that S′dm(αdis) is strictly negative for all

x ∈ [P 2, q].

S′dm(αdis, q) = (97)

(18 + 8q − 2q2)γ4 − 4qγ6 + (16q − 12)γ2 + 5q2 − 14q − 15

24(1 + γ2)
.

We can show that this is a) strictly convex in q, b) strictly nega-

tive at q = 0 and c) strictly negative at q = 1:

a) S′dm(αdis, q) is strictly convex in q:

∂2S′dm(αdis, q)

∂q2
=

5− 2γ4

12(1 + γ2)
> 0. (98)

b) S′dm(αdis, q) is strictly negative at q = 0:

S′dm(αdis, q, q = 0) = −15 + 12γ2 − 18γ4

24(1 + γ2)
< 0. (99)

c) S′dm(αdis, q) is non-positive at q = 1:

S′dm(αdis, q, q = 1) = −(24− 4γ2)(1− γ4)
24(1 + γ2)

< 0. (100)
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2) S′dm is strictly negative at α = 1:

S′dm(α = 1) = − 1

8q
[7P 2q + P 2 + 4q(1− q)]. (101)

We showed that the surplus is decreasing in α. Hence, it is optimal to

choose ᾱ.

9.9 Proof of Proposition 6

Throughout this proof, we denote αL = α and αH = 1− α. P e (defined by

α∗(P e) = 1
2) lies in the range [P̂ , P̄ ], if and only if S′md(ᾱ) is increasing at

P e. We show that this is true whenever γ2 >
√

6 − 2 and q < q̃. If these

conditions are fulfilled, equal sharing is optimal at P e.

S′md(α) is positive at P e if γ2 >
√

6− 2 and q < q̃ ∈ (0, 1]:

S′md(α, P
e) =

(q2 + 1)γ6 + (6− 2q2 + 2q)γ4 + (6− 2q2 − 4q)γ2 − 4q − 4

4(γ2 + 2)2
. (102)

This is strictly decreasing in q:

∂S′md(α, P
e)

∂q
= −(4− 2γ2)qγ4 + (4− 2γ2)γ2 + 4qγ2 + 4

4(γ2 + 2)2
< 0. (103)

S′md(α, P
e) is strictly positive at q = 0 if γ2 >

√
6 − 2 ≈ 0.4495. It is

strictly negative at q = 1 if γ2 < 1. Hence, if γ2 >
√

6 − 2, there exists a

threshold q̃ ∈ (0, 1) such that S′md(α, P
e) > 0 if q < q̃:

q̃ =
(4− γ12 − 4γ10 + 9γ8 + 24γ6 + 4γ4)1/2

γ2(2 + 2γ2 − γ4)
− 1

γ2
. (104)

If γ2 <
√

6− 2, S′md(α, P
e) is negative for all q, so equal shares are not

optimal.

9.10 Proofs when different ability to receive information

We assume that given project Q is of low quality, agents receive information

with independent probabilities πL ∈ (0, 1) and πH ∈ (0, 1). Agent i discloses
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information iff

Udi (α, P, ei(P ), ej(P )) ≥ πjdjU
d
i (α, P, ei(P ), ej(P )) (105)

+ πj(1− dj)U ci (α, q, ei(q), ej(q))

+ (1− πj)U ci (α, q, ei(q), ej(Êj [Q])).

While agent i knows that quality is q, agent j might remain uninformed

and has to form expectations over the quality of project Q. Agent i knows

that if agent j remained uninformed, by Basian updating, he will believe

quality of project Q is

Êj [Q] =
(1− diπi)(1− πj)q + 1

(1− diπi)(1− πj) + 1
. (106)

Agent i discloses iff P ≥ P di , with

P di =

[
q{qαiγ2i [2− πi − πj(1− πi)] + 2αjγ

2
j [1 + (1− πj)(1− πi)q]}

(αiγ2i + 2αjγ2j )[2− πi − πj(1− πi)]

]1/2
.

(107)

This threshold decreases in an agent’s own share αi and increases in the

other agent’s share αj :

∂P di
∂αi

= −
2γ2i γ

2
jαjq(1− q)

(αiγ2i + 2αjγ2j )2[2− πi − πj(1− πi)]
< 0, (108)

∂P di
∂αj

=
2γ2i γ

2
jαiq(1− q)

(αiγ2i + 2αjγ2j )2[2− πi − πj(1− πi)]
> 0. (109)

Consider the benchmark of symmetrically informed agents (equivalent to

full disclosure). The probability that they remain uninformed even though

the quality of project Q is low is (1 − πL)(1 − πH). If agents remain un-

informed, they update beliefs about the quality of project Q to (106) with

dL = dH = 1. In this situation, αsym maximizes the team’s surplus.
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