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Learning from failure in healthcare: dynamic panel evidence of a 

physician shock effect 

Raf Van Gestel*, Tobias Müller†, Johan Bosmans‡ 

ABSTRACT 

Procedural failures of physicians or teams in interventional healthcare may 

positively or negatively predict subsequent patient outcomes. We identify 

this effect by applying (non-)linear dynamic panel methods to data from the 

Belgian Transcatheter Aorta Valve Implantation (TAVI) registry containing 

information on the first 860 TAVI procedures in Belgium. We find that a 

previous death of a patient positively and significantly predicts subsequent 

survival of the succeeding patient. We find that these learning from failure 

effects are not long-lived and that learning from failure is transmitted across 

adverse events. 
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1. INTRODUCTION 

Physician learning is an umbrella term covering multiple types of learning, forgetting and 

knowledge transfer. The literature on learning for physicians typically focuses on specific case-

studies and the identification of different types of learning. Most notably, a distinction is made 

between physician experience, economies of scale and human capital depreciation (Hockenberry 

and Helmchen, 2014; Van Gestel et al., 2016). In Van Gestel et al. (2016), these three types of 

learning have been further investigated with a focus on patient subgroups. In this paper, we build 

on this work by looking at performance responses to a failure. An adverse event may, either 

positively or negatively, disrupt health provider performance. A failure may have an impact on 

performance through three primary channels. Firstly, a failure might alarm and shock a provider. 

As a result, in a subsequent procedure, the provider might be better prepared and/or better 

motivated to obtain a positive outcome. This response might arise because of, among others, loss 

aversion. Second, a failure may provide the physician with more information on specific aspects 

of the procedure. Lastly, subsequent to a failure, patients with different characteristics may be 

selected to undergo the procedure. Although clearly a selection effect, this might indicate that 

physicians learn to more appropriately select patients over time. Hence, the three channels may all 

represent certain aspects of provider learning from failure. Throughout the literature, endogeneity 

problems hamper inference of learning effects with reverse causality and risk selection over time 

as main validity threats (e.g. Gaynor, 2005; Hentschker and Mennicken, 2016). In this paper, our 

empirical strategy directly aims at addressing potential endogeneity issues when estimating 

learning from failure effects. 



3 
 

The role of the physician is, evidently, widely acknowledged to be important in the production of 

health. Physician incentives and behavior, but also characteristics, are expected to be predictive of 

patient health outcomes. Aspects like education and specialization (Jollis et al., 1996), adherence 

to guidelines (Ward, 2006) and experience (Hockenberry and Helmchen, 2014) have all been 

shown to affect patients’ health outcomes. At a more aggregated level, physician supply and 

contract-types (contracted vs. municipality GP’s in Aakvik et al. (2006)) have been shown to be 

correlated with mortality rates (Or et al., 2005; Sundmacher et al., 2011; Iizuka, 2016).  

As a result, a number of initiatives target provider performance. Firstly, these initiatives may raise 

physicians’ information and skills through continued medical education (Cervero et al., 2015), 

traineeships, etc. (Haynes et al., 1995). Secondly, market-based interventions change incentives 

for patients and physicians which also influences subsequent performance. For example, publicly 

available report cards (Kolstad, 2013) and pay for performance programs (Li, 2014) target 

incentives through both intrinsic motivation and market-based stimuli. In this paper, we contribute 

to this literature by exploring if previous failures (e.g. adverse events like patient mortality and 

stroke) affect subsequent physician performance. This research may inform policy makers on the 

scope to introduce future information or awareness campaigns. In addition, this analysis can also 

serve as a starting point to further explore underlying reasons for such shock effects.  

Learning from failure is important at all levels of the healthcare sector. Nation-wide failed health 

reforms should inform future reforms and organizations are expected to foster failure driven 

learning even though they might face barriers to do so (Oberlander, 2007; Edmondson, 2004). At 

the provider level, learning from failure might be encouraged by the information provided by the 

failure itself (e.g. physicians may learn more from risky patients), by the incentive to avoid 

malpractice claims (Pänthofer, 2017) or more generally by loss aversion. This loss aversion may 
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relate to income, patient break-ups because of low performance and/or adverse events (Rizzo, 

2003; Hareli, 2007). However, failure may not only stimulate learning, it could also result in more 

failures. This result, typically found in the organizational literature, occurs when for example failed 

(business) projects negatively influence a team (Shepherd, 2013). Psychologically, personal goal 

failure may lead to negative affective states and may therefore translate into negative subsequent 

outcomes (Jones, 2013). Also, physician inertia may contribute to continued failure. A failure to 

respond to adverse outcomes may stem from habit formation and from the reluctance to adjust 

treatment practice because of sizeable search and learning costs (Janakiraman, 2008). Whereas the 

idea of learning from failure for physicians is related to research on physician inertia in 

pharmaceutical prescriptions, we apply the idea of previous experience and inertia to a more 

interventional setting.  

The identification of the learning from failure effect on physician performance relies on previous 

experiences as patient mortality for a physician depends on mortality of the previous patient(s). 

Estimation of such learning from failure effects imposes two main econometric challenges: First, 

in the context of binary response fixed effects (FE) dynamic panel data models, the well-known 

incidental parameter problem and Nickell bias lead to possibly inconsistent coefficient estimates 

(for an overview see Lancaster, 2000). Second, with irregular spacing of panel data, FE may not 

appropriately be accounted for in dynamic models (McKenzie, 2001). In our data, this irregular 

spacing occurs because the time span between Transcatheter Aorta Valve Implantation (henceforth 

TAVI) procedures differs within hospitals. That is, we only observe provider activity when a 

patient is actually treated in a given facility and therefore the time span between procedures is 

irregularly spaced between patients.  
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As a remedy to the incidental parameter problem and the Nickell bias, we apply the bias-corrected 

FE estimator proposed by De Vos et al. (2015) which has shown to have superior small sample 

properties compared to classical GMM-type estimators and FE linear probability models. In 

addition to the bias-correction approach, we estimate the learning from failure effects using the 

split-panel jackknife FE estimator recently proposed by Dhaene and Jochmans (2015). We also 

discuss the irregular spacing of our data in which the dependency between observations can be 

modelled as an AR(1)-process. 

In this paper, we provide evidence for substantial learning from failure effects. We find that if the 

previous patient died, the probability to die within one month is associated to decrease by 5 to 11%-

points for the next patient. Although different non-linear dynamic panel methods provide slightly 

different results, all specifications provide qualitatively similar results. We also find minor 

evidence for a transmission mechanism of shocks between adverse events. A previous stroke, a 

common complication during or shortly after the TAVI procedure, is correlated with a lower 

likelihood of dying.  

In the remainder of this paper, we discuss the background of our application to TAVI and our data 

in section 2. In section three we focus on the methods to measure the effect of learning from failure. 

In section 4, we present our results after which we discuss and conclude in section 5. 

2. THE INTRODUCTION OF TRANSCATHETER AORTA VALVE IMPLANTATION 

(TAVI) 

The application in this paper considers the introduction and evolution of the TAVI procedure in 

Belgium for which the first procedure in a Belgian hospital has taken place in 2007. With a TAVI 

procedure, the defunct aortic valve is replaced with an artificial replacement valve through means 
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of a minimally invasive catheterization. In our sample period the procedure was not reimbursed 

and was therefore only financed by physicians and hospitals for patients that were anatomically 

inoperable and that were unable to bear the cost themselves. Later, in 2015, TAVI became 

reimbursed under certain conditions.  

We use register data for patients from 2007, including the first patient undergoing TAVI, to the 

beginning of 2012 in 20 hospitals. As such, our data is able to describe the performance of 

physicians for the full introduction period of TAVI. In each hospital only one team performs this 

TAVI procedure and during the sample period total workload for TAVI was limited to about one 

day a week. Furthermore, team composition hardly varies over the sample period 2007-2012. 

Information is available on a wide range of patient specific characteristics (see Table I for details) 

and we have access to hospital identifiers. However, the data does not contain information about 

additional hospital (e.g. hospital budget) or surgeon-team characteristics (e.g. years of experience). 

Note that with the exception of “Ejection fraction”, all variables in our data set are binary 

indicators. Approval was obtained from the institutional ethics committees for data collection at 

the participating hospitals. On average, 1-month mortality amounts to about 9% with proportions 

ranging between 5 to 27% between hospitals. In addition, Table II gives an overview on the total 

number of patients treated over the different years and Table I shows the total number of patients 

treated at each of the different hospitals over the entire sample period. 

--- Insert Table I here --- 

--- Insert Table II here --- 

Table III provides first descriptive evidence for the learning from failure effect for interventional 

care. Descriptive numbers are provided for four common adverse events: mortality, having a stroke, 
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renal failure and pacemaker implantation. Cerebrovascular stroke is a common complication during 

the procedure because of, e.g. blood or calcium cloths that are dislodged during the procedure (for 

a technical explanation see Ghelam et al., 2016). Also, renal failure and pacemaker implantation 

regularly take place during or shortly after the TAVI procedure (Eggebrecht et al., 2011). The 

estimates in the “Lag=0” columns contain the probabilities for the adverse event if the previous 

patient did not suffer from the corresponding adverse event. The column “Lag=1” shows the 

likelihood of the adverse event after an adverse event. For 1-month mortality and stroke, the 

probability of suffering from a stroke or dying within one-month is substantially lower if the 

previous patient exhibited the same adverse event pointing towards learning from failure effects. 

For renal failure and pacemaker, point estimates have the opposite sign and are statistically 

insignificant. Throughout the next sections, we will thoroughly scrutinize these preliminary 

descriptive findings. Since only mortality and stroke exhibit interesting patterns and because only 

for mortality there are subsequent failures, we will focus our attention entirely on mortality.1 

  --- Insert Table III here --- 

3. METHODS 

3.1.  Empirical specification and learning curves 

The literature on learning curves in health distinguishes between three types of learning (see e.g. 

Hockenberry and Helmchen (2014); Van Gestel et al. (2016)): cumulative experience (CE), 

economies of scale (EOS) and human capital depreciation (HCD). Learning from cumulative 

                                          
1 The fact that there are no consecutive failures, which is apparent from the Lag=1 column in Table III 
makes it impossible to estimate non-linear models (because coefficients tend to infinity as they represent 
multiplicative effects). 
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experience refers to the idea that treating an additional patient generally improves physician (or 

team) performance. When referring to economies of scale, we capture the fact that higher volume 

providers usually have better infrastructure (e.g. equipment, staff) and more standardized 

procedures. Lastly, the human capital depreciation hypothesis states that provider performance 

decreases with longer temporal distance to previous procedures. In its most simple form, this leads 

to the specification in equation (1) which can empirically be estimated using standard regression 

techniques: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖,ℎ,𝑡𝑡 =  𝛽𝛽0 +  𝛽𝛽1𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,ℎ + 𝛽𝛽2𝐻𝐻𝐶𝐶𝑖𝑖,ℎ +  𝛽𝛽3𝐶𝐶𝑂𝑂𝐸𝐸 ℎ,𝑡𝑡 + 𝛼𝛼1′𝑋𝑋𝑖𝑖,ℎ,𝑡𝑡 + 𝜃𝜃1′𝐻𝐻ℎ + 𝜀𝜀𝑖𝑖,ℎ,𝑡𝑡  (1) 

In the empirical strategy, our data are considered a pseudo-panel dataset in which the individual 

patients are consecutive observations on provider and hospital performance. In equation (1), 𝑖𝑖, ℎ 

and 𝑂𝑂 denote individual 𝑖𝑖 in hospital ℎ in year 𝑂𝑂2. The outcome variables in our analysis are binary 

mortality indicators. Furthermore, we control for a vector of background characteristics and 

comorbidities contained in 𝑋𝑋𝑖𝑖,ℎ,𝑡𝑡 and hospital fixed effects 𝐻𝐻ℎ. Lastly, 𝜀𝜀𝑖𝑖,ℎ,𝑡𝑡 is a typical error term 

which in case of LPM’s is non-normally distributed. Consequently, we use heteroscedasticity-

robust standard errors in all our model specifications. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖,ℎ,𝑡𝑡 =  𝛽𝛽0 + 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖−1,ℎ,𝑡𝑡 +  𝛽𝛽2𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,ℎ + 𝛽𝛽3𝐻𝐻𝐶𝐶𝑖𝑖,ℎ +  𝛽𝛽4𝐶𝐶𝑂𝑂𝐸𝐸 ℎ,𝑡𝑡 + 𝛼𝛼1′𝑋𝑋𝑖𝑖,ℎ,𝑡𝑡 +

 𝜃𝜃1′𝐻𝐻ℎ + 𝜀𝜀𝑖𝑖,ℎ,𝑡𝑡  (2) 

In equation (2), we extend (1) by adding a lag of the outcome variable as additional independent 

variable to the model. Note here that the outcome, say mortality, of patient i in hospital h in period 

t is regressed on the mortality indicator of the previous patient i-1 which was treated just before 

                                          
2 Note that this notation changes in the robustness section on irregular spacing where the time units are 
specific to each individual observation and the differences are expressed in days. 
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patient i in the same hospital h in period t. 𝛽𝛽1 is therefore capturing the learning from failure effect. 

Furthermore, we include the learning variables from equation (1) to overcome the potential omitted 

variable bias resulting from a likely correlation between the lagged outcome and the learning 

indicators. In fact, without the inclusion of the typical learning effects, 𝛽𝛽1 would likely be an upper 

bound on the true effect3.  

Because of the dynamics in equation (2), there are several issues that may obstruct estimation and 

inference of the failure effect. First, the binary outcomes may require the estimation of a non-linear 

dynamic panel model with fixed effects. In this setting the fixed effects may induce a substantial 

incidental parameter problem and a Nickell bias. Second, by estimating the dependence between 

observations, the irregular spacing in the model may cause the within-estimator to be biased 

because the panel unit fixed effects are not fully accounted for. These estimation issues are further 

discussed throughout the following sections.  

3.2.  Dynamic panels and the failure effect 

Since the dynamic effects for the adverse events are of primary interest in this paper, our main goal 

is to obtain consistent and efficient estimates of the potential failure effect. Specifically, we analyze 

whether the patient outcome of a team or physician procedure is correlated with previous (negative) 

experiences. In this section we describe potential improvements over the basic FE LPM shown in 

equation (2). 

 

                                          
3 I.e. it would probably overstate the positive effect of a previous failure on survival as e.g. cumulative 
experience is negatively correlated to both contemporaneous and lagged patient mortality pointing 
toward an upward bias in 𝛽𝛽4�.  
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3.2.1. Incidental parameters 

In the context of binary dependent variables and fixed effects, the incidental parameters problem 

frequently presents a hurdle to obtain consistent and efficient estimates. Because of the incidental 

parameters problem, the fixed effects estimates are inconsistently estimated and this carries over 

into inconsistency for all other coefficients (Baltagi, 2008; Wooldridge, 2010). The inclusion of 

incidental parameters is even more problematic with lagged dependent variables because of the 

Nickell bias4 (Moon et al., 2015). To address these endogeneity issues, difference and system 

GMM-type estimators are commonly used in the applied literature. For example, Salge et al. (2016) 

apply dynamic instrumental variable panel methods in relationship with quality of care. They find 

that infections decrease with better overall cleaning, training on infection control, hand hygiene 

and a favorable error-reporting environment. We refrain from applying GMM-type estimators as 

they regularly suffer from poor small sample properties due to weak instrument problems (see Pua, 

2015; De Vos et al., 2012; Bruno, 2005). Instead, to address these econometric challenges, we run 

a series of alternative estimation techniques. As a starting point, we estimate the learning from 

failure effects using simple fixed effects Linear Probability Models (henceforth FE LPM’s) and 

fixed effects logit (henceforth FE logit) specifications. Although widely used in the applied 

literature, Chernozhukov et al. (2013; p. 546) demonstrate that the FE LPM provides inconsistent 

estimates of the average marginal effects in dynamic panel settings. Furthermore, applying non-

linear fixed effects models (e.g. FE logit/probit) has shown to produce persistent (upward) bias in 

the estimated slope coefficients due to the incidental parameters problems. In fact, based on Monte 

                                          
4 As shown in Nickell (1981), the inclusion of lagged dependent variables leads to a direct correlation of 
the lagged outcome with the error term rendering the FE estimator inconsistent.  
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Carlo simulations, Greene (2004) shows that the bias in the estimated FE logit and probit 

coefficients increases, the smaller the time horizon T in the data.  

To address these econometric challenges, we apply in a first step the bias-corrected FE estimator 

proposed by De Vos et al. (2015) based on Everaert and Pozzi (2007)5 which has been shown to 

have superior small sample properties than the classical GMM-type estimators as it removes most 

of the bias in the classical FE estimator. The underlying idea behind the bias-corrected FE estimator 

is to estimate the bias in the (uncorrected) FE estimate by using different bootstrap samples of the 

original data and iteratively improve the initial estimate until reaching an unbiased estimator.  

In a second step, we apply the split-panel jackknife for non-linear fixed effect models recently 

suggested by Dhaene and Jochmans (2015) which addresses the incidental parameters problem, 

while at the same time accounting for the dynamics. The method is specifically designed for 

moderately large panels. We apply the jackknife-based approach because we do not include the 

typical time fixed effects6 as in Fernández-Val and Weidner (2016) where the analytical bias 

correction is preferred. Whereas most solutions to the abovementioned difficulties are 

computationally complex and require analytical solutions, the jackknife is relatively 

straightforward to implement and performs similarly or even better than other approaches. The 

drawback however is the difficulty to include time trends in non-linear fixed effects models which 

makes it hard/impossible to correct for the overall learning curve. With different dynamics in the 

subpanels, the estimates of all coefficients may differ. Consequently, we provide a range of 

estimates. 

                                          
5 Because the approach is designed for continuous dependent variables, we simulate the bias in AME’s 
in a Monte Carlo Simulation. 
6 This is simply because our constructed “panel” does not have a strict time dimension which makes it 
difficult to interpret and because we include a range of time trends (HCD, CE, EOS) as independent 
variables of interest.  
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The intuition underlying the split-panel jackknife is to divide each panel in smaller subpanels of 

consequent observations.7 Because the bias depends on the length T of the panel, using different 

panel lengths by generating subpanels and comparing the coefficient estimates of the subpanels 

with the estimate for the complete panel provides an estimate of the bias. Subtracting the estimated 

bias from the complete panel estimate generates the split-panel jackknife estimator (Dhaene and 

Jochmans, 2015, p. 998). One simple choice to determine the subpanel lengths also suggested in 

Dhaene and Jochmans (2015) is the half-panel jackknife where the panels are simply divided in 

two. In a dynamic setting (p. 1007) the jackknife may perform sub-optimally when the dynamics 

are very different in the half-panels. Subpanel estimates can be compared to test for sensitivity to 

differential dynamics.  

3.2.2. Irregularly spaced panel data 

In our setting, patients are considered as consecutive observations on provider performance. As 

such, because periods between patients may substantially vary (across hospitals and patients), our 

panel can be considered as irregularly spaced. With irregularly spaced panel data, the fixed effects 

approach may not fully account for the fixed effects and as a consequence, the within estimator 

may be biased (McKenzie, 2001; Tamm et al., 2007). One approach, that will be discussed in more 

detail in the robustness section is to model the data as an AR(1)-process to better illustrate the 

dependence between patients. Although intuitively attractive, technical and practical 

considerations hinder the applicability of this method in our setting.  

                                          
7 We provide a brief and intuitive summary of the split-panel jackknife. For more detailed technical 
information, please see Dhaene and Jochmans (2015). For more information on the technical 
implementation in Stata, consult the help files on probitfe. 
https://ideas.repec.org/c/boc/bocode/s458278.html or Cruz-Gonzalez, Fernandez-Val and Weidner 
(2017) 

https://ideas.repec.org/c/boc/bocode/s458278.html
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4. RESULTS: EVIDENCE ON LEARNING FROM FAILURE 

4.1.  Baseline estimates 

As a starting point, we estimate simple fixed effects linear probability (FE LPM) and fixed effects 

logit (FE logit) specifications before presenting the bias-corrected FE and the split-panel jackknife 

estimates. Table IV below presents the FE LPM and FE logit average discrete probability effects 

(ADPE) of our learning from failure effects for the outcomes of one- and 24-month mortality after 

the TAVI procedure. Both specifications include patient- and procedure specific characteristics 

(see descriptive statistics in Table I), hospital fixed effects and the different learning effects 

described above. Remark that, especially for 24-month mortality, the lagged outcome may not yet 

be available to the physician at the start of the next procedure. In this case, we make the implicit 

assumption that there is a latent variable indicating treatment success according to the physician 

that closely matches the one or 24-month mortality.  

Overall, we find highly significant negative coefficients on our lagged outcome variables for both 

mortality outcomes. In fact, our FE LPM estimates indicate that the predicted likelihood of dying 

in the first month after the TAVI procedure is associated to decrease by about 7.8%-points if the 

last patients past away. Likewise, the probability of dying 2-years after the procedure is predicted 

to decrease by about 7.4%-points pointing again towards strong learning from failure effects. The 

ADPE estimates in the FE logit specifications are of similar magnitude and thus lead to the same 

conclusions. These preliminary findings suggest that there is substantial room for self-correction 

and personal improvement after failure. 

Furthermore, in line with the findings in Van Gestel et al. (2016), our estimates provide evidence 

for a significant positive learning from cumulative experience effect as treating an additional 
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patient is associated with a decrease in 2-year mortality of about 0.2%-points. Although seemingly 

a small effect, this quickly becomes large for sizeable patient samples.  

  --- Insert Table IV here --- 

4.2.  Bias-corrected FE LPM and split-panel jackknife FE probit estimates 

As discussed in the methodology section, the dynamics in the model specifications above cause the 

errors to be correlated with the lagged dependent variables inducing a Nickell Bias on all coefficient 

estimates shown in Table IV. The preferable strategy therefore is to consider the dynamics and 

simultaneously address the incidental parameter problem. To this end, we apply the bias-corrected 

FE estimator suggested by De Vos et al. (2015) and the split-panel jackknife for probit models 

proposed by Dhaene and Jochmans (2015). 

Table V below shows the bias-corrected FE estimates of the learning from failure effects for both 

mortality outcomes. The specification is based on 250 bootstrap samples and we use the burn-in 

initialization scheme to set the initial values of the lagged dependent variables8. Moreover, we 

allow for general heteroscedasticity of the error term using the wild bootstrap suggested by Liu 

(1988) and Mammen (1993) in the algorithm. 

Overall, the coefficients in Table V below are qualitatively and quantitatively similar to the results 

in Table IV: the likelihood that the current patient dies within one- or 24-months after the TAVI 

procedure is associated to decrease if the last patient died. Although not significant anymore for 

one-month mortality, they have the same sign and order of magnitude compared to previous results. 

In addition, we again find evidence for significant learning from cumulative experience effects for 

                                          
8 The burn-in initialization has the advantage (over analytic schemes) that one does not have to make 
specific distributional assumptions on the initial conditions in the bootstrap algorithm. 
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2-year mortality and human capital depreciation. Note that in contrast to the FE LPM and logit 

estimates above, the bias-corrected FE estimates tend to be smaller in absolute value for the 

mortality indicators thus pointing toward upward bias in the LPM estimates above9.   

  --- Insert Table V here --- 

In a next step, we estimate the learning from failure effects using the split-panel jackknife FE probit 

estimator recently proposed by Dhaene and Jochmans (2015). Table VI below shows the estimated 

learning from failure effects for 1-month and 2-year mortality while controlling for the usual 

patient- and procedure-specific characteristics and also including hospital fixed effects. Overall, 

we again find significant evidence for the presence of a learning from failure effect. Specifically, 

our split-panel jackknife estimate suggest that the likelihood of survival is associated to increase 

by about 11%-points (resp. 7%-points) if the last patient passed away within one-month (24-

months) after the TAVI procedure.   

In conclusion, although point estimates between methods vary, our different estimation approaches 

all hint that physician (or team) performance tends to positively respond to previous failures. We 

observe both a significant decrease in the likelihood of short- and long-term mortality for the next 

patient.   

 

  --- Insert Table VI here --- 

                                          
9 To assess the relative performance of the bias-corrected FE estimator against the FE LPM, we ran 
Monte Carlo simulations showing that the bias-corrected FE estimator clearly outperforms the FE LPM in 
terms of bias . The results may however be biased with serially correlated errors. (see Appendix A for 
details).  
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4.3.  Nature and interpretation of the failure effect 

The significant lagged effect may be interpreted in several ways. Firstly, we might expect that more 

can be learned from a failure than a success. If this would hold true, we would expect that this 

translates in a (slope-) shift of the “typical” learning curve in figure 1 below. In the figure, two 

fitted lines are shown. The black dashed line represents average mortality of patients at different 

levels of experience, conditional on non-mortality of the previous patient. The grey full line 

conditions on mortality of the previous patient. A slope-shift in this figure would mean that more 

is learned from early failures as opposed to later failures. I.e. after the first patient died, the 

mortality may significantly drop (from the black dashed to the grey full line) while this drop could 

be lower at higher patient numbers. However, the figure suggests that the same downward effect 

of a previous failure on mortality is found across all patient numbers. This points out that the effect 

of an adverse event is constant at all levels of experience and we could therefore tentatively 

conclude that instead of influencing the learning curve, an adverse event has a constant impact. 

This finding could point towards a sort of concentration effect. 

  --- Insert Figure 1 here --- 

Secondly, we are interested in the persistence of the shock effect, i.e., whether longer lags on the 

dependent variable are still significant. However, in none of our analyses, the second lag is 

statistically significant which suggests that the shock effect is short-lived. Additionally, it would 

also be of interest to investigate whether the second lag effect differs according to the value for the 

first lag. However, because there are almost no subsequent failures, the interaction would hold little 

information. In fact, in our data there are only three cases for which the two previous patients 

deceased. 
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4.4. Transmission of Risks 

The LPM’s in Table VII below (columns one and three) show evidence of a transmission of shocks 

between adverse events. Firstly, we find that when a patient suffers a stroke during a 

hospitalization, (s)he is also more likely to die. As such having a stroke is strongly correlated with 

a procedural failure. Secondly, given that the previous patient had a stroke, the probability of 

mortality is lower for the next patient. The same intuition holds for the effect of a previous mortality 

on a subsequent stroke. However, when correcting for incidental parameters with the bias 

correction of De Vos et al. (2015), the results become insignificant and thus no longer indicate 

spill-over effects from one adverse event to another.   

  --- Insert Table VII here --- 

5. ROBUSTNESS 

To further test for the robustness of our results, we provide several additional tests and 

specifications throughout this section. Firstly, we test for the robustness of non-stationarity of 

regressors in the split-panel jackknife estimation. Secondly, the learning-related regressors are 

likely to have a non-linear relationship with patient health outcomes. We show that adding learning 

variables in different specifications does not qualitatively alter our results.  

5.1.  Irregular spacing 

To account for the irregular spacing in our sample and similarly to McKenzie (2001), the 

dependence between observations in our pseudo-panel data set could be modelled in a linear 

probability model set-up as an AR(1)-process as follows: 
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𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ℎ,𝑡𝑡𝑗𝑗 =  𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ,𝑡𝑡𝑗𝑗−1 + 𝑂𝑂ℎ,𝑡𝑡𝑗𝑗   (3) 

Where: 

 𝑂𝑂ℎ,𝑡𝑡𝑗𝑗 =  𝜇𝜇ℎ + 𝑣𝑣ℎ,𝑡𝑡𝑗𝑗  

For which 𝜇𝜇ℎ~𝑖𝑖. 𝑖𝑖.𝑑𝑑 (0,𝜎𝜎𝜇𝜇2) and 𝑣𝑣ℎ,𝑡𝑡𝑗𝑗~𝑖𝑖. 𝑖𝑖.𝑑𝑑 (0,𝜎𝜎𝑢𝑢2). Writing our dynamic panel estimation taking 

into account observed time then results in the following: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ℎ,𝑡𝑡𝑗𝑗 =  𝛽𝛽𝑡𝑡𝑗𝑗−𝑡𝑡𝑗𝑗−1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ,𝑡𝑡𝑗𝑗−1 + ∑ 𝛽𝛽𝑤𝑤𝑂𝑂ℎ,𝑡𝑡𝑗𝑗−𝑤𝑤
𝑡𝑡𝑗𝑗−𝑡𝑡𝑗𝑗−1−1
𝑤𝑤=0  (4) 

McKenzie (2001) shows that within this setup, the fixed effects may not be fully accounted for if 

the irregular spacing is not taken into account. Because of the nonlinear parameter restrictions in 

equation (4), there is a need to estimate with nonlinear least squares estimation. Including the 

intercepts, the estimation equation becomes: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ℎ,𝑡𝑡𝑗𝑗 =  𝛽𝛽𝑡𝑡𝑗𝑗−𝑡𝑡𝑗𝑗−1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ,𝑡𝑡𝑗𝑗−1 + ∑ 𝛼𝛼ℎ𝛽𝛽𝑤𝑤𝑂𝑂ℎ,𝑡𝑡𝑗𝑗−𝑤𝑤
𝑡𝑡𝑗𝑗−𝑡𝑡𝑗𝑗−1−1
𝑤𝑤=0  (5) 

The obvious drawback of this approach is that the effect is, by assumption, highly (multiplicatively) 

dependent on time. The time difference in the powers are the days between procedures for our 

application. The specification in equation (5) then implies that the effect of a previous failure 

(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ,𝑡𝑡,𝑗𝑗−1) vastly decreases over time.10 This may not be sensible for our application. The 

outcome of the previous patient may be important, and additive instead of multiplicative, 

irrespective of the time that has passed between patients. A second drawback to the estimation 

procedure proposed by McKenzie (2001) is the requirement that all variables are observed in all 

                                          
10 E.g. suppose 𝛽𝛽 equals -0.8, meaning the probability of dying after a failure is 80%-points lower. This 
effects decreases to only 21% points after one week. 
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periods, including the unobserved periods. Hence, the estimation prohibits using time-varying 

individual variables. This may not pose a problem in most applications because of the prominence 

of the lagged effect. However, we have to cope with very different patients over time. Hence, 

although potentially preferred in theory because of the irregular spacing of patients, the best 

available alternative method also suffers from substantial shortcomings. 

5.2.  Quadratic learning curves 

As an additional robustness check, we allow for non-linearities in the relationship between the 

typical learning variables (cumulative experience, economies of scale and human capital 

depreciation) and patient mortality or having a stroke. The resulting FE LPM estimates of learning 

from failure effects can be found in table VIII below. Overall, the estimated effects are in line with 

our previous findings: previous failures are both negatively associated with short- and long-term 

mortality of the next patient and having complications during the procedure. Non-linearities play 

only a minor role in explaining these patient outcomes as all the coefficients on the squared learning 

variables are near to zero and therefore not economically significant.  

  --- Insert Table VIII here --- 

6. CONCLUSION 

Identifying different channels through which physicians affect patients’ health may help policy 

makers to efficiently allocate resources to policy interventions. In this paper, we shed light on the 

question how procedural failures of physicians (or teams) affect subsequent patient outcomes. We 

show that this “learning from failure effect” is an important source of physician learning besides 

the commonly identified factors such as economies of scale, learning from cumulative experience 
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and human capital depreciation. To identify such learning from failure effects, we apply the 

recently developed bias-corrected fixed effects estimator by De Vos et al. (2015) and the split-

panel jackknife estimator proposed by Dhaene and Jochmans (2015) to address the econometric 

challenges inherent to non-linear dynamic panel data settings.  

Our findings for TAVI heart valve replacements provide evidence for a significant and sizeable 

negative effect from a previous failure on subsequent patient mortality. We find that a previous 

death is significantly associated to decrease the probability of a subsequent patient death between 

6-11%-points. However, our results suggest that these effects are only short-lived, and they do not 

shift the slope of the cumulative learning effects. Possible short-term reasons underlying this 

learning from failure effect are increased concentration or short-term improved knowledge of the 

physicians or teams. Finally, we have illustrated the robustness of our results by showing a range 

of estimation techniques and employing different model specifications. 
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APPENDIX A: A MONTE CARLO SIMULATION OF DYNAMIC PANEL BIAS-

CORRECTION MODELS  

In this section, we shed light on the relative performance of the bias-corrected FE estimator 

proposed by De Vos et al. (2015) in the context of dynamic binary outcome variables. Specifically, 

we run Monte Carlo simulations to illustrate the finite sample properties of the fixed effects LPM 

(FE LPM) and the bias-corrected FE (BCFE) estimator. This exercise is informative as De Vos et 

al. (2015) only present the relative performance of their bias-correction method in case of 

continuous outcome variables. In addition, the simulation takes into account the irregular spacing 

of observations to assess the adequacy of the proposed methods in this setting. 

Our simulation results are based on the following data generating process: 

(1)        𝑦𝑦𝑖𝑖𝑡𝑡 =  𝛼𝛼𝑖𝑖 +  0.5 𝑦𝑦𝑖𝑖𝑡𝑡−1 + 𝜀𝜀𝑖𝑖𝑡𝑡 

(2)        𝜀𝜀𝑖𝑖𝑡𝑡 =  𝜆𝜆𝑖𝑖𝐹𝐹𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑡𝑡 

where 𝑦𝑦𝑖𝑖𝑡𝑡 is a latent continuous dependent variable, 𝛼𝛼𝑖𝑖 ~ 𝑖𝑖𝑖𝑖𝑑𝑑 𝒩𝒩(0,𝜑𝜑) is an unobserved individual 

effect and 𝜀𝜀𝑖𝑖𝑡𝑡 is a cross-sectionally dependent error term with 𝜆𝜆𝑖𝑖 ~ 𝑖𝑖𝑖𝑖𝑑𝑑 𝑈𝑈(1,4), 𝐹𝐹𝑡𝑡 ~ 𝑖𝑖𝑖𝑖𝑑𝑑 𝒩𝒩(0,1) 

and 𝑣𝑣𝑖𝑖𝑡𝑡 ~ 𝑖𝑖𝑖𝑖𝑑𝑑 𝒩𝒩(0,1). First, we explicitly allow for cross-sectional dependence in the errors. In our 

application this implies that across hospitals, similar patients (corrected for observed covariates) 

are treated at certain experience levels11. Initial values for the dependent variable are randomly 

drawn from a standard normal. We subsequently dichotomize the latent dependent variable based 

on the following threshold mechanism: 𝑦𝑦𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐼𝐼(𝑦𝑦𝑖𝑖𝑡𝑡 ≥ 0). To mimic the irregularly spaced 

TAVI data set, we generate different panel lengths ranging from T = 3-5 for the different 

                                          
11 Remember that our panel time dimension is based on experience. 
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observations. Moreover, we use N = 800 observations in each simulation sample to again closely 

resemble the data dimension in our actual data set used in the paper. 

Figure A1 below shows the result from our Monte Carlo experiment. Our results suggest that FE 

LPM estimates suffer from substantial finite sample biases as they are nowhere close to the true 

ADPE. On the other hand, the BCFE estimator is substantially less biased and clearly outperforms 

the FE LPM12. 

Second, as an additional exercise, we check the relative performance of the two estimators in case 

of autocorrelated errors. This means in our application that error terms for different patients are 

correlated over time within a hospital, while including patient characteristics and hospital fixed 

effects. This could happen when providers select on unobserved characteristics in a time-dependent 

manner. Error terms were generated based on the following AR(1)-process: 

(3)        𝜀𝜀𝑖𝑖𝑡𝑡 =  𝛾𝛾 +  𝜙𝜙𝜀𝜀𝑖𝑖𝑡𝑡−1 + 𝑣𝑣𝑖𝑖𝑡𝑡   

Initial values for 𝜀𝜀𝑖𝑖𝑡𝑡 were drawn from an iid standard normal and we simulate based on two 

parametrizations for 𝜙𝜙: in the first setup, we implement a negative autocorrelation in the error of 

𝜙𝜙 = −0.6 and in the second, a positive one with 𝜙𝜙 = +0.6.  

The corresponding Monte Carlo experiment shows that the introduction of serial correlation in 

general induces quite substantial distortions onto the estimated effects. This suggests that are our 

results are not fully robust to autocorrelated errors, which may exist when providers select patients 

on unobserved characteristics and when this selection is time-dependent. Although certainly an 

                                          
12 We have also run a similar Monte Carlo experiment with iid errors and the results are even more in 
favor of the BCFE estimator than in the above case. 
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interesting finding, the corresponding econometric issue would have to be carefully analyzed 

theoretically and empirically in a stand-alone future research project13. 

Figure A1: Monte Carlo simulation results – Cross-sectional dependence 

 

 

 

  

                                          
13 The corresponding simulation results are available upon request. 
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TABLES AND FIGURES 

The table shows the summary statistics for the observed outcomes, patient and procedure characteristics, as well as 
the total number of TAVI procedures per hospital over the years 2007-2012. 
 

  

Table I: Descriptive Statistics 
Variable N Mean Std. Dev. Variable N Mean Std. Dev. 
One-month mortality 854 0.093 0.290 Type Valve 855 0.464 0.499 
24-month mortality 854 0.285 0.451 Transfemoral Access 852 0.742 0.438 
Angina 841 0.278 0.448 Size valve 1 838 0.520 0.500 
Aortic Aneurysm 841 0.057 0.232 Size valve 2 838 0.243 0.429 
Atrial Fibrillation 839 0.300 0.459 Size valve 3 838 0.014 0.119 
Carotid Disease 835 0.196 0.398 Total number of TAVI procedures   
Coronary Artery Disease 840 0.606 0.489 Hospital 1 77   
COPD 842 0.287 0.453 Hospital 2 30   
Chronid Heart Failure 837 0.665 0.472 Hospital 3 19   
Diabetes 841 0.251 0.434 Hospital 4 13   
Hypertension 840 0.749 0.434 Hospital 5 18   
Pumonary Hypertension 837 0.548 0.498 Hospital 6 25   
Myocard Infarct 839 0.225 0.418 Hospital 7 24   
Porcelain Aorta 841 0.087 0.282 Hospital 8 20   
Renal Failure 840 0.251 0.434 Hospital 9 34   
PCI 841 0.310 0.463 Hospital 10 19   
Pacemaker 849 0.133 0.340 Hospital 11 73   
Stroke TIA 839 0.153 0.360 Hospital 12 74   
Ejection Fraction 821 53.414 14.773 Hospital 13 15   
NYHA category 2 839 0.180 0.384 Hospital 14 28   
NYHA category 3 839 0.604 0.489 Hospital 15 32   
NYHA category 4 839 0.200 0.400 Hospital 16 15   
Mediastinal Radiation 839 0.043 0.203 Hospital 17 76   
Defibrillation  840 0.004 0.060 Hospital 18 25   
CABG 839 0.263 0.441 Hospital 19 126   
Valve Surgery 840 0.030 0.170 Hospital 20 112     
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Table II: Descriptive Statistics - Patients undergoing TAVI in Belgium  
 2007 2008 2009 2010 2011 2012 Total 
Total 10 100 163 257 289 36 855 

The table shows the total number of patients undergoing the TAVI procedure in Belgium over the sample period from 
2007-2012. 
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Table III: Adverse event after a non-failure and after a failure 

  1-month mortality Stroke Renal Failure Pacemaker 

  Lag=0 Lag=1 Lag=0 Lag=1 Lag=0 Lag=1 Lag=0 Lag=1 

Number of Adv. Events 75 3 27 0 81 15 87 22 

Total number of individuals 756 78 711 30 641 99 623 113 

Prob. Adv. Event 0.099 0.038 0.038 0.000 0.126 0.152 0.140 0.195 

P-val.  0.013 0 0.514 0.168 

In columns Lag=0, the probability of the adverse events provided for individuals for which the previous patient did 
not encounter the adverse event. In the Lag=1 column, the previous patients did encounter the adverse event. The p-
value refers to the test for equality of proportions between the Lag=0 and Lag=1 columns. 
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Table IV: FE LPM & FE Logit estimates of the learning from failure effects 

Outcome 
1-month 
mortality 

1-month 
mortality 

24-month 
mortality 

24-month 
mortality 

 FE LPM FE Logit ADPE FE LPM FE Logit ADPE 
Lagged 
Outcome -0.078*** -0.081*** -0.074** -0.075** 

 (0.025) (0.021) (0.036) (0.036) 
CE 0.000 0.000 -0.002** -0.002** 

 (0.000) (0.001) (0.001) (0.001) 
EOS -0.001 -0.001 0.005 0.006 

 (0.021) (0.002) (0.003) (0.004) 
HCD 0.000 0.000 0.001 0.001 
  (0.001) (0.001) (0.001) 0.001 
Controls Yes Yes Yes Yes 
Hospital FE's Yes Yes Yes Yes 
Observations 762 731 762 762 
FE LPM and FE Logit average discrete probability effects (ADPE) are shown for the learning from failure effects 
for the outcomes of one- and 24-month mortality. The average baseline probabilities for one- month mortality is 
8.8% and 28.9% for 24-month mortality.  Heteroscedasticity-robust standard errors in parenthesis: *** p<0.01, ** 
p<0.05, * p<0.1. 
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Table V: Bias-corrected FE LPM estimates of the learning from failure effects 

Outcome 1-month mortality 24-month mortality 
Lagged outcome -0.046 -0.060* 

 (0.033) (0.033) 
CE -0.001 -0.003*** 

 (0.001) (0.001) 
ESC 0.007** 0.008* 

 (0.003) (0.005) 
HCD 0.000 0.000 
  (0.000) (0.001) 
Controls Yes Yes 
Hospital FE Yes Yes 
Observations 550 550 
 Learning from failure effects are estimated using the bias-corrected FE LPM proposed by De-Vos et al. (2015) for 
the outcomes of one- and 24-month mortality. Bootstrapped standard errors in parenthesis: *** p<0.01, ** p<0.05, 
* p<0.1. 
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Table VI: Split-panel jackknife FE probit estimates of the learning from failure effects14 

Outcome 1-m mortality 24-m mortality 
Lagged outcome -0.112*** -0.070** 
 (0.020) (0.034) 
CE 0.001 0.000 
 (0.001) (0.001) 
ESC -0.005 -0.001 
 (0.002) (0.003) 
HCD - -0.000 
 - (0.001) 
Controls Yes Yes 
Hospital FE Yes Yes 
Observations 730 761 
The table shows the estimates of the learning from failure effects using the Split-panel jackknife FE probit estimator 
proposed by Dhaene and Jochmans (2015). Standard errors in parenthesis: *** p<0.01, ** p<0.05, * p<0.1. For 1-
month mortality, the estimates do not converge when HCD is included. Overall, the coefficient of the Lagged 
outcome is robust to leaving out the learning variables (i.e., leaving out all learning variables for 1-month mortality 
and leaving out HCD for 2-year mortality). Restricting the sample size to 730 instead of 761 for 24-m mortality 
does not change the results dramatically (the point estimate is -0.062 and statistically significant at the 10% level). 

 
  

                                          
14 Note that we use the probitfe command here, we tested robustness with the logitfe command. Using 
logitfe, the log likelihood function does not converge.  
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Table VII: Transmission of shocks     

Outcome Mortality LPM Mortality Bias Corr. Stroke LPM Stroke Bias Corr. 

Lagged Mortality -0.052* -0.003 -0.024** -0.018 

 (0.028) (0.056) (0.012) (0.042) 

Stroke 0.240*** 0.218*** - - 

 (0.091) (0.059) - - 

Lagged Stroke -0.047* -0.053 -0.053** -0.059 

  (0.026) (0.057) (0.025) (0.050) 

Controls Yes Yes Yes Yes 

Observations 671 479 671 477 

R-squared 0.137 - 0.107 - 

The Table shows the estimated spill-over effects from one adverse event to others using a simple FE LPM (columns 
1 and 3) and bias-corrected FE LPM (columns 2 and 4) estimators. Robust standard errors in parentheses in 
parenthesis: *** p<0.01, ** p<0.05, * p<0.1. 
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Table VIII: Inclusion of squared learning variables 

The table shows the FE LPM estimates of the learning from failure effects including quadratic terms of the learning 
variables (cumulative experience, economies of scale and human capital depreciation). Heteroscedasticity-robust 
standard errors in parenthesis: *** p<0.01, ** p<0.05, * p<0.1 

  

Outcomes 1-m mortality 24-m mortality 
Lagged outcome -0.080*** -0.076** 

 (0.025) (0.036) 
CE 0.002 -0.001 

 (0.002) (0.003) 
ESC 0.010 0.013 

 (0.007) (0.010) 
HCD 0.000 -0.000 

 (0.001) (0.001) 
CE squared -0.000 -0.000 

 (0.000) (0.000) 
ESC squared -0.000* -0.000 

 (0.000) (0.000) 
HCD squared -0.000 0.000 

 (0.000) (0.000) 
Same day 0.047 0.021 

 (0.030) (0.047) 
Controls Yes Yes 
Hospital FE Yes Yes 
Observations 762 762 
R-squared 0.098 0.117 
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Figure 1: Learning pattern with and without previous failure 

The dots represent individual data on mortality (0=did not die, 1=did die), conditional on the value for mortality of the 
previous patient (black= the previous patient survived, grey=the previous patient died). The fitted lines represent the 
effect of experience (patient number) on mortality conditional on whether the previous patient died or not (grey or 
black respectively). 
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