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Abstract

We explore the long-run demand for M1 based on a dataset comprising 32

countries since 1851. We report six main findings: (1) Evidence of cointegration

between velocity and the short rate is widespread. (2) Evidence of breaks or

time-variation in cointegration relationships is weak to nonexistent. (3) For

several low-inflation countries the data prefer the specification in the levels of

velocity and the short rate originally estimated by Selden (1956) and Latané

(1960). This is especially clear for the United States. (4) There is no evidence

of nonlinearities at low interest rates. (5) If the data are generated by either a

Selden-Latané or a semi-log specification, estimation of a log-log specification

spuriously causes estimated elasticities to appear smaller at low interest rates.

(6) Using the correct money demand specification has important implications

for the ability to correctly estimate the welfare costs of inflation.
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1 Introduction

This paper describes and analyzes a new dataset containing annual measurements 
of money supplies, both real and nominal output (GDP), and thus price levels, and 
short term nominal interest rates for 32 countries ranging from 1851 to 2016. The 
framework we use for organizing these data is a money demand function that relates 
the money that the public and private sectors of the economy choose to hold to the 
rate of production of goods and the short-term interest rate

 = () (1)

where  is a decreasing function of . Think of an individual, or a business, or a

government agency choosing how much cash to hold if it expects a spending flow per

unit of time of , where  is the opportunity cost of holding low- or no-interest

bank deposits instead of equally risky assets with higher returns: a unit-elastic income

effect, and a price effect. For the individual, then, (1) is a demand function, a

description of a decision problem, a choice, that every agent in the economy must

make. For our purposes, we need to think of (1) as an equilibrium condition for the

economy as a whole.

The formula (1) contains some strong implications. One is that, if  is stationary,

 and  should grow at common rate, for any function . If, on the other

hand,  has a unit root–possibly, because inflation is driven in part by permanent

shocks– and  should grow at a common rate once controlling for the impact

of permanent shocks to . A second implication is that it should be possible to use

cross-country, and even within-country time-series to trace out a stable function 

This is the agenda carried out in this paper.

In recent years, many economists and central bankers have come to doubt the

usefulness of measures of the money supply (like M1) in the conduct of monetary

policy. What was thought to be a central ‘pillar’ of the monetary policy strategy of

the European Central Bank (ECB) has come to be seen as too unreliable to be of

any use at all. These concerns were not without empirical basis: conventional time-

series models of money demand could be unstable, especially at the high frequencies.

Seeking ‘long run’ relationships seemed therefore the only feasible course of action.

Our central idea, in the present work, is to use cointegration methods in order to

precisely characterize what we mean by ‘long run’ relationships, and to apply them

in a uniform way to a very wide variety of countries. We take pains to ensure that

terms such as ‘short rate’ and ‘M1’ are measures of the same thing (or almost!) in

different countries, and over time within countries. Then, we simply let the results

produced by these methods speak for themselves. These findings need discussion,

country by country, and we will provide it. But we will argue that the basic features

of the demand function for money are in general very solid, maybe the most solid

finding in the field of macroeconomics.

In his paper ‘Long Run Evidence on Money Growth and Inflation’, Luca Benati

(2009) used a band-pass filter in order to illustrate how the low-frequency components
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Figure 1  M1 growth and inflation since the Gold Standard era 
             (low-frequency components: cycles slower than 30 years) 
 
 



of money growth and inflation exhibit, in most cases, a nearly one-for-one relationship.

As an example, the top row of Figure 1 shows data on M1 growth and inflation

for three European countries since the Gold Standard era, whereas the bottom row

shows the components of the two series with cycles slower than 30 years.1 That paper

contains evidence for many other countries and definitions of money growth. There

are differences, of course, but the long-run relationship between the two series is, in

most cases, very clear.

The current paper has many features not contained in Benati (2009), but there

are two that are central.

First, in that paper money growth and inflation were treated simply as given

time series. In this paper, by contrast, we borrow from a vast post-World War II

literature and take the interest rate as a given series–chosen by monetary policy–

and assume that individual agents divide their work effort between producing goods,

and economizing their holding of low-interest-bearing cash.2 We derive an equation

like (1), where the familiar Baumol-Tobin model is an example, but a few others are

possibilities. We address these elements of consumers’ decision problems in detail in

Section 2. Then in Section 3 we plot the implied predictions of a particular case of the

model against the data for all countries in our dataset, and we show low-frequency

evidence, extracted via the band-pass filter. We find this informal visual evidence

quite remarkable.

Second, as mentioned above, in this paper we make central use of cointegration

methods, which replace the distinction between high and low frequencies used by

Benati (2009). Section 4 describes the methodology, whereas Section 5 discusses our

main findings. Evidence of cointegration between real money demand and a short-

term interest rate is widespread, whereas evidence of breaks or time-variation in

cointegration relationships is weak to nonexistent. In most cases in which cointegra-

tion is not detected, we show via Monte Carlo that–conceptually in line with Robert

F. Engle and Clive W.J. Granger (1987)–this is, in fact, what we should expect to

obtain if cointegration were truly present in the data, because of the short sample

length, the high persistence of the cointegration residual, or both.

Having provided what we believe is very robust evidence of a long-run money

demand relationship, we use our dataset to revisit two issues that have been widely

discussed in the literature. First, in Section 6, we study the behavior of real money

demand at very low interest rates. It has been shown that model economies with

heterogenous agents that face fixed costs of participating in the asset markets can lead

to nonlinearities for low values of the nominal interest rates, which has implications

regarding the proper way to estimate the welfare cost of inflation.3 We find no evidence

of nonlinearities in our dataset. In Section 7, we revisit the computation of the welfare

1The components have been extracted via the filter proposed by Christiano and Fitzgerald (2003).
2That literature was led by Milton Friedman, Anna J. Schwartz, Karl Brunner, Allan Meltzer,

William J. Baumol, and James Tobin.
3See, e.g., Mulligan and Sala-i-Martin (2000).
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cost of inflation in the tradition of Martin Neal Bailey (1956), Milton Friedman (1969),

Robert E. Lucas, Jr. (2000) and Peter Ireland (2009). Section 8 concludes.

2 A Model of Money Demand

We begin by developing a simple model that will guide our empirical investigation. We

study a labor-only, representative agent economy with uncertainty in which making

transactions is costly. We let  be the state at time  and let 
 = {0 1  }

The preferences of the representative agent are

0

∞X
=0

(())

where () is his consumption given the history up through date , and the function

 is differentiable, increasing, and concave. The goods production technology is

given by () = () = ()(), where () is time devoted to the production

of the consumption good and () is an exogenous stochastic process. The agent is

endowed in each period with a unit of time, with () allocated to goods production

and 1− () used to carry out transactions.

We assume that households choose the number  of ‘trips to the bank’ in the

manner of the classic Baumol-Tobin (BT) model. At the beginning of a period, a

household begins with some nominal wealth that can be allocated to the transactional

asset (), or to non-transactional assets, risk-free government bonds, or other

state-contingent assets ( +1). During the first of the  subperiods, one member

of the household uses money to buy consumption goods. During this same initial

sub-period, another member of the household produces and sells goods in exchange

for money. At the end of the subperiod, producers transfer to the bank the proceeds

from their transactions. The situation at the beginning of the second subperiod thus

exactly replicates the situation at the beginning of the first. This process is repeated

 times during the period. The choice of this variable  will be the only economically

relevant decision made by households. Purchases over a period are then subject to

a cash-in-advance constraint  ()() ≤ ()() where  is a constant of

proportionality.4

BT assumed that the cost of carrying out these transactions increases linearly

in the number of trips. We will consider this case here, and also allow for other

forms of this cost function. Specifically, we describe the total cost of making transac-

tions, measured in units of time, by a nonnegative, increasing, and smooth function

(() ()) where () is an exogenous stochastic process. The variable ()

thus introduces some unobserved randomness into the model. This randomness is

4The model omits the use of cash by firms to pay employees and suppliers of intermediate goods

and to clear asset exchanges. The parameter  implies that we are implicitly treating all these

payments as proportional to final goods payments.
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essential to motivate the econometric analysis at the core of the paper. It can be

interpreted as changes over time in the technology to adjust portfolios available to

households. We assume that (0 ()) = 0 so the time involved in no trips to the

banks is zero.

Equilibrium in the labor market and the equality of production and consumption

imply

1 = () + (() ())

() = ()(1− (() ()))

The real wage is equal to () and the nominal wage is () ()

At the beginning of each period, an agent starts with nominal wealth (), which

can be allocated to (), interest-bearing bonds, (), or state-contingent assets

( +1). Let 
( +1) be the price of an Arrow-Debreu security, bought at  in

state , which pays off one unit of money in state +1. If we let e( +1) denote

the price of the state contingent asset divided by the probability of the state, we can

write this constraint as

() + () +
h
( +1)(

 +1) e( +1)
i
≤ () (2)

where lowercase letters are real values and where ( +1) ≡  (+1) () denotes

the gross inflation rate between period  in state  and period +1 in state ( +1).

We treat the gross nominal return on short term bonds, (), as an exogenous

process determined by monetary policy.5 This implies that the behavior of the growth

rate of the money supply is restricted by other equilibrium conditions, as is well known

and as we show in online Appendix B.1.6

So far, we have been silent with respect to what our measure of money, (),

accounts for. For the theoretical analysis, we allow for money to pay a nominal

return, lower than the one paid by bonds, which we call (). As we will show, this

is an important aspect of the theory. We explain our choices for both the particular

monetary aggregate and its return in detail later on, in our discussion of the empirical

analysis.

The agent’s wealth next period, contingent on the actions taken in the current

period and the realization of the exogenous shock +1 is given by

( +1) ≤ ()() + ()()

( +1)
+ ( +1) (3a)

+
[1− (() ())] ()− ()

( +1)
+ ( +1)

5When policy is described as a sequence of interest rates, there may be indeterminacy of the

price level. Real money balances will, however, be unique. In this paper we ignore issues regarding

the determination of the price level.
6The online Appendix can be found at: https://sites.google.com/site/lucabenatiswebpage/
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where ( +1) is the real value of the monetary transfer the government makes to

the representative agent. Finally, the cash-in-advance constraint can be written in

real terms as

() ≤ ()() (4)

We now consider the decision problem of a single, atomistic agent who takes as given

the prices e( +1), the inflation rate (
 +1), the interest rate (

) the real

wage (), and the shock (). Given the initial wealth (), this agent chooses

his consumption  (), the number of bank trips  (), and the assets  (),  (),

and ( +1) that he chooses to hold. These choices then determine the wealth

( +1) that he carries into the next period conditional on +1 These choices are

restricted by equations (2), (3a), and (4).

The Bellman equation describing the decision problem is

 () = max
(0)

()− 
h
+ +

h
(0)(0) e(0)

i
− 

i
−  [−]

+

∙
 (

 + + [1− ()]  − 

(0)
+ (0) + (0))

¸


where, for simplicity, we omitted the dependence of current variables on the state,

and where 0 denotes the future state.
As we show in online Appendix B.2, the first-order plus equilibrium conditions can

be combined to yield a solution for the equilibrium number of portfolio adjustments,

as follows:

∗ ≡ (−) = 2
()

1− ()
 (5)

which gives an extended squared root formula for the equilibrium value of .7

Note first that, using just subindexes to indicate the dependency on the state, the

solution for real money balances relative to output is

 ( )

 (∗  )
=



 (∗  )


which does not depend on .

We now discuss several empirical implications of this solution that do not depend

on the particular functional form assumed for the function (). First, the theory

implies an income elasticity equal to one. This is the specification we will study for

much of the paper. In online Appendix G, we allow for a more general specification

that does not restrict the income elasticity to be one, and where we are able to test

this unitary income elasticity implication. Second, as ( ) is differentiable with

a strictly positive derivative, some of its properties are inherited by the function

 (∗  ). In particular, up to a linear approximation the stochastic properties of

7The squared root formula is the by-now-classic solution of the Baumol-Tobin formulation.
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the money-to-output ratio, , are inherited from the stochastic properties of ∗
and  This has testable implications as long as  is stationary, as we will assume

throughout the paper. Specifically, if ∗ is stationary,  should be too, whereas

if ∗ has a unit root,  should have a unit root as well. As it turns out, for the

specifications of the function ( ) that we explore in the theory and use in the

empirical section, these properties hold exactly, not only in a linear approximation.

2.1 Analysis of the solution

We now consider three alternative functional forms for ( ) They deliver approx-

imations to functional forms which have been used in empirical work and which we

will explore in the following sections. But before discussing specific cases, notice that

as long as ()  0 for all  then  → 0 as ∗ → 0 This means that there is no

satiation point for real balances as its opportunity cost goes to zero. This property of

the BT specification therefore extends to any cost function that is strictly increasing

with the number of portfolio adjustments. As we show below, however, the data

strongly prefer specifications with finite real money balances when  → 0 This is

where our assumption of   0 becomes key in the three examples below, since it

implies that ∗  0 even when → 1.8

The exponential case Consider first the function ( ) = 

 . In this case,

equation (5) becomes

+1



1− 



= ∗ 

Note that 

 is the cost of inflation in units of time, so it represents the welfare

cost of inflation as a ratio of first-best output. This ratio is arbitrarily close to zero

when the interest rate ∗ is small. For moderate interest rates, the welfare cost is
negligible. Even for relatively high interest rates, estimates of the welfare cost of

inflation are barely above 4%, so the denominator in the expression above would

range from 1 to 0.96. We therefore use the approximation 1 − 

 ' 1 and write

the solution as +1  ' ∗ . Taking logs, we then obtain

ln + ln  + ( + 1) ln = ln 
∗
  (6)

which is the log-log function typically used in the literature. The BT case is the one

obtained by assuming that the function ((∗ )) is linear, or  = 1 which implies an
interest rate elasticity of 12

8A very interesting alternative that fits the micro data very well is proposed in Alvarez and Lippi

(2009). In that model, agents get free portfolio adjustments randomly, which could potentially be

interpreted as a sections of the function () that is flat in the aggregate.
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The Selden-Latané specification A less well-known specification is obtained for

the following cost function:

( ) =  ln(+ ) +
+ 

 + 
−
µ
 ln +

+ 



¶


where the term
¡
 ln + +



¢
guarantees that (0 ) = 0, and   , so the function

is increasing. The function is concave, so it means that the marginal cost of making

transactions is decreasing with the number of transactions.

In this case, the solution is given by

2

1

(+)
2 [(+ )− − ]

1− ( )
= ∗ 

If, as before, we proceed with the approximation 1− ( ) ' 1, we obtain
2

( + )
2
[(+ )− − ] ' ∗ 

Thus, for small values of , the solution can be approximated by

−  ' ∗  (7)

which implies a linear relationship between velocity and the interest rate.

This empirical specification was used by Richard Selden (1956) over half a century

ago, and, to the very best of our knowledge, it has been used again in the literature

only once, by Henry Allen Latané (1960). The main reason for considering this

long-forgotten specification is that, as we will discuss in Section 5.1.2, for several

low-inflation countries–first and foremost, the U.S.–the data seem to quite clearly

prefer it over the traditional log-log specification discussed above and the semi-log

specification that we discuss next.

The semi-log specification Finally, consider the following specification:

( ) = − ln(+ )

 + 
−  + 

 + 
+

µ

ln 


+

 + 



¶


where again the term on the right-hand side implies (0 ) = 0

In addition, we assume  +    (1− ln ) for all , so that the function is
always increasing in . This function is also concave, as is the one before. The main

difference between this function and the two studied above is that it asymptotes a

constant (the term in parentheses on the right-hand side) as the number of trips

grows arbitrarily large.9 The solution is given by

2

( + )
2

[ (ln(+ )− 1) +  + ]

1− ( )
= ∗

9This implies that in this case, the welfare cost of inflation will be bounded above.
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Figure 2a  The raw data: short rate, ratio between nominal M1 and nominal 
               GDP, and calibrated Baumol-Tobin specification 
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 Figure 2b  The raw data: short rate, ratio between nominal M1 and nominal 
               GDP, and calibrated Baumol-Tobin specification 
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Figure 2c  The raw data: short rate, ratio between nominal M1 and nominal 
               GDP, and calibrated Baumol-Tobin specification 
 
 
 



If, as before, we ignore the term 1− ( ), and also consider relatively low values

for , we obtain a linear relationship between the log of velocity and the interest rate,

which corresponds to the well-known semi-log specification. Note, however, that the

condition for the cost function to be incresing implies that  cannot be too low. Thus,

the approximation in this case is less precise that in the previoustwo cases, since we

cannot obtainan apression that is arbitrarely close to the semi-log specification.10

3 A First Look at the Data

The functional forms considered in the previous section deliver expressions that can

be suitably taken to the data. The formal econometric analysis is presented in the

following sections. As a first descriptive step, in this section we present the data and

compare them to the theory. To do so, we focus on the particular case in which the

function  is linear in  which corresponds to the BT case of the log-log specification

in which the elasticity is constant and equal to 12.

Before doing that, we need to address the issue of how we map our theoretical

construct  to the data. As the model makes clear, the choice of the natural

aggregate is associated with the discussion of the nominal return of that particular

aggregate , since real money balances in the model depend not on the interest

rate on bonds, but rather on the spread between that rate and the rate paid by

money. Since we do not have data on the interest rate paid by deposits, we choose

to work with M1, which in most countries includes cash and checking accounts. We

will proceed under the assumption that, in the countries we study, checking accounts

do not pay interest. Although this is a questionable assumption, it is certainly more

appropriate for M1 than for broader aggregates, which typically include interest-

paying deposits.11 As for cash, we follow Alvarez and Lippi (2009) and assume that

it entails a negative return, associated with the risk of being lost or stolen. Alvarez

and Lippi (2009) estimate the cost of holding cash to be close to 2% using detailed

individual data from Italy. In addition, and to simplify, we assume that cash is about

half of total money so that  = 0.99. As discussed above, if we assume that 

= 1, the log-log curve goes to infinity as  → 1. As can be seen in the evidence

presented in this section, this does not seem to be the case for countries that did

experience several periods of almost zero interest rates, such as the U.S. and Japan.

Online Appendix A describes the data and the data sources in detail. All of the 
series are standard, with the single exception of the U.S., where we consider three of
the alternative adjustments to the Federal Reserve’s standard M1 aggregate. These

adjustments were originally suggested by Goldfeld and Sichel (1990, pp. 314-315)

10A detailed analysis of the behavior of this cost function for low values of  is available upon

request.
11For instance, deposits did pay interest in the United States after Regulation Q was modified in

the early 1980s. Also, some deposits included in M1 did pay interest in very high-inflation countries

such as Argentina and Brazil.
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in order to restore the stability of the long-run demand for M1, which had vanished

around the mid-1980s. Specifically, we augment the standard M1 aggregate with

() money market deposit accounts (MMDAs), as in Lucas and Nicolini (2015);12

() Money Market Mutual Funds (MMMFs); or () both MMDAs and MMMFs.

Finally, for reasons of robustness, for any of the three just-mentioned expanded U.S.

M1 aggregates, we also consider an alternative version in which currency has been

adjusted along the lines of Judson (2017) to take into account the sizeable expansion

in the fraction of U.S. currency held by foreigners since the early 1990s.13 So, for

the U.S., we essentially consider six alternative M1 aggregates. As we discuss below,

regardless of whether we adjust for the fraction of U.S. currency held by foreigners,

the results do not change materially, since the currency component of M1 is ultimately

quite small compared to the deposits component.

Figures 2 to 2 are scatterplots of the short rate and the ratio between nominal

M1 and nominal GDP (i.e., the inverse of M1 velocity), together with the theoretical

curve that corresponds to an approximation of equation (6), namely, the BT case, so









=


(

 + 1)

12
 (8)

where 

 is nominal income at time  in country  and we let the constant of propor-

tionality  to be country-specific. Therefore, one way to see our descriptive exercise

is as using one free parameter per country in order to allow for a country-specific in-

tercept, whereas the slope will be given by the BT assumption of a linear technology,

so that the elasticity is calibrated to 0.5. As mentioned above, we let ∗ = 

 −099

where 

 is the gross short-term interest rate at time  in country . In three cases

in which we could not find a (sufficiently long) interest rate series,14 we use inflation

as a proxy for the opportunity cost of money.

The grouping of countries has been largely arbitrary. The first row of Figure 2

contains countries that belonged to the Commonwealth at some point. The second

row contains countries that experienced very high inflation rates. The interest rate

axis (i.e., the horizontal axis) is in a logarithmic scale, because of the magnitudes

reached by inflation and interest rates in these countries. The second row of Figure 2

contains two countries, Argentina and Brazil, for which we highlight the most recent

period (since 1991 and 1995, respectively). These are the two countries in our sample

that experienced recurrent periods of very high inflation that lasted over a decade.

The blue squares correspond to the periods that followed the successful stabilization

years: 1991 for Argentina and 1995 for Brazil. These points are highlighted because

12As discussed by Lucas and Nicolini (2015), the rationale for including MMDAs in M1 is that they

perform an economic function that is similar to the more traditional ‘checkable deposit’ component

of the Federal Reserve’s official M1 series.
13The way the adjustment is performed is described in detail in online Appendix A. 
14Specifically, Mexico, Chile (for the period 1941-2012), and Brazil (for the period 1934-2012).
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Figure 3a  Low-frequency components of short rate and ratio between 
               nominal M1 and nominal GDP for selected countries  
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Figure 3b  Low-frequency components of short rate and ratio between 
               nominal M1 and nominal GDP for selected countries  
 
 
 



in both cases, the points following a successful stabilization lie below the theoretical

curve that matches the previous period.

Figure 2 reports countries for which the theoretical curve is still visually a good

approximation to the data. The first row of Figure 2 shows countries for which the

fit gets worse,15 but there still seems to be some relationship between the theory and

the data, whereas the second row of Figure 2 shows countries for which there seems

to be no connection between theory and data.

In all of these figures, the data are shown with different colors and markers (dot,

square, triangle, and star) under four circumstances: () to indicate data for the Gold

Standard, up until 1913,16 which are always shown with a color different from that

used in subsequent years; () to indicate data for nonconsecutive subperiods (as in

the case for France); () to indicate different series for the short rate that cannot

be linked (as in the case for Venezuela); and () to highlight drastic changes in the

relationship between velocity and the short rate (as in the case for the Netherlands

and Portugal). Finally, for the U.S., the ‘standard’ M1 aggregate for the period since

1984 is indicated with a different color to emphasize how a failure to correct M1 (as in

Lucas and Nicolini (2015), e.g.) leads to the apparent breakdown of the relationship

between velocity and the short rate documented by several authors. In our view, it

is remarkable how well this simple theory performs in this first inspection for a large

set of countries, despite a few apparent failures.

Figures 3 and 3 present evidence in the spirit of Lucas (1980), by plotting the

low-frequency components of the same series shown in the scatterplots in Figures 2-

2.17 The components have been extracted via the filter proposed by Christiano and

Fitzgerald (2003).18 We find this evidence, which consistently points toward a negative

correlation between M1 velocity and the short rate at the very low frequencies, quite

simply remarkable. Although the main empirical body of the paper is based on

cointegration tests, the evidence in Figures 3-3 is, possibly, even more convincing,

because it is based on a simple technique such as linear filtering, which uniquely

hinges on defining a specific frequency band of interest.

Despite the attractiveness of looking at simple plots, however, the previous analy-

sis has several limitations. We would like to formally test whether, as some of our

simple technologies imply, the ratio between real money balances and output inherits

15For the Netherlands, the two World Wars and their aftermaths had been characterized by an

anomalous behavior of velocity, which in some cases reached values ranging between 50 and almost

200. Because of this, in our econometric analysis we will uniquely focus on the period 1950-1992.
16Although we consider the Gold Standard to have ended in August 1914, with the outbreak of

World War I, marking its exact end is all but impossible, as Richard Nixon’s closing of the ‘gold

window’ in August 1971 was the culmination of a decades-long unraveling process that had started

with World War I. We use August 1914 as the end date primarily because we regard World War I

as the single most important shock to the system.
17To be precise: We left out six countries for which evidence was weaker.
18Specifically, if the sample length,  , is greater than 50 years, we extract the components of

the series with cycles slower than 30 years. If 40 ≤50, 30 ≤40, 20 ≤30, we extract the
components with cycles slower than 25, 20, and 15 years, respectively.
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a unit root when the short-term interest rate exhibits a unit root. We also want to

formally test whether the estimated elasticities are indeed equal to 1/2, as the simple

BT specification suggests, when using the log-log specification. We would also like to

let the data indicate which of the three specifications appear to provide a better fit,

and therefore learn something regarding the shape of the function ( ). To the

extent that the interest rate and velocity exhibit a unit root–which overwhelmingly

appears to be the case–we can use cointegration techniques to test whether there is

a statistical long-run relationship between the two series, and therefore between the

interest rate and the ratio of money balances to GDP.

We now turn to a brief discussion of the main features of our approach and several

methodological issues.

4 Main Features of Our Approach

In this paper we explore the long-run demand for M1 via cointegration methods.

The key reason for this approach is that, as we show, in the overwhelming majority

of cases, the null hypothesis of a unit root cannot be rejected for either velocity

or the short rate, in either levels or logarithms. At the same time, the debate over

the stability of the money demand has long made the distinction between the short

run and the long run. This distinction is entirely absent in our model, but a large

theoretical literature has developed to try to understand the large and sustained

deviations of observed real money balances from their theoretical counterparts: the

‘short-run’ deviations of money demand.19 The notion of cointegration boils down to

the existence of a long-run relationship between series driven by permanent shocks:

those shocks are the source of identification of the relationship between the short rate

and velocity. The existence of the cointegration relationship implies that, in the long

run, any permanent increase in the interest rate maps into a corresponding permanent

increase in velocity, and therefore decrease in real money balances: the exact amount

will be captured by the cointegration vector. Further, any deviation of the two series

from their long-run relationship–that is, the cointegration residual–is transitory,

and bound to disappear in the long run. The persistence of the residual is therefore

a measure of how long-lived short-run deviations are.

We perform tests taking either cointegration, or no cointegration, as the null hy-

pothesis (specifically, Shin’s, and Johansen’s). Although the overwhelming majority

of the papers in the literature have been based on Johansen’s procedure, there is

no reason why no cointegration should be regarded as the ‘natural null hypothesis’.

Rather, it might be argued that, since we are searching here for a long-run money

demand for transaction purposes, cointegration should be the natural null,20 so that

19See Grossman and Weiss (1983) for an early contribution, or Alvarez and Lippi (2014) for a

recent one.
20Basic economics logic suggests that, up to fluctuations in the opportunity cost of money, the

nominal quantity of money demanded should be proportional to the nominal volume of transactions
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tests should be based only on Shin’s (1994) procedure. As we discuss in the following

subsections, however, Monte Carlo evidence clearly suggests that Johansen’s proce-

dure performs markedly better than Shin’s, and it produces more informative results.

Accordingly, in Section 6 we primarily focus on the results from Johansen’s tests.

We perform our analysis separately for the Gold Standard and for the subsequent

period. As documented by Barsky (1987) and Benati (2008), the stochastic properties

of inflation in the former period had been radically different from the latter, with

inflation being statistically indistinguishable from white noise most of the times. By

the Fisher equation, this implies that, unless the natural rate of interest had contained

a sizeable permanent component (because of permanent shifts in trend productivity

growth, e.g.), nominal interest rates should be expected to have been stationary,

too, which would preclude them from being entered in any cointegrated system, or

cointegrating regression.21 The integration properties of nominal rates during the

Gold Standard period therefore ought to be separately checked, or otherwise we

would run the risk of performing cointegration analysis based on a series that had

been stationary for a significant portion of the sample period.

4.1 Integration properties of the data

A necessary condition for using cointegration methods is that all series feature a

unit root. Online Appendix C reports results from our extensive investigation of the

integration properties of the data (see, in particular, tables C.1, C.2, and C.3) based

on Elliot et al.’s (1996) tests. In a nutshell, in the overwhelming majority of the

cases, the series under investigation are I(1), which justifies our use of cointegration

techniques. In the few instances in which this is not the case, we eschew the relevant

specifications. (E.g., if we can reject the null of a unit root for the logarithm of the

short rate, but not for the level, we eschew the log-log specification, and we uniquely

focus on the Selden-Latané and semi-log specifications.)

4.2 Methodological issues pertaining to cointegration tests

4.2.1 Issues pertaining to bootstrapping

Everything in this paper is bootstrapped. In this section, we briefly discuss details of

the bootstrapping procedures we use, and how such procedures perform, particularly

in terms of comparative performance. In our discussion, we extensively refer to online

Appendices D and E, which contain the Monte Carlo evidence motivating both our

choices, and the way in which we will interpret the evidence.

(proxied by nominal GDP).
21A key assumption underlying both Johansen’s and Shin’s tests is that all of the variables entering

either the multivariate system (in the former case), or the single-equation cointegrating regression

(in the latter one) are integrated of order one. See Hamilton (1994, first sentence on p. 636) and

Shin (1994, p. 92).
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Details of the bootstrapping procedures We bootstrap Johansen’s tests via

the procedure proposed by Cavaliere et al. (2012; henceforth, CRT), which is based

on the notion of computing critical and p-values by bootstrapping the model that

is relevant under the null hypothesis.22 All of the technical details can be found in

CRT, to which the reader is referred. We select the VAR lag order as the maximum23

between the lag orders chosen by the Schwartz and Hannan-Quinn criteria24 for the

VAR in levels.

As for Shin’s tests, to the best of our knowledge no one has yet provided anything

comparable to what CRT did for Johansen’s procedure. The bootstrap procedure we

propose in online Appendix E is based on the same general principle underlying CRT,

that is, bootstrapping the model that is relevant under the null hypothesis. Within

the present context, this implies that the process to be bootstrapped is the vector

error-correction model (VECM) estimated under the null of one cointegration vector.

Apart from this, and with the exception of two minor technical issues we discuss in

Section E.2.1 of online Appendix E, the procedure is very similar to the one proposed

by CRT for Johansen’s tests.

Monte Carlo evidence Tables E.1 and E.2 in the online appendix report Monte

Carlo evidence on the performance of the two bootstrapping procedures, which is dis-

cussed in detail in Sections E.3.1 and E.3.2 of Appendix E.We perform the simulations

based on two types of data-generation processes (DGPs), featuring no cointegration

and cointegration, respectively. For either DGP, we consider several alternative sam-

ple lengths, and alternative extents of persistence of the cointegration residual. Our

main results can be summarized as follows.

As for Johansen’s tests, if the true DGP features no cointegration, CRT’s proce-

dure performs very well irrespective of sample size, with empirical rejection frequen-

cies (ERFs) very close to the nominal size. This is in line with the Monte Carlo

evidence reported in CRT’s Table I, p. 1731, and with the analogous evidence re-

ported in Benati (2015). If, however, the true DGP features cointegration, the tests

perform well only if the persistence of the cointegration residual is sufficiently low,

the sample size is sufficiently large, or both: if the residual is persistent, the sample

22This means that for tests of the null of no cointegration against the alternative of one or more

cointegrating vectors the model that is being bootstrapped is a simple, non-cointegrated VAR in dif-

ferences. For the maximum eigenvalue tests of h versus h+1 cointegrating vectors, on the other hand,

the model that ought to be bootstrapped is the VECM estimated under the null of h cointegrating

vectors.
23We consider the maximum between the lag orders chosen by the SIC and HQ criteria because the

risk associated with selecting a lag order that is smaller than the true one (model misspecification)

is more serious than the one resulting from choosing a lag order that is greater than the true one

(overfitting).
24On the other hand, we do not consider the Akaike Information Criterion since, as discussed

for example by Luetkepohl (1991), for systems featuring I(1) series the AIC is an inconsistent lag

selection criterion, in the sense of not choosing the correct lag order asymptotically.
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is short, or both, the tests fail to detect cointegration a nonnegligible fraction of the

time. This is in line with some of Engle and Granger’s (1987) evidence, and it has a

simple explanation: as the residual becomes more and more persistent, it gets closer

and closer to a random walk (in which case there would be no cointegration), so

that the procedure needs larger and larger samples to detect the truth (that is, that

the residual is highly persistent, but ultimately stationary). As for Shin’s tests, if

the true DGP features cointegration, the more persistent the cointegration residual,

the more the bootstrap procedure improves upon Shin’s asymptotic critical values.

If the DGP features no cointegration, however, even in large samples the procedure

produces ERFs that are far from the ideal of 100%.

Thse results can be summarized as follows. If Johansen’s tests detect cointegra-

tion, we should have a reasonable presumption that cointegration is there. If however

they do not detect it, a possible explanation is that the sample is too short, the coin-

tegration residual is highly persistent, or both. As for Shin’s tests, lack of rejection

of cointegration does not represent strong evidence that cointegration truly is there.

Further, rejection of the null does not appear to be especially informative about the

true nature of the DGP, as the ERFs are not markedly different conditional on the

two possible states of the world. To put it differently, results from Shin’s tests appear,

overall, to be less informative than those produced by Johansen’s tests.

We now turn to the issue of how cointegration tests should be interpreted.

4.2.2 Interpreting the results from cointegration tests via Monte Carlo

Tables SELA.1, SL.1, LL.1, and LLCO.1 in the online appendix report Hansen (1999)

‘grid bootstrap’ median-unbiased (henceforth, MUB) estimates of the sum of the AR

coefficients in AR(2) representations for the ‘candidate cointegration residuals’ in our

dataset.25 By ‘candidate cointegration residual’ (henceforth, CCR), we mean the lin-

ear combination of the I(1) variables in the system which will indeed be regarded

as a cointegration residual if cointegration is detected.26 Evidence points toward

both a nonnegligible extent of persistence of the CCRs, and a wide extent of het-

erogeneity across countries. Focusing on results based on the log-log specification for

high-inflation countries, and the Selden-Latané specification for all other countries,

the MUB estimate based on Johansen’s estimator of the cointegration vector–let’s

label it as ̂


–ranges from a minimum of 0.30 for Australia, to a maximum of 1.00

for Portugal (1966-1998). By classifying the ̂


’s, in an admittedly arbitrary fash-

25Results are based on 2,000 bootstrap replications for each possible value of the sum of the AR

coefficients in the grid. Bootstrapping has been performed as in Diebold and Chen (1996). For

reasons of robustness, we report results based on two alternative estimators of the cointegration

vector, Johansen’s, and Stock and Watson’s (1993).
26We label it as candidate cointegration residual because, as the Monte Carlo evidence in the

previous section has shown, if a residual is highly persistent, cointegration might well not be detected

even if it is present, which would prevent the candidate from being identified as a true cointegration

residual.

15



ion, as ‘highly persistent’ (̂

≥0.8); ‘moderately persistent’ (0.4 ̂


0.8); and

‘not very persistent’ (̂

≤0.4), we end up with sixteen ̂


’s in the first group,

fifteen in the second, and three in the third. Results based on Stock and Watson’s

estimator point, overall, toward an even greater extent of persistence.

Under these circumstances, statistical tests will often have a hard time in detecting

cointegration even if it truly is present, especially when ̂


is high and the sample

period is comparatively short. This implies that results from cointegration tests

should not be taken strictly at face value, but rather should be interpreted in the

light of the Monte Carlo evidence in Tables E.1 and E.2 in the online Appendix. In

what follows, we therefore also report Monte Carlo-based ERFs of the tests computed

under the null of cointegration. Specifically, we estimate the VECM under the null

of one cointegration vector; we stochastically simulate it 2,000 times; and for each

artificial sample we perform the same bootstrapped cointegration tests we previously

performed based on the actual data. This will allow us to gauge an idea of how likely

it would be to detect cointegration if it were truly present in all of the samples we

are working with.27

4.2.3 Testing for stability in cointegration relationships

We test for stability of cointegration relationships based on the three tests discussed

by Hansen and Johansen (1999): two Nyblom-type tests for stability in the cointegra-

tion vector and the vector of loading coefficients, respectively; and a fluctuation test,

which is essentially a joint test for time-variation in the cointegration vector and the

loadings. In either case, we bootstrap the test statistics via CRT’s procedure, based

on the VECM estimated conditional on one cointegration vector, and not featuring

any break, or time-variation of any kind.

Table H.1 in the online Appendix reports Monte Carlo evidence on the perfor-

mance of the tests conditional on bivariate cointegrated DGPs, for alternative sample

lengths, and alternative extents of persistence of the cointegration residual, which

is modeled as an AR(1). The main results can be summarized as follows. The two

Nyblom-type tests exhibit an overall reasonable performance, incorrectly rejecting

the null of no time-variation, most of the time, at roughly the nominal size. Cru-

cially, this is the case irrespective of the sample length, and of the persistence of

the cointegration residual. The fluctuation test, on the other hand, exhibits a good

performance only if the persistence of the cointegration residual is low. The higher

the residual’s persistence, however, the worse the performance, so that, e.g., when the

AR root of the residual is equal to 0.95, for a sample length  = 50 the test rejects

at twice the nominal size. This is clearly problematic since, as previously discussed,

residuals are typically moderately to highly persistent. In what follows we therefore

focus on the results from the two Nyblom-type tests, but we eschew instead results

27This is very much in the spirit of Lucas’s (1988) interpretation of econometric results which,

taken at face value, appeared to contradict the findings of Meltzer (1963).
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from fluctuations tests (these results, however, are reported in tables H.2 and H.5 in

the online Appendix).

We now turn to the results from cointegration tests, and tests for time-variation

in cointegration relationships.

5 Searching for a Long-Run Money Demand

Table 1 reports results from Johansen’s maximum eigenvalue tests of 0 versus 1 coin-

tegration vectors for the U.S., together with the Monte Carlo-based ERFs computed

conditional on the null of one cointegration vector. Table 1 reports the correspond-

ing results for all other countries. Tables G.1 and G2 in the online appendix report

the corresponding results based on Shin’s tests. The full set of results based on

Selden-Latané, semi-log, log-log, and log-log specifications without the Alvarez-Lippi

correction to the short rate are reported in the online appendix, in Tables SELA.2,

SL.2, LLCO.2, and LL.2, respectively, and are discussed in Appendix G.

The top rows of Figures SELA.1-SELA.6, SL.1-SL.6, LLCO.1-LLCO.6, and LL.1-

LL.6 in the online appendix report, based on any specification, the candidate cointe-

gration residuals produced by either Johansen’s or Stock and Watson’s (1993) esti-

mators; the bottom rows report the bootstrapped distributions of the corresponding

estimates of the coefficient on (the log of) the short rate. For each bootstrapped dis-

tribution, we also report the mean, the median, and the 5th and 95th percentiles. In

all cases, we report both candidate cointegration residuals, and estimates of the coef-

ficients on the short rate, for all countries, rather than only those for which statistical

tests detect evidence of cointegration.

5.1 Evidence from cointegration tests

5.1.1 Testing the null of cointegration

Although this paper mostly focuses on the results produced by bivariate systems,

we want to briefly discuss those produced by Shin’s tests of the null of cointegration

applied to unrestricted specifications featuring (the logarithm of) the short rate, and

the logarithms of nominal GDP andM1. The reason for doing so is that they represent

one extreme end of the spectrum within the full set of results: as we discuss in online

Appendix G.1, based on unrestricted three-variable systems it is almost impossible

to reject the null of cointegration.28 Evidence is just slightly weaker for tests based

on bivariate specifications for velocity and the short rate, in which unitary income

28Specifically, at the 10 per cent level we obtain just four rejections of the null of cointegration

based on the semi-log specification, whereas based on the log-log specification with the 1 per cent

correction to the short rate we obtain only one rejection. (For the Selden-Latané specification it is

not possible to consider unrestricted specifications.)
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elasticity has been imposed from the outset: we obtain just 10 rejections of the null

based on Selden-Latané, 13 based on semi-log, and 7 based on log-log.

For the reasons discussed in Section 4.2.1, however, these results should be down-

played: as we stressed there, lack of rejection of the null of cointegration based on

Shin’s tests does not represent strong evidence that cointegration truly is present. We

therefore turn to discussing the results from Johansen’s tests, which, as we pointed

out, appear to be uniformly more informative than Shin’s.

5.1.2 Testing the null of no cointegration

Evidence from bivariate systems for velocity and the short rate Tables

1 and 1 contain this paper’s most important body of evidence (at least, as far

as statistical tests are concerned). In both tables we highlight in yellow all p-values

for maximum eigenvalue tests smaller than 10%; and all ERFs smaller than 50%,

corresponding to a less-than-even chance of detecting cointegration if this is truly

present in the data.

The U.S. Starting from the U.S., which has been the focus of most previous

investigations, the main results in Table 1 can be summarized as follows:

() In line with, e.g., Friedman and Kuttner (1992), based on the standard M1

aggregate the null of no cointegration is never rejected.29

() A second consistent pattern is that no cointegration is also never rejected

based on the log-log specification. It is important to stress that these results are

based on applying Alvarez and Lippi’s (2009) 1% correction to the short rate, which

should drastically improve the fit at levels of the short rate that are close to zero.

In spite of this, the log-log functional form still does not allow cointegration to be

detected.

() Based on the Selden-Latané and semi-log specifications, on the other hand,

evidence of cointegration is very strong across the board. Specifically, based on the

M1 aggregate which has not been adjusted for the share of currency held abroad,

cointegration is always detected, based on any specification, and any of the three

‘expanded’ M1 aggregates. Based on the adjusted aggregates, evidence is slightly

weaker, and cointegration is detected in four out of six cases. Note, however, that

this is partly explained by the shorter sample period, as clearly shown by the set of

results based on the unadjusted aggregates for the sample period 1926-2016 (i.e., the

same sample as for the adjusted aggregates). E.g., focusing on the Lucas-Nicolini

(2015) aggregate, the -value produced by the Selden-Latané specification increases

from 0.044 to 0.07 uniquely as a consequence of the shorter sample period. Further

adjusting the aggregate as in Judson (2017) does not make any material difference,

with the -value now being equal to 0.069. For the semi-log specification, on the other

29Note, however, that the ERFs are uniformly very low (ranging from 0.099 to 0.283), thus im-

plying that if cointegration were in the data, there would be little chance of detecting it.
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Table 1a United States: Bootstrapped p-values for Johansen’s maximum eigenvalue tests for (log) M1 velocity

and (the log of) a short-term rate; Monte-Carlo-based empirical rejection frequencies of the tests under the null

of cointegration; and fractions of Monte Carlo replications for which the bootstrapped p-values are smaller for

Selden-Latané than for semi-log, conditional on either model being the true data-generation process

III: Fractions of replications

II: Empirical rejection for which p-values are smaller

I: Bootstrapped p-values frequencies for Selden-Latané than for

semi-log if true model is:

Selden- Semi- Selden- Semi- Selden- semi-

Monetary aggregate Period Latané log Log-log Latané log Log-log Latané log

Without adjusting for the share of currency held abroad

Standard M1 1915-2016 0.838 0.712 0.531 0.099 0.129 0.283 — —

Standard M1 + MMDAs 1915-2016 0.044 0.081 0.155 — — 0.662 0.670 0.299

Standard M1 + MMMFs 1915-2016 0.006 0.022 0.289 — — 0.649 0.574 0.346

Standard M1 + MMDAs + MMMFs 1915-2016 0.002 0.007 0.617 — — 0.444 0.618 0.222

Standard M1 1926-2016 0.913 0.822 0.694 0.134 0.140 0.140 — —

Standard M1 + MMDAs 1926-2016 0.070 0.104 0.235 — 0.782 0.724 — —

Standard M1 + MMMFs 1926-2016 0.003 0.021 0.405 — — 0.619 — —

Standard M1 + MMDAs + MMMFs 1926-2016 0.003 0.008 0.700 — — 0.424 — —

Adjusting for the share of currency held abroad

Standard M1 1926-2016 0.960 0.780 0.418 0.153 0.138 0.163 — —

Standard M1 + MMDAs 1926-2016 0.069 0.170 0.120 — 0.693 0.700 0.665 0.344

Standard M1 + MMMFs 1926-2016 0.003 0.030 0.383 — — 0.538 0.597 0.422

Standard M1 + MMDAs + MMMFs 1926-2016 0.118 0.020 0.707 0.647 — 0.254 0.600 0.265
 Based on 10,000 bootstrap replications.  Null of 0 versus 1 cointegration vectors.  Adjustment performed as in Judson (2017); for

details, see text.
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hand, this is the case only to a minor extent, with the -value increasing from 0.081

to 0.104 as a result of the shorter sample, and further increasing to 0.170 as a result

of the M1 adjustment. So, in the end, the shorter sample explains only part of the

deterioration of the results from cointegration tests based on adjusted aggregates.

Should we put more trust in the results based on the unadjusted or adjusted

aggregates? In our own view, the answer is not obvious: although Judson’s clearly

is a sensible approach, the adjustment is still based on an estimate of the amount of

currency held by foreigners. Because of this, it is not entirely obvious that results

based on adjusted aggregates should be preferred. A key advantage of unadjusted

aggregates is that (if we trust the data-collection process) we know exactly what

these aggregates are, and since, as mentioned in Section 3, currency is quite small

compared to deposits,30 adjusting or not adjusting the aggregates should not make

much of a difference. At any rate, we report all the results so that readers can decide

for themselves.

A more important issue–as we illustrate by example in Section 7–is which speci-

fication (Selden-Latané, or semi-log) should be preferred. If we interpret the -values

produced by the two specifications as an informal ‘test’ of which functional form the

data would seem to prefer, evidence points to Selden-Latané, as in only a single case

out of nine (based on the adjusted aggregate that also includes MMMFs) the -value

produced by the semi-log specification is smaller than the one produced by Selden-

Latané. In all other cases, the opposite is true. The last two columns of Table 1

show additional supporting evidence, by reporting results from the following Monte

Carlo experiment. We estimate either Selden-Latané or semi-log specifications im-

posing one cointegration vector. Then, we simulate either DGP 2,000 times, and we

perform cointegration tests based on either specification, bootstrapping the tests as

we did based on the true data. The last two columns report the fractions of repli-

cations for which the -value based on Selden-Latané is smaller than the one based

on semi-log, conditional on either model being the true DGP. Evidence shows that

obtaining smaller -values based on Selden-Latané rather than based on semi-log–as

we did based on the true data–is significantly more likely if the true model is Selden-

Latané rather than if the true specification is semi-log. Although this evidence is not

overwhelming, we regard it as quite clearly pointing toward Selden-Latané as being

the preferred specification for the U.S..

Other countries Turning to Table 1, the following main findings should be

highlighted:

() Cointegration is detected based on all estimated specifications31 for Argentina,

30For example, for the broadest M1 aggregate that also includes MMMFs, currency has oscillated,

since 1990, between 10.0 and 15.6 per cent of the overall aggregate. So even if, on average, roughly

half of the currency has been in the hands of foreigners, this amounts to about 5 to 8 per cent of

overall M1.
31We say ‘estimated specifications’ because, for the reasons discussed in Section 4.1, in a few cases
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Table 1b Bootstrapped p-values for Johansen’s maximum eigenvalue

tests for (log) M1 velocity and (the log of) a short-term rate, and Monte

Carlo-based empirical rejection frequencies of the tests under the null

of cointegration

II: Empirical rejection

I: Bootstrapped p-values frequencies

Selden- Semi- Selden- Semi-

Country Period Latané log Log-log Latané log Log-log

Argentina 1914-2009 — 0.010 0.023 — 0.993 0.801

Australia 1941-1989 0.642 0.973 0.709 0.168 0.079 0.200

1969-2015 0.063 0.099 0.405 0.720 0.677 0.438

Belgium 1946-1990 0.361 0.016 0.010 0.699 0.635 0.744

Bolivia 1980-2013 0.053 0.423 0.154 0.686 0.414 0.114

Brazil 1974-2012 0.008 0.042 0.093 0.625 0.995 0.658

1934-2012 — 0.004 0.037 — 0.510 0.339

Canada 1926-2006 0.007 0.078 0.229 0.968 0.804 0.630

1967-2012 0.007 0.117 0.003 0.965 0.740 0.942

Chile 1940-1995 0.133 0.065 0.033 0.111 0.156 0.864

1941-2012 0.035 0.151 0.119 0.824 0.371 0.624

Colombia 1959-2011 0.717 0.692 0.872 0.169 0.144 0.143

Finland 1914-1985 0.622 0.659 0.839 0.231 0.218 0.209

Germany 1876-1913 0.503 0.534 0.532 0.152 0.141 0.146

Guatemala 1980-2012 0.049 0.043 0.052 0.536 0.529 0.454

Japan 1885-1913 0.333 0.365 0.331 0.159 0.135 0.144

1955-2013 0.427 0.154 0.120 0.363 0.596 0.605

Korea 1970-2014 0.060 0.070 0.715 0.086 0.099 0.172

Israel 1983-2014 0.000 0.000 0.000 0.767 0.646 0.204

Italy 1949-1996 0.171 0.182 — 0.629 0.581 —

Mexico 1985-2014 0.007 0.002 0.205 0.537 0.313 0.190

Netherlands 1950-1992 0.349 0.286 0.401 0.463 0.427 0.324

New Zealand 1934-2014 0.093 0.109 0.044 0.690 0.686 0.822

Norway 1946-2013 0.031 0.021 0.015 0.749 0.756 0.792

Portugal 1914-1965 0.004 0.038 0.032 0.183 0.154 0.481

1966-1998 0.511 0.722 0.125 0.100 0.064 0.316

South Africa 1967-2014 0.068 0.060 0.080 0.563 0.562 0.330

Spain 1941-1989 0.120 0.215 0.537 0.636 0.472 0.197

Switzerland 1851-1906 0.158 0.115 0.057 0.802 0.787 0.788

1948-2005 0.000 0.000 0.001 0.923 0.891 0.775

Taiwan 1962-2013 — 0.742 0.794 — 0.167 0.141

Turkey 1968-2014 0.896 0.444 — 0.229 0.546 —

United Kingdom 1922-2014 0.011 0.021 0.077 0.975 0.976 0.659

Venezuela 1962-1999 0.776 0.844 0.888 0.087 0.079 0.062

West Germany 1960-1989 — 0.857 0.261 — 0.148 0.221
 Based on 10,000 bootstrap replications.  Null of 0 versus 1 cointegration vectors.
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Brazil, Guatemala, Israel, Norway, Portugal (1914-1965), South Africa, Switzerland

(1948-2005), and the U.K.. It is further detected for two specifications out of three

for Australia (1969-2015), Belgium, Canada (for either period), Chile (1940-1995),

Korea, Mexico, and New Zealand. Finally, in three cases–Bolivia, Chile (1941-2012),

and Switzerland under the Gold Standard–cointegration is detected based just on a

single specification.

() In most cases in which cointegration is not detected, the ERFs show that

this is what we should indeed expect if cointegration truly were present in the data.

Consider, e.g., Australia for the period 1941-1989. In spite of the very strong negative

correlation between the low-frequency components of the two series in the top-right

panel of Figure 3, the -values in Table 1 range between 0.642 and 0.973. Crucially,

however, the ERFs show that if cointegration were present in the data, the chance

of detecting it would be between 8 and 20%. The same argument holds for all three

specifications for Germany and Japan under the Gold Standard; and for Colombia,

Finland, the Netherlands, Portugal (1966-1998), Venezuela, and West Germany. This

is a simple explanation for the results from cointegration tests, even though, in most of

these cases, visual evidence points toward a very strong correlation between velocity

and the short rate.

() As for which specification the data seem to prefer, evidence is much less

clear-cut than for the U.S.. By applying the same informal argument we used for the

U.S., based on the -values produced by the three specifications, it might be argued

that the Selden-Latané specification is preferred for Australia (1969-2015), Bolivia,

Brazil (1974-2012), Canada (1926-2006), Chile (1941-2012), Finland, Germany under

the Gold Standard, Korea, Portugal (1914-1965), Spain, and the U.K.. By the same

token, the semi-log specification seems to be preferred for Argentina, Brazil (1934-

2012), Colombia, Guatemala, Mexico, the Netherlands, South Africa, and Taiwan,

whereas the log-log specification appears to be preferred for Belgium, Canada (1967-

2012), Chile (1940-1995), Japan for either period, New Zealand, Norway, Portugal

(1966-1998), Switzerland under the Gold Standard, and West Germany.

So, although for a few countries the preference for one particular specification is

quite clear (e.g., Selden-Latané for the U.K.), the data do not exhibit a consistent

pattern across countries. In the light of the theoretical discussion in Section 2, a

natural explanation is that the technology available to households in order to adjust

their portfolios differs across countries.

Toward a unified framework? An alternative possible interpretation of the

evidence in Tables 1-1 is that the true specification for money demand is the same

for all countries, and that the lack of consistency in the results from cointegration

tests simply reflects a combination of small-sample issues, and the ‘luck of the draw’

which is unavoidably associated with statistical testing. Under this interpretation,

the next step would be to try to assess which, of the three functional forms, could

we only estimate two functional forms, rather than three.
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be regarded as the most plausible representation of the data for the entire set of

countries. Since the three models are not nested, however, such an assessment is not

straightforward. For instance, even if we used panel methods, we would not be able

to compare the three specifications based on the entire dataset.

One possible avenue would be to compare the point estimates of the parameters

on the (log) short rate produced by any specification for two sets of low- and high-

inflation countries. Intuitively, if a specific functional form provides a better overall fit

for the entire set of countries, it should produce less variation in the point estimates

across the two sets of low- and high-inflation countries. The first set comprises the

U.S., the U.K., Australia, Canada and New Zealand: all of these countries experi-

enced important variations on their nominal interest rates, but they are low-inflation

countries. The second group is composed by Argentina, Brazil, Bolivia, Chile, and

Israel, all high-inflation countries. For all countries in either set, there is strong evi-

dence of cointegration based on at least one of the three specifications. Unfortunately,

even this approach does not produce clear-cut results. Consider, e.g., the comparison

between the two polar cases, Selden-Latané and log-log. Based on the results re-

ported in Figures SELA.1-SELA.6 and LLCO.1-LLCO.6 in the online Appendix, and

considering, for the sake of the argument, the median estimates of the coefficients

on the (log) short rate produced by Johansen’s estimator, the ranges of estimated

coefficients for the low- and high-inflation countries produced by Selden-Latané are

[-1.281; -0.446] and [-1.293; -0.009], respectively, whereas the corresponding ranges

produced by log-log are [-0.96; -0.43] and [-0.67; -0.03], respectively. Based on these

numbers, it is not at all clear which of the two specifications should be thought of

as producing the more stable estimated coefficients across the two sets of low- and

high-inflation countries. Results based on Stock and Watson’s (1993) estimator of the

cointegration vector are qualitatively the same. Finally, results for the other possible

comparisons across functional forms are also equally inconclusive.

Evidence from unrestricted specifications Turning to unrestricted specifica-

tions, Tables SL.4, LL.4, and LLCO.4 in the online Appendix report results from

Johansen’s tests based on systems featuring the (logarithm of) the short rate, and

the logarithms of nominal GDP and M1. As we discuss more extensively in online

Appendix G.3, based on the semi-log specification we detect cointegration for most

high-inflation countries (Argentina, Bolivia, Brazil, Chile, and Israel); for post-WWII

Japan and Switzerland; and for the Netherlands, Norway, Taiwan, and the U.K..

Based on the log-log specification with the 1 per correction to the short rate, cointe-

gration is detected for post-WWII Japan and Switzerland; and for Argentina, Brazil,

Canada, Korea, Israel, the Netherlands, Norway, and Portugal (1914-1965).

We next turn to the issue of stability of the cointegration relationship.

21



5.2 Testing for stability in cointegration relationships

Tables H.2 and H.3 in the online Appendix report results from Hansen and Johansen’s

(1999) Nyblom-type tests for stability in either the cointegration vector, or the vector

of loading coefficients. The key finding in the two tables is that evidence of breaks

in either the cointegration vector, or the loading coefficients, is weak to nonexistent.

Specifically, for the U.S., based on the Selden-Latané specification, the null of no

breaks in either feature is never rejected for either of the three ‘expanded’ M1 aggre-

gates. Stability in the cointegration vector is also never rejected based on semi-log

and log-log specifications, whereas breaks in the loadings are detected based on the

semi-log specification, and in one case out of six based on the log-log. Evidence for

other countries is qualitatively the same. For instance, based on the Selden-Latané

specification, stability in the cointegration vector is rejected in three cases, whereas

stability in the loadings is rejected in six cases. Results for the other two specifications

are along the same lines.

5.3 The estimated coefficients on the short rate

We now turn our discussion to the bottom rows of Figures SELA.1-SELA.6, SL.1-

SL.6, and LLCO.1-LLCO.6 in the online Appendix, showing the estimated coefficients

on the (log) short rate; and to Tables SELA.3, SL.3, and LLCO.3 in the online

Appendix, reporting bootstrapped p-values for testing the null hypothesis that the

coefficients be equal to a benchmark value. For the log-log specification, the natural

benchmark is Baumol and Tobin’s (i.e. -1/2). By the same token, based on previous

evidence–see e.g. Stock and Watson (1993)–the natural benchmark for the semi-

log specification is -0.1. As for the Selden-Latané specification, since theory does not

provide us with a numerical benchmark, we set it to -0.4, which is roughly equal to the

median or modal estimates we obtain for the U.S. based on the Lucas-Nicolini (2015)

aggregate (see Figure SELA.6).32 As for the log-log specification, results overall are

mixed, with the Baumol-Tobin null being rejected in 17 cases out of 32 based on

Johansen’s estimator of the cointegration vector, and in 21 cases based on Stock and

Watson’s. As for the Selden-Latané specification, the null of -0.4 is rejected in 19

cases out of 33 based on Johansen’s estimator, and in 25 cases based on Stock and

Watson’s. Finally, as for the semi-log specification we reject the null in 20 cases out

of 34 based on Johansen, and in 27 based on Stock and Watson.

We now turn to two substantive issues: whether there might be sizeable non-

linearities in money demand at low interest rates, and the pitfalls originating from

using the incorrect money demand specification.

32This is why Table SELA.3 does not report results for the United States based on the Lucas-

Nicolini (2015) aggregate.
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Figure 4  Informal evidence on the possible non-linearity of M1 velocity at low interest rates 
 
 



6 Does the Behavior of Money Demand at Low

Interest Rates Exhibit Sizeable Nonlinearities?

A strand of literature–see, first and foremost, Mulligan and Sala-i-Martin (2000)–

has argued that, at low interest rates, money demand exhibits sizeable nonlinearities

due to the presence of fixed costs associated with the decision to participate, or not

to participate, in financial markets. This implies that at sufficiently low interest rates

money demand (and therefore money velocity) should be largely unresponsive to

changes in interest rates, since most (or all) households will simply not participate

in financial markets. The implication is that it should not be possible to reliably

estimate money demand functions based on aggregate time series data, as only the

use of micro data allows us to meaningfully capture the nonlinearity associated with

the cost of participating in financial markets.

Figure 4 shows evidence of the possible presence of nonlinearities for eight coun-

tries for which either of the subsamples with the short rate above and below 5% is

sufficiently long.33 The first row shows the short rate together with velocity (the raw

series), and the bottom row shows the low-frequency components of the two series

(the components have been extracted exactly as in Section 3).

The evidence in the figure provides no support to the notion that velocity–and

therefore money demand–may be less responsive to interest rate changes at low

interest rates. On the contrary, by no means does the relationship between the two

series appear to be different at high and low interest rates. The evidence based on

the low-frequency components of the data is especially stark: once we strip higher-

frequency fluctuations from velocity and the short rate, the relationship between the

series clearly appears remarkably strong and stable at all levels of the interest rate.

In particular, taking, for the sake of argument, 5% as a ‘reference threshold’ for the

short rate (see footnote 33), the following should be noted:

(1) for the U.S., U.K., and Canada, the two periods before the mid-1960s, and

since the end of the 1990s–during either of which the short rate had, or has been,

below 5%–appear as remarkably similar to the period in-between, during which the

short rate systematically exceeded 5%. In no way do these data suggest that at low

interest rates the relationship between velocity and the short rate is any different

from what it is at higher rates.

(2) Qualitatively similar evidence holds for Australia and Belgium: the relationship

between the series appears the same both before and after the 1960s. For Korea, the

period since the 1990s appears as very similar to previous years.

(3) For Japan the relationship between the series appears to have broken down

since the beginning of the XXI century. On the other hand, it is worth stressing that

during the period between the mid-1990s and the beginning of the new century, when

the short rate plummeted from about 5% to about 0, velocity likewise collapsed with

33The threshold considered by Mulligan and Sala-i-Martin (2000) was 5 per cent.
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Figure 5  Statistical evidence on the possible presence of non-linearities 
             in the demand for M1 at low interest rates  
 
 
 



a lag of a few years. Further, note that since the start of the new millennium, velocity

has kept decreasing, whereas the interest rate has remained close to zero, a pattern

opposite to that implied by the presence of fixed costs associated with the decision

to participate, or not participate, in financial markets.

Figure 5 buttresses the visual evidence in Figure 4 with statistical evidence for five

countries for which we could find sufficiently long post-WWII quarterly samples, in

order to get reasonably precise estimates. In either case, we estimated Selden-Latané

specifications for velocity, that is,

 ≡ 



=  +  (9)

based on consecutive sample periods during which the short rate had consistently

been above 4.5%,34 characterizing uncertainty by bootstrapping the VECM estimated

conditional on one cointegration vector as in CRT. For each country we show the

estimated implied money demand curves, with 16-84 and 5-95% confidence bands,

and (in red) the observations corresponding to a short rate below 4.5%. Under the

null hypothesis that the model is the same at both high and low interest rates, low

interest rate observations should fall outside of the 5-95% bands 10% of the times.

In fact, this never happens for the U.S., Canada, and South Korea, and it happens

2.4% of the time for the U.K.. For Australia, the fraction, at 41.9%, is much higher,

but note that, for the purposes of Mulligan and Sala-i-Martin’s (2000) argument, the

outliers are on the wrong side of the demand curve: most of them are below, rather

than above the curve.

This evidence questions the notion that there might be sizeable nonlinearities in

money demand at low interest rates, and rather suggests that the behavior of M1

velocity–and therefore the demand for M1–is essentially the same at all interest

rate levels (at least, for the range of interest rates experienced by the countries in our

sample). In turn, this suggests that it should indeed be possible to reliably estimate

the welfare costs of inflation associated with the mechanism first highlighted by Bailey

(1956) based on aggregate time series data.

An important question, then, is how to rationalize the finding of a smaller elasticity

at low interest rates. In the next section we provide a possible explanation.

7 Pitfalls of Using the Incorrect Functional Form

Is the previous discussion of alternative functional forms an ultimately sterile exercise,

or do alternative specifications have materially different implications for issues of

central importance? In this section we show, by example, that identifying the correct

functional form does indeed have material implications in several cases.

34For example, for the United States the sample period is 1972Q4-1991Q3 (details for other

countries are available upon request). We take 4.5 per cent as the threshold uniquely for practical

reasons, as it allows us to use materially longer samples for estimation.
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7.1 Spurious nonlinearity of money demand from estimating

log-log specifications

Suppose that the data have been generated by a Selden-Latané specification, so that

the relationship between the levels of velocity and the short rate is identical at all

levels of the short rate. Since a given percentage change in the level of the short

rate (say, 1%) is associated with a larger change in its logarithm at low interest rates

than it is at higher interest rates,35 this automatically maps into lower estimated

elasticities (in absolute value) at low interest rates than at higher interest rates. This

implies that if the true specification is the Selden-Latané specification, estimating a

log-log specification will automatically produce smaller elasticities (in absolute value)

at lower rather than higher interest rates. The same argument obviously holds if the

true specification is the semi-log.

This can be illustrated as follows. Specification (9) for velocity implies the follow-

ing expression for M1 balances as a fraction of nominal GDP:




=
1


=

1

 + 

 (10)

If, however, the estimated equation for money demand is of the log-log type, that is,

ln

µ




¶
= +  ln +  (11)

the theoretical value of the estimated elasticity turns out to be equal to

 ln
³




´
 ln

= − 

 + 

 (12)

This function is plotted on the left-hand side of Figure 6. We set  to 2.5 (corre-

sponding to a satiation level of M1 balances of 40% of GDP) and  to 0.4, which are

very close to estimates for the U.S. based on Lucas and Nicolini’s (2015) aggregate.

The estimated elasticity tends to 0 for  → 0 (in fact, at the Zero Lower Bound, it

is exactly equal to 0), whereas it tends to -1 for  →∞.
By the same token, if the true specification is of the semi-log type, that is,

ln

µ




¶
=  −  (13)

whereas the estimated equation for money demand is still given by (11), we have

 ln
³




´
 ln

= − (14)

35For example, ln(9)-ln(10)=-0.105, whereas ln(2)-ln(3)=-0.406.
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Figure 6  Evidence on the distortions originating from estimating a log-log speci- 
             fication when the true model is either Selden-Latané or semi-log 

Figure 7  Implications of using alternative functional  
             forms for the welfare costs of inflation 
 



This function is plotted on the right-hand side of Figure 6. We set  to 1, and  to

0.1, which are, once again, nearly identical, numerically, to the U.S. estimates. The

estimated elasticity tends to 0 for  → 0, is exactly equal to 0 at the Zero Lower

Bound, and it tends to -∞ for  →∞.
The bottom line is that in either case, estimating a log-log specification produces

entirely spurious evidence of a lower elasticity at interest rates approaching zero. To

be sure, this does not mean that evidence of nonlinearity in the literature is spurious:

what it does mean, however, is that, by estimating log-log specifications, a researcher

would obtain these results even if the true model were of the Selden-Latané or semi-

log type. This provides a first illustration of the importance of understanding what

the true specification is. We now turn to a second example.

7.2 The welfare costs of inflation

Since Bailey (1956), the welfare costs of inflation have been a classic topic in monetary

economics. Two more recent contributions are Lucas (2000) and Ireland (2009), which

stress the relevance of the functional form used in the empirical analysis in obtaining

estimates of the welfare costs. As a second illustration of the pitfalls of using the

incorrect functional form for money demand, in this section we revisit this issue

bringing more countries, a new functional form (the Selden-Latané) that is preferred

by the data at low inflation rates; and including the most recent years, which provide

additional evidence of the behavior of real money demand at very low nominal interest

rates. We estimate each of the three specifications for velocity as before.36 Based

on the implied money demand functions, the welfare costs of inflation can then be

immediately recovered along the lines of Bailey (1956), Friedman (1969) and Lucas

(2000).

Lucas (2000, p. 251) provided the expressions for the welfare cost associated with

a specific level of the interest rate  for the semi-log and log-log specifications. By

the same token, it can be shown that the welfare cost function associated with the

Selden-Latané specification (9) is given by

() =
ln( + )− ln


− 

 + 

(15)

Figure 7 reports, for four countries, the estimated welfare losses at the average short

rate that has prevailed over the sample period (expressed in percentage points of

GDP).37 We will not comment on the figures in detail because they speak for them-

selves. For the present purposes, what ought to be stressed is that the three spec-

ifications imply materially different estimates of the welfare costs. Focusing on the

36We characterize the uncertainty surrounding the point estimates by bootstrapping the estimated

VECM as in CRT (2012). Results are based on 10,000 bootstrap replications.
37The differences across countries in the estimated welfare losses therefore also reflect differences

in average short rates, which for the U.S., U.K., Canada, and New Zealand were equal to 3.6, 5.6,

4.7, and 6.6 per cent, respectively.
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comparison between the popular log-log specification, and the Selden-Latané one, for

the U.K. the welfare costs implied by the former are about twice those implied by

the latter, with the median and the 90% confidence intervals being 0.75 [0.31; 1.72]

and 1.43 [0.72; 2.18], respectively. The same holds for New Zealand, whereas the

difference is less marked for Canada. For the U.S.38 the three specifications tend to

produce similar results, with median estimates equal to 0.21% for the Selden-Latané

specification, and 0.18 for the other two. Results for several other countries (not

reported for reasons of space, but available on request) are in line with those in Fig-

ure 7.39 These simple examples illustrate the importance of correctly identifying and

using the right functional form for money demand.

8 Conclusions

We use a model of a transaction demand for money to guide an investigation of the

stability of the long-run relationship between M1 velocity and a short term nominal

interest rate. Our dataset comprises 32 countries for periods that range from 35 to 100

years. Evidence of cointegration between velocity and the short rate is widespread,

whereas evidence of breaks or time-variation in cointegration relationships is weak to

non-existent. For the U.S. we detect strong evidence based on three of the adjustments

to the standard M1 aggregate originally proposed by Goldfeld and Sichel (1990). For

several low-inflation countries (in particular, the U.S.) the data prefer the specification

in the levels of velocity and the short rate originally estimated by Selden (1956) and

Latané (1960). We detect no evidence of non-linearities at low interest rates, but we

show that if the data are generated by a Selden-Latané or a semi-log specification,

estimating a log-log specification spuriously causes estimated elasticities to be smaller

at low interest rates. Using the correct functional form has important implications

for the ability to correctly estimate the welfare costs of inflation.
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