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Abstract

We investigate the default probability, recovery rates and loss distribution of a port-
folio of securitised loans granted to Italian small and medium enterprises (SMEs). To
this end, we use loan level data information provided by the European DataWarehouse
platform and employ a logistic regression to estimate the company default probability.
We include loan-level default probabilities and recovery rates to estimate the loss
distribution of the underlying assets. We find that bank securitised loans are less risky,
compared to the average bank lending to small and medium enterprises.

Keywords: credit scoring; probability of default; small and medium enterprises; asset-
backed securities

1 Introduction

The global financial crisis (GFC) exacerbated the need for greater accountability in eval-
uating structured securities and thus has required authorities to implement policies aimed
at increasing the level of transparency in the asset-backed securities (ABS) framework. In
fact, ABS represents a monetary policy instrument which has been largely used by the
European Central Bank (ECB) after the financial crisis. On this ground, in 2010 the ECB
issued the ABS Loan-Level Initiative which defines the minimum information requirement
at loan level for the acceptance of ABS instruments as collateral in the credit operations
part of the Eurosystem. This new regulation is based on a specific template1 and provides
market participants with more timely and standardised information about the underlying
loans and the corresponding performance.

After the GFC, a large amount of ABS issued by banks has been used as collateral in
repurchase agreement operation (repo) via the ABS Loan Level Initiative in order to receive

*Andrea Bedin, Michele Costola and Loriana Pelizzon gratefully acknowledge research and financial
support from SAFE, funded by the State of Hessen initiative for research LOEWE.

†Corresponding author: billio@unive.it
1The list of the ECB templates is available at https://www.ecb.europa.eu/paym/coll/loanlevel/

transmission/html/index.en.html.
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liquidity. A repo represents a contract where a cash holder agrees to purchase an asset
and re-sell it at a predetermined price at a future date or in the occurrence of a particular
contingency. One of the main advantages of repo is the guarantee offered to the lender
since the credit risk is covered by the collateral in the case of the borrower’s default.

To collect, validate and make available the loan-level data for ABS, in 2012 the Eu-
rosystem designated the European DataWarehouse (ED) as the European securitisation
repository for ABS data. As stated on the website, the main purpose of the ED is to provide
transparency and confidence in the ABS market.

The ED was founded by 17 market participants (large corporations, organizations and
banks) and started to operate in the market in January 2013. To be eligible for repurchase
agreement transactions with the ECB, securitisations have to meet solvency requirements:
for instance, if the default rates in the pool of underlying assets reach a given level, the
ABS is withdrawn as collateral. Clearly, this repository allows for new research related to
ABS providing more detailed information at loan level.

In this paper, we consider the credit scoring in ABS of small and medium enterprises
(SMEs) by using a database of loan-level data provided by ED. The aim of our analysis is
to compare the riskiness of securitised loans with the average of bank lending in the SME
market in terms of probability of default.

We consider the SME market since it plays an important role in the European economy.
In fact, SMEs constitute 99% of the total number of companies, they are responsible for
67% of jobs and generate about 85% of new jobs in the Euro area [19]. SMEs are largely
reliant on bank-related lending (i.e., credit lines, bank loans and leasing) and, despite their
positive growth, they still suffer from credit tightening since lending remains below the
pre-crisis level in contrast to large corporates. Furthermore, SMEs do not have easy access
to alternative channels such as the securitisation one [14]. In this respect, ECB intended
to provide credit to the Eurozone’s economy in favour of the lending channel by using
the excess of liquidity of the banking system2 due to the Asset-Backed Purchase Program
(ABSPP) to ease the borrowing conditions for households and firms. Consequently, se-
curitisation represents an interesting credit channel for SMEs to be investigated in a risk
portfolio framework. In particular, SMEs play even a more important role in Italy than
the in the rest of the European Union. The share of SME value added is 67% compared to
an EU average of 57% and the share of SME employment is 79%. Therefore, the ABS of
Italian SMEs represents an interesting case to be investigated since Italy is the third largest
economy in the Eurozone.

In this regard, we collect the exposures of Italian SMEs and define as defaulted those
loans that are in arrears for more than 90 days. We define the 90-day threshold according to
article 178 of Regulation (EU) No 575/2013 [16], which specifies the definition of a default

2The ECB and the national central banks of the Eurosystem have been lending unlimited amounts of capital
to the bank system as a response to the financial crisis. For more information see: https://www.ecb.europa.
eu/explainers/tell-me-more/html/excess_liquidity.en.html
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of an obligor that is used for the IRB Approach3. We exploit the informational content of the
variables included in the ECB template and compute a score for each company to measure
the probability of default of a firm. Then, we analyse a sample of 106,257 borrowers of
SMEs and we estimate the probability of default (PD) at individual level through a logistic
regression based on the information included in the dataset. The estimated PD allows us
to have a comparison between the average PD in the securitised portfolio and the average
PD in the bank lending for SMEs.

The variables included in the analysis, which will be presented in Section 3, are: (i)
interest rate index; (ii) business type; (iii) Basel segment; (iv) seniority; (v) interest rate
type; (vi) nace industry code; (vii) number of collateral securing the loan; (viii) weighted
average life; (ix) maturity date; (x) payment ratio; (xi) loan to value and (xii) geographic
region. Using the recovery rate provided by banks, we estimate the loss distribution of a
global portfolio composed by 20,000 loans at different cut-off date using CREDITRISK+™
model proposed by Credit Suisse First Boston [12].

Our findings show that the default rates for securitised loans are lower than the average
bank lending for the Italian SMEs’ exposures, in accordance with the studies conducted on
the Italian market by CRIF Ratings4 [9].

The remaining of the paper is structured as follows. Section 2 provides a literature
review about SMEs and default estimates while Section 3 illustrates the empirical analysis
and our findings. Finally Section 4 concludes the paper.

2 Literature Review

According to [39], the default of a firm occurs when it experiences sustained and
prolonged losses or when it becomes insolvent having the weight of liabilities dispropor-
tionately large with respect to its total assets. Different methods have been developed in
literature to predict company bankruptcy. From 1967 to 1980, multivariate discriminant
analysis (MDA) has been one of the main techniques used in risk assessment. [1] was
the first to implement this technique on a sample of sixty-six manufacturing corporations.
The author used a set of financial and economic ratios for bankruptcy prediction and
showed that 95 percent of all firms in the defaulted and non-defaulted groups were cor-

3A default shall be considered to have occurred with regard to a particular obligor when either or both
of the following have taken place: (a) the institution considers that the obligor is unlikely to pay its credit
obligations to the institution, the parent undertaking or any of its subsidiaries in full, without recourse by the
institution to actions such as realising security; (b) the obligor is past due more than 90 days on any material
credit obligation to the institution, the parent undertaking or any of its subsidiaries. Relevant authorities may
replace the 90 days with 180 days for exposures secured by residential or SME commercial real estate in the
retail exposure class (as well as exposures to public sector entities).

4CRIF Ratings is an Italian credit rating agency authorized to assign ratings to non-financial companies
based in the European Union. The agency is subject to supervision by the ESMA (European Securities and
Markets Authority) and has been recognized as an ECAI (External Credit Assessment Institution).
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rectly assigned to their actual group of classification. Aftewards, he applied the same
technique to bankruptcy prediction for saving and loan associations and commercial banks
[2, 35, 36]. [5] showed that illiquid asset measures predict failure better than liquid asset
measures; [6] tested discriminant analysis on a sample of 115 failed and 115 non failed
firms showing that the model can distinguish defaulting firms correctly with an accuracy
of 94 percent. Using the same approach, [13] and [15] focused on default prediction with
financial ratios. The main limitations that affect MDA are linearity and indipendence
among the variables [21]. [4] explored the importance of non-normality in the statistical
distribution of financial ratios and shows that where financial ratios are inputs to certain
statistical models (Regression Analysis and Multiple Discriminant Analysis) normality is
irrelevant. [17] compared a linear discriminant model, a quadratic discriminant model
and a logit model demonstrating that the performance of the linear discriminant analysis
and the logit model are equivalent. Other approaches focus on logistic regression. [23]
described the first application of a logit analysis to bank early warning problems and [10]
applied a logit model to predict non-compliance by commercial loan customers. These sta-
tistical techniques share the same idea of dividing defaulted and non-defaulted firms as a
dependent variable attempting to explain the classification as a function of several indepen-
dent variables. eference [29] used a logit approach to test financial ratios as predictors of
corporate failures and identified four basic factors as significant in affecting the probability
of default: (i) size of the company; (ii) measures of the financial structure; (iii) measures of
performance; (iv) measures of current liquidity. [28] compared the discriminant analysis
technique with the neural network approach and discovered that the neural network was
able to better predict bankruptcy, taking into account the ratios used by [1]. [37] presented
a new approach to bank bankruptcy prediction using neural networks, stating that it can
be a supplement to a rule-based expert system in real-time applications. [40] showed that
the neural network outperformed the discriminant analysis in predicting accuracy both
bankrupt and non-bankrupt firms while [42] compared artificial neural networks (ANNs)
with logistic regression showing in a sample of 220 firms that ANNs perform better than
logistic regression models in default prediction. [22] and [25] used support vector machines
(SVM) to predict SMEs default and show that this model provides better prediction results
compared to neural networks and logistic regression. [39] analyzed linear and non-linear
classifiers and demonstrated that better classification performance were obtained using
Least Square Support Vector Machine (LS-SVM). LS-SVM are a modified version of SVMs
resulting into a set of linear equations instead of a QP problem. [11] constructed a new type
of learning machine, the so-called support-vector network, that maps the input vectors in
an high dimensional feature space Z through some non-linear mapping chosen a priori and
in this space a linear decision surface is constructed with special properties. [7] examined
the usefulness of an artificial intelligence method, case based reasoning (CBR), to predict
corporate bankruptcy in order to show that the CBR is not more accurate than the [29] logit
model, which attains a much higher accuracy rate and appears to be more stable over time.
Also [8], [20] and [30] applied it successfully to default prediction thanks to their ability of
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identifying a non-linear and non-parametric relationship. In this paper, we make use of
the logistic regression since it provides a clear economic interpretation of the indicators
that have an influence on the default probability of a firm.

3 Empirical Analysis

In this section, we analyze at loan level a SME ABS portfolio issued by an Italian bank
during 2011 and 2012. We carry out the analysis by following the loans included in the
sample at different pool cut-off dates, from 2014 to 2016, close to or coinciding with the
semester. However, it is not possible to track all loans in the various periods due to the
revolving nature of the operations which allows the SPV to purchase other loans during
the life of the operation.

We examine those variables that may lead to the definition of a system for measuring
the risk of a single counterpart that are included in the ECB template. In particular we
select: (i) interest rate index (field AS84 of the ECB SMEs template); (ii) business type
(AS18); (iii) Basel segment (AS22); (iv) seniority (AS26); (v) interest rate type (AS83);
(vi) nace industry code (AS42); (vii) number of collateral securing the loan (CS28); (viii)
weighted average life (AS61); (ix) maturity date (AS51); (x) payment ratio; (xi) loan to value
(LTV) and (xii) geographic region (AS17). We compute payment ratio as the ratio between
the installment and the outstanding amount and loan to value as the ratio between the
outstanding loan amount and the collateral value. Interest rate index includes: (1) 1 month
LIBOR; (2) 1 month EURIBOR; (3) 3 month LIBOR; (4) 3 month EURIBOR; (5) 6 month
LIBOR; (6) 6 month EURIBOR; (7) 12 month LIBOR; (8) 12 month EURIBOR; (9) BoE Base
Rate; (10) ECB Base Rate; (11) Standard Variable Rate; (12) Other. Business type assumes:
(1) Public Company; (2) Limited Company; (3) Partnership (4); Individual; (5) Other. Basel
segment is restricted to (1) Corporate and (2) SME treated as Corporate. Seniority can be:
(1) Senior Secured; (2) Senior Unsecured; (3) Junior (4); Junior Unsecured; (5) Other. Interest
rate type is divided in: (1) Floating rate loan (for life); (2) Floating rate loan linked to Libor,
Euribor, BoE reverting to the Bank’s SVR, ECB reverting to Bank’s SVR; (3) Fixed rate loan
(for life); (4) Fixed with future periodic resets; (5) Fixed rate loan with compulsory future
witch to floating; (6) Capped; (7) Discount; (8) Switch Optionality; (9) Borrower Swapped;
(10) Other. Nace Industry Code corresponds to the European statistical classification of
economic activities. Number of collateral securing the loan represents the total number of
collateral pieces securing the loan. Weighted Average Life is the Weighted Average Life
(taking into account the amortization type and maturity date) at cut-off date. Maturity date
represents the year and month of loan maturity. Finally the geographic region describes
where the obligor is located based on the Nomenclature of Territorial Units for Statistics
(NUTS). Given the NUTS code we group the different locations into North, Center and
South of Italy5.

5The complete list of fields definitions and criteria can be found at https://www.ecb.europa.eu/paym/
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The final panel dataset used for the counterparties’ analysis contains 106,257 observa-
tions. Table 1 shows the number of non-defaulted and defaulted loans for each pool cut-off
date.

Table 1: The table shows the amount of non-defaulted and defaulted exposures for each
pool cut-off date. We observe that the average default rate per each reference date remains
constant and is equal to 2.84% over the entire sample. We account only for the loans that
are active in the pool cut-off date and include the loans that defaulted between two pool
cut-off dates. In the case of the first report date, we consider the defaults that occurred
from 2011, the date of securitization of the pool, until the first half of 2014, due to missing
information on the performance of the securitized pool prior to this date. We analyze in
total 106,257 loans granted to SMEs.

Pool Cut-Off Date Non-Defaulted Defaulted
%

Default
Tot.

2014H1 31,930 904 2.75 32,834
2014H2 26,851 813 2.94 27,664
2015H1 21,724 679 3.03 22,403
2015H2 12,651 372 2.86 13,023
2016H1 10,076 257 2.49 10,333

Tot. 103,232 3025 2.84 106,257

In the process of computing a riskiness score for each borrower, we consider the default
date to take into account only the loans that are either not defaulted or that are defaulted
between two pool cut-off dates (prior to the pool cut-off date in the case of 2014H1). In the
considered sample, the observed defaulted loans are equal to 2.84% of the total number of
exposures (Table 1).

We analyze a total of 159,641 guarantees related to 117,326 loans. For the score and
the associated default probability, we group the individual loan information together to
associate it with a total of 106,257 borrowers over five pool cut-off dates (Table 2). In
order to move from the level of individual loans to the level of individual companies, we
calculate the average for all loans coming from the same counterparty, otherwise we retain
the most common value for the borrower.

coll/loanlevel/shared/files/RMBS_Taxonomy.zip?bc2bf6081ec990e724c34c634cf36f20.
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Table 2: The table shows the amount of collaterals, loans and borrowers included in
the sample for each pool cut-off date. The dataset links together borrower, loan and
collateral. In total 159,641 collaterals are associated with 117,326 loans belonging to 106,257
companies.

Pool Cut-Off
Date

Collateral
Database

Loan
Database

Borrower
Database

2014H1 53,418 36,812 32,834
2014H2 45,694 30,774 27,664
2015H1 34,583 24,640 22,403
2015H2 14,472 14,000 13,023
2016H1 11,474 11,100 10,333

Tot. 159,641 117,326 106,257

We analyze the variables included in the ECB template individually through the uni-
variate selection analysis which allows to measure the impact of each variable on loan’s
riskiness. We group each variable’s observations according to a binning process in order to:
(i) reduce the impact of outliers in the regression; (ii) better understand the impact of the
variable on the credit risk through the study of the Weight of Evidence (WOE); (iii) study
the variable according to a strategic purpose.

Operators suggest taking the WOE as a reference to test the model predictivity [34],
a measure of separation between goods (non-defaulted) and bads (defaulted), which cal-
culates the difference between the portion of solvents and insolvents in each group of
the same variable. Specifically, the Weight of Evidence value for a group consisting of n
observations is computed as:

Weight of Evidence Wi =

[
ln

DistrGood
DistrBad

]
∗ 100 (1)

and could be written as:

Wi = ln
(

Ni

∑ N

/
Pi

∑ P

)
(2)

The value of WOE will be zero if the odds of DistrGood/DistrBad is equal to one. If the
DistrBad in a group is greater than the DistrGood, the odds ratio will be less than one and
the WOE will be a negative number; if the number of Goods is greater than the DistrBad
in a group, the WOE value will be a positive number.

To create a predictive and robust model we use a Monotonous Adjacent Pooling
Algorithm (MAPA), proposed by [38]. This technique is a pooling routine utilized for
reducing the impact of statistical noise. An interval with all observed values is split
in smaller sub-intervals, bins or groups, each of them gets assigned the central value
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characterizing this interval [26]. Pooling algorithms are useful for coarse classing when
individual’s characteristics are represented in the model. There are three types of pooling
algorithm: (i) non-adjacent, for categorical variable; (ii) adjacent, for numeric, ordinal and
discrete characteristics; and (iii) monotone adjacent, when a monotonic relationship is
supposed with respect to the target variable. While non-adjacent algorithms do not require
any assumptions about the ordering of classes, adjacent pooling algorithms require that
only contiguous attributes can be grouped together, which applies to ordinal, discrete
and continuous characteristic [3]. In this context, MAPA is a supervised algorithm that
allows us to divide each numerical variable into different classes according to a monotone
WOE trend, either increasing or decreasing depending from the variable considered.
For categorical variables we maintain the original classification, as presented in the ECB
template. The starting point for the MAPA application is the calculation of the cumulative
default rate (bad rate) for each score level:

Cumulative Bad Rate k,v =

v

∑
i=Vk−1+1

Bi

v

∑
i=Vk−1+1

(Bi + Gi)

(3)

where G and B are the good (non-defaulted) and bad (defaulted) counts, V is a vector
containing the series of score breaks being determined; v is a score above the last score
break; and i and k are indices for each score and score break respectively. We calculate
cumulative bad rates for all scores above the last breakpoint, and we identify the score
with the highest cumulative bad rate; this score is assigned to the vector as shown in
Equation (4).

MAPAk,v = max{v|Ck,v = max{Ck,v}}, ∀v > Vk−1 (4)

with C representing the cumulative bad rate. This iterative process terminates when the
maximum cumulative bad rate is the one associated with the highest possible score. To test
the model predictivity together with the WOE we use a further measure: the Information
Value (IV). The Information Value is widely used in credit scoring [18, 41] and indicates
the predictive power of a variable in comparison to a response variable, such as borrower
default. Its formulation is expressed by the formula:

IV =
n

∑
i=1

(DistrGoodi − DistrBadi) ∗ ln
DistrGoodi

DistrBadi
(5)

where Distr refers to the proportion of Goods or Bads in the respective group expressed
as relative proportions of the total number of Goods and Bads and can be rewritten by
inserting the WOE as follows:

n

∑
i=1

[(
Ni

∑(N)
− Pi

∑(P)

)
∗WOEi

]
(6)
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with N representing the non-defaulted loans (Negative to default status), P the defaulted
(Positive to default), the WOE is calculated on the i-th characteristic and n corresponds to
the total number of characteristics analyzed, as shown in Equations (1) and (2). As stated
in [34], there is no precise rule of discrimination of the variables through the information
value. It is common practice among operators to follow an approximate rule that consists
in considering these factors: (i) an IV smaller than 0.02 shows an unpredictable variable; (ii)
from 0.02 to 0.1 power is weak; (iii) from 0.1 to 0.3 average; (iv) above 0.3 strong. Table 3
shows the indication of the information value for each variable within the dataset in the
first pool cut-off date.

Table 3: The table shows the information value computed for each variable included in
the sample. We report the statistic associated to the variable for each pool cut-off date.
Since not all the variables inserted in the regression can be considered strong predictors
of borrower’s default we decide to insert in the regression those variables that have a IV
superior to 0.01, in the lack of other, better information.

Variable 2014H1 2014H2 2015H1 2015H2 2016H1

Interest Rate Index 0.04 0.08 0.01 0.00 0.00
Business Type 0.02 0.05 0.02 0.03 0.02
Basel Segment 0.00 0.01 0.00 0.00 0.01
Seniority 0.09 0.08 0.02 0.12 0.29
Interest Rate Type 0.00 0.00 0.00 0.00 0.00
Nace Code 0.05 0.01 0.01 0.01 0.07
Number of Collateral 0.00 0.00 0.03 0.00 0.00
Weighted Average Life 0.26 0.27 0.22 0.16 0.37
Maturity 0.00 0.08 0.00 0.08 0.00
Payment ratio 0.11 0.08 0.14 0.09 0.10
Loan To Value 0.10 0.08 0.07 0.06 0.11
Geographic Region 0.01 0.00 0.02 0.01 0.03

According to [34], logistic regression is a common technique used to develop scorecards
in most financial industry applications, where the predicted variable is binary. Logistic
regression uses a set of predictor characteristics to predict the likelihood of a defined
outcome, such as borrower’s default in our study. The equation for the logit transformation
is described as:

Logit(pi) = β0 +
k

∑
j=1

β jxj + e (7)

where pi represent the posterior probability of the “event” given different input variables
for the i-th borrower; x are input variables; β0 corresponds to the intercept of the regression
line; β j are parameters and k is the total number of parameters.
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The result logit(pi) in the equation represents a logarithmic transformation of the
output, i.e., log(p[event]/p[nonevent]), necessary to linearize posterior probability and
limit outcome of estimated probabilities in the model between 0 and 1. The parameters
β1 . . . βk measure the rate of change in the model as the value of the independent variable
varies unitary. Independent variables must be standardized to be made as independent as
possible from the input unit or proceed by replacing the value of the characteristic with the
WOE for each class created for the variable. The final formulation becomes:

Logit(pi) = β0 +
k

∑
j=1

β jWOEj(i) + e (8)

The regression is made on a cross sectional data for each pool cut-off date. We measure
the impact of the variables on credit risk through the WOE. If we consider the LTV when
the ratio between the outstanding loan amount and collateral value increases, the default
rate increases as well while the WOE decreases. This indicates that an increment in the
LTV is a sign of a deterioration in the creditworthiness of the borrower. The relation is
reported in Table 4.

Table 4: The table shows per each LTV class (column 1) the amount of non-defaulted
loans (column 2), defaulted loans (column 3); probability, computed as the ratio between
non-defaulted and defaulted (column 4) and Weight of Evidence (column 5). As we can
see the application of the MAPA algorithm allows to cut the variable into classes with a
monotone WOE. The table confirms the relation between LTV and WOE. We show that
as the LTV increases the WOE decreases as well as the probability (odds ratio) meaning
that the borrower is riskier. For each computed class we associate a score, meaning that a
borrower with a lower LTV, i.e., in the third class (0.333–0.608) is associated with a score
higher (less risky) compared to a borrower in the fourth class. For sake of space we report
the results only for the third pool cut-off date but the same considerations could also be
carried out for the other report dates.

LoanToValue 2015H1 Non-Defaulted Defaulted Probability WOE

0–0.285 3383 67 50.49 0.35
0.285–0.333 1523 31 49.12 0.33
0.333–0.608 3531 89 39.67 0.11
0.608–0.769 3357 95 35.33 0.002
0.769–1 2074 77 26.93 −0.26
1–inf 2904 117 24.82 −0.35

Tot. 16,772 476 35.23

We report in Equation (9) the obtained regression for the first pool cut-off date, for sake
of space we include only the first regression. The output of the other pool cut-off date
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regression is reported in Appendix 5. It should be noted that not all the variables included
in the sample are considered significant. The LTV due to a high number of missing values,
even if predictive according to the criteria of the information value, has not been included
in the regression:

de f ault 2014 H1 = β0 + β1WeightedAverageLi f e + β2Payment_Ratio (9)
+ β3Seniority + β4Code_Nace
+ β5Geographic_Region + β6 InterestRateIndex + e

Table 5 reports the coefficients of the considered variables along with the significance
level, marked by *** at 1% confidence level and by ** at 5%.

Table 5: We illustrate in the table the coefficient and the significance of the variables
included in the regression. We denote by *** the significance level of 1%, with ** the level
of 5%. The table reports the number of observations, Chi2-statistic vs. constant model and
p-value.

Variable 2014H1 2014H2 2015H1 2015H2 2016H1

Coefficient Coefficient Coefficient Coefficient Coefficient
(int.) 3.550 *** 3.481 *** 3.456 *** 3.523 *** 3.652 ***
InterestRateIndex 0.698 ***
Seniority 1.489 *** 1.493 *** 0.598 1.325 *** 0.944 ***
Code_Nace 1.048 *** 0.952 *** 0.798 ** 0.927 ** 0.947 ***
WeightedAverageLife 1.007 *** 0.953 *** 1.168 *** 0.912 *** 0.798 ***
Payment_Ratio 2.456 *** 2.296 *** 1.482 *** 2.300 *** 2.253 ***
Geographic_Region 1.675 *** 1.405 *** 1.432 *** 0.903 ***

Observations 32,834 27,664 22,403 13,023 10,333
Chi2-statistic vs. constant model 670 541 373 190 222
p-value 0.000 0.000 0.000 0.000 0.000

Figure 1a indicates the default probability associated with each score level for the first
pool cut-off date. In the Appendix 5 we report the relationship for the other pool cut-off
dates. We choose a score scale ranging from 500 (worst counterparties) to 800 points (best
counterparties). We can see that as the score decreases, the associated default probability
increases.
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Figure 1: Panel (a) illustrates the relationship between score and PD. For each company we
compute a score based on the logistic regression output that is an indication of individual
PD. Panel (b) shows the master scale. This is an indicator of the counterparty’s riskiness
level. For its creation, we follow the approach presented by [34]. The default probability is
linearized through the calculation of the natural logarithm, then the vector of the logarithms
of the PD is divided into 10 equal-sized classes and the logarithms of the cut-offs of each
class is converted to identify the cut-offs to be associated with each scoring class with an
exponential function.

Validation statistics have the double purpose of measuring: (i) the power of the model,
i.e., the ability to identify the dependence between the variables and the outputs produced
and (ii) the divergence from the real results. We use Kolmogorov-Smirnov (KS) curve and
Receiver Operating Characteristic (ROC) curve to measure model prediction capacity.

Kolmogorov-Smirnov (KS) The KS coefficient according to [24] is the most widely
used statistic within the United States for measuring the predictive power of rating systems.
The Kolmogorov-Smirnov curve plots the cumulative distribution of non-defaulted and
defaulted against the score, showing the percentage of non-defaulted and defaulted below
a given score threshold, identifying it as the point of greatest divergence. According to
[24], KS values should be in the range 20%–70%. The goodness of the model should be
highly questioned when values are below the lower bound. Value above the upper bound
should be also considered with caution because they are ‘probably too good to be true’.
The Kolmogorov-Smirnov statistic for a given cumulative distribution function F(x) is:

Dn = supx|Fn(x)− F(x)| (10)

where supx is the supremum of the set of distances. The results on the dataset are included
in Figure 2 and show values within the threshold for the first pool cut-off date. In the first
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report date with a 623 points score the KS value is 23.8%. The statistics for the other pool
cut-off dates are reported in Appendix 5.

Lorenz curve and Gini coefficient In credit scoring, the Lorenz curve is used to
analyze the model’s ability to distinguish between “good” (non-defaulted) and “bad”
(defaulted), showing the cumulative percentage of defaulted and non-defaulted on the
axes of the graph [27]. When a model has no predictive capacity, there is perfect equality.
The Gini Coefficient is widely used in Europe [32], is derived from the Lorenz curve and
calculates the area between the curve and diagonal in the Lorenz curve.
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Figure 2: Panel (a) illustrates the Kolmogorov-Smirnov curve and the associated statistics
for the first pool cut-off date. We show that the KS statistic associated to a score of 623.21
is 23.8%. Panel (b) reports the ROC curve and the AUROC value for the first report date.
Table 6 reports AUROC, KS statistic and KS score for the entire sample.

Gini coefficient The Gini coefficient is computed as:

D = 1−
n

∑
i=1

((cpYi − cpYi−1)(cpXi + cpXi−1)) (11)

where cpY is the cumulative percentage of defaulters and cpX is the cumulative percentage
of non-defaulters. The result is a coefficient that measures the separation between the
curve and the diagonal. Gini’s coefficient is a statistic used to understand how well the
model can distinguish between “good” and “bad”.

This measure has the following limitations: (i) can be increased by increasing the range
of indeterminates, i.e., who is neither “good” nor “bad” and (ii) is sensitive to the definition
of the categories of variables both in terms of numbers and types. Operators’ experience,
according to [3], suggests that the level of the Gini coefficient should range between 30%
and 50%, in order to have a satisfactory model.
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Receiver Operating Characteristic (ROC) As reported by [33], among the method-
ologies for assessing discriminatory power described in the literature the most popular
one is the ROC curve and its summary index known as the area under the ROC (AUROC)
curve. The ROC curve is created by plotting the true positive rate (TPR) against the false
positive rate (FPR) at various threshold settings. The true-positive rate is also known as
sensitivity and the false-positive rate is also known as the specificity. Specificity represents
the ability to identify true negatives and can be calculated as 1 minus the specificity. The
ROC therefore results from:

ROC X = Pr[SFP ≤ SCut o f f ] and Y = Pr[STP ≤ SCut o f f ] (12)

The curve is concave only when the relationship p+i /p−i has a monotonous relationship
with the event being studied. When the curve goes below the diagonal, the model is making
a mistake in the prediction for both false positive and false negative but a reversal of the
sign could correct it. This is very similar to the Gini coefficient, except that it represents the
area under the ROC curve (AUROC), as opposed to measuring the part of the curve above
it. The commonly used formula for the AUROC, as reported in [3, p. 207] is:

AUROC cP,N = Pr[STP < STN ] + 0.5Pr[STP = STN ] (13)

and shows that the area below the curve is equal to the probability that the score of a true
positive (defaulted, STP) is less than that of a true negative (non-defaulted, STN), plus 50%
of the probability that the two scores are equal. A 50% value of AUROC implies that the
model is making nothing more than a random guess. Table 6 shows the values of the
statistics for the analyzed pool cut-off dates.

Table 6: The table reports Kolmogorov-Smirnov statistic, KS score and the area under the
ROC curve for the analyzed pool cut-off dates. We can observe that the statistics differs
over the sample, due to the different loans included in the pool that changed over the
period.

Statistics 2014H1 2014H2 2015H1 2015H2 2016H1

Area under ROC curve 0.66 0.62 0.62 0.60 0.68
KS statistic 0.23 0.18 0.18 0.15 0.27
KS score 623.21 621.4 636.43 545.84 632.18

Once the predictive ability of the model is tested, it is possible to calculate the probability
of default for classes of counterparties. In this respect, we create a master scale to associate
a default probability to each score. As stated in [34], a common approach is to have discrete
scores scaled logarithmically. In our analysis, we set the target score to 500 with the odds
doubling every 50 points which is commonly used in practice [31]. The way to define the
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rating classes is through the creation of a cut-off defined with classes extension. Using the
relationship between logarithm and exponential function it is possible to create the ranges
for each rating class. The default probability vector by counterparty is linearized through
the calculation of their natural logarithm, then this is divided into 10 equal classes and
the logarithms of the cut-off of each class have been converted to identify the cut-off to be
associated with each scoring class with an exponential function. With this procedure we
calculate an average default probability for each range created (Figure 1b).

We validate the results obtained in the logistic regression with an out of sample anal-
ysis. In our analysis the validation has been performed by following directly [34] which
illustrated the standard procedure adopted in credit scoring. The industry norm is to use
a random 70% (or 80%) of the development sample for building the model, while the
remaining sample is kept for validation. When the scorecard is being developed on a small
sample as in our case, it is preferred to use all the samples and validate the model on
randomly selected samples of 50–80% length. Accordingly, we decided to use the second
approach by selecting an out of sample of 50% of the total observations. We proceed as in
the in-sample to analyze the statistics of separation and divergence for the out of sample, we
report the statistics in Table 7. We observe that statistics do not differ substantially between
the out of sample and the whole sample.

Table 7: The table reports Kolmogorov-Smirnov statistic, KS score and the area under the
ROC curve for the out-of-sample. We can observe that the statistics differs over the sample,
due to the different loans included in the pool that changed over the period.

Statistics 2014H1 2014H2 2015H1 2015H2 2016H1

Area under ROC curve 0.68 0.62 0.62 0.63 0.68
KS statistic 0.27 0.17 0.17 0.18 0.27
KS score 610.76 654.45 662.80 673.09 628.56

We carry out the analysis of the portfolio composition in all the pool cut-off dates
analyzed. The revolving nature of the ABS may cause the composition of the portfolio
under study to vary, even significantly. In general, the classes that include most of the
counterparties are the central classes, as can be seen in Figure 3b. It is clear that the
counterparties included in the ABS have an intermediate rating. For sake of completeness
we report in Table 8 the actual default frequency in the sample per each rating class.
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Figure 3: Panel (a) reports the final master scale obtained for the first pool cut-off date. To
create the master scale we linearize the PD vector through the calculation of the natural
logarithm, then this is divided into 10 equal classes and we convert the log of the cut-off
of each class in order to identify the cut-off to be associated with each score with the
exponential function. Panel (b) confirms the frequency of borrowers for each class. In the
right y-axis we indicate the default probability associated for each class and in the left
y-axis is indicated the frequency of the loans.

Table 8: The table indicates rating (column 1 and 6), amount of non-defaulted exposures
(column 2), amount of defaulted loans (column 3), sample default frequency (column 4)
and total loan amount in the first pool cut-off date. Column 7 reports the default probability
derived from the logistic regression and column 8 reports the actual frequency of default
and is equal to column 4. What we can observe is that the model is able to compute the
cut-offs in a way that the default frequencies are monotone increasing from A-rated to
L-rated. We report the statistics for the entire sample in Appendix 5.

Rating
2014H1 Non-Defaulted Defaulted pd_actual (%) Total pd_estimate pd_actual

A 4 0 0.00 4 A 0.02 0.00
B 30 0 0.00 30 B 0.04 0.00
C 298 3 1.00 301 C 0.11 1.00
D 707 9 1.26 716 D 0.23 1.26
E 3452 46 1.32 3498 E 0.52 1.32
F 7169 103 1.42 7272 F 1.23 1.42
G 15,264 415 2.65 15,679 G 2.78 2.65
H 4810 174 3.49 4984 H 5.34 3.49
I 134 19 12.42 153 I 13.77 12.42
L 62 135 68.53 197 L 35.87 68.53

To estimate the recovery rate of a default exposure it is necessary to have information
regarding the market value of the collateral, the administrative costs incurred for the credit
recovery process and the cumulative recoveries. Since those data are not available in the
dataset, we analyze the recovery rates starting directly from the data provided by the banks
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in the template under “AS37” with the name of “Bank internal Loss Given Default (LGD)
estimate” which estimates the LGD of the exposure in normal economic conditions. The RR
of the loan was calculated by applying the equation: RR(%) = 100%− LGD(%).

The average recovery rate through all the collaterals related to one loan calculated by
the bank is different depending on the level of protection offered, as evidenced by Figure 4.

(a)

20 40 60 80 100
Recovery rate

garantito
Recovery rate per livello di protezione

(b)

20 40 60 80 100
Recovery rate

non-garantito
Recovery rate per livello di protezione

Figure 4: Considering the variable Seniority (field AS26 in the ECB template) we divide
secured from unsecured loans. Panel (a) reports the box plot for the secured loans included
in the total sample (taking into account all the pool cut-off dates), Panel (b) shows the box
plot for unsecured loans. It is clear that banks expect to recover more from secured loans
compared to unsecured ones.

As can be seen in Figure 4, the originator estimates a lower recovery rate for unsecured
exposures than for secured loans. The average RR for secured exposures is 80.3%, while for
unsecured exposures on average the bank expects to recover 66.8% of the amount granted.
Figure 5 and Table 9 show the recovery rate calculated by the bank by rating level, it can
be seen that the average recovery rate calculated by the bank tends to decrease as the
counterparty’s rating deteriorates, even if not monotonously.
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Rating

Figure 5: The Figure shows the box plot of the recovery rates computed by the banks
divided into the rating classes. We note that the RR decreases from A to L, even though
not monotonously.

Table 9: The table shows the average recovery rate derived from the field AS37 of the ECB
template. We can see that the RR are decreasing from A-rated to L-rated companies, even
though not monotonously.

Rating
Average Recovery

Rate (%)

A 87.5
B 86.6
C 86.7
D 83.8
E 75.6
F 72.5
G 75.7
H 77.4
I 70.3
L 62.5

To investigate portfolio loss distribution we implement CREDITRISK+™ model on a
representative sample of approximately 20,000 counterparties, of which 10,000 refer to
loans terminated (repaid or defaulted) before the first pool cut-off date while the remaining
10,000 are active at the latest pool cut-off dates and are used to provide a forecast of the
future loss profile of the portfolio.

CREDITRISK+™ can be applied to different types of credit exposure including corporate
and retail loans, derivatives and traded bonds. In our analysis we implement it on a

18



portfolio of SMEs credit exposures. It is based on a portfolio approach to modelling credit
risk that makes no assumption about the causes of default, this approach is similar to the
one used in market risk, where no assumptions are made about causes of market price
movements. CREDITRISK+™ considers default rates as continuous random variables and
incorporates the volatility of default rates to capture default rates level uncertainty. The
data used in the model are: (i) credit exposures; (ii) borrower default rates; (iii) borrower
default rate volatilities and (iv) recovery rates. In order to reduce the computational
difficulties, the exposures are adjusted by anticipated recovery rates in order to calculate
the loss in case of default event. We consider recovery rates provided by ED and include
them in the database. The exposures, net of recovery rates, are divided into bands with
similar exposures. The model assumes that each exposure has a definite known default
probability over a specific time horizon. Thus

pA = Annual probability o f de f ault f or obligor A (14)

We introduce the probability generating function (PGF) defined in terms of an auxiliary
variable z

F(z) =
∞

∑
n=0

p(n de f aults)zn. (15)

An individual borrower either defaults or does not default, therefore the probability
generating function for a single borrower is6:

FA(z) = 1− pA + pAz = 1 + pA(z− 1) (16)

CREDITRISK+™ assumes that default events are independent, hence, the probability
generating function for the whole portfolio is the product of the individual PGF, as shown
in Equation (17)

F(z) = ∏
A

FA(z) = ∏
A

(
1 + pA(z− 1)

)
(17)

and could be written as:

logF(z) = ∑
A

log
(
1 + pA(z− 1)

)
. (18)

The Credit Risk Plus model [12] assumes that a borrower’s default probabilities are uni-
formly small, therefore powers of those probabilities can be ignored and the logarithm can
be replaced using the expression7

log
(
1 + pA(z− 1)

)
= pA(z− 1) (19)

6The Credit Risk Plus model assumes independence between default events. Therefore, the probability
generating function for the whole portfolio corresponds to the product of the individual probability generating
functions.

7The approximation ignores terms of degree 2 and higher in the default probabilities. The expression
derived from this approximation is exact in the limit as the PD tends to zero, and five good approximations in
practice.
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and, in the limit, Equation (18) becomes

F(z) = e∑A pA(z−1) = eµ(z−1) (20)

where
µ = ∑

A
pA (21)

represents the expected number of default events in one year from the whole portfolio.
F(z) is expanded in its Taylor series in order to identify the distribution corresponding to
this PGF:

F(z) = eµ(z−1) = e−µeµz =
∞

∑
n=0

e−µµn

n!
zn (22)

thus considering small individual default probabilities from Equation (22) the probability
of realising n default events in the portfolio in one year is given by:

Probability (n defaults) =
e−µµn

n!
(23)

where we obtain the Poisson distribution for the distribution of the number of defaults. The
distribution has only one parameter, the expected number of defaults µ. The distribution
does not depend on the number of exposures in the portfolio or the individual probabilities
of default provided that they are uniformly small. Real portfolio loss differs from the
Poisson distribution, historical evidence shows in fact that the standard deviation of
default event frequencies is much larger than

√
µ, the standard deviation of the Poisson

distribution with mean µ. We can espress the expected loss in terms of the probability of
default events

ε j = vj × µj; hence µj =
ε j

vj
= ∑

A:vA=vj

εA

vA
(24)

where

µ =
m

∑
j=1

µj =
m

∑
j=1

ε j

vj
(25)

vj is the common exposure in the exposure band, ε j is the expected loss in the exposure
band and µj is the expected number of defaults in the exposure band. We can derive the
distribution of default losses as with G(z) as the PGF for losses expressed in multiples of
an unit of exposure L

G(z) =
∞

∑
n=0

p(aggregate losses = nxL) zn. (26)

The inputs that we include are therefore the average of the estimate of the probability
of default calculated through the logistic regression and the relative volatility calculated
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through the pool cut-off dates. The exposure included in the model was calculated net of
the recovery rates estimated by the bank. As stated previously, since the data to obtain the
recovery rate are not available, we test the model with bank own recovery rates estimates.
The mean and volatility values of the default probabilities are shown in Table 10. For
the sake of completeness, we have also reported the mean and standard deviation of the
default frequencies.

The model’s estimate on the historical data of the loans terminated in the first available
pool cut-off date provides an indication of the expected loss of 2,661,592 Euro against a
total exposure of 48.92 million Euro with a standard deviation of 670,422 Euro (Table 11).

The real loss of the analysed portfolio calculated on all terminated loans is 2.10 million
euro, lower than the expected loss computed by the model but within the EL− σ threshold.
The estimated expected loss by the model is 5.44% of the capital exposed to risk which
represents the outstanding amount net of recovery rates.

Table 10: The table reports rating (column 1), mean and standard deviation of the estimated
PD from the logistic regression (column 2 and 3), mean and st.dev. of the default frequencies
in the sample (column 4 and 5). We use the estimated PD derived from the logistic
regression and the Recovery Rates to calculate the loss distribution of the portfolio with
the CREDITRISK+™ model.

Rating
Estimate Frequency

Mean
(%)

st.dev
(%)

Mean
(%)

st.dev
(%)

A 0.27 0.26 0.19 0.38
B 0.43 0.41 0.94 0.77
C 0.74 0.64 1.54 0.45
D 1.15 0.92 1.85 0.79
E 2.06 1.51 1.83 0.55
F 3.15 1.94 2.25 0.55
G 5.43 2.52 3.02 0.98
H 8.70 3.15 2.51 1.42
I 17.45 4.41 26.57 21.84
L 33.93 4.02 68.96 8.61
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Table 11: The table illustrated the capital exposed to risk and the thresholds for loss of the
portfolio with unactive loans (either repaid or defaulted) at the pool cut-off date of 2014H1.
The capital exposed to risk is calculated as the sum of all the portfolio exposures net of
recovery rates computed by banks and reported by ED. The total net capital is therefore 48
million euro, with an expected loss (EL) of 2.66 million. The table reports the expected loss
threshold (EL ± σ), 95th and 99th percentile loss.

Threshold Amount (€) Percentage (%)

Capital exposed to risk 48,922,828 100.00
EL − σ 1,991,170 4.07
EL 2,661,592 5.44
EL + σ 3,332,014 6.81
95th percentile 3,894,574 7.96
99th percentile 4,630,839 9.46

The analysis shows that the portfolio before the first pool cut-off date lost a total of
4.29% of its value against an estimated loss of 5.44%. Even though the model with the
input data used overestimates the expected loss, it is in the EL− σ range. Due to the small
number of counterparts and the lack of homogeneity of the data, an estimation error is
possible. With a view to analyzing future performance, only loans active in the last pool
cut-off date are kept in the portfolio and estimates of PD and volatility have been used
as an approximation of the probability of future default. In a sample of 10,000 current
counterparties in last pool cut-off date the capital exposed to the total risk of loss is 247
million with an expected loss of 5.7 million corresponding to 2.31% of the total (Table 12).
This means that after the last available report the portfolio would have lost an additional
2.3% of the capital exposed to risk before the withdrawal.

The average loss in the sample is 2.14% while the estimate of the future loss in the pool
cut-off dates is a further 2.31%. Panel 6a shows the loss distribution for terminated loans
and Panel 6b illustrates the loss distribution for active exposures.

In accordance with the studies conducted by CRIF8, Italian company specialized in
credit bureau and business information, the default rates of Italian SMEs are around 6%,
above those calculated in the analyzed sample. Assuming that recovery rates are similar to
those of companies not included in the portfolio of securitized exposures, we can assume
that the loss profiles for securitized portfolios are less severe than for exposures retained in
the bank’s balance sheet and not securitized.

8Available at https://www.crifratings.com/media/1264/short_default-rates-report-for-
publishing_07012016_ita.pdf.
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Figure 6: The figure illustrates the loss distribution for unactive loans at the pool cut-off
date 2014H1 (Panel (a)) and for active loans at the report date 2016H1 (Panel (b)). We
indicate in the figure loss distribution (black solid line), real loss portfolio loss (black dash-
dot line), EL − σ (blue dotted line), EL (blue dash-dot line), EL + σ (thick blue dash-dot
line), 99th percentile (red solid line) and 95th percentile (red dotted line). It is possible to
calculate the real portfolio loss only on inactive loans, therefore this threshold is present
only in Panel (a).

Table 12: The table reports the capital exposed to risk and the thresholds for loss of the
portfolio with active loans at the pool cut-off date of 2016H1. The capital exposed to risk
is calculated as the sum of all the portfolio exposures net of recovery rates. The total net
capital is 447 million Euro, with an expected loss (EL) of 5.72 million. The table reports the
expected loss threshold (EL ± σ), 95th and 99th percentile loss.

Threshold Amount (€) Percentage (%)

Capital exposed to risk 247,841,024 100.00
EL − σ 4,026,790 1.62
EL 5,729,076 2.31
EL + σ 7,431,362 2.99
95th percentile 8,828,005 3.56
99th percentile 10,608,768 4.28

4 Conclusions

Small and medium enterprises play a main role in the European Union in terms of
jobs and added value in the real economy. These enterprises are largely reliant on bank-
related lending channels and do not have easy access to alternative channels such as the
securitisation mechanism.

In this paper, we investigated the default probability, recovery rates and loss distribu-
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tion of a portfolio of securitised loans granted to Italian small and medium enterprises.
SMEs have a share in Italy that is larger than the average of the European Union and
thus represent an interesting market to be investigated. We make use of loan level data
information provided by the European DataWarehouse and employ a logistic regression to
estimate their default probability.

The aim of our analysis focused on the comparison of the riskiness of securitised loans
with the average of bank lending in the SME market. We collected the SME’s exposures
from the European DataWarehouse and exploited the informational content of the variables
to compute a credit score to estimate the probability of default at a firm level.

Our results indicate that the default rates for securitised loans are lower than the
average bank lending for the Italian SMEs’ exposures as shown in [9]. The investigation
should be extended to the European level in order to compare the different SME markets
using the same timeframe as in the proposed Italian analysis. We leave these aspects for
future research.
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5

Equation (27) reports the regression output for all the analyzed pool cut-off dates.
Figure 7 illustrates the relationship between Score and default probability, Figure 8 shows
the masterscale and Figure 9 shows masterscale and borrower distribution. Table 13 reports
portfolio composition per rating class, Table 14 shows default frequencies in the sample
and Table 15 compares default probabilities estimated by regression model and default
frequencies in the sample.

de f ault2014H1 = β0 + β1WeightedAverageLi f e + β2Payment_Ratio (27)
+ β3Seniority + β4Code_Nace
+ β5Geographic_Region + β6CurrentInterestRateIndex + e

de f ault2014H2 = β0 + β1Seniority + β2Payment_Ratio
+ β3Code_Nace + β4WeightedAverageLi f e
+ β5Geographic_Region + e

de f ault2015H1 = β0 + β1Seniority + β2Payment_Ratio
+ β3Code_Nace + β4WeightedAverageLi f e
+ β5Geographic_Region + e

de f ault2015H2 = β0 + β1Seniority + β2Payment_Ratio
+ β3Code_Nace + β4WeightedAverageLi f e + e

de f ault2016H1 = β0 + β1Seniority + β2Payment_Ratio
+ β4Code_Nace + β5WeightedAverageLi f e
+ β6Geographic_Region + e
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Figure 7: The figure illustrates the relationship between Score (x-axis) and default probabil-
ity (y-axis) for 2014H1 (Panel (a)), 2014H2 (Panel (b)), 2015H1 (Panel (c)), 2015H2 (Panel
(d)), 2016H1 (Panel (e)).
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Figure 8: Master scale for the sample. We illustrate 2014H1 (Panel (a)), 2014H2 (Panel (b)),
2015H1 (Panel (c)), 2015H2 (Panel (d)), 2016H1 (Panel (e)).
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Figure 9: Master scale and borrower distribution for 2014H1(Panel (a,b)), 2014H2 (Panel
(c,d)), 2015H1 (Panel (e,f)), 2015H2 (Panel (g,h)), 2016H1 (Panel (i,j)).
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Table 13: The table shows the portfolio composition per rating across the pool cut-off dates. The distribution of counterparties is mainly
concentrated in the intermediate rating classes.

2014H1 2014H2 2015H1 2015H2 2016H1

Rating Freq. Perc. Cum. Rating Freq. Perc. Cum. Rating Freq. Perc. Cum. Rating Freq. Perc. Cum. Rating Freq. Perc. Cum.

A 4 0.01 0.01 A 31 0.11 0.11 A 57 0.25 0.25 A 106 0.81 0.81 A 42 0.41 0.41
B 30 0.09 0.10 B 1250 4.52 4.63 B 1919 8.57 8.82 B 1306 10.03 10.84 B 95 0.92 1.33
C 301 0.92 1.02 C 2519 9.11 13.74 C 8002 35.72 44.54 C 1506 11.56 22.41 C 523 5.06 6.39
D 716 2.18 3.20 D 1288 4.66 18.39 D 7610 33.97 78.51 D 502 3.85 26.26 D 1562 15.12 21.50
E 3498 10.65 13.85 E 7355 26.59 44.98 E 1775 7.92 86.43 E 1413 10.85 37.11 E 1149 11.12 32.62
F 7272 22.15 36.00 F 12,165 43.97 88.95 F 2060 9.20 95.63 F 6877 52.81 89.92 F 2988 28.92 61.54
G 15,679 47.75 83.75 G 2660 9.62 98.57 G 751 3.35 98.98 G 1163 8.93 98.85 G 3148 30.47 92.01
H 4984 15.18 98.93 H 150 0.54 99.11 H 72 0.32 99.30 H 30 0.23 99.08 H 711 6.88 98.89
I 153 0.47 99.40 I 82 0.30 99.41 I 115 0.51 99.81 I 39 0.30 99.38 I 32 0.31 99.20
L 197 0.60 100.00 L 164 0.59 100.00 L 42 0.19 100.00 L 81 0.62 100.00 L 83 0.80 100.00
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Table 14: The table shows rating (column 1), amount of non-defaulted loans (column 2), amount of defaulted (column 3), default frequency
(column 4) and total number of loans included in the sample per rating class (column 5). We report the statistics for the different pool cut-off dates

2014H1 Non-Defaulted Defaulted pd_actual
(%) Total 2014H2 Non-Defaulted Defaulted pd_actual

(%) Total

A 4 0 0.00 4 31 0 0.00 31
B 30 0 0.00 30 1229 21 1.68 1250
C 298 3 1.00 301 2482 37 1.47 2519
D 707 9 1.26 716 1267 21 1.63 1288
E 3452 46 1.32 3498 7186 169 2.30 7355
F 7169 103 1.42 7272 11,819 346 2.84 12,165
G 15,264 415 2.65 15,679 2587 73 2.74 2660
H 4810 174 3.49 4984 146 4 2.67 150
I 134 19 12.42 153 58 24 29.27 82
L 62 135 68.53 197 46 118 71.95 164

2015H1 Non-Defaulted Defaulted pd_actual
(%) Total 2015H2 Non-Defaulted Defaulted pd_actual

(%) Total

A 57 0 0.00 57 105 1 0.94 106
B 1890 29 1.51 1919 1286 20 1.53 1306
C 7825 177 2.21 8002 1478 28 1.86 1506
D 7366 244 3.21 7610 491 11 2.19 502
E 1742 33 1.86 1775 1377 36 2.55 1413
F 2015 45 2.18 2060 6681 196 2.85 6877
G 715 36 4.79 751 1142 21 1.81 1163
H 69 3 4.17 72 30 0 0.00 30
I 37 78 67.83 115 36 3 7.69 39
L 8 34 80.95 42 25 56 69.14 81

2016H1 Non-Defaulted Defaulted pd_actual
% Total

A 42 0 0.00 42
B 95 0 0.00 95
C 517 6 1.15 523
D 1547 15 0.96 1562
E 1136 13 1.13 1149
F 2929 59 1.97 2988
G 3050 98 3.11 3148
H 695 16 2.25 711
I 27 5 15.63 32
L 38 45 54.22 83
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Table 15: The table compares default probabilities estimated by the regression model (pd_model) and default frequencies (pd_actual) across the pool
cut-off dates. The values of the two statistics are close, especially for the intermediate rating classes.

2014H1 2014H2 2015H1 2015H2 2016H1

pd_model pd_actual pd_model pd_actual pd_model pd_actual pd_model pd_actual pd_model pd_actual

A 0.02 0.00 0.23 0.00 0.69 0.00 0.31 0.94 0.08 0.00
B 0.04 0.00 0.38 1.68 1.05 1.51 0.55 1.53 0.11 0.00
C 0.11 1.00 0.63 1.47 1.72 2.21 0.95 1.86 0.27 1.15
D 0.23 1.26 1.00 1.63 2.54 3.21 1.53 2.19 0.46 0.96
E 0.52 1.32 2.11 2.30 4.31 1.86 2.51 2.55 0.86 1.13
F 1.23 1.42 2.95 2.84 6.37 2.18 3.02 2.85 2.15 1.97
G 2.78 2.65 6.55 2.74 8.90 4.79 5.74 1.81 3.19 3.11
H 5.34 3.49 9.09 2.67 13.12 4.17 9.92 0.00 6.02 2.25
I 13.77 12.42 17.85 29.27 24.81 67.83 16.26 7.69 14.54 15.63
L 35.87 68.53 38.72 71.95 35.17 80.95 28.42 69.14 31.45 54.22
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