Hoeft, Leonard; Mill, Wladislaw; Vostroknutov, Alexander

Working Paper

Normative perception of power abuse

Discussion Papers of the Max Planck Institute for Research on Collective Goods, No. 2019/6

Provided in Cooperation with:
Max Planck Institute for Research on Collective Goods

This Version is available at:
http://hdl.handle.net/10419/204704

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Normative Perception of Power Abuse

Leonard Hoeft
Wladislaw Mill
Alexander Vostroknutov
Normative Perception of Power Abuse

Leonard Hoeft / Wladislaw Mill / Alexander Vostroknutov

March 2019
Abstract

We study how the powerful perceive power abuse, and how negative experience related to it influences the appropriateness judgments of the powerless. We create an environment conducive to unfair exploitation in a repeated Public Goods game where one player (punisher) is given a further ability to costlessly subtract money from others (victims). Punishers who abuse their power rationalize their behavior by believing that free-riding, while forcing others to contribute, is not inappropriate. More importantly, victims of such abuse also start to believe that punishers’ free-riding and punishment are justifiable. Our findings demonstrate the capacity of humans to exculpate abusive behavior.

JEL classifications: C91, C92, K42, H41, D73.
Keywords: power abuse, norms, public goods, punishment.

*We would like to thank Benedikt Werner, Christoph Engel, Eugenio Verrina, Nan Zhang, Angelo Romano and the participants of the Behavioral and Experimental Economics Network seminar in Rome (Sep 2018), the Center for Empirical Research in Economics and Behavioral Science at the Erfurt University, the Kiel Behavioral Economics Seminar and the MPI Bonn Research Seminar for invaluable comments. We gratefully acknowledge funding from the Max-Planck Society and the IMPRS-Uncertainty. All mistakes are ours.

†Max Planck Institute for Research on Collective Goods, Kurt-Schumacher-Straße 10, 53113 Bonn Germany. e-mail: hoeft@coll.mpg.de
‡Department of Economics, University of Mannheim, L7 3-5, 68131 Mannheim, Germany. e-mail: mill@uni-mannheim.de
§School of Business and Economics, Maastricht University, Tongersestraat 53, 6211 LM Maastricht, Netherlands. e-mail: a.vostroknutov@maastrichtuniversity.nl
¶Corresponding author.
1 Introduction

Experimental economics has a long history of investigating prosocial behavior. The consensus is that, contrary to the predictions of models with selfish preferences, people act largely prosocially (Schroeder and Graziano, 2015), which is backed by a fairly uncontroversial norm proscribing selfishness (Cubitt et al., 2011; Krupka and Weber, 2013). As Fehr and Schurtenberger (2018) discuss at length, adherence to social norms seem to permeate most social interactions. Nevertheless, unjust conditions and behavior are pervasive and hard to eradicate. Even developed countries with functioning legal and social systems witness high inequality and unfair distribution of power (Acemoglu et al., 2015; Rose-Ackerman and Palifka, 2016). Indeed, much of the policy debate involves arguing that some part of society is disproportionately favored, thus failing to contribute to the community: they essentially “play a rigged game” (Acemoglu and Robinson, 2008; Dal Bó et al., 2009). This is true despite the fact that most modern societies feature the institutions that encourage prosocial behavior.

The mismatch between individual prosociality and corruption among the powerful may originate from the differences in the normative perception of wrongful acts. On the one hand, the direct and forceful subjugation or mistreatment of others is considered extremely morally inappropriate, which results in few such problematic behaviors in modern societies. Even authoritarian states avoid clear moral violations and choose to veil subjugation of their subjects behind normative reasons (Beetham, 2013). On the societal level, only a small percentage of the population openly violate fundamental norms of fairness and respect for basic human rights in direct interactions with others. Those who steal or harm others are quickly ostracized and are often considered to be antisocial or dangerous.

However, on the other hand, institutions that promote public welfare regularly create unfair opportunities for their functionaries at the expense of the general population. The rich and the powerful are able to exploit their privileged position in questionable ways. Such behaviors often take the form of hypocritical enforcement of institutional rules that the enforcers do not adhere to themselves. Examples include politicians using their influence to attain atypical benefits, police officers using illegal violence, doctors using their connections for special treatment, and managers forcing their coworkers to invest in shared projects that they themselves skimp on. The ubiquity of this kind of practices and the ostensible perception that they are more benign than direct harm may be explained by their indirect consequences and the dilution of norms determining appropriate behavior in complex institutions. Moreover, it is easy to make excuses on the grounds that, even though an individual with power might use his position for personal benefit, he still provides an important social service. In support of these views of normative perception of power abuse, previous research has shown that in complex environments moral disagreement is pervasive (Reuben and Riedl, 2013); people are reluctant to harm others in a personal and direct way, while harming them as a side effect seems more permissible (Greene et al., 2013).
2009); there is a tendency to justify one’s questionable actions with self-serving beliefs about the behavior of others (Di Tella et al., 2015). There is also substantial evidence that people victimized by an unfair treatment may be influenced by and become more accepting of it: experiencing unfair behavior makes the punishment of similar acts in the future less likely (Herz and Taubinsky, 2017); witnessing social norm violations leads to less trust (Banerjee, 2016); experimental subjects from countries with a high corruption index are more likely to lie (Gächter and Schulz, 2016). The reaction to observed norm violations can be “contagious”: criminal behavior is often spatially correlated (Glaeser et al., 1996; Zenou, 2003), which, according to the proponents of the “broken windows” hypothesis, is due to norm violations signaling a lack of commitment of a society to follow norms (Wilson and Kelling, 1982). Similarly, Fisman and Miguel (2007) observed that diplomats from corrupt countries committed more parking violations. On the institutional level, Tabellini (2008, 2010) shows that normative values in the regions that experienced the rule of despotic institutions in the past are less likely to be consistent with “generalized morality,” or the norms of good conduct, than those in the countries that did not endure such rule.¹

In spite of all this evidence that shows how detrimental corruption can be, the relationship between abuse of institutional power and associated normative perceptions of it remains unclear for the most part. Does everybody agree on the norms regarding indirect harm and abuse of power? Do the abusers simply use their advantageous position out of selfishness, or rationalize their behavior? Do victims of the abuse stay true to their moral convictions or assimilate bad norms after being exposed to corrupt institutions?

In this study we tackle these questions by experimentally investigating abuse of power and its causal relationships with normative perceptions by various parties. We implement a Public Goods game that allows one powerful participant (punisher), who fulfills the role of a sanctioning authority, to dictate contribution norms, while being free to exempt himself from them (Hoeft and Mill, 2017). Unlike the established designs, where all players have the means to punish others (e.g., Fehr and Gächter, 2000), this game models the ambivalence of indirect abuse of power: not contributing while forcing others to do so is unfair, but enforcing high contribution norms is beneficial, even if the punisher does not himself comply. In this setting, we investigate the motives of power abusers, the effect that experience of abuse has on the perceived appropriateness of punisher’s actions, and the normative perceptions of outsiders who do not play the Public Goods game. Specifically, in order to understand how the powerful, the powerless, and uninvolved third parties perceive power abuse, or its absence, we elicit their beliefs about the prevalent norms of behavior in their own reference group. This allows us to see if there are differences in normative perceptions of the same situation generated by either being assigned to the position of power or experiencing the effects of presence/absence of power abuse. In

¹See also Becker et al. (2015). It should be mentioned that the opposite process has also been documented: Lowes et al. (2017) report the results of a field experiment showing that strong institutions in the past crowd out rule-following behavior today.
addition, we use the same method to elicit normative beliefs of these three types of subjects in other reference groups, which allows us to test whether they are aware of possible changes in these normative perceptions.\footnote{At least one other study uses a design reminiscent of ours and analyzes the effects of corruption on pro-social behavior (Cagala et al., 2017).}

We find that punishers who abuse power and those who do not differ in their perception of the social norms related to free-riding: abusive punishers believe that it is more appropriate to contribute less than the amounts contributed by the powerless subjects. Players who experienced abuse also believe that it is more appropriate for punishers to free-ride and to punish others than players whose punisher contributed more than them. In fact, the norms elicited from abusive punishers and the victims of their abuse are statistically indistinguishable, as are the norms in groups where no abuse took place. Thus, the norms of the powerless converge to those of the powerful. We also find that punishers, regardless of their behavior, are of an opinion that outsiders, who did not experience the Public Goods game, share their normative beliefs, which is not true for the powerless players. This shows that simply being in power already changes the way people think about the appropriateness of their actions. However, we also find that both punishers and the powerless players think that the normative beliefs in the opposite group are different from those in their own group. Given that the norms of abusive punishers and their victims are the same in their own reference groups, as are the norms of non-abusive punishers and the subjects who played with them, this result demonstrates that punishers and other players do not notice that their own beliefs have been “corrected” by their experience in the Public Goods game.

Our main finding, namely that both powerful and powerless players adjust their beliefs in order to rationalize what they do or what is done to them, dovetails nicely with the Belief in a Just World theory (BJW) proposed by social psychologist Melvin J. Lerner and described in his book of the same title (Lerner, 1980). The main tenet of BJW, which is supported by recent evidence (Friesen et al., 2018; Konow et al., 2018), is that people have a strong tendency to believe that “there is a pattern to events which conveys not only a sense of orderliness or predictability, but also the compelling experience of appropriateness expressed in the typically implicit judgment, “Yes, that is the way it should be.” (Lerner, 1980, p. vii). In other words, this is a desire to maintain a coherent and orderly picture of reality in which good acts are praised and bad ones always punished. In our experiment, where abusive punishers can impose a high contribution norm on others without suffering any consequences from breaking it themselves, such desire to maintain an orderly picture of the world translates into rationalization of abusive behavior by the punishers, and its exculpation by the powerless, who are unable to punish the abuser.

Our findings draw a rather grim picture in which the powerful abuse their position, believing that they have done nothing wrong, while the powerless suffer from the abuse, but consider their situation normatively appropriate. If our results can be extrapolated to real economic environ-
ments, they can explain a relative stability of corrupt institutions, since no party involved feels that anyone is doing anything inappropriate. This idea finds support in a recent World Bank report (World Bank Group, 2017), which claims that top-down attempts at fighting corruption fail due to social norms that support it on all levels of social hierarchy.

2 Experimental Design

To study the abusive behavior and the normative perception of power, we conducted a two-part experiment. The first part is very similar to the design used in Hoeft and Mill (2017). In particular, a standard Public Goods game (the PGG) is implemented for 15 rounds with one subject assigned to the additional role of punisher throughout the game. The second part utilizes the design of Krupka and Weber (2013) to elicit subjects’ normative perceptions of different actions in the game. More specifically, subjects in power, subjects not in power, and unrelated outsiders are asked to provide normative evaluations of several situations that could take place in the PGG.\(^3\)

2.1 Public Goods Game

All participants are randomly assigned a fixed role, either punisher or non-punisher, and appointed to a group of four, in which they remain for the 15 rounds of the PGG (partner matching). Each round of the PGG consists of three stages.

Stage 1. Contribution to the Public Good. The first stage is a standard PGG. Each of the four participants is endowed with 20 tokens and is asked to allocate this endowment between private and public accounts (1 token = 20 Euro cents). Tokens allocated to the private account are the subject’s to keep. Tokens allocated to the public account \(c_i\) have a marginal per-capita return (MPCR) of 0.5, so that each group member receives 0.5 times the total contribution. The payoff \(\pi_i\) of participant \(i\) is defined as

\[
\pi_i = 20 - c_i + 0.5 \cdot \sum_{j \in \{1..4\}} c_j. \tag{1}
\]

Stage 2. Punishment. In the second stage, the punishment decisions are made. While the three non-punishing group members (participants \(A, B,\) and \(C\)) are just shown a blank screen asking them to wait for the decision of the punisher, the punisher (participant \(D\)) is shown the contributions and current payoffs of all group members. The punisher is then asked to indicate how many points he would like to deduct from the payoff of subject \(i (\sigma_i, i \neq D).\tag{4}\) To rule out

\(^3\)Subjects only learned the nature of the task in the second part after the first part was concluded.

\(^4\)To avoid framing and demand effects, we referred to the act as “reducing the payoff” and not as “punishment.”
reputation effects from previous rounds, the information about non-punishing participants is presented to the punisher in random order in each round (Fehr and Gächter, 2000). The overall maximal possible deduction in every round is restricted to 30 tokens, which is enough to deter every participant from free-riding.\footnote{Note that the individual benefit of free-riding, compared to full contribution, is 10 tokens. If the punisher were confronted with three free-riders and utilized all 30 punishment tokens, he could make every free-rider indifferent between free-riding and fully contributing by subtracting 10 tokens from each of them. As soon as one subject contributes more than zero, the punisher can already make contributing a preferential option. Hence, 30 tokens are sufficient to ensure punishment to be a deterrent.} The punishment is costless for D and unused punishment tokens are forfeited.\footnote{Making punishment costly would change the budget constraint of the punisher, thus making his contribution decisions incomparable to the contribution decision of the non-punishers.} Thus, the punisher could reduce the payoff of the non-punishers by 30 tokens at most, but his payoff would not be directly influenced by punishing (as punishment is costless) or not punishing (as unused tokens are forfeited). This is to ensure that the contributions of the punisher can be directly compared to the contributions of others. The payoff π_i of a non-punisher $i \neq D$ is given by

$$\pi_i = 20 - c_i + 0.5 \cdot \sum_{j \in \{1..4\}} c_j - \sigma_i. \quad (2)$$

The payoff of the punisher is described by equation (1).

Stage 3. Feedback. The third stage provides feedback to the participants. More specifically, they are informed about their own contribution to the private and group accounts, their own punishment (reduction), and their resulting payoff. Further, they are also informed about the contributions of all other group members labeled as players A, B, C, and D throughout all rounds. Importantly, subjects are able to track the contribution behavior of the punisher. Non-punishers are not informed about the punishments meted out to others.

2.2 Norm Elicitation Task

To elicit normative perception, we utilize the norm elicitation task by Krupka and Weber (2013). More specifically, subjects have to indicate how socially appropriate they find a certain action (five actions are assessed) in a certain situation (three situations are assessed). In order to be paid, participants are asked to indicate the modal appropriateness estimation of a specific group of other participants. If their assessment of the social appropriateness of a specific action in a specific situation in a specific group was identical to the modal response of other participants in this group, they are paid €8, otherwise they are paid €0. The three situations, with the corresponding five actions to be normatively assessed, are as follows:

\footnote{In the alternative case of not forfeiting punishment tokens, the punisher could contribute more in stage one, anticipating extra gains in the second stage, which again would make the contribution decisions of punishers and non-punishers incomparable.}
Question 20 Suppose the others (A, B, C) contributed 20 tokens each to the group account in the previous round. How socially appropriate are the following decisions by D? D contributes 0, 5, 10, 15, 20 tokens to the group account.

Question 10 Suppose the others (A, B, C) contributed 10 tokens each to the group account in the previous round. How socially appropriate are the following decisions by D? D contributes 0, 5, 10, 15, 20 tokens to the group account.

Punishment Question Suppose the others (A, B, C) contributed 10 tokens each to the group account in the previous round. How socially appropriate is it for D to reduce the payoff of A, B, or C, if he contributed the following amounts? D contributes 0, 5, 10, 15, 20 tokens to the group account and reduces the payoff of A, B, or C.

In each of the three situations, subjects rate the social appropriateness of each action (contribution by D of 0, 5, 10, 15, 20). For each action, the appropriateness is chosen on a seven-point Likert scale: very socially inappropriate, socially inappropriate, somewhat socially inappropriate, neither appropriate nor inappropriate, somewhat socially appropriate, socially appropriate, very socially appropriate.

In the first task, to assess the social appropriateness of these situations, punishers indicate what level of appropriateness they think the mode of other punishers in the current session would choose (punishers’ own reference group). Similarly, players A, B, and C indicate the level of appropriateness that they think the mode of other such players in the current session would choose (ABCs’ own reference group). Next, punishers/non-punishers are asked to evaluate the levels of appropriateness chosen by the mode of the non-punishers/punishers in the current session. After that, both punishers and non-punishers evaluate the levels of appropriateness expressed by the mode of a third group of people. This group consists of independent outsiders who did not participate in Part 1 of the experiment (the PGG), but were given the same instructions as punishers and non-punishers. These subjects simply had to indicate the appropriateness levels that they thought the mode of punishers, non-punishers, and other independent outsiders in their session have chosen.

Thus, subjects were randomly assigned to three groups: punishers, non-punishers, and independent outsiders, who did not take part in the PGG. All subjects in these groups first had to evaluate social appropriateness ratings of subjects in the same role. Then, subjects in each group evaluated social appropriateness in the other two groups.

8We chose seven instead of five statements to reduce a possible demand effect, i.e., choosing different appropriateness levels for each of the five actions. See Tables 4, 5, and 6 in Appendix A for further details.
2.3 Payment

At the end of the experiment, subjects were paid for three tasks: the PGG, the appropriateness evaluation in their own reference group, and the guess of the appropriateness evaluation in the other two reference groups.

1. Subjects in the role of punishers and non-punishers were paid for one randomly chosen round of the PGG.

2. One random action from one random situation of Part 2 was drawn to determine the payment. In case a subject evaluated the payoff-relevant action in the payoff-relevant situation as the mode of other subjects in the same role, she obtained €8, and zero otherwise.

3. To determine the payoff for the guess of the appropriateness evaluation in other reference groups, one random situation and one random action was drawn in one random reference group. If a subject evaluated the payoff-relevant action in the payoff-relevant situation as the mode of others in the randomly determined payoff-relevant group she obtained €8 and zero otherwise.

Overall, the average payoff for punishers and non-punishers was €16.50 (including a show-up fee of €5). The average payoff for independent outsiders (who did not take part in the PGG) was €9.30 (including the show-up fee).

2.4 Subjects

289 participants (60% female) were recruited with the online registration software Hroot (Bock et al., 2014). The experiment was conducted at the Bonn DecisionLab and consisted of 9 sessions. The first session was run with 17 subjects who participated only in the second part and only in the appropriateness evaluation (not the guess of the appropriateness evaluation) to make further payments possible. 7 sessions were conducted with participants in the roles of punishers and non-punishers (4 sessions with 32 subjects and 3 sessions with 28 subjects), and a further 2 sessions with 30 participants each were conducted in the role of independent outsiders.

The participants’ age ranged from 17 to 73 years (median = 22). Most were bachelor students (semester median = 3). The average earnings were €14.50 (including a €5 show-up fee). The experiment lasted 1.5 hours (including seating, instructions, payoff, etc.). All measurements were computerized with the experimental software z-Tree (Fischbacher, 2007).

Participants were randomly assigned to computer cubicles. They received written instructions separately and were given an opportunity to ask questions for each task in the experi-

9To determine the payoff of punishers and non-punishers if their guess of the appropriateness evaluations of independent outsiders was deemed payoff-relevant, we needed the actual appropriateness evaluation of this group.
ment. After taking part in the PGG subjects were given on-screen instructions for the norm elicitation task and made their decisions in this task. After that, they filled in sociodemographic information and then were presented with their payoff information and received their payoff privately.

3 Hypotheses and Predictions

Let us call subjects who played in role D in the PGG punishers, subjects who played in roles A, B, and C victims, and subjects who did not participate in the PGG outsiders. Since the focus of this study is on understanding the motives behind abusive behavior of punishers and, more importantly, on its consequences for victims’ normative perception we will call punishers who contribute less than victims bad punishers, and punishers who contribute at par with or more than victims good punishers. Respectively, bad victims are subjects in a group with a bad punisher, and good victims are those in a group with a good punisher. We will refer to these groups as good and bad groups.

In the PGG punishers are free to choose any level of contribution and punishment in the sense that they are not influenced by punishment from other subjects. Victims, on the other hand, can be forced to contribute a certain amount under threat of punishment. Therefore, it is reasonable to assume that punishers, if they care about following norms, will base their choices in the PGG on what they perceive as socially appropriate. A particular experience during the game should not influence punishers’ norms, since they are never coerced into choosing any specific action. Victims, however, can be forced to do the punisher’s bidding, which can be inconsistent with what they would have done if they could choose freely. Thus, their experience can have an effect on the perception of norms.

Our null hypothesis is that subjects have robust and common beliefs about social appropriateness of actions in the PGG. Hence, good and bad punishers are expected to have the same social appropriateness evaluations, while difference in their behavior comes from bad punishers’ not caring about following norms in general (Kimbrough and Vostroknutov, 2016). Similarly, good and bad victims are expected to have the same social appropriateness evaluations. Some victims experience power abuse while others do not, but they all agree on how socially appropriate the actions in the PGG are. The same should hold for outsiders: just understanding the rules of the game without playing it is sufficient to know how socially appropriate different ac-

10 The instructions, as well as an English version of the handout and the screenshots of the experiment, can be found in Appendix E.

11 As Kimbrough and Vostroknutov (2016) we think of normative values of actions in each period of the PGG as being conditional on the behavior observed in the previous period. In this sense, conditional cooperation, for example, is part of the norm. So, when we say that punishers’ norms are not changed by their experience we imply that punishers have fixed normative beliefs that, nevertheless, may still depend on the choices of other players in the previous period.
tions are. Thus, the appropriateness evaluations of punishers and victims in both good and bad groups as well as outsiders are expected to be identical.

Hypothesis H0 *All types of subjects have common beliefs about social appropriateness that are not modulated by experience.*

The alternative hypothesis is that the normative perception of power abuse is different for good and bad punishers and that the experience of abuse changes normative beliefs of victims. Specifically, bad punishers think that it is socially appropriate for them to contribute less than victims, while good punishers think that it is not. This difference in beliefs instead of the difference in the propensity to follow norms, as was hypothesized in H0, drives their behavior (though, see the discussion in Section 5). Victims’ normative beliefs are changed by their experience. Here there are two possibilities. The first one is that victims who experienced abuse realize how bad it is and start to believe that it is less appropriate for punishers to contribute less than them as compared to good victims, who never experienced abuse. The second possibility is that bad victims rationalize their situation by starting to believe that power abuse is normatively acceptable, thus thinking that it is more appropriate for punishers to contribute less as compared to good victims. Given this intuition we formulate the set of alternative hypotheses.

Hypothesis P1 *Bad punishers consider it more socially appropriate to contribute less than victims, while good punishers find it inappropriate.*

Hypothesis V1 *Bad victims think that it is less appropriate for punishers to contribute less than them as compared to good victims.*

Hypothesis V2 *Bad victims think that it is more appropriate for punishers to contribute less than them as compared to good victims.*

4 Results

4.1 Good and Bad Groups

In this section we present the summary of results for the PGG and explain the method of analyzing the data for elicited norms. In order to see whether punishers’ norms shape their behavior, we classify them according to their average contribution to the public good. Notice that for punishers the choice of how much to contribute is not constrained by punishment coming from other subjects. Moreover, this choice does not have to depend on the contributions of others, since a punisher can, in principle, force them to contribute any amount she wishes by applying punishment. Therefore, if punishers adhere to the norms in their choices, the average contribution should reflect this connection.
Figure 1: Histogram of average contributions by punishers divided into terciles.

Figure 1 shows the histogram of the average contributions by punishers (53 of them). The two red lines represent the division of the distribution into terciles. In most of the analyses that follow, we will compare choices in the PGG groups that belong to either the bottom tercile (average contribution less or equal to 15.13) or the top tercile (average contribution greater or equal to 19). In line with the previous section, we will refer to the groups of subjects from bottom and top terciles as bad and good groups with the corresponding adjectives for punishers and victims.

Figure 2: **Left panel.** Average contributions by punishers and victims in the top and bottom terciles of the distribution of punishers’ average contributions. **Right panel.** Average total punishment in the same terciles. The error bars stand for ±1SE.

First, we look at the dynamics of contributions in good and bad groups. Figure 2 (left panel) shows the average contributions of good and bad punishers and victims. There is a large difference in contributions of good and bad punishers. The former act very cooperatively and contribute on average more than victims in their groups. In addition, they apply punishment to increase the contributions of victims to their level, which is evident from the fact that good

12 We chose to use the top and bottom terciles for expositional reasons. All main results go through with the punishers’ average contributions taken as a continuous variable.
victims’ contributions increase with time. Bad punishers contribute little themselves, but try to push the contributions of victims above their own contribution level. These observations make our choice of classifying the punishers into good and bad groups consistent with the previous section: good punishers do not abuse their power, since they contribute on average more than good victims, while bad punishers do abuse their power since they contribute less than their victims. The right panel of Figure 2 shows that more punishment is used by bad than by good punishers, though, taken period-by-period and together, the amounts subtracted are not significantly different. Overall, we can conclude that the victims in the bad groups continuously feel that the cooperative norm imposed on them by their punishers keeps being violated by punishers themselves, and there is nothing victims can do about it. Conversely, in the good groups, punishers, if anything, serve as role cooperative models. This suggests that the victims in bad and good groups have rather different experiences and that it can have consequences for their perception of norms.

Figure 3: Norms expressed by good and bad punishers in their own reference group.

Next, we look at the norms elicited with the norm elicitation tasks (Krupka and Weber, 2013). Figure 3 shows the norms expressed by good and bad punishers with the reference group being other punishers (own reference group). The leftmost graph shows the answers to Question 20. We see that everyone finds full contribution to be very socially appropriate and zero contribution to be very inappropriate. The difference between the two groups is noticeable for the intermediate answers: good punishers find it less appropriate than bad punishers to contribute intermediate amounts. From the perspective of the norm-dependent utility maximization (Kessler and Leider, 2012; Kimbrough and Vostroknutov, 2016; Thomsson and Vostroknutov, 2017), this means that good punishers should make higher contributions than bad punishers since the derivative of the good punishers’ norm function is higher in the vicinity of full contribution, assuming that the norms are equal in the endpoints (hypothetical punishers’ contributions of 0 and 20).^13 The answers to Question 10 (middle graph) show that both bad and good punishers are conditional

^13We have in mind the utility of the form \(u(x) + \phi_i g(x) \), where \(x \) is the amount kept in the private account; \(u(x) \) is the consumption utility; \(\phi_i \geq 0 \) is the subject-specific propensity to follow norms; and \(g(x) \) is the norm function shown on the left graph of Figure 3 (reversed, since the graph shows appropriateness as a function of contributions instead of money kept).
cooperators: they consider contributing anything above 10 tokens as approximately equally appropriate, but contributing less than 10 as inappropriate. If norm-dependent utility is maximized, such a norm should lead to contributions of no more than 10, since contributing more decreases consumption payoff, but does not increase utility from norm compliance. Similarly to Question 20, good punishers consider it less appropriate to contribute any intermediate amount between 0 and 20, while at these endpoints the norms are roughly the same. By the above argument, this again implies that good punishers should contribute more than bad ones. Finally, the rightmost graph shows the answers to the Punishment Question. We see that all punishers agree that punishing after punisher contributed 0 herself is very inappropriate, but good punishers find punishing in general less appropriate than bad punishers. Since punishment does not influence the consumption utility of the punishers, this should lead to less punishment by good punishers than by bad punishers given the same contributions of others.

Finally, we demonstrate that the connection between the expressed norms and behavior is indeed in accordance with the norm-dependent utility maximization. Notice that the norms, expressed by the participants in our experiment, are functions. Therefore, in order to relate them to contributions and punishment levels in the PGG, we need to transform them into single numbers. We consider the average norms over five levels of hypothetical punisher’s contributions. Appendix B provides argumentation for why this is a legitimate way to measure normative perceptions.

Since the norms we elicit concern the beliefs of punishers, we can only use punishers’ behavior to test the norm-dependent utility specification, as this is the only group that provides normative evaluations of their own choices. We start with punishers’ attitudes towards free-riding, which are elicited by means of Question 20 in their own reference group. We expect that punishers’ average contributions should be correlated with how socially appropriate they find different levels of contributions after victims have contributed all 20 tokens in the previous period.\(^1\) The Spearman’s rank correlation between the average contributions and the average norms is \(\rho = -0.32\) (\(p = 0.020\)), which means that the lower the average norm, the higher is the average contribution, exactly in line with the norm-dependent utility specification. The linear regression in Table 1 (the leftmost column) shows that the average norm predicts average contribution (the descriptions of all variables used in the regressions can be found in Appendix C). The smallest average norm among punishers is 2.2 and the highest is 5. Thus, the regression predicts contributions in the interval \([9.7, 18]\), which means that the norms have a large influence on contributions. For Question 10 we find similar results. The Spearman’s correlation between punishers’ average norms and average contributions is \(\rho = -0.33\) (\(p = 0.015\)). The middle column in Table 1 shows the effect close in size to Question 20.

\(^1\)This directly follows from the tests of norm-dependent utility performed in previous studies (e.g., Thomsson and Vostroknutov, 2017).

For the norms expressed by punishers in the answers to Punishment Question, we find
<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>punishers’ average contribution</th>
<th>punishers’ average contribution</th>
<th>punishers’ total punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp-q20</td>
<td>–2.693**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.162)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pp-q10</td>
<td>–2.098*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.189)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pp-qpun</td>
<td>2.328**</td>
<td></td>
<td>2.328**</td>
</tr>
<tr>
<td></td>
<td>(1.154)</td>
<td></td>
<td>(1.154)</td>
</tr>
<tr>
<td>constant</td>
<td>24.591***</td>
<td>24.547***</td>
<td>–0.821</td>
</tr>
<tr>
<td></td>
<td>(3.781)</td>
<td>(5.087)</td>
<td>(3.552)</td>
</tr>
<tr>
<td>N punishers</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 1: OLS regressions of punishers’ average contributions and total punishment on the punishers’ average norms in own reference group. Errors are robust. Standard errors in parentheses. * – p < 0.1; ** – p < 0.05; *** – p < 0.01.

that they are positively correlated with the amount of total punishment (Spearman’s $\rho = 0.29$, $p = 0.037$), which is again consistent with norm-dependent utility: the more appropriate the punishment, the more of it is being used. The regression in Table 1 (the rightmost column) also supports this finding. For the range of average punishment norms $[1, 4.4]$, the regression predicts total punishment in the interval $[1.5, 9.4]$, which again is non-negligible.

These results not only support the validity of our measurement of norms and the norm-dependent utility specification, but also provide the first evidence for Hypothesis P1: punishers who think that it is appropriate to free-ride and punish do so to a larger extent than those who consider these behaviors inappropriate. This suggests that the difference in punishers’ behavior comes from the difference in their normative beliefs.

Result 1. *The norms expressed by punishers do reflect how much they contribute to the public good and how much they punish the victims, which supports norm-dependent utility specification and constitutes the first evidence of Hypothesis P1.*

4.2 Punishers’ Norms

Result 1 provides some support for Hypothesis P1. However, the existence of a correlation does not guarantee that there is a significant difference in norms between good and bad groups.

Figure 4 shows punishers’ average norms for the three questions in their own reference group (Figure 3 shows same norms as functions). We see that there is a significant difference in the average norms between good and bad groups for Question 20 (permutation test, $p = 0.025$): bad punishers consider it more appropriate than good punishers to free-ride after others have contributed the full amount. A similar difference can be observed for Question 10 (permutation test, $p = 0.037$).

Here and below, all tests are two-tailed. We chose a permutation test over a rank-sum test, since the latter is not appropriate for our data.
test, \(p = 0.016 \)): bad punishers consider it more appropriate than good punishers to contribute small amounts after victims have contributed 10 tokens in the previous period. For the Punishment Question the difference is not significant (permutation test, \(p = 0.132 \)). Table 8 in Appendix D reports similar results as regressions for all punishers (not only good and bad ones) and with punishers’ average contribution treated as continuous variable. These findings support Hypothesis P1: bad punishers justify their behavior to themselves by believing that contributing little is not that bad from the moral perspective.

Result 2. Punishers’ norms are in line with Hypothesis P1. Bad punishers free-ride and believe that their behavior is socially appropriate. Good punishers contribute a lot and believe that doing otherwise is inappropriate.

4.3 Victims’ Norms

All our results concerning punishers’ norms stemmed, to some extent, from the fact that we divided the groups into bad and good according to punishers’ average contributions. This, however, is not true for victims, who were assigned randomly to good and bad groups. Therefore, any differences in norms that we detect between good and bad victims must be due to the expected test of difference in means, but of difference in distributions. Therefore, it can be significant even when the means are not statistically different. The permutation test that we use is a direct test of difference in means.
rience that they had during the PGG.16 This gives us an opportunity to see how the oppressive and corrupt behavior of bad punishers and the cooperative behavior of good punishers changes the victims’ perception of the appropriateness of the punishers’ actions.

Figure 5: Average victims’ norms in own reference group. For each graph, y-axis ranges from minimum to maximum value of the corresponding average norm. Significance levels of the permutation test of means are reported. ** – $p < 0.05$; *** – $p < 0.01$.

Figure 5 shows the average victims’ norms in their own reference group (Figure 9 in Appendix D shows the same norms as functions). Answers to Question 20 tell us what victims believe is the common attitude among the victims towards the punishers’ free-riding. We see that bad victims consider it significantly more appropriate than good victims (permutation test, $p = 0.002$). This result is in support of Hypothesis V2: bad victims justify the low contributions of punishers by believing that this is socially appropriate. The leftmost column in Table 9, Appendix D, demonstrates the same point with a regression and a rank correlation that use all data instead of only good and bad groups and treats punishers’ average contribution as a continuous variable.

Figure 5 shows that bad victims also consider it significantly more appropriate than good victims when punishers subtract money from them (the results are the same for all data: the rightmost column in Table 9, Appendix D). Importantly, unlike punishers, the victims are not those who punish, but those who receive the punishment. Therefore, bad victims, instead of seeing the hypocritical punishment, which comes from a person who contributes less than them, as

16In fact, the contributions of good and bad victims are statistically identical in the first round of the PGG: they do not differ in their mean, median, minimum, or maximum contribution. Hence, all results for victims can be causally attributed to the behavior of their punishers.
“unfair” and thus inappropriate, start to believe that it is actually justified (Hypothesis V2). These two results demonstrate an astounding effect that negative experiences can have on the perception of appropriateness.

Result 3. The victims’ norms are in line with Hypothesis V2. Bad victims see low contributions of the punishers and the punishment that they receive as more appropriate than good victims.

4.4 Comparison of Victims’ and Punishers’ Norms

We have seen that victims’ norms are modulated by the experience in the PGG, and that the bad victims’ norms are higher than the good victims’ ones, exactly same relationship that we found between punishers’ norms in good and bad groups. The next logical step is to test if the norms of victims and punishers are similar in good and bad groups.

<table>
<thead>
<tr>
<th>Group:</th>
<th>Good</th>
<th>Bad</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 20</td>
<td>Victims</td>
<td>3.172</td>
<td>3.576</td>
</tr>
<tr>
<td></td>
<td>Punishers</td>
<td>3.200</td>
<td>3.717</td>
</tr>
<tr>
<td>Question 10</td>
<td>Victims</td>
<td>4.309</td>
<td>4.458</td>
</tr>
<tr>
<td></td>
<td>Punishers</td>
<td>4.084</td>
<td>4.482</td>
</tr>
<tr>
<td>Punishment Question</td>
<td>Victims</td>
<td>2.691</td>
<td>3.043</td>
</tr>
<tr>
<td></td>
<td>Punishers</td>
<td>2.831</td>
<td>3.235</td>
</tr>
</tbody>
</table>

Table 2: Average norms of victims and punishers in own reference groups. No significant differences in permutation tests except good groups comparison for Question 10 ($p = 0.094$).

Table 2 shows victims’ and punishers’ average norms in their own respective reference groups. We see that the norms, when considered separately in good and bad groups, are not significantly different from each other (except for one comparison with $p = 0.094$). For example, for Question 20, the good victims’ average norm is 3.127 and the good punishers’ average norm is 3.200, which are almost identical. Similarly, bad victims’ and punishers’ norms are 3.576 and 3.717, respectively. This clearly demonstrates that the victims’ norms in good and bad groups have converged to the norms of good and bad punishers. The norms expressed by all victims and punishers (the rightmost column in Table 2) are also not significantly different from each other.

Result 4. Victims’ norms in good and bad groups converge to the norms of good and bad punishers.

4.5 Norms in Other Reference Groups

In this section we conduct additional analyses in order to see if subjects are able to correctly anticipate the normative convergence that we reported in the previous section. To do that we analyze the subjects’ normative evaluations in other reference groups. This, however, cannot be done by simply comparing average norms in the own and the other reference groups. The
reason is that subjects, when they decide which norms are prevalent in other groups, might be biased by the norm that they think exists in their own reference group. It can happen that a norm that a subject thinks is in place in his own group weighs in her judgement about the norms in other groups.

<table>
<thead>
<tr>
<th>Group:</th>
<th>Punishers</th>
<th>Victims</th>
<th>Outsiders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference group:</td>
<td>Victims</td>
<td>Outsiders</td>
<td>Punishers</td>
</tr>
<tr>
<td>Question 20</td>
<td>0.776</td>
<td>0.821</td>
<td>0.610</td>
</tr>
<tr>
<td>Question 10</td>
<td>0.602</td>
<td>0.647</td>
<td>0.400</td>
</tr>
<tr>
<td>Punishment Question</td>
<td>0.561</td>
<td>0.620</td>
<td>0.453</td>
</tr>
<tr>
<td>N subjects</td>
<td>53</td>
<td>53</td>
<td>159</td>
</tr>
</tbody>
</table>

Table 3: Spearman’s rank correlations of average norms between own reference group and other two reference groups. All \(p < 0.001 \).

Table 3 shows Spearman’s rank correlations of norms between the own reference group and the two other reference groups. The correlations are indeed rather high for all questions and groups. Thus, it is true that subjects, when assessing what norms other reference groups may have, rely heavily on the individual perception of the norm in their own reference group. It does not necessarily mean that they do not understand that other subjects might have different ideas about what is socially appropriate. However, this does imply that subjects with extreme opinions about the prevailing norm will under- or overestimate how distant they are from the average opinions about social appropriateness.

In order to estimate the “true” norm that subjects think is present in other groups, we propose a method of de-biasing the expressed norms. Suppose that subject \(i \) of type \(\tau \) (a punisher, victim, or outsider) expresses an average norm \(x_i \) in her own reference group. Assume also that there is a true average norm \(g_\tau \) that all subjects of type \(\tau \) try to express when guessing the norm in some other group. However, subject \(i \) is biased, in that instead of expressing \(g_\tau \) she expresses some convex combination \(y_i = \alpha_\tau x_i + (1 - \alpha_\tau) g_\tau \), which we observe. The problem now is to find estimates of \(g_\tau \) and \(\alpha_\tau \) from known pairs \((y_i, x_i)\). Let us regress \(y_i \) on \(x_i \) and obtain the parameters of the linear fit: \(y_i = c + bx_i \), where \(b \) and \(c \) are the coefficients from a linear regression. Then, \(g_\tau \) and \(\alpha_\tau \) are easily expressed in terms of \(b \) and \(c \) as \(\alpha_\tau = b \) and \(g_\tau = c / (1 - b) \). Thus, all we need to do is to run linear regressions of norms expressed by subjects in other groups on the norms from their own group and calculate \(\alpha_\tau \) and \(g_\tau \) for each case.

Table 10 in Appendix D shows the regressions of average norms in victims’/punishers’ reference groups on the average norm in the own reference group for punishers/victims. Each regression estimates a single parameter \(b = \alpha_\tau \) (coefficient on the variable average norm) and

\[\text{17}\] For example, Eijkelenboom et al. (2018) find that in a social responsibility experiment, where subjects make risky choices for others, those with extreme risk preferences think that the average risk attitude in the population is much closer to their own risk preference than it actually is. Their own risk preferences bias their estimates of the population average.
The coefficients on the variable average norm, the estimates of α_τ for each question, are rather high. However, we are interested in the estimates of g_τ and how they compare to the average norms that punishers and victims express in their own groups.

Figure 6: Estimates of g_τ minus the average norms in own reference group for punishers and victims. Above/below zero values mean that punishers/victims think that victims/punishers consider actions in a given question more/less socially appropriate than they themselves do in their own reference group. ** and * denote the statistical significance at the 1 and 5 percent level.

Figure 6 shows the values of g_τ minus the average norm in the own reference group for punishers and victims. We see that both victims and punishers think that the norms in the other group are different from their own. Specifically, victims think that punishers consider free-riding and punishing more appropriate than other victims. This suggests that victims realize that punishers may abuse their power because they consider it socially appropriate. Punishers think the opposite about the normative evaluations of victims. They seem to realize that victims might consider punishers’ free-riding and punishment less appropriate than other punishers. Nevertheless, the most important observation about these results is that the normative evaluations in other reference groups are inconsistent with the fact that victims’ and punishers’ norms are in fact the same, as we have shown in the previous section. This demonstrates that both punishers and victims do not notice that their choices and experience in the PGG have had influence on their own and others’ normative perception and that their normative beliefs have converged.

To provide more evidence of this effect we look at the normative evaluations of outsiders, who did not choose in the PGG (Table 13 in Appendix D shows the regressions of outsiders’ norms in punishers’ and victims’ groups on their own norms). Figure 7 shows the differences between the estimates of g_τ’s and respective average norms in outsiders’ own reference group. We see that outsiders think that victims consider it less appropriate to free-ride and punish than

\footnote{We do not consider bad and good groups separately, since the estimates are roughly the same for both. See Figure 10 in Appendix D.}
Outsiders think that victims’ and punishers’ beliefs diverge from their own in different directions, which is again inconsistent with the finding that victims’ and punisher’s norms are the same. Thus, outsiders are also oblivious to the influence that experience in the PGG has on normative beliefs.

Result 5. Punishers and victims do not realize that their choices and experience in the PGG have an effect on their normative evaluations. The same is true for outsiders’ normative evaluations of victims’ and punishers’ norms.

It may seem strange that the normative perception of power abuse is identical between punishers and victims but they are not aware of this fact. This is an important finding, but we leave its discussion for Section 5 and continue with the last piece of evidence regarding punishers’ and victims’ beliefs about outsiders’ norms. Notice that in this case both punishers and victims are asked exactly the same question. Thus, the differences that we might observe should come from the assigned roles.

We see from Figure 8 that punishers do not show any significant deviations from the norms in their own reference group when asked about the norms among outsiders. For example, for Question 20 the coefficient on the variable average norm is 0.977 and intercept is insignificant (the leftmost column of Table 11 in Appendix D). Thus, most punishers are just repeating the norm that they expressed in their own reference group. As a result, the estimate of g_T is very large, negative, and not significant (≈ -10, not shown on the graph). Similarly, for Question 10 and the Punishment Question we do not detect any significant difference between the punishers’ estimates in the own reference group and in the outsiders’ group. Victims, however, think that outsiders consider free-riding less appropriate than themselves, and punishing more appropriate.

The same graph for bad and good groups separately is shown in Figure 11 in Appendix D.
ate. This is very different from punishers’ opinion on outsiders and makes us conclude that being assigned the role of a punisher has an impact on normative beliefs. In particular, punishers start to believe that uninvolved outsiders share their normative convictions, which serves as an additional self-rationalization of their behavior.

Result 6. Punishers believe that outsiders have the same norms as themselves, which is an additional way to rationalize their behavior.

5 Discussion

Summary of the Results. The six results above provide a coherent picture of how the possibility to abuse power influences punishers, victims, and their beliefs about the appropriateness of abusive behavior. The power over others has a significant influence on the social beliefs of punishers. Those who actually choose to abuse their power convince themselves that they are not violating any norms by doing so, while punishers who contribute more than others believe that abusing power is inappropriate (Results 1 and 2). The victims’ beliefs about the appropriateness of free-riding and punishment are changed by their experience in the PGG (Result 3) and converge to those of their punishers, good or bad (Result 4). This convergence can be seen as a defensive mechanism that restores a meaningful world view when unfair circumstances cannot be changed (Lerner, 1980).²⁰ This presents the main finding of this paper: experiencing abuse that cannot be prevented or punished results in its acceptance.

²⁰Importantly, Lerner (1980) also demonstrates that when victims of unfair treatment or outside observers do have the means to punish wrongdoing, their beliefs do not adjust in the direction of justifying such behavior.
When we analyze the beliefs about norms in other reference groups, we find that punishers hold an opinion that victims consider free-riding and punishment less appropriate, while victims think that punishers consider them more appropriate (Result 5). However, we know that the punishers’ and the victims’ beliefs in their own reference groups are identical (Result 4). Therefore, it seems that both victims and punishers are not aware that belief adjustment takes place, which results in all of them having wrong beliefs about the other reference group. This being said, we still think that there might be circumstances in which these beliefs, albeit incorrect, can nevertheless reveal themselves through actions with tangible consequences.

Finally, we find a significant difference in how punishers and victims express their beliefs about the norms of the outsiders. The punishers think that the outsiders’ norms are the same as their own, which suggests that just being assigned to a position of power convinces them that what they do, abusing the power or not, is “right” in the eyes of outside observers (Result 6). Such self-deception can lie at the core of the mechanism that sustains power abuse. At the same time, the victims are sensitive to the fact that the outsiders, who did not directly experience the actions of the powerful, might have a different opinion about the appropriateness of the punishers’ choices. This further strengthens the conclusion that the powerful use any means to justify their behavior to themselves.

Rule-Following Propensity and the Belief in a Just World. From many studies (e.g., Kimbrough and Vostroknutov, 2016; Gürdal et al., 2018), we know that the propensity to follow rules correlates with pro-social behavior. This means that rule-followers exhibit cooperative tendencies supported by the corresponding norms, while rule-breakers act selfishly. Theoretically, a selfish agent, who maximizes her own payoff in the role of punisher in our PGG, should contribute nothing and push others to contribute full amounts. This is very close to the behavior of bad punishers that we observe. Thus, there are two explanations for the bad punishers’ behavior. The first is that bad punishers are rule-breakers, no matter what their beliefs are; and the second is the one that we proposed, namely that bad punishers think that free-riding is not inappropriate, no matter what their rule-following propensity is.

Our design does not allow us to cleanly distinguish which of the two factors, rule-following propensity or beliefs, drives the behavior of the bad punishers. However, the result on the norms elicited in the Dictator game and presented in Figure 4 of Kimbrough and Vostroknutov (2018), suggests that there is a connection between being a rule-breaker and believing that behaving selfishly is appropriate. In particular, rule-breakers tend to think that selfishness is more appropriate than rule-followers do. If the same is true in our setting, then bad punishers should be mostly rule-breakers, or selfish individuals, who think that free-riding is appropriate. Thus, the two explanations for abusive behavior might not be mutually exclusive, but actually constitute one explanation: inherently selfish individuals, who are nevertheless not exempt from the influence of the Belief in a Just World, rationalize their selfishness by believing that acting anti-
socially is appropriate, while norm-abiding individuals reinforce their pro-social behavior by believing that it is inappropriate to do otherwise. Additional experiments are needed to confirm or disconfirm this hypothesis.

Comparison to the Broken Windows Theory (BWT). The broken windows theory, which found certain experimental support (e.g., Funk and Kugler, 2003; Corman and Mocan, 2005; Engel et al., 2014), states that when people see the results of others not following norms (broken windows that stay unfixed), they also stop following norms in other domains, thus hurting the community. This might sound similar to our results; however, there is a conceptual difference. BWT focuses on the idea that the appearance of run-down communities that are not properly maintained sends a signal that bad behavior stays unpunished, thus granting an exemption from following norms. This does not mean that individuals who break norms in these circumstances start considering such behavior appropriate. Indeed, it may well be that, when they move to an appropriately maintained neighborhood, they start to behave accordingly. Thus, BWT does not make any claims with regard to the change in normative perception that we emphasize in this paper.

What we find is, in a sense, more serious than the effect of BWT. This can be illustrated by the example of bad victims who, after experiencing free-riding on the part of bad punishers and their unfair punishment, start to believe that the mode of other victims think that such acts are normatively justifiable. Notice that these are the subjects who actually suffer from the abuse of power. Nevertheless, they start to share the viewpoint of bad punishers on such behavior. This suggests that corruption can breed more corruption even among those who never exercised it, but instead experienced it. Undoubtedly, with our results we cannot support this statement, nor make any claims about how deep and lasting the effect of the bad victims’ negative experience is. However, we hope that our study can be the first step on the path to understanding these issues better.

6 Conclusion

We study normative perceptions of power abuse in an experiment where only one player in a repeated Public Goods game (punisher) has the power to punish others, conditional on their contributions. After the Public Goods game, we measure the normative beliefs of all subjects about the appropriateness of the punisher’s actions by means of a norm elicitation task (Krupka and Weber, 2013). We hypothesize that the beliefs of the punishers and their victims are influenced by the experience of power abuse. We find that punishers who abuse their power by contributing little and forcing others to contribute a lot hold beliefs that this behavior is appropriate, while punishers who contribute more than others believe that abusing power is inappropriate. More importantly, other players, who experience the actions of the powerful, i.e. their abuse, start to
believe that these actions are justified no matter how abusive they are. Interestingly, we find that neither punishers nor other players notice that their beliefs about the norms are getting influenced in this way. Our results unveil a mechanism that might be responsible for many failed attempts to fight corruption on an international level, and point toward a reason why inefficient institutions endure.

References

CAGALA, T., GLOGOWSKY, U., GRIMM, V., RINCKE, J. and TUSET CUEVA, A. (2017). Does corruption affect the private provision of public goods?

24

Appendix (for online publication)

A Details of the Design

Suppose the others (A, B, C) contributed 20 tokens each into the group account in the previous decision. How socially appropriate are the following decisions by D?

<table>
<thead>
<tr>
<th>Decision</th>
<th>Very socially inappropriate</th>
<th>Socially inappropriate</th>
<th>Somewhat socially inappropriate</th>
<th>Neither appropriate nor socially appropriate</th>
<th>Somewhat socially appropriate</th>
<th>Socially appropriate</th>
<th>Very socially appropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>D contrib. 0 tokens to the Group account</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D contrib. 5 tokens to the Group account</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D contrib. 10 tokens to the Group account</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D contrib. 15 tokens to the Group account</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>D contrib. 20 tokens to the Group account</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 4: Example of norm elicitation, Question 20.

Suppose the others (A, B, C) contributed 10 tokens each into the group account in the previous decision. How socially appropriate are the following decisions by D?

<table>
<thead>
<tr>
<th>Decision</th>
<th>Very socially inappropriate</th>
<th>Socially inappropriate</th>
<th>Somewhat socially inappropriate</th>
<th>Neither appropriate nor socially appropriate</th>
<th>Somewhat socially appropriate</th>
<th>Socially appropriate</th>
<th>Very socially appropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>D contrib. 0 tokens to the Group account</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D contrib. 5 tokens to the Group account</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D contrib. 10 tokens to the Group account</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D contrib. 15 tokens to the Group account</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>D contrib. 20 tokens to the Group account</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 5: Example of norm elicitation, Question 10.
Suppose the others \((A, B, C)\) contributed 10 tokens each into the group account in the previous decision. How socially appropriate is it for \(D\) to reduce the payoff of \(A, B,\) or \(C\) if he contributed the following amounts?

<table>
<thead>
<tr>
<th>Contribution to Group Account</th>
<th>Very socially inappropriate</th>
<th>Socially inappropriate</th>
<th>Somewhat socially inappropriate</th>
<th>Neither appropriate nor inappropriate</th>
<th>Somewhat socially appropriate</th>
<th>Socially appropriate</th>
<th>Very socially appropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 tokens</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 tokens</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 tokens</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 tokens</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 tokens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 6: Example of norm elicitation, Punishment Question.
B Average Norms and Comparison of Endpoints

In our analysis we compare norms within and between subjects. In particular, for each subject, each question, and each reference group we compute the average norm with average taken over five levels of potential contributions of a punisher. Suppose we choose to compare the norms between two groups of subjects. For Question 20, if the norms in these two groups are the same at the endpoints (hypothetical punisher’s contributions of 0 and 20), then the average norm becomes a measure of convexity of the norm function, or, in other words, the measure of steepness of the derivative in the vicinity of full contribution. For example, in the left panel of Figure 3, the average norm in the good group is smaller than the average norm in the bad group. With the assumption that the endpoints are the same, this implies that a lower average norm is equivalent to having steeper derivative close to full contribution, or, higher contributions according to the norm-dependent utility maximization. A similar argument holds for Question 10. For the Punishment Question the logic is slightly different: punishers do not incur costs when they choose how much to punish, so in this case a lower average norm should automatically imply less punishment.

In order to compare norms in this way, we need to show that for Questions 20 and 10 it is indeed the case that the norms at the endpoints are the same for all groups of subjects that we consider. This Appendix provides the details of the statistical comparison of endpoints for the groups of subjects that we are interested in: good/bad punishers, good/bad victims, and outsiders. With few exceptions, which do not undermine our arguments, we show that there are no reasons to suspect that the endpoints in our groups of interest are different. Therefore, it is legitimate to conduct all analyses using average norms.

We test the hypotheses that for Questions 20 and 10 the norms elicited for the punisher’s contributions 0 and 20, the endpoints, are the same across all types of subjects and across all reference groups. Since in the analysis reported in the main text our arguments rely on the comparisons of average norms (average taken over all potential contributions of the punisher), we need to show that the norms are not different at the endpoints. Otherwise, the comparison of average norms might be invalid.

We use Kruskal-Wallis tests to show that the norms for punisher’s contributions 0 and 20 are not statistically different. For each of the three questions (Question 20, Question 10, and Punishment Question) we run two sets of tests, one for the punisher’s contribution 0 and another for the punisher’s contribution 20. Since the Kruskal-Wallis test assumes independence of the compared groups, we can only compare norms in one reference group for each group of subjects. Thus, we consider the answers in own reference group across good/bad groups and outsiders.

For Question 20 we compare norms in own reference group for punisher’s contribution 0 in five groups: good punishers, bad punishers, good victims, bad victims, and outsiders. The Kruskal-Wallis test gives a p-value of 0.27. Thus, we cannot reject the null hypothesis of equality of distributions of norms for the punisher’s contribution 0 in own reference group. Similarly, for the punisher’s contribution 20, the Kruskal-Wallis test gives a p-value of 0.61. So, for Question 20 and the own reference group we can assume that the endpoints of norms are equal, which validates our average norm comparison reported in the main text. The same tests, run for Question 10, give insignificant p-values of 0.58 and 0.43, respectively.

We also perform similar tests for the different reference groups. We take the answers in the own reference group for the punisher’s and victim’s answers in the punisher’s reference group. Thus, the Kruskal-Wallis tests are run on four groups: good punishers, bad punishers, good victims, and bad victims. Similarly, we compare the punisher’s answers in the victims’ reference group and the victims’ answers in the own reference group. Eight tests of this kind for both endpoints are insignificant (p > 0.23) except one: the test for Question 20, for the punisher’s contribution 0 when comparing the punishers’ own reference group and the victims’ answer in the punishers’ reference group gives a p-value of 0.0228. Performing pair-wise comparisons with ranksum tests, we find that the only group that is significantly different here is that of the bad victims, for which the average answer is 1.37 as compared to the outsiders’

1We do not include the answers of the outsiders here, since in the main text we do not test the differences between the outsiders’ answers in the victim’s/punisher’s reference groups with those of victims and punishers.
group with averages around 1.1. However, this difference does not invalidate our method of comparing average norms, since it makes the derivative of the norm of bad victims smaller, not larger.

To compare endpoints within each group of subjects, we cannot use Kruskal-Wallis tests, since the answers to the questions related to the three reference groups are not independent. Instead we use a Friedman test, designed to make such comparisons. We perform 12 Friedman tests, 4 for each group of subjects (punishers, victims, outsiders), of which 2 are for the two endpoints of Question 20, and 2 for the two endpoints of Question 10. Only two tests out of 12 allow us to reject the null hypothesis that the endpoints are the same: one for Question 10 among punishers for endpoint 20 ($p = 0.0053$) and one for Question 10 among outsiders for endpoint 20 ($p = 0.0223$). This, however, does not invalidate our results in the main text, since we do not report significant differences between any groups of subjects for Question 10.

Therefore, overall, we cannot reject the hypotheses that endpoints for norms in Questions 20 and 10 are different for any relevant comparisons and, thus, our method of comparing average norms is valid.
C Variables Used in the Regressions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>punishers’ average contribution</td>
<td>[0,20]</td>
<td>Average contribution of a punisher in 15 rounds of the PGG</td>
</tr>
<tr>
<td>punishers’ total punishment</td>
<td>[0,30]</td>
<td>Sum of punishments of three victims averaged over 15 rounds of the PGG</td>
</tr>
<tr>
<td>victims’ average contribution</td>
<td>[0,20]</td>
<td>Average contribution of a victim in 15 rounds of the PGG</td>
</tr>
<tr>
<td>xy-q20</td>
<td>[1,7]</td>
<td>Average norm in Question 20 expressed by a subject from group $x \in {p, v, o}$ (punishers, victims, outsiders) in a reference group $y \in {p, v, o}$ (punishers, victims, outsiders)</td>
</tr>
<tr>
<td>xy-q10</td>
<td>[1,7]</td>
<td>Average norm in Question 10 expressed by a subject from group $x \in {p, v, o}$ (punishers, victims, outsiders) in a reference group $y \in {p, v, o}$ (punishers’, victims’, outsiders’)</td>
</tr>
<tr>
<td>xy-qpun</td>
<td>[1,7]</td>
<td>Average norm in Punishment Question expressed by a subject from group $x \in {p, v, o}$ (punishers, victims, outsiders) in a reference group $y \in {p, v, o}$ (punishers’, victims’, outsiders’)</td>
</tr>
<tr>
<td>average norm (own ref. group)</td>
<td>[1,7]</td>
<td>Refers to xx-qz, where $x \in {p, v, o}$ and $z \in {20, 10, \text{pun}}$, depending on the dependent variable</td>
</tr>
<tr>
<td>bad</td>
<td>0/1</td>
<td>Is 1 if subject comes from a bad group, and 0 if she comes from a good group</td>
</tr>
<tr>
<td>punishers</td>
<td>0/1</td>
<td>Is 1 for punishers’ reference group and 0 for victims’ reference group</td>
</tr>
</tbody>
</table>

Table 7: Variables used in the regressions.
D Additional Analyses

Figure 9: Norms expressed by good and bad victims in their own reference group.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>pp-q20</th>
<th>pp-q10</th>
<th>pp-qpun</th>
</tr>
</thead>
<tbody>
<tr>
<td>punisher’s average contribution</td>
<td>–0.038***</td>
<td>–0.020</td>
<td>–0.029</td>
</tr>
<tr>
<td>constant</td>
<td>3.976***</td>
<td>4.628***</td>
<td>3.513***</td>
</tr>
<tr>
<td>Spearman’s rank correlation</td>
<td>–0.319**</td>
<td>–0.332**</td>
<td>–0.257*</td>
</tr>
<tr>
<td>N punishers</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 8: OLS regressions and rank correlations of the norms expressed by punishers on the average punisher’s contribution. Errors are robust. Standard errors in parentheses. * – p < 0.1; ** – p < 0.05; *** – p < 0.01.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>vv-q20</th>
<th>vv-q10</th>
<th>vv-qpun</th>
</tr>
</thead>
<tbody>
<tr>
<td>punisher’s average contribution</td>
<td>–0.033***</td>
<td>–0.004</td>
<td>–0.032***</td>
</tr>
<tr>
<td>constant</td>
<td>3.817***</td>
<td>4.441***</td>
<td>3.367***</td>
</tr>
<tr>
<td>Spearman’s rank correlation</td>
<td>–0.227***</td>
<td>–0.099</td>
<td>–0.197***</td>
</tr>
<tr>
<td>N victims</td>
<td>159</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>N groups</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 9: Random effects regressions and rank correlations of the norms expressed by victims on the average punisher’s contribution. Errors are robust and clustered by group. Standard errors in parentheses. * – p < 0.1; ** – p < 0.05; *** – p < 0.01.
<table>
<thead>
<tr>
<th></th>
<th>Punishers</th>
<th></th>
<th>Victims</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pv-q20</td>
<td>pv-q10</td>
<td>vp-q20</td>
<td>vp-q10</td>
</tr>
<tr>
<td>Dependent variable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average norm (own ref. group)</td>
<td>0.852***</td>
<td>0.490***</td>
<td>0.700***</td>
<td>0.546***</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td>(0.096)</td>
<td>(0.074)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>constant</td>
<td>0.270</td>
<td>2.187***</td>
<td>1.209***</td>
<td>2.061***</td>
</tr>
<tr>
<td></td>
<td>(0.236)</td>
<td>(0.406)</td>
<td>(0.266)</td>
<td>(0.420)</td>
</tr>
<tr>
<td>N observations/subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>53</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>N groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 10: For punishers: OLS regressions of average norms in victims’ group. Errors are robust. For victims: random effects regressions of average norms in punishers’ group. Errors are clustered by group and robust. ***, **, and * denote the statistical significance at the 1, 5, and 10 percent level.

<table>
<thead>
<tr>
<th></th>
<th>Punishers</th>
<th></th>
<th>Victims</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>po-q20</td>
<td>po-q10</td>
<td>vo-q20</td>
<td>vo-q10</td>
</tr>
<tr>
<td>Dependent variable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average norm (own ref. group)</td>
<td>0.977***</td>
<td>0.546***</td>
<td>0.722***</td>
<td>0.512***</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.106)</td>
<td>(0.060)</td>
<td>(0.088)</td>
</tr>
<tr>
<td>constant</td>
<td>-0.159</td>
<td>1.917***</td>
<td>0.823***</td>
<td>2.035***</td>
</tr>
<tr>
<td></td>
<td>(0.245)</td>
<td>(0.465)</td>
<td>(0.198)</td>
<td>(0.402)</td>
</tr>
<tr>
<td>N observations/subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>53</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>N groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 11: For punishers: OLS regressions of average norms in outsiders’ group. Errors are robust. For victims: random effects regressions of average norms in outsiders’ group. Errors are clustered by group and robust. ***, **, and * denote the statistical significance at the 1, 5, and 10 percent level.
Figure 10: Estimates of g_τ minus the average norms in own reference group for punishers and victims. Above zero values mean that punishers/victims think that victims/punishers consider actions in a given question more socially appropriate than they themselves do in their own reference group. The significance levels reported are those of the non-linear transformations of the coefficients from the regressions in Table 12 minus average norm in own reference group. ***, **, and * denote the significance at the 1%, 5%, and 10%.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Punishers</th>
<th>Victims</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pv-q20</td>
<td>pv-q10</td>
</tr>
<tr>
<td>bad</td>
<td>0.259 (0.182)</td>
<td>-0.001 (0.192)</td>
</tr>
<tr>
<td>average norm (own ref. group)</td>
<td>0.771*** (0.105)</td>
<td>0.643*** (0.190)</td>
</tr>
<tr>
<td>constant</td>
<td>0.523 (0.310)</td>
<td>1.544** (0.720)</td>
</tr>
</tbody>
</table>

Table 12: For punishers: OLS regressions of average norms in victims’ group. Errors are robust. For victims: random effects regressions of average norms in punishers’ group. Errors are clustered by group (of four subjects who play PGG) and robust. ***, **, and * denote the statistical significance at the 1, 5, and 10 percent level.
<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>ov-q20/</th>
<th>ov-q10/</th>
<th>ov-qpun/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>op-q20</td>
<td>op-q10</td>
<td>op-qpun</td>
</tr>
<tr>
<td>punishers</td>
<td>0.420***</td>
<td>0.169*</td>
<td>0.739***</td>
</tr>
<tr>
<td></td>
<td>(0.119)</td>
<td>(0.098)</td>
<td>(0.107)</td>
</tr>
<tr>
<td>average norm (own ref. group)</td>
<td>0.539***</td>
<td>0.456***</td>
<td>0.811***</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
<td>(0.144)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>constant</td>
<td>1.183***</td>
<td>2.331***</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>(0.303)</td>
<td>(0.663)</td>
<td>(0.206)</td>
</tr>
</tbody>
</table>

| N observations | 118 | 118 | 118 |
| N subjects | 59 | 59 | 59 |

Table 13: Outsiders: OLS regressions of average norms in victims’ and punishers’ groups. Errors are robust. ***, **, and * denote the statistical significance at the 1, 5, and 10 percent level.
Figure 11: Estimates of g_τ in the outsiders’ reference group minus the average norms in the own reference group for punishers and victims. The significance levels are those of the non-linear transformations of the coefficients from the regressions in Table 14 minus average norm in own reference group. ***, **, and * denote the statistical significance at the 1, 5, and 10 percent level.

Table 14: For punishers: OLS regressions of average norms in others’ reference group. Errors are robust. For victims: random effects regressions of average norms in others’ reference group. Errors are clustered by group (of four subjects who play PGG) and robust. ***, **, and * denote the statistical significance at the 1, 5, and 10 percent level.
E Instructions

E.1 Public Goods Game Instructions

General information
You are about to participate in a decision-making experiment. If you follow the instructions carefully, you can earn a considerable amount of money depending on your decisions and the decisions of the other participants. Your earnings will be paid to you in cash at the end of the experiment.

This set of instructions is for your private use only. During the experiment, you are not allowed to communicate with anybody. In case of questions, please raise your hand. Then we will come to your seat and answer your questions. Any violation of this rule excludes you immediately from the experiment and all payments. The funds for conducting this experiment have been provided by Max Planck Institute for Research on Collective Goods.

Throughout the experiment, you will make decisions about amounts of tokens. At the end of the experiment, all tokens you have will be converted into Euros at the exchange rate 0.20 Euro per token and paid you in cash in addition to the show-up fee of 5 Euros.

During the experiment, all your decisions will be treated confidentially. This means that none of the other participants will be able to associate your decisions with your personal identity.

PART I

Part I of the experiment will consist of 15 decision-making periods. At the beginning of the experiment, you will be matched with 3 other people in this room. Therefore, there are 4 people, including yourself, participating in your group. You will be matched with the same people during the entire Part I of the experiment. For the purpose of the experiment, you and the other group members will be randomly assigned labels A, B, C, and D, which will identify you and the others throughout Part I of the experiment. None of the participants knows your personal identity in the group.

First Stage of a Period
Before each period, you and each other person in your group, will be given the endowment of 20 tokens. At the first stage of each period, you will be asked to allocate your endowment between a private account and a group account. The other members of your group will be asked to do the same. The tokens that you place in the private account have a return of 1. This means that at the end of the first stage of each period your private account will contain exactly the amount of tokens you put into the private account at the beginning of the period. Nobody except yourself benefits from your private account. The tokens that you place to the group account are added to the tokens that the other three members of your group have placed to the group account. The tokens in the group account have a return of 2. Every member of the group benefits equally from the group account. Specifically, the total amount of tokens placed to the group account by all group members is multiplied by 2 and then is equally divided among the four group members. Hence, your share of the group account is

\[\frac{2 \times \text{(sum of tokens in the group account)}}{4} \]

Thus, at the end of the first stage of each period, the number of tokens that you have is equal to the number of tokens you place in your private account plus your share of the group account.

\[\text{Payoff} = 20 - \text{tokens you put into the group account} + \frac{2 \times \text{(sum of tokens in the group account)}}{4} \]

Here are three examples to make this clear:

1. Suppose you place 0 tokens to the group account and 20 tokens in the private account, and the other members of your group place a total of 45 tokens to the group account. The sum of tokens in the group account is 45. Your share of the group account would be \(\frac{2 \times 45}{4} = 22.5 \) tokens. Each other member of the group would also receive a share of the group account equal to 22.5 tokens. The amount of tokens that you have at the end of the first stage is, thus, equal to \(20 + 22.5 = 42.5 \) tokens. Each other member of your group receives an average 27.5 tokens.

2. Suppose you place 15 tokens to the group account and 5 tokens in the private account, and the other members of your group place a total of 45 tokens to the group account. The sum of tokens in the group account is 60. Your share of the group account would be \(\frac{2 \times 60}{4} = 30 \) tokens. Each other member of the group would also receive a share of the group account equal to 30 tokens. The amount of tokens that you have at the end of
the first stage is, thus, equal to $5 + 30 = 35$ tokens. Each other member of your group receives on average 35 tokens.

3. Suppose you place 15 tokens to the group account and 5 tokens in the private account, and the other members of your group place a total of 10 tokens to the group account. The sum of tokens in the groups account is 25. Your share of the group account would be $2 \times 25 / 4 = 12.5$ tokens. Each other member of the group would also receive a share of the group account equal to 12.5 tokens. The amount of tokens that you have at the end of the first stage is, thus, equal to $5 + 12.5 = 17.5$ tokens. Each other member of your group receives on average 29.1 tokens.

Second Stage of a Period
In the second stage of each period, only the member of your group who was labeled D is active. The group members who received labels A, B, and C do not make any decisions in the second stage of each period.

If your label in the group is D, you will be asked to react to the decisions made by group members A, B, and C during the first stage of each period. At this point, you will already know the decisions taken by each group member at the first stage and the number of tokens they have after the first stage. You will decide whether you want to subtract tokens from any other group member or not. The group members that you decide to subtract tokens from will lose the amount of tokens you choose. The decisions you make at this stage will not change the amount of tokens that you have after the first stage.

You may subtract different amounts of tokens from different group members. The total amount of tokens that you choose to subtract from the group members A, B, and C may not exceed 30 tokens. Any group member can only lose maximum the amount of tokens he or she has. For example, if at the end of the first stage group members A, B, and C have 10, 15, and 20 tokens, respectively, and you choose to subtract 15, 10, and 0 tokens from them, then group members A, B, and C will be left with 0, 5, and 20 tokens.

Information about the Choices and Tokens in the End of a Period
At the end of each period, each member of the group will be informed about:

- His/her contribution to the group account;
- The amount of tokens contributed by all group members individually to the group account;
- His/her share of the group account (remember, it is the same for all group members);
- If you are member A, B, or C: how many tokens were subtracted from you by member D;
- If you are member A, B, or C: the number of tokens at the end of the period, which is equal to the number of tokens in the private account plus the share of tokens from the group account minus the number of tokens subtracted by D;
- If you are member D: the number of tokens at the end of the period, which is equal to the number of tokens in the private account plus the share of tokens from the group account.

Structure of Part I of the Experiment
The structure of the experiment in all 15 periods is identical. In the first stage of each period, each group member A, B, C, and D chooses how to split 20 tokens between private and group accounts. Then all group members receive the returns from both accounts. In the second stage of the period, group member D can subtract tokens from group members A, B, and C. At the end of the period, all members are informed about the decisions of others in the group, and the number of tokens they have.

Money Earned in Part I of the Experiment
In the end of the experiment, the computer will randomly choose one period for which you and other members of your group will be paid. Your income at the end of Part I of the experiment is equal to the amount of tokens at the end of this randomly chosen period times the exchange rate of 0.20 Euro for 1 token.

This is the end of the instructions for Part I. If you have any questions, please raise your hand and an experimenter will come by to answer them.
E.2 Norm Elicitation Instructions for the PGG subjects

PART II

Description of the Task (Screen 1)

On the following screens, you will read the descriptions of a series of hypothetical situations that could have taken place in Part I of the experiment. These descriptions correspond to situations in which a person, acting in the role of member D (who will be called Individual D), makes decisions about the amounts of tokens to be placed to the group account and decisions to subtract tokens from members A, B, and C. For each situation, you will be given a description of the decision faced by Individual D. This description will include several possible choices available to this Individual.

After you have read the description of the decision, you will be asked to evaluate the different possible actions available and to decide, for each of the actions, whether taking that action would be “socially appropriate” and “consistent with moral or proper social behavior” or “socially inappropriate” and “inconsistent with moral or proper social behavior.” By socially appropriate, we mean behavior that most people agree is the “correct” or “ethical” thing to do. Another way to think about what we mean is that if Individual D were to select a socially inappropriate choice, then someone else might be angry at Individual D for doing so.

In each of your responses, we would like you to answer as truthfully as possible, based on your opinion of what constitutes socially appropriate or socially inappropriate behavior.

To give you an idea of how the experiment will proceed, we will go through an example and show you how you will indicate your responses. On the next screen you will see an example of a situation. Click OK when you are ready to go on.

Example Situation (Screen 2)

Bob is at a café. While there, Bob notices that someone has left a wallet at one of the tables. Bob must decide what to do. He has four possible choices: take the wallet, ask others nearby if the wallet belongs to them, leave the wallet where it is, or give the wallet to the bartender. Bob can choose only one of these four options. The table on the right of the screen presents a list of the possible actions available to Bob. For each of the actions, please indicate on the scale from 1 to 7 how socially appropriate you believe choosing that option is. To indicate your response, please click on the corresponding cell. Please make sure you make an assessment for each possible choice in each row of the table.

Screen 3

In what follows, you will be asked to assess the appropriateness of the actions in three situations that could have arisen in Part I of the experiment. For each action in each situation please indicate the extent to which you believe taking that action would be “socially appropriate” and “consistent with moral or proper social behavior” or “socially inappropriate” and “inconsistent with moral or proper social behavior.” By socially appropriate we mean behavior that most people agree is the “correct” or “ethical” thing to do.

Payment

For each situation that follows, you will read its description. You will then indicate your appropriateness rating by placing a check mark in the corresponding cell.

At the end of Part II of the experiment, in order to determine your payment, we will randomly select one of the situations. For this situation, we will also randomly select one of the possible choices that Individual D could make. Thus, we will select both a scenario and one possible choice at random. This means that when you make your choices you should make each of them as if it is the one for which you will be paid.

Your payment in this part of the experiment will depend on whether your response to the choice thus selected is the same as the response made by the most people with the same role as you in Part I of the experiment (who are in this room). In particular, if in Part I of the experiment you were member A, B, or C, then your response to a selected choice will be compared to the responses of all people in this room who were members A, B, and C in Part I. If you were member D, then your response to a selected choice will be compared to the responses of all people in this room who were members D. If you give the same response as that most frequently given by other members with the same role, then you will receive €8. This amount will be paid to you, in cash, at the conclusion of the experiment.

For instance, there are overall $N/4$ participants who were members D in the previous part of the experiment and $3N/4$ participants who were members A, B, or C (including you). Suppose we were to select the example situation from the last screen and the possible choice “Leave the wallet where it is,” and your response had been 3, “somewhat socially inappropriate.” Then, if you are member D, you would receive €8 if this was the response selected by most of other $N/4 – 1$ members D in today’s session. If you were member A, B, or C, you would receive
€8 if this was the response selected by most of other $3N/4 - 1$ members A, B, and C in today’s session. If your response is not the same as that of the majority of others with the same role as you, you will receive nothing in this part of the experiment.

Please click OK when you are ready to go on. If you have any questions, please raise your hand and wait for the experimenter to come.

Screen 4

Imagine that members A, B, C have each placed 10 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by other (NUMBER) members (ROLE) in this room.

Screen 5

Imagine that members A, B, C have each placed 20 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by other (NUMBER) members (ROLE) in this room.

Screen 6

Imagine that members A, B, C, and D have made their choices in the first stage of a period. Namely, members A, B, and C placed 10 tokens each to the group account and individual D placed the amount of tokens equal to one of the five options listed on the right part of the screen. For each of the amounts that individual D could have placed to the group account, please indicate how socially appropriate you believe subtracting tokens from individuals A, B, and C is, given the amount that members A, B, C, and D contributed to the group account.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by other (NUMBER) members (ROLE) in this room.

PART III

Description of the Task (Screen 1)

In this final part of the experiment we ask you to evaluate the social appropriateness of actions in the same three situations as before. The only difference is that now you will be paid if your evaluation is the same as the evaluation of the majority of two groups of participants who have already made their evaluation decisions. The first group is the participants who had other role than you (members (OTHER ROLE) in this room) who have just made their evaluations in Part II. The second group is a separate group of other participants who took part in the experiment before and who evaluated the same situations as in the previous part but without actually making real choices as in Part I. In particular, these other participants were given the same instructions of Part I as you did and then evaluated social appropriateness in exactly same way that you just did, with the only difference that for the payment they were matched with everyone in their respective sessions.

Payment (Screen 2)

As before, for your payment we will choose one random situation and one random action that you evaluate. This means that when you make your choices you should make each of them as if it is the one for which you will be paid. Your payment in this part of the experiment will depend on whether your response to the selected choice is the same as the response made by the most people in a group who have already chosen. For example, if you are matched with members (OTHER ROLE), then your payment depends on how members (OTHER ROLE) chose in the previous part of the experiment. Remember, the members (OTHER ROLE) when choosing in Part II were paid if they chose the same answer as the majority of other members (OTHER ROLE). The same holds for the separate group of other participants. If you are matched with them, then your payment depends on how they chose in a separate experiment. Remember, these participants were paid if they chose the same answer as the majority of other participants in their session.

If you give the same response as that most frequently given by other members in one of the two groups, then you will receive €8. This amount will be paid to you, in cash, at the conclusion of the experiment. Please click OK
when you are ready to go on. If you have any questions, please raise your hand and wait for the experimenter to come.

Screen 4
Put yourself in the shoes of MEMBERS (OTHER ROLE) in this room who have just provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority in their own group of members (OTHER ROLE). Imagine that members A, B, C have each placed 10 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by MEMBERS (OTHER ROLE) in this room in the previous part of the experiment.

Screen 5
Put yourself in the shoes of MEMBERS (OTHER ROLE) in this room who have just provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority in their own group of members (OTHER ROLE).

Imagine that members A, B, C have each placed 20 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by MEMBERS (OTHER ROLE) in this room in the previous part of the experiment.

Screen 6
Put yourself in the shoes of MEMBERS (OTHER ROLE) in this room who have just provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority in their own group of members (OTHER ROLE).

Imagine that members A, B, C, and D made their choices in the first stage of a period. Namely, members A, B, and C placed 10 tokens each to the group account and individual D placed the amount of tokens equal to one of the five options listed on the right part of the screen. For each of the amounts that individual D could have placed to the group account, please indicate how socially appropriate you believe subtracting tokens from individuals A, B, and C is, given the amount that they contributed to the group account.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by MEMBERS (OTHER ROLE) in this room in the previous part of the experiment.

Screen 7
Put yourself in the shoes of OTHER PARTICIPANTS who gave evaluations in the previous experiment who have provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority in their own group.

Imagine that members A, B, C have each placed 10 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by OTHER PARTICIPANTS in a separate the experiment.

Screen 8
Put yourself in the shoes of OTHER PARTICIPANTS who gave evaluations in the previous experiment who have provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority in their own group.
Imagine that members A, B, C have each placed 20 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by OTHER PARTICIPANTS in a separate the experiment.

Screen 9
Put yourself in the shoes of OTHER PARTICIPANTS who gave evaluations in the previous experiment who have provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority in their own group.

Imagine that members A, B, C, and D made their choices in the first stage of a period. Namely, members A, B, and C placed 10 tokens each to the group account and individual D placed the amount of tokens equal to one of the five options listed on the right part of the screen. For each of the amounts that individual D could have placed to the group account, please indicate how socially appropriate you believe subtracting tokens from individuals A, B, and C is, given the amount that they contributed to the group account.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by OTHER PARTICIPANTS in a separate the experiment.

E.3 Instructions for Outsiders

PART I

Description of the Experiment (Screen 1)
On the following screens, you will read the descriptions of a series of hypothetical situations. These descriptions correspond to situations in which one person, Individual D, must make a decision. For each situation, you will be given a description of the decision faced by Individual D. This description will include several possible choices available to this Individual.

After you read the description of the decision, you will be asked to evaluate the actions available to Individual D and to decide, for each of the actions, whether taking that action would be “socially appropriate” and “consistent with moral or proper social behavior” or “socially inappropriate” and “inconsistent with moral or proper social behavior.” By socially appropriate, we mean behavior that most people agree is the “correct” or “ethical” thing to do. Another way to think about what we mean is that if Individual D were to select a socially inappropriate option, then someone else might be angry at Individual D for doing so.

In each of your responses, we would like you to answer as truthfully as possible, based on your opinions of what constitutes socially appropriate or socially inappropriate behavior.

To give you an idea of how the experiment will proceed, we will go through an example and show you how you will indicate your responses. On the next screen you will see an example of a situation. Click OK when you are ready to go on.

Example Situation (Screen 2)
Bob is at a café. While there, Bob notices that someone has left a wallet at one of the tables. Bob must decide what to do. He has four possible choices: take the wallet, ask others nearby if the wallet belongs to them, leave the wallet where it is, or give the wallet to the bartender. Bob can choose only one of these four options. The table on the right of the screen presents a list of the possible actions available to Bob (in rows). For each of the actions, please indicate on the scale from 1 to 7 how socially appropriate you believe choosing that option is. To indicate your response, please click on the corresponding cell.

Please make sure you make an assessment for each possible choice in each row of the table.

Screen 3
In what follows, you will be asked to assess the appropriateness of the actions in three situations similar to the one you have just seen. For each action in each situation please indicate the extent to which you believe taking that action would be “socially appropriate” and “consistent with moral or proper social behavior” or “socially inappropriate” and “inconsistent with moral or proper social behavior.” By socially appropriate we mean behavior that most people agree is the “correct” or “ethical” thing to do.

Payment
For each situation that follows, you will read its description. You will then indicate your appropriateness rating by placing a check mark in the corresponding cell.

At the end of the experiment, in order to determine your payment, we will randomly select one of the situations. For this situation, we will also randomly select one of the possible choices that Individual D could make. Thus, we will select both a scenario and one possible choice at random. This means that when you make your choices you should make each of them as if it is the one for which you will be paid.

Your payment in this part of the experiment will depend on whether your response to the choice thus selected is the same as the response made by the most people in this room.

If you give the same response as that most frequently given by other participants, then you will receive €8. This amount will be paid to you, in cash, at the conclusion of the experiment.

For instance, if we were to select the example situation from the last screen and the possible choice “Leave the wallet where it is,” and if your response had been 3, “somewhat socially inappropriate,” then you would receive €8, in addition to the €5 participation fee, if this was the response selected by most other people in today’s session. Otherwise you would receive only the €5 participation fee.

Please click OK when you are ready to go on. If you have any questions, please raise your hand and wait for the experimenter to come.

Description of the Situation (Screen 4 and print-out)
Individual D has been invited to an experiment and placed in a group with three other anonymous people labeled A, B, and C so that no individual will ever know the identity of the other individuals with whom he/she is grouped. In fact, suppose that individuals A, B, C, and D are part of a larger group of people participating in this experiment, exactly as you are now. Individuals A, B, C, and D are given experimental instructions exactly as those you can find on your desk.

In order to understand what decisions Individual D has to make, please read these instructions carefully.

On the following screens you will be asked to evaluate social appropriateness of the actions of Individual D. Each screen will show the description of choices made by individuals A, B, and C and you will be asked to guess how socially appropriate several actions of individual D are.

Please click OK when you have read the instructions and are ready to go on.

Screen 5
Imagine that individuals A, B, C have each placed 10 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a situation and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by other participants in this room.

Screen 6
Imagine that individuals A, B, C have each placed 20 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a situation and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by other participants in this room.

Screen 7
Imagine that individuals A, B, C, and D made their choices in the first stage of a period. Namely, individuals A, B, and C placed 10 tokens each to the group account and individual D placed the amount of tokens equal to one of the five options listed on the right part of the screen. For each of the amounts that individual D could have placed to the group account, please indicate how socially appropriate you believe subtracting tokens from individuals A, B, and C is, given the amount that Individuals A, B, C, and D contributed to the group account.

Remember: when we select a situation and an action for payment, you will only receive €8 if your response is
the same as the most frequent response made by other participants in this room.

PART II

Description of the Task (Screen 1)

In this part of the experiment we ask you to evaluate the social appropriateness of actions in the same three situations as before. The only difference is that now you will be paid if your evaluation is the same as the evaluation of the majority of two distinct groups of participants who have already made their evaluation decisions in a previous experiment.

In the previous sessions that we ran in this lab we had participants who have actually made choices in the experiment described in the instructions on your desk. After that these participants evaluated the appropriateness of the same situations that you have just seen and were paid if their guesses were the same as those given by the majority of participants in the same role. To understand how exactly this was happening, imagine that you are individual D who has just made choices in the experiment described in the instructions on your desk (which has actually happened in previous sessions). After that you are asked to evaluate the appropriateness of the same situations that you have seen in the previous part of the experiment, but you are told that you will be paid only if your evaluation of a randomly chosen action in one of the three situations is the same as the evaluation of the majority of other participants in the role of individual D in the session. Or similarly, imagine that you are individual A, B, or C and you have just made choice in the experiment. Then you are asked to provide evaluations of appropriateness of actions of individual D and you are paid if the majority of other participants in the role of individuals A, B, and C in the session gave the same answers.

To summarize, in what follows you will be asked to evaluate social appropriateness of the same actions in the same situations you have already seen, but your payment will depend on the answers of participants in two distinct groups: 1) participants who actually chose in the experiment as individuals D and were later matched with other individuals D for appropriateness evaluations and 2) participants who actually chose in the experiment as individuals A, B, and C and were later matched with other individuals A, B, and C for appropriateness evaluations.

Payment (Screen 2)

As before, for your payment we will choose one random situation and one random action that you evaluate. This means that when you make your choices you should make each of them as if it is the one for which you will be paid. Your payment in this part of the experiment will depend on whether your response to the selected choice is the same as the response made by the most people in one of the two groups as described on the previous screen. For example, if you are matched with individuals D from previous experiment, then your payment depends on how these individuals evaluated the appropriateness of the same actions when matched with other individuals D in their session. The same holds when you are matched with individuals A, B, and C.

If you give the same response as that most frequently given by other members in one of the two groups, then you will receive €8. This amount will be paid to you, in cash, at the conclusion of the experiment.

Please click OK when you are ready to go on. If you have any questions, please raise your hand and wait for the experimenter to come.

Screen 3

Put yourself in the shoes of INDIVIDUALS D who took part in a previous experiment and have provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority of other individuals D in their own group.

Imagine that members A, B, C have each placed 10 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by INDIVIDUALS D in a separate the experiment.

Screen 4

Put yourself in the shoes of INDIVIDUALS D who took part in a previous experiment and have provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority of other individuals D in their own group.

Imagine that members A, B, C have each placed 20 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could
place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by INDIVIDUALS D in a separate experiment.

Screen 5
Put yourself in the shoes of INDIVIDUALS D who took part in a previous experiment and have provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority of other individuals D in their own group.

Imagine that members A, B, C, and D made their choices in the first stage of a period. Namely, members A, B, and C placed 10 tokens each to the group account and individual D placed the amount of tokens equal to one of the five options listed on the right part of the screen. For each of the amounts that individual D could have placed to the group account, please indicate how socially appropriate you believe subtracting tokens from individuals A, B, and C is, given the amount that they contributed to the group account.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by INDIVIDUALS D in a separate the experiment.

Screen 6
Put yourself in the shoes of INDIVIDUALS A, B, and C who took part in a previous experiment and have provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority of other individuals A, B, and C in their own group.

Imagine that members A, B, C have each placed 10 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by INDIVIDUALS A, B, and C in a separate the experiment.

Screen 7
Put yourself in the shoes of INDIVIDUALS A, B, and C who took part in a previous experiment and have provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority of other individuals A, B, and C in their own group.

Imagine that members A, B, C have each placed 20 tokens (out of 20) to the group account in the previous period. Look at the table on the right-hand side of the screen and consider five possible amounts that Individual D could place to the group account (presented in rows). Please indicate on the scale from 1 to 7 how socially appropriate you believe choosing each of these amounts to be, given the amounts that others contributed to the group account in the previous period.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by INDIVIDUALS A, B, and C in a separate the experiment.

Screen 8
Put yourself in the shoes of INDIVIDUALS A, B, and C who took part in a previous experiment and have provided their evaluations of social appropriateness of the actions of Individual D in the following situation that you have also seen. Remember, that they were paid if they guessed as the majority of other individuals A, B, and C in their own group.

Imagine that members A, B, C, and D made their choices in the first stage of a period. Namely, members A, B, and C placed 10 tokens each to the group account and individual D placed the amount of tokens equal to one of the five options listed on the right part of the screen. For each of the amounts that individual D could have placed to the group account, please indicate how socially appropriate you believe subtracting tokens from individuals A, B, and C is, given the amount that they contributed to the group account.

Remember: when we select a scenario and an action for payment, you will only receive €8 if your response is the same as the most frequent response made by INDIVIDUALS A, B, and C in a separate the experiment.