
Engel, Christoph

Working Paper

Estimating heterogeneous reactions to experimental
treatments

Discussion Papers of the Max Planck Institute for Research on Collective Goods, No.
2019/1

Provided in Cooperation with:
Max Planck Institute for Research on Collective Goods

Suggested Citation: Engel, Christoph (2019) : Estimating heterogeneous reactions to
experimental treatments, Discussion Papers of the Max Planck Institute for Research on
Collective Goods, No. 2019/1, Max Planck Institute for Research on Collective Goods, Bonn

This Version is available at:
https://hdl.handle.net/10419/204699

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/204699
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Papers of the
Max Planck Institute for

Research on Collective Goods
Bonn 2019/1

Estimating Heterogeneous
Reactions to Experimental
Treatments

Christoph Engel

MAX PLANCK SOCIETY

Discussion Papers of the
Max Planck Institute
for Research on Collective Goods Bonn 2019/1

Estimating Heterogeneous Reactions to
Experimental Treatments

Christoph Engel

January 2019

Max Planck Institute for Research on Collective Goods, Kurt-Schumacher-Str. 10, D-53113 Bonn
http://www.coll.mpg.de

Estimating Heterogeneous Reactions to
Experimental Treatments∗

Christoph Engel

This version: January 20, 2019

Abstract

Frequently in experiments there is not only variance in the reaction of participants
to treatment. The heterogeneity is patterned: discernible types of participants
react differently. In principle, a finite mixture model is well suited to simultane-
ously estimate the probability that a given participant belongs to a certain type,
and the reaction of this type to treatment. Yet often, finite mixture models need
more data than the experiment provides. The approach requires ex ante knowl-
edge about the number of types. Finite mixture models are hard to estimate for
panel data, which is what experiments often generate. For repeated experiments,
this paper offers a simple two-step alternative that is much less data hungry, that
allows to find the number of types in the data, and that allows for the estimation
of panel data models. It combines machine learning methods with classic frequen-
tist statistics.

Keywords: heterogeneous treatment effect, finite mixture model, panel data,
two-step approach, machine learning, CART

JEL Classification: C14, C23, C91

∗Prof. Dr. Christoph Engel, Max Planck Institute for Research on Collective Good, D 53173 Bonn,
engel@coll.mpg.de, ++49 228 91416210, ORCID 0000-0001-8513-8532. Helpful comments by Sebastian
Schneider, Marcel Schubert and audiences at the Economics Department of National University of
Taiwan, and at the Max Planck Institute for Research on Collective Goods at Bonn, are gratefully
acknowledged.

1

1 Introduction

Not all experimental participants are equal. This is not only a truism. If, strictly speak-
ing, all were equal, there would be nothing to estimate. There would be no need to
expose a randomly selected sample to random variation. One could infer the universal
law of nature from exposing one of two otherwise identical individuals to treatment.
Most empirical researchers shy away from the philosophical debate over natural laws.
Even if such laws exist, and matter for the behavior of human participants, the re-
searcher is not in a position to observe them. All she can study is the reaction of
a sample that she suspects to differ in multiple ways. Yet as long as (a) assignment
to treatment is random, (b) the sample is randomly drawn from the population and
sufficiently large, and (c) reactions to treatment are sufficiently pronounced, the re-
searcher can infer the population effect. Frequentist statistics let her assess whether it
is sufficiently unlikely for the observed difference to be a false positive.

Note that this standard approach to the analysis of experimental data assumes het-
erogeneity: different individuals react differently to treatment. Yet this heterogeneity
is treated as a nuisance variable. It results from the fact that perfectly clean data is
unavailable. It is the purpose of randomization to prevent this heterogeneity from bi-
asing the estimation of the treatment effect. The researcher feels justified to treat the
unobserved heterogeneity as noise. This is why, in statistical textbooks, the estimation
of the treatment effect is introduced as the difference in the central tendency of two
Gaussian distributions.

Not so rarely, experimenters have reason to doubt that the heterogeneity in reaction
to treatment is indeed random. A prominent illustration is social preferences. On
average, participants in dictator, ultimatum or public good games do not behave as
predicted by microeconomic textbooks. They share some of their endowments with
their passive counterparts (Engel, 2011), they reject offers that exploit a first-mover
advantage (cf. Cooper and Dutcher, 2011), and they make substantial contributions
to socially beneficial joint projects (Zelmer, 2003). Yet a substantial fraction of most
experimental samples maximize short-term profit. A rather small minority are true
altruists. And many only neglect the dilemma structure of a public good if they know,
observe or believe that their counterparts will do so as well (Fischbacher et al., 2001).1
There are thus (at least) three discernible types.

In principle, such patterned heterogeneity is a case for a finite mixture model. The
model can be estimated with maximum likelihood. The procedure simultaneously esti-
mates the probability of a datapoint to belong to each of the types, and the reaction of
each type to treatment. In postestimation, each participant of the experiment can be
assigned to the most likely type. Yet in practice, finite mixture models with experimen-
tal data often do not converge. Two-dimensional maximum likelihood requires more
and cleaner data than many experiments produce. This in particular holds if one prop-

1For detail see below Section 5.

2

erly reflects the dependence structure induced by an interactive, repeated experiment,
like a repeated public good. Such an experiment generates data from choices, nested
in individuals, nested in groups. Each group is a single independent observation. A
further drawback is the necessity to fix the number of types beforehand, although one
typically estimates the finite mixture model when the data suggests that there might be
more than a single type. The purpose of the model is to find out whether heterogeneity
is indeed patterned. At this point of the research process, theory to rationalize the type
space is still missing.

In this paper, I propose a statistical approach that precisely targets this situation.
With the proposed approach, the biggest challenge for the estimation of a finite mix-
ture model turns into the critical asset: the panel structure of repeated experiments.
The approach needs one identifying assumption: type is a personality variable. The
heterogeneity originates in the fact that different individuals react to treatment in dif-
ferent ways. If this assumption can be made, in a first step one can separately regress
each individual on all (time-varying) independent variables. The coefficients from these
local regressions characterize the individual’s type. Standard machine learning tech-
niques, like a classification and regression tree CART,2 can be used to find the best
way to partition the type space. In the second step, each participant is characterized
by one of these types. If treatment is within subjects, this procedure directly produces
estimates of the treatment effect conditional on type. If treatment is (exclusively) be-
tween subjects, the procedure separates the reactions of different types of subjects to
treatment. Yet one needs additional assumptions (or complementary within subjects
data) to match types of untreated with types of treated subjects. If one has reason to
trust the matching, one can interact treatment with type. The interaction terms then
estimate in which ways the reactions of different types to treatment differ.

The remainder of the paper is organized as follows. The next section relates the paper
to the literature. Section 3 explains the approach in detail, and contrasts it with the
alternatives. Section 4 uses simulation to explore how well the proposed non-parametric
method performs. Section 5 applies the approach to a real experimental dataset. Section
6 concludes with discussion.

2 Related Literature

Experimenters pay increasingly attention to patterned heterogeneity (see, for instance,
Bruhin et al., 2018; Conte and Levati, 2014; Santos-Pinto et al., 2015) and use finite
mixture models (Moffatt, 2015) to simultaneously estimate the composition of the type
space, and reactions to treatment conditional on type, in games as diverse as public
goods (Bardsley and Moffatt, 2007; Kassas et al., 2018), prisoner dilemmas (Becchetti

2The logic of CART is explained below. The code for implementing CART is available in the
technical appendix.

3

et al., 2017), beauty contests (Bosch-Domènech et al., 2010; Breitmoser, 2012), bribery
games (Bolle et al., 2011), learning in networks (Kovářík et al., 2018), and attitudes
towards macro-risk in financial markets (Brown and Kim, 2013). Yet to the best of my
knowledge, none of these papers discuss machine learning methods to organize the type
space.

There is an active literature on the estimation of heterogeneous treatment effects out-
side experimental economics. Some of these papers discuss the application of machine
learning methods (for overviews see Alaa and Schaar, 2018; Künzel et al., 2017; Powers
et al., 2017). They for instance use CART (Athey and Imbens, 2016; Su et al., 2009),
random forests (Lu et al., 2018; Wager and Athey, 2017) or support vector machines
(Imai et al., 2013) to estimate differences in the reaction to treatment, or advocate
averaging types over the outcomes from multiple alternative machine learning methods
(Grimmer et al., 2017).

A particularly active application is biostatistics. Data from reactions of patients to
alternative medical interventions is used to personalize treatment (Bonetti and Gel-
ber, 2004; Gail and Simon, 1985; Sauerbrei et al., 2007; Tian et al., 2014; Wendling
et al., 2018; Zhao et al., 2012) or to evaluate the performance of hospitals in treating a
heterogeneous population of patients (Berta et al., 2016).

Closest in spirit is Bonhomme et al. (2016). They also propose to proceed in two steps.
In the first step, they estimate the probability that a datapoint belongs to a certain
group, exploiting repeated measurement. In the second step, the data are weighted by
these estimates. Yet they assume the number of groups (types) to be known ex ante,
while my approach allows to estimate them from the data. Bertoletti et al. (2015)
propose a Bayesian method to estimate the number of groups in a finite mixture from
the data. As I will explain below, under suitable conditions, there is a simpler approach
if one has multiple observations per participant of an experiment.

3 Estimation Approaches

Observed Type

If the type space is fully understood, a two-step approach invites itself. In a first step,
one measures type, for instance with the test developed by Fischbacher et al. (2001). In
a second step, one explains observed choices yi with type τi ∈ {1, .., T} and treatment
θi ∈ {0, 1}. Hence one estimates

yi =

β1,0 + β1,1θi + εi if τi = 1,

...

βT,0 + βT,1θi + εi if τi = T.

(1)

4

This can equivalently be written as

yi = β0 + β1θi +
T∑
τ=2

βττi +
T∑
τ=2

βT−1+ττi · θi + εi. (2)

One defines one type as the reference category. For this type, β0 is the estimated
choice when untreated, and β0 + β1 is the estimated choice when treated. For any
other type, the choice when untreated is estimated by β0 + βτ , and the choice when
treated is estimated by β0+β1+βτ +βT−1+τ . This specification has the advantage that
β2..βT are a direct estimate for the difference between the type chosen as the reference
category and the respective alternative type when untreated. Likewise the interaction
terms measure how the reaction to treatment differs between the reference type and
the remaining types.3

Finite Mixture Model

If type τi is not observed independently of choice yi, the composition of the type space,
and choices conditional on type, must be simultaneously estimated. In principle, this
can be done with a finite mixture model. If one feels confident to estimate a linear
model, the density to be estimated is given by

f(yi) =
T∑
τ=1

πτfτ (yi|xi
′β). (3)

In (3) fτ (yi|xi
′β) is a generic way of writing (1), while allowing xi to contain further

covariates, together with the treatment variable θi. Yet through πτ , the model allows
for different types to react differently to treatment, and estimates the probability of an
observation to be of a certain type, given independent variables xi and the dependent
variable yi, with the constraint that

∑T
τ=1 πτ = 1.

The model defined in (3) can be estimated with maximum likelihood. The probabilities
π1..πT are treated as latent variables. Estimating these latent variables is a challenge
though. Statistical packages usually parry the challenge iteratively, using the EM al-
gorithm (Dempster et al., 1977), going back and forth between (initially arbitrary)
probabilities, and the coefficients, conditional on an observed datapoint belonging to
one of the types.

This iterative procedure is why finite mixture models often fail with experimental data.
Models do not converge. This is the more likely the more types one posits to exist.
Moreover, in a finite mixture model, the number of types in the population must be
fixed ex ante; it is not taken from the data.

3Of course both only holds if the statistical model is linear.

5

Estimating the Type Space from the Data

The previous approaches have treated each data point as an independent observation.
Economic experiments are frequently repeated. For estimating the treatment effect,
this is not a concern. One can estimate the random effects model (4):

yit = β0 + β1θit + εi + εit, (4)

assuming that individuals i are randomly exposed to treatment θ ∈ {0, 1}, and that
choices are nested in individuals i. Yet finite mixture models for panel data are difficult.
The individual specific error εi is itself a random latent variable. One would be forced
to integrate out latent variables in two dimensions (types, and individuals). One way
out is adding dummies for individuals to x in (3) (Deb and Trivedi, 2013).4

For the approach proposed here, the panel structure of the data is, to the contrary, not
a challenge, but the critical asset. For the approach to work, one must feel confident to
assume that type is a personality variable. The population subdivides into an (initially
unknown) number of types. Each individual is permanently of one and the same type. It
depends on type how the individual reacts to treatment. The approach finally requires
that type induces some within participant variation. The archetypal illustration is a
time trend that differs across types.

If these conditions are fulfilled, one can proceed in two steps. In the first step one
defines the type space and assigns each individual in the sample to one of these types.
In the second step, one estimates the treatment effect conditional on (estimated) type.

Steps 1-9 of the Algorithm proposed below explain in which ways the panel structure
of the data can be exploited to estimate the type space from the data. This part of the
procedure has two components. One first regresses the choices yit of each individual
on all time varying observed explanatory variables xit (step 3 of the algorithm). This
yields for every participant a series of coefficients βi. These coefficients characterize
the between subjects variance in the data.

The second component uses these coefficients to organize the type space (steps 5-7 of
the Algorithm). The purpose of the exercise is estimating a heterogeneous treatment
effect. Consequently, supervised learning is appropriate. One trains a classification
algorithm on choices yit, as explained by the individual coefficients βi. In principle, one
could use any classification algorithm for the purpose, including naive Bayes, nearest
neighbor methods, support vector machines or neural networks (for a very accessible
introduction to these methods see James et al., 2013). Yet a classification tree CART
is appealing for two reasons: the classification is straightforward to interpret, and there

4The workaround only works though if the panel is sufficiently long. Otherwise one runs into
the incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000). And one inevitably
looses information about the type specific reaction to observed characteristics that do not change over
repetitions, as they are absorbed by the fixed effects.

6

are well-validated methods for defining the depth of the tree, and thereby the estimated
number of types in the population (Breiman et al., 1984; Strobl et al., 2009).

CART recursively partitions the data, such that each split explains as much variance
as possible. Hence at the first split, CART uses each coefficient in β. As all coefficients
are continuous, CART not only tries out each coefficient, but each cutpoint on each co-
efficient. This first step creates a tree with two branches. CART repeats the procedure
and, separately for each branch of the tree, finds the (cutpoint at the) coefficient that
explains most of the remaining variance. The standard CART algorithm first grows
the complete tree, but then "prunes" it, to find the optimal balance between exploiting
the information in the sample, and overfitting. The method proposed here uses this
approach to find the optimal number of types. The problem is equivalent, as one only
has the sample to estimate the type space in the population. Hence one has reason to be
concerned about putting too much stress on unsystematic features of the sample. One
needs to strike a balance between underusing and overusing the information present in
the sample.

A tree that yields three types might for instance have a first split at β1 < 2, and a second
split for the right branch of the tree at β2 < 5. These splits can also be used to assign
participants to types. All participants with β1 < 2 are classified as τ1. Participants
with β1 ≥ 2 and β2 < 5 are classified as τ2, and participants with β1 ≥ 2 and β2 ≥ 5
are classified as τ3.

One uses these estimated types to estimate the dependent variable conditional on type
(step 10 of the Algorithm). If treatment is within subjects, this step also yields an
estimate of treatment conditional on type. If treatment is (exclusively) between sub-
jects, one needs supplementary information, or must make assumptions, for matching
untreated and treated types (step 11 of the Algorithm). In the final step (step 12 of
the Algorithm) treatment effects conditional on type can then be recovered by way of
postestimation. One uses Wald tests to estimate the treatment effect, separately for
each type.

As, in step 10 of the Algorithm, one can treat participants as if one had always known
their type, it is easy to capture the dependence structure by splitting up the error into
εi+εit, i.e. by estimating a random effects model. This is particularly helpful if, as often,
the data not only comes from a repeated, but from a repeated interactive experiment.
Then choices are nested in individuals who are themselves nested in groups g.5 This
dependence structure can be captured by εg + εgi + εgit, i.e. by a mixed statistical
model that distinguishes between the "fixed" effects x and the series of (assumedly
orthogonal) random error terms (where g stands for the group).

Algorithm
5If groups are rematched during the experiment, g must stand for the matching group from which

the rematching is done.

7

1. Let D0 be a panel with dependent variable yit, and explanatory variables xit that
include treatment θi (which may differ over repetitions, i.e. may be θit)

2. initialize β

For every participant do

3. regress yit on all time varying xit

4. collect participant id and all βi in separate data frame D1

EndFor

5. merge D1 with D0 on id

6. fit classification tree of yit on β

7. use standard algorithm to define optimal depth of tree

8. use optimal tree to assign type to each participant

If treatment is between subjects

9. split estimated types into treated and untreated cases

EndIf

10. estimate panel version of (2)

If treatment is exclusively between subjects θi

11. match untreated and treated types

12. use postestimation for estimating treatment effects conditional on type

EndIf

4 Simulation

In this section, I show with simulated data how the approach performs. I am making
the R script for the simulation and analysis publicly available, so that researchers can
use the code to adapt the approach to their own experimental data. The simulation is
for a between subjects treatment, to also demonstrate the additional steps needed in
this case.

In the simulation, N = 400 individuals are observed for T = 10 periods each. Half of
the individuals are treated (θi ∈ {1, 2}),6 and individuals are of types τi ∈ {1..4}. Types

6In (5), θi is not coded as a dummy variable as otherwise all untreated observations would be
identical.

8

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ● ●

●
●

●

●
●

●
● ●

● ●

●
●

●

● ●

● ●
●

●
●

●
●

●

●
● ●

● ● ●
●

● ●
●

●
● ●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

● ● ● ● ●
●

●
● ● ● ●

● ●
●

● ● ●
● ● ● ● ● ●

● ●
●

●
● ●

●
●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●●

● ● ● ● ● ● ●
●

●● ●
● ● ● ● ● ● ●

●
●

●
●

● ● ● ●
●

● ●● ● ● ●
● ●

●
● ● ●● ●

●
● ●

● ●
● ●

●

●
●

●
●

●
●

● ●
● ●

● ● ●
●

●
● ●

●
●

●

●
●

●

●
●

● ●

●
●

●

●
● ●

●
● ● ●

●
● ●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●
●

●

● ●

● ●
●

●

●
●

●
●

●
●

●
● ●

●
●

● ●
●

●
● ●

●

●
● ●

●
● ●

●
●

● ●
●

●
● ● ●

●

●

●
●

●
●

●
●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●
●

●
● ●

●
● ● ● ●

● ●
● ● ● ● ●

●
● ●

● ● ● ● ● ●
● ● ● ●

●
● ● ● ● ●

●
● ●

●●
● ● ●

● ● ● ●
● ●

● ● ● ●
●

● ● ● ● ●●
● ● ●

●
● ● ● ● ●● ● ● ●

● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ●
● ● ●

● ●
● ● ●

●
●

●
●

● ●
●

● ●

●

●
● ●

●
●

●
●

●
●

●

● ● ●

●
● ●

●
● ●

●

●
● ●

●
●

●

●
● ● ●

● ●
●

●
● ●

●
●

● ●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●
●

● ●

●
●

●
● ●

●
●

● ●

●
●

●

●
● ●

●
●

●
● ●

●
●

●
●

● ●
●

● ●
●

●

●

●
● ●

● ●

●
● ●

●
●

●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

● ●

●
●

● ●
● ● ● ●●

●
● ● ● ● ● ●

● ●
●

● ● ●
● ●

● ●
● ●● ● ● ●

● ●
● ●

● ●●
● ● ● ● ●

● ● ● ●
● ● ● ●

●
● ● ● ●

●
● ●

●
● ● ● ● ● ● ●● ●

●
● ●

● ● ● ● ●●
● ● ●

● ● ● ● ● ●● ● ● ● ● ●
● ● ● ●

●

●
●

●
●

● ●

● ●
●

●
● ●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

● ●

●

● ●
● ●

●

● ●
●

●
●

●
● ●

●

●
●

●
●

●
●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ●
●

● ●
●

●

●
●

●
●

● ●
●

●
●

● ●

● ●
● ●

●
● ●

●

● ●
● ●

●
● ●

●
●

●

● ●
●

● ●
●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ●

●
●

●

● ● ● ● ● ●
● ● ● ●

● ●
● ●

●
● ● ● ● ●●

● ●
●

●
●

●

●
● ●

● ●
●

● ● ● ●
● ●

●● ● ●
● ● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ●● ● ●
● ●

● ● ● ● ●
●

● ●
●

●
●

● ● ● ●● ● ● ●
● ● ● ● ● ●

●

●

●
● ● ● ●

●
● ●

●
●

●
●

●
● ●

●

● ●

●
●

● ●
●

●
●

●

● ●

● ●

● ●
●

● ● ●
●

●

● ●

● ● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
● ●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

● ●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

● ●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

● ●
●

●
●

●
●

● ●
●

● ●
●

●

●

●
●

● ●
●

●
● ●

●

●

● ●
●

●
● ●

● ●
●

●

●

●
●

● ●
●

●
●

● ●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

● ● ● ● ● ●
●

●
● ●

●
●

●
●

● ●
● ● ● ●

● ●
●

●
●

● ● ● ●
●● ●

● ●
● ● ● ● ●

●

●
●

● ● ●
●

● ● ● ●● ●
●

● ●
●

● ● ● ●● ● ●
●

●
● ● ●

● ●● ● ● ● ● ● ●
● ●

●
● ● ●

● ●
●

● ● ●
●

● ●
●

● ● ●
● ● ● ●

● ●
● ●

● ●
●

● ●
●

● ●

●
●

●
●

●
●

●
●

● ●
●

● ●
●

●
● ●

●

●

● ●

● ●
●

● ●

●
●

●
● ●

●
●

●
● ●

● ●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

● ●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●
●

●
●

●

●
● ●

●
● ●

●
●

●
●

●
●

● ●
●

●
●

●
● ●

●
●

● ●
● ●

● ●
●

●

●
●

● ●
●

●
●

● ●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

● ●
●

●
●

●

●
●

●

●

●
● ● ● ● ● ● ● ● ●● ● ●

●
● ● ● ● ● ●

● ● ● ●
● ●

● ●
● ●● ● ●

● ● ● ● ● ●
●

● ●

●
● ● ●

● ● ● ●● ● ● ● ● ● ● ●
●

●
● ●

● ● ● ● ● ●
●

●● ● ●
● ● ●

● ● ● ●● ● ●
●

●
● ●

●
● ●

● ● ● ● ●
●

● ●
● ●●

●
●

●
● ●

● ●
●

●

●
●

●
●

●

● ●
● ●

●

●
●

●
● ●

●
●

● ●

●

●
● ●

● ●

● ●
●

●
●

● ●
● ●

● ●
●

● ●

●

●

●
●

●

●

● ●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

● ●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

● ●
●

●
●

●

● ● ●

● ● ●

● ●
● ●

● ●
● ●

● ●
● ● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ● ●
● ●

● ●
●

●
●

●
● ● ●

●
●

● ●
● ●● ● ●

●
●

● ● ● ● ●● ● ● ● ●
● ●

● ● ●
● ● ● ● ● ●

● ●
● ●

● ●
●

● ● ● ● ● ● ●● ● ● ● ● ● ●
● ●

●
●

●
● ●

● ● ●
● ●

●●
●

●
●

●
●

● ● ● ●● ● ● ● ●
● ● ● ● ●

●
●

●

● ●
● ● ●

●
●

● ●
●

●
●

● ●

●
●

●

●

●
● ●

●

● ● ●

●
●

●
●

●
●

● ●
● ●

●
●

●
● ●

●

● ● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
● ●

●
●

●

●
●

● ●
● ● ●

●
●

●

●
● ●

● ●
●

●
● ●

●

●

●
●

●
●

● ●

● ●
●

●
●

●
●

●
●

● ●

●
●

● ●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●●
● ● ● ● ● ● ● ● ●● ●

●

● ●
●

●
●

●

●●
●

● ● ● ● ● ●
●

●

●

●
● ● ● ● ● ●

● ●● ● ● ● ● ● ● ● ● ●●
● ● ● ● ● ● ●

● ●
● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●

●
●

●
●

●
● ● ● ● ●

● ● ●
● ●

●
●

●

● ●

●
●

●
●

●
● ●

● ●
●

●
● ●

●
● ●

● ●
● ●

● ●
● ●

●
●

●
●

●
●

●
●

● ●
● ●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

● ●

●
●

●

● ●
●

● ●
● ●

●

●

●
●

●
●

●
●

●

●
●

●

● ●

● ●

● ●
●

●
● ●

● ●
●

●
● ●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ● ● ●
●

● ● ●●
●

● ● ● ● ●
● ●

●● ● ● ● ●
● ● ● ●

●
● ● ● ● ●

●
● ● ●

●
●

●
●

●
●

● ● ● ● ●●
●

●
● ● ●

●
● ● ●

● ● ●
● ● ● ● ● ● ●

● ●
●

● ● ● ●
●

●
●● ● ●

● ● ● ●
● ● ●

● ● ● ●
●

●
● ●

●
●

●

● ● ●
●

●
●

●
●

●

● ●
●

● ●
●

●
● ●

●

●
●

● ● ●

●
● ●

●
●

●
● ●

● ●
●

● ●
● ●

●
●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●
●

●

● ●
●

●

●
● ●

●
● ●

● ●

●

●
●

●
●

● ●
●

●
●

●

●

● ● ●

●
●

● ● ●

●

●
●

●
● ●

●
●

● ●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
● ●

● ● ●
●● ●

● ● ●
●

● ● ● ●
● ● ● ● ● ● ●

●
●

●
● ● ●

●
● ● ● ● ●

●●
●

●
●

● ● ● ●
●

●● ● ● ●
●

●
● ●

● ●● ●
● ●

● ● ● ● ● ●● ●
●

● ● ● ● ● ●
●

●
●

●
● ●

●
●

● ●
●

●
● ● ●

● ● ● ● ● ●●
●

● ●
●

●
● ●

●

●

● ●

● ●
●

● ● ●

● ●

●
●

● ●

●

● ●
● ●

●

●
●

● ●

●
●

● ●
●

●

● ●
●

● ●
●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

● ●

● ●

●

●
●

●

●
●

2 4 6 8 10

−
40

−
20

0
20

40
60

80

per

y

●

●

untreated

treated

Figure 1: Simulated Data Pooled

differ in their reaction to treatment. Specifically, dependent variable yit is generated
according to (5)

yit = 4 + 2 · (3− τi) · θi · t+ εi + εit, (5)

where individual specific error εi ∼ N (0, 1) captures dependence within individuals,
and εit ∼ N (0, 1) ⊥ εi is residual error. Figure 1 shows that the dependent variable
seemingly exhibits 6 different groups. Both extremes come from treated data. Two in-
termediate arrows purely come from untreated participants. The remaining two arrows
are mixed from treated and untreated participants (black and red circles overlap).

Comparing the regression in Table 1 with Figure 2 shows that ignoring the heterogeneity
yields a very misleading picture. The regression finds overall a significant positive time
trend. Yet this only holds for 2 of 4 types, while the trend is negative for type 4 and
close to 0 for type 3. Likewise the interaction between treatment and the time trend is
misleading. Overall it is again significantly positive. But this effect is driven by types
1 and 2, while the treatment effect is actually negative for type 4, and again close to 0
for type 3.

If this were experimental data, one would only have Figure 1. It clearly suggests

9

●

●
●

●

●
●

● ●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
● ●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●
●

● ●

●
●

●
●

●
●

●

●
●

●
●

● ●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

● ●

●
●

●

● ●

●

● ●
●

●
●

●
●

● ●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

● ●

●
●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
● ●

●

● ●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

● ●

●
●

●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

20
40

60
80

type 1

per

y

●

●

untreated

treated

● ●

●
●

● ● ●

●
●

●

●
●

●

● ●
● ●

●
●

●

● ●

● ●
●

●
●

●
●

●

●
● ●

● ● ●

●

●
●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●
●

●
●

●

● ●

● ●
●

●

●
●

●
●

●
●

●
●

●

●
●

● ●
●

●

● ●
●

●
● ●

●
● ●

●
●

● ●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●
● ●

●
●

●
● ●

●
●

● ●

●
●

●

●

● ●

●
●

●
● ●

●

●

●
●

● ●

●

● ●
●

●

●

●
●

●
● ●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

● ●

● ●
● ●

●
● ●

●

● ●

● ●

●

●
●

●
●

●

● ●
●

● ●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●
● ●

●
●

●
●

●
●

●

●

●

● ●

●

● ●
●

●

●

●
●

●
●

●

●
● ●

●

●

● ●
●

●
●

●

●
●

●
●

●

●
●

● ●
●

●
●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

● ●
●

●

●
●

●

●
● ●

●
● ●

●
●

●

●

●
●

● ●
●

●
●

●
● ●

●
●

●
●

● ●

● ●

●
●

●
●

● ●
●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●
●

● ●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

● ●
●

●
●

●

● ● ●

● ● ●

● ●
●

●

● ●

●
●

● ●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

●

●
●

● ●
●

●

●
●

●
● ●

● ●
●

●
● ●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

● ●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

● ●

●
●

●

●
●

●

● ●

● ●
●

●

●
●

●
●

●
●

●

●
●

●

● ●

●
●

● ●
●

●
● ●

● ●

●
●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

● ●
●

●

●
● ●

●
● ●

● ●

●

●
●

●
●

● ●
●

●

●
●

●

● ● ●

●
●

●
● ●

●

●
●

●
● ●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0
10

20
30

40

type 2

per

y

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ● ●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●

●
●

●

● ●

●
●

●

●

●

●

●
● ●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

● ● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

● ● ●

●
●

●

●

●
●

● ● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

● ●

●
● ●

● ●
●

●

●

● ●

●

●

●

●
●●

●
●

●

●

●
● ●

● ●
●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

● ●

●
●

● ●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●● ●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●
●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

● ● ●
●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

● ●

●

● ●

●

●

●
● ●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

● ●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●
●

●

●
● ● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

● ● ●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

● ● ● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

● ●
●

●

2 4 6 8 10

0
2

4
6

8

type 3

per

y

●
●

●

●
●

●
●

● ●

●

●
●

●
●

●

●

● ●
● ●

● ● ●

●
●

●
●

●
●

●

●
●

●

●
●

● ●

●
●

●

●

● ●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●
●

●
●

●
●

●

● ●
●

●
● ●

●

● ●

●

●
● ●

●
●

●

●

● ● ●

● ●

●
●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

● ●

●

● ●

● ●

●

●
●

●
●

●

●
● ●

●

●
●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●
●

●
●

●
●

● ●

●
●

●
●

● ●

● ●

● ●
●

● ● ●

●
●

● ●

● ● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
● ●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●
●

● ●
●

● ●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

●

● ●

●

●

● ●

●
●

●
● ●

●
●

●
● ●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

● ●

● ●

●

●
●

●

● ●

●
●

● ●

●

●
● ●

● ●

● ●

●
●

●

●
●

● ●

●
●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

● ●
●

●
●

● ●

●
●

●
● ●

●

●
●

●

●
● ●

●

● ● ●

●
●

●

●
●

●

● ●

● ●

●
●

●
● ●

●

●
● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

● ●

●

●
●

●
●

●
●

●
●

●

● ●

●
●

●

●
● ●

●
● ●

● ●

● ●

● ●

● ●

●

●
●

●
●

●

●
●

●
●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●
●

●

●
●

●

● ●
●

● ●
●

●
● ●

●

●
●

● ● ●

●

● ●
●

●

●
●

●

● ●
●

● ●

●
●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●
●

●
●

●

●
● ●

● ●

●
●

● ●

●

● ●
●

●

●

●
●

● ●

●
●

●
●

●

●

● ●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

2 4 6 8 10

−
40

−
30

−
20

−
10

0

type 4

per

y

Figure 2: Simulated Data by Type

10

θ 0.105 (2.061)
t 0.994∗∗∗ (0.084)
θ ∗ t 0.996∗∗∗ (0.118)
cons 4.004∗∗ (1.458)

N 4,000

Linear model with
individual random ef-
fect. Standard errors in
parenthesis. ∗p<0.05;
∗∗p<0.01; ∗∗∗p<0.001

Table 1: Pooled Random Effects Model

patterned heterogeneity. But it is hard to guess the number of types: two, as there
are some with a positive and some with a negative trend? Three, as there are two
arrows that clearly separate untreated and treated cases? Or four, as is indeed the data
generating process?7

As the simulated data generation process is so clean, the correct finite mixture model
with four types converges and yields results that closely match (5), Table 2. Yet note
that the model ignores dependence at the individual level.8 As the data is simulated, I
can compare estimated with true type. The estimate is correct in 96.33 % of all cases.
The root mean squared error is 1.410, which is even less than in the original data, where
it is 1.429.9

type 1 type 2 type 3 type 4
pτ 25.35 24.79 24.89 24.97
t .055 .024 .012 -.007
θ .301 .407 .147 -.102
θ ∗ t 3.963 1.982 -.011 -1.992
cons 3.548 3.367 3.949 4.002
Linear finite mixture model, assuming 4
groups, and treating all data points as in-
dependent

Table 2: Finite Mixture Model

7In an experiment, random assignment would exclude 6 types, as there could not be selection of
types into treatment.

8Given each participant is assigned to either baseline or treatment for the entire sequence, one
can also not emulate a fixed effects model by adding participant dummies: they would be perfectly
collinear with the explanatory variable of interest, i.e. the interaction between τ and θ.

9This betrays a slight degree of overfitting: the finite mixture model "explains" some of the noise
in the sample.

11

1 2 3 4 5 6 7 8 9
untreated 50 60 40 50
treated 50 8 50 42 50

Table 3: Type Space Estimated with CART

I now contrast this result with the result generated applying the Algorithm. The only
variable that varies within participants is time t = 1..10. I therefore, separately for
each individual, estimate

yt = β0 + β1t+ εt. (6)

This step yields a new dataset with two scores per participant, β0 and β1, plus the
observed outcomes yit, and a user identifier. I use these scores to build the regression
tree of Figure 3.10 Two things are remarkable: the tree exclusively uses β1, i.e. the
individual slope coefficients, and it finds 6 types, i.e. the six distinct arrows of Figure 1.

Now θ is observed as well. If a type proposed by CART encompasses treated and
untreated cases, one must split it up. Actually three of the types generated by CART
exclusively cover treated or untreated cases. Taking this into account, the final set of
types consists of nine types, of which four are treated, and 5 are untreated. Table 3
reports the estimated frequencies of these types.

Using this coding, in the next step I estimate (7), where τ̂k is one of the 9 estimated
types.

yit = γ0 + γ1tit +
9∑

k=2

γkτ̂k +
9∑

k=2

γ2kτ̂k · tit + εi + εit. (7)

Table 4 shows that the procedure works well. Type main effects are all insignificant,
as they should, given the data generating process of (5) starts at the same point,
irrespective of type. The coefficient of t captures the time trend for the first type (it
corresponds to type 1 in Figure 2, for the untreated participants). The interaction
effects define how much the time trend for each of the remaining estimated types τ̂k
differs from the time trend in the first type.

In the simulation, treatment is exclusively between subjects. The algorithm exclusively
uses slopes (β1) for classification (as it should, given type does not affect the intercept).
I assume that types are characterized by the proximity of slopes. This implies that type
is assumed to be more important than treatment. Personality is the dominant factor,
which is only moderated by treatment. As this is how I have simulated the data, I know

10I use the tree command of R’s library tree. It uses the Gini coefficient as the impurity measure,
and cross-validation to find the tree depth with the optimal tradeoff between bias and variance.

12

|
beta1 < 0.999002

beta1 < −1.03408

beta1 < −3.018

beta1 < 6.01105

beta1 < 3.03366−18.160 −7.072
 4.138

 14.870 26.060
 48.050

Figure 3: Regression Tree from Scores of Local Regressions

13

that this will allow me to find the generated types. In a real experiment, it would of
course depend on background knowledge whether this assumption seems well founded.

On this assumption, I can use Wald tests to estimate the effect of treatment conditional
on type. As CART (together with the observed treatment classifier) finds 9 types, one
may first want to know the estimated overall treatment effect, which is .225, p < .001. τ̂1
and τ̂2 correspond to type 1 in Figure 2. The time trend is strong when untreated, and
approximately twice as strong when treated. The treatment effect is directly measured
by t ∗ τ̂2 in Table 4. CART splits the treated cases corresponding to type 2 in Figure
2 into a few cases (8 participants) of τ̂4 and a large group (50 participants) of τ̂5.
Wald tests show that the difference to the corresponding untreated type τ̂3 is in either
comparison highly significant (p < .001), but the comparison with τ̂4 is −1.5 and hence
has the wrong sign. By contrast, the comparison with τ̂5 is 2.313 and as expected. τ̂6 and
τ̂7 correspond to type 3 in Figure 2. By design, for this type treatment is immaterial,
which is also what the regression finds: the difference between both interaction effects
is .004, p = .894. τ̂8 and τ̂9 correspond to type 4 in Figure 2. The estimated treatment
effect is −1.978, p < .001, and hence very close to the data-generating process.

Figure 4 shows that, overall, the local regression approach predicts the data very well.
The predicted values from (7) not only reconstruct the six arrows from Figure 1. With
one exception, the predicted value even sits close to the midpoint of the local distribu-
tion of y. Only for the third arrow from above, the predicted values are at the lower
bound of the local distributions. The root mean squared error is less good than for the
(technically incorrect) finite mixture model, but with 2.219 still very good.

5 Experimental Data

In the final step, I use the seminal contribution of Fischbacher et al. (2001); Fischbacher
and Gächter (2010) to explore the power of the approach with real experimental data.
Fischbacher & Gächter have participants play a standard linear public good, where
payoff is defined by (8)

πi = 20− ci + .4
4∑

k=1

ck (8)

In (8) πi is payoff, ci is the contribution a participant makes to the public good of a
group of size K = 4. As .4 < 1, it is individually rational to keep the endowment.
Yet as 4 ∗ .4 = 1.6 > 1 it is socially rational that all group members contribute their
entire endowments. The novelty is the use the strategy method (Selten, 1965). Each
participant makes two contribution choices: one unconditional, and one conditional
on the mean choice of the remaining participants. After the game, the one group
member is randomly determined for whom the conditional choice is payoff relevant.

14

t
4.005***
(.020)

τ̂2
.180
(.408)

τ̂3
-.095
(.390)

τ̂4
-.989
(.776)

τ̂5
.337
(.408)

τ̂6
.344
(.432)

τ̂7
.510
(.427)

τ̂8
.029
(.408)

τ̂9
-.178
(.408)

t ∗ τ̂2
3.978***
(.028)

t ∗ τ̂3
-2.326***
(.027)

t ∗ τ̂4
-3.846***
(.053)

t ∗ τ̂5
-.033
(.028)

t ∗ τ̂6
-4.049***
(.030)

t ∗ τ̂7
-4.045***
(.029)

t ∗ τ̂8
-6.016***
(.028)

t ∗ τ̂9
-7.994***
(.028)

cons 3.956***
(.288)

N uid 400
N obs 4000
Linear random
effects model, based
on estimated types.
Standard errors
in parenthesis.
∗p<0.05; ∗∗p<0.01;
∗∗∗p<0.001

Table 4: Two-Step Approach: Final Model

15

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●
●

●

●
●

●

●

●

● ●
● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

● ●

●

●

●
● ● ●

●
●

●
●

● ●

●
●

●
● ●

●

● ●
●

●

● ●

●

●

● ●
● ● ●

●

●
●

● ● ●
●

● ●
●

●
● ● ●

●
● ●

●
● ● ●●

●
● ● ●

● ● ●

●

●● ●
● ● ● ● ●

●
●

●

●

●

●

● ● ●
●

●

●
●●

● ●
●

●
●

●

●
● ●●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

● ●

● ●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

● ●
●

●

● ●

●
●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
● ●

●

● ●

●
● ● ● ●

●

●
●

●
●

● ● ● ●

● ●
●

●
●

● ● ● ● ●

●
● ●

●●
● ●

●
● ●

●
●

●
●

●
● ● ●

●
●

● ● ●
●

●

● ● ●

●

●
●

● ● ●
●

●
●

●

●
● ●

● ● ●
●

● ●
●

● ● ●
●

●
●●

●
● ● ●

●
●

● ● ●

●

●
●

●

● ●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

● ●
●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

● ●
●

● ●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

● ●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

● ● ● ●
●

●

● ●
● ●

●
●

●
●

●
●

● ●
● ●

●
●

●
●● ● ● ●

●
●

● ●
●

●
●

●
● ● ● ●

●
●

●
●

●
● ● ●

●

● ● ●
●

●

● ●

●

● ●
● ● ●

● ●● ●

●
● ●

●
● ●

● ●●

● ●
●

●
● ● ● ● ●●

●
●

● ● ●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

● ●

●

● ●

● ●

●

●
●

●
●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●
● ● ●

●
●

●
●

● ●

●
●

●

●
● ●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●
●

●
● ●

●
● ●

●
●

●
●

●
● ●

●
● ●

● ● ● ● ●●
●

●

● ●

●
●

● ● ●

●

●
●

●
●

●
● ● ● ●● ●

● ●
● ● ● ●

●
●

●

●

●

● ● ●
●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●
●

●
●

● ●

● ●

●

● ●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
● ●

●

●

●
●

●

●

●

●

●
●

● ● ● ●

● ●

●

●

●

●
● ● ●

●● ●
● ●

●
● ● ●

●

●

●
●

●
●

●

●

● ●
● ●

● ●

●
●

●

●
● ● ● ●

●
● ●

●

●
● ● ●

●
●●

● ●
●

●
● ●

● ●

●

●
● ●

● ●

●

● ●
●

●
●

●
●

●
● ●

● ●
●

●

●
●

●
●

● ●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

● ●

●
●

●

● ●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●
●

● ●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●
● ●

●
●

●

●

● ●
● ● ● ●

● ●
●

●

●
●

●
●

● ●●
● ●

●
●

● ● ● ●
●

● ●

●

●
● ●

●
● ● ●●

●
●

●
● ● ● ●

●

●

●
●

● ● ●
●

● ●
●

●●
● ●

● ●
●

● ● ● ●● ●
●

●

●

● ●
●

● ●
●

●
● ● ●

●
● ●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●
●

● ●

●

●

● ●

●
●

● ●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

● ●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

● ● ●

● ●
●

●
●

●
●

●
●

●
●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●

●
●

●

●

●

●

● ● ●

●

●

● ●
● ●

●
●

●

●

●

●
● ●

● ●● ●
●

●
●

●
●

● ●
●

●
● ● ● ●

●
● ●

●
●

●
●

●

●
● ● ● ●

● ●
●

●
● ● ● ● ●

●
●

●

●
●

●
●

● ● ●

● ●

●●

●

●

●

●
●

● ● ●
●

●
● ● ● ●

●
●

●
●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

● ●
●

● ● ●

●
●

●

●

●
●

● ●

●
●

●

●

●

● ●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

● ●
●

●

●
●

●
●

●

● ●
●

●

● ●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
● ●

●
●

● ● ●
●

● ●
●

● ●
● ● ● ●● ●

●

● ●
●

●

●

●

●
●

●

●
● ● ● ●

●

●

●

●

●

● ● ●
●

● ●
●

●
●

● ●
●

● ● ●
●

●
●

●

●
●

● ● ● ● ●
●

●

●
●

●

● ●
●

●
● ●

●

● ● ●
●

● ● ● ● ●
●

●

●

●

●

●

● ●
● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●
●

● ●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

● ●

●

●

● ●

●
●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
● ●●

●
●

●
● ● ●

●
●

●
●

● ● ●
●

● ●
●

●

●

● ●
● ● ●

●

● ●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
● ●

●
●

●
●

●

●
●

●
●

●
● ● ● ● ●

● ●

●

●
● ● ●

●

●

●
● ●

●
● ● ●

●

●
● ●

● ●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

● ●

●

●

●

● ● ●

●

● ●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
● ●

●●
●

● ●
●

●

● ● ●
●

● ● ●
●

● ●
●

●

●
●

● ● ●

●

● ● ●
●

●
●

●

●

●

●

● ● ●
●

●

●● ●
●

●

●

●
● ●

● ●● ●

● ●

●
● ● ● ● ●● ●

●

●
● ●

●
● ●

●

●
●

●
●

●

●

●

● ●

●

●
● ●

●
● ●

● ● ●
●●

●

● ●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

● ●

●
●

● ●

●

● ●
●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

2 4 6 8 10

−
40

−
20

0
20

40
60

80

local regression approach

t

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

observed

predicted

Figure 4: Raw Data and Predicted Values from Local Regression Approach

16

Figure 5: Cooperation Types, Fischbacher Gächter Economics Letter 2001, Fig.1:
x-axis c−i, y-axis ci

For this participant, the design removes strategic uncertainty. This provides a clean
test of conditional cooperation: if, but only if, others are holding back the pull of
selfishness, conditionally cooperative participants are happy to do so as well. This is
indeed what Fischbacher & Gächter find for 50% of their participants. Yet 30% free
ride, and 14% exhibit a peculiar pattern of behaviour: as long as the contributions
of others are moderate, they match them. But if others contribute more than half of
their endowment to the public project, they exploit them, the more so the more they
contribute, see Figure 5.

In their original, frequently cited contribution, Fischbacher & Gächter had only 44
participants. In a later paper, they have repeated the test with a larger sample of
140 participants, and have made the data available (Fischbacher and Gächter, 2010). I
apply my proposed method of organizing the type space to this new dataset.

The research question can be formulated in statistical terms as (9)

ci = β0 + β1c−i + εi + εli (9)

Each participant makes L = 21 conditional choices ci, for the case that the remaining
three group members on average unconditionally contribute l = c−i = 0..20 tokens. As
the participant in question stays the same, a specification is in order that filters out

17

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ● ●●

● ●

● ● ● ●

● ● ● ● ●

● ● ●

●

●

● ●

● ●●

● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ●● ●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

●

● ● ●

● ● ● ●

● ●

● ●

● ●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ● ●

● ●

● ● ● ●

● ● ●

● ● ●

● ●

● ●

● ●●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

● ●● ●● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

●

● ●

● ● ● ●

●

●

● ● ● ●

●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

● ●

● ●

● ● ●

● ●

●

● ●

● ● ● ● ● ● ●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●● ● ●

● ●

●

● ●

● ● ●

●

●

● ●

● ●

●

●

● ●

● ● ● ●

●

● ●

● ●

● ●

●

● ● ●

● ● ●

●

● ●

● ●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ● ● ●

● ●

●

●

● ● ● ● ● ● ● ● ● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

● ●

● ● ●

● ●

● ● ● ●

●

●

● ● ●

● ● ● ●

●

● ● ● ● ●

● ●

● ●

●

● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ●

● ●● ●● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●

● ●

●

● ● ●

●

● ● ●

●

●

●● ●● ●● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●● ●

● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ●

● ● ● ●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ●

● ●● ●●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ●

● ● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

● ● ● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ● ●

● ● ●

● ● ●

● ●

● ● ●

● ●● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

● ●

●

●

● ●

● ●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

● ● ●

●

● ●

● ● ● ●

● ● ●

● ● ●

● ● ●

● ●

● ● ● ●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

● ● ● ●

● ● ●

● ● ● ● ● ●

● ● ●

●

● ● ●

● ●

●

●

●

● ● ●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ●

● ● ● ●

●

● ●

●

● ●

●

● ● ●

● ● ● ● ● ● ●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

● ● ●

●

● ● ● ●

●

●

●

●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

● ●

● ●

● ●

●

●

● ●

● ●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

● ● ● ●

●

● ●

● ● ●

● ● ● ●

● ● ●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

●

●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

● ●

● ●

●

● ●

● ●

● ●

●

● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

0 5 10 15 20

othcontr

co
nt

r

freq

●

●

●
●
●

25

50

75

100

125

Figure 6: Fischbacher & Gächter Distribution of Raw Data.
Note that the graph represents choices, not individual choice patterns

unobserved individual idiosyncrasies with the random effect εi. If one estimates (9),
one finds β0 = .531(p = .201) and β1 = .425(p < .001). This naive model thus suggests
a population of imperfect (β1 < 1) conditional cooperators. Yet Figure 6 shows clear
heterogeneity. Inspecting the figure suggests three relatively clear types: those who
freeride and always contribute 0; those who unconditionally believe in the common
good and always contribute 20; and those who perfectly condition their own choices on
the mean choice of their group members and exhibit choices on the 45◦ line. Yet many
choices do not match either of the three patterns. Such choices are more frequent below
than above the 45◦ line. Attempts at estimating a finite mixture model fail, even if I
only impose 2 or 3 types.

I instead use my proposed method to organize the type space. In this experiment,
treatment is exclusively within subjects. It consists of the contribution c−i on which
the respective participant i is allowed to condition her contributions. Hence there is no
need to use steps 9 and 11-12 of the Algorithm.

18

1 2 3 4 5 6 7
1 44 1 0 0 0 0 0
2 0 0 0 0 3 3 0
3 13 4 0 0 3 0 1
4 0 0 0 0 2 3 3
5 0 0 3 0 0 0 0
6 0 0 0 3 0 0 0
7 1 6 0 0 6 0 1
8 0 0 0 0 4 1 35
horizontal axis: types based
on local regressions with only
a linear term; vertical axis:
types based on local regres-
sions with a linear and a
quadratic term. Numbers are
frequencies.

Table 5: Type Space

Figure 7 collects the results. The upper left panel is resulting from, separately for each
participant, regressing ci on c−i. As Figures 5 and 6 suggest the possibility of a non-
linear relationship, the upper right panel of Figure 5 is derived from local regressions of
ci on c−i+c2−i. The former exercise yields 7 distinct types, the latter 8. As Table 5 shows,
both methods agree for the extreme cases (types 1, and types 7 linear vs. 8 quadratic),
but disagree in the intermediate range. Both trees agree that the slope of the individual
reaction curve (β1 in either local regression) is most important, and hence defines the
first split. Yet the tree based on linear models already splits at moderate inclination
to condition on c−i (β1 = .356), while the tree based on quadratic models requires
β1 = .782. The intermediate range (.356 < β1 < .711) is assigned to a separate type
in the tree based on linear models. For this tree, all finer grained separation is based
on the intercept of local regressions. By contrast, the tree based on quadratic models
uses the coefficient of the quadratic term β2 in the local regressions for classification
in either branch of the tree (for details see Figure 8). There is no statistical reason to
prefer one approach over the other. The choice should depend on the conviction of the
researcher about the importance of non-linearities in the reaction function.

The most instructive graph is, however, Figure 7. For each type, it aggregates over
conditional choices, separately for each possible (mean) unconditional choice. Whether
local regressions include a quadratic term or not (upper right and upper left panels),
there is a type that almost perfectly matches the unconditional choices; a type that is
almost perfectly selfish; a type with very high contributions even if the unconditional
contributions are low. Characteristics of the types in the middle differ. If one includes
the quadratic term in the local regressions, there is a type that imperfectly matches the

19

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●
●

● ●

● ● ● ● ● ● ●
● ● ●

● ● ●

●

●

● ● ●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ● ●

●

●

● ●
● ●

●
● ● ●

●
●

●
● ● ●

●
●

●
●

●
●

●
● ● ● ●

● ●
●

● ●

●
●

●

●

●

● ● ● ● ● ● ● ● ●
● ●

●
●

●

●

● ●
●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

● ●
●

0 5 10 15 20

0
5

10
15

20

linear complete

oth contr

co
nt

r

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●
● ●

● ●

●

● ●

●

●

●

●

● ● ●
●

●
● ●

● ● ● ● ●
● ● ●

●
●

●
● ●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●

●

●

● ● ●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ● ●

●

●

● ●
● ●

●
● ● ●

●
●

●
● ● ●

●
●

●
●

●

● ●

●
●

●

●
● ● ●

● ● ●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
● ●

● ●

0 5 10 15 20

0
5

10
15

20

quadratic complete

oth contr

co
nt

r

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

● ●
●

●
●

0 5 10 15 20

0
5

10
15

linear 3

oth contr

co
nt

r

●●
●

●●

●

●

1 2 3 4 5 6 7

60
00

0
80

00
0

10
00

00
12

00
00

explanatory power of 3 types

number of nodes

im
pu

rit
y

Figure 7: Types Induced by CART

20

|
beta1 < 0.355844

beta0 < 5.53247

beta0 < 2.16883 beta0 < 15.4524

beta1 < 0.711039

beta0 < −1.83983

 0.6141 4.1470 10.0600 19.3800

 6.1670
 6.8910 9.9870

|
beta1 < 0.782199

beta0 < 4.53783

beta1 < 0.0755074

beta2 < 0.0405733 beta2 < 0.0130465

beta0 < 18.0136

beta2 < −0.0406476

 0.1556 4.6030 3.0880 7.5890

10.0600 19.3800

 6.1020 9.8580

Figure 8: Trees Induced by Local Regression with Only Linear / also Quadratic Term

21

unconditional choices; a type that matches very low unconditional choices, but then
levels off; a type that is selfish if unconditional choices are low, but comes closer with
higher unconditional choices.

One can make sense of all these types. The optimality criterion of CART suggests
that one would not run an excessive risk of overfitting. Yet the lower right panel of
Figure 7 shows that the loss in precision is low if one only allows for three types. The
choice patterns of these three types are shown in the lower left panel. The largest type
(69 participants) is actually the (almost) selfish type. The type that almost perfectly
matches the unconditional choices is a little less frequent (65 participants). There is
finally a small type (6 participants) that makes high contributions, irrespective of the
contributions made by the remaining group members. Note that this partition of the
type space results from a "pruned" tree, with just three final nodes. Hence it assigns all
participants to a type, not only those who exhibit patterns similar to the ones shown
in the lower left panel when allowing for 7 types (upper left panel). This is remarkable
as the reduced type space leads to clearly discernible choice patterns, despite the fact
that it has to assign all participants to one of these three types.

Hence the proposed method corroborates what is often treated as a stylized fact in the
community: the typical experimental community consists of large groups of conditional
cooperators and selfish participants, and a small group of altruists.

6 Discussion

The data from economic experiments often suggests patterned heterogeneity. Reactions
to treatment do not only vary. They seemingly vary in systematic ways. In the long run,
one would wish to theorize the type space, and have reliable measures for classifying
participants into types. But an important first step in the research process is organizing
the type space. In principle, estimating heterogeneous treatment effects is a job for a
finite mixture model. Such a model simultaneously estimates the probability that a
given observation falls into one of the types, and the reaction of participants from this
type to treatment. Yet these models have a number of drawbacks: (a) one must posit
the number of types, and cannot take them from the data; (b) experimental data is
frequently repeated, and often also interactive. Finite mixture models have a hard
time capturing the dependence at the individual (and possibly group) level; (c) finite
mixture models require two-dimensional maximum likelihood estimation. The datasets
from experiments are often too small for these demanding models to converge.

In this paper I propose a simple two-step procedure to address these concerns. This
procedure exploits the panel structure of many experimental datasets. Separately for
each participant, I estimate a local regression of choices on those variables that change
over time. I use the coefficients from these local regressions to train a classification
algorithm. Specifically I propose to estimate a regression tree that uses the coefficients

22

from the local regressions to predict choices in the experiment. This procedure allows
to assign each participant to a type. If treatment is between subjects, I interact this
classification with treatment. I propose to use the standard procedure for regression
trees to find the optimal number of types (a). The final step of the procedure can
easily handle random and mixed effects models, as at this point type need no longer
be estimated (b). And splitting up the definition of the type space, and using type for
explaining treatment effects, drastically facilitates estimation, so that in my trials the
model always converged (c).

The proposed approach has a number of limitations that are worth spelling out. Local
regressions require within participant variation. Hence the method does not work with
one-shot experiments. Yet the variation need not result from reaction to treatment. Any
variation resulting from repeated reactions suffices. It of course is for the researcher to
justify that such variation is meaningful for finding types that exhibit systematically
different reactions to treatment.

The researcher must be confident to assume that type is a personality trait, and hence
does vary between, but not within participants.

Technically, the approach works as soon as each participant is observed more than
once, even if further observations are from supplementary tests, not from the main
experiment. Yet the shorter the panel, or the more remote supplementary tests are
from the main experiment, the less one will be confident that one precisely captures
patterned reactions to treatment in the population.

The approach is straightforward if treatment varies within participants, i.e. in experi-
mental jargon in a within subjects treatment. If treatment exclusively varies between
subjects, the approach allows to precisely estimate reactions to treatment conditional
on type. One can also precisely estimate the reactions of different untreated types to
change over time. Yet without additional information, or suitable assumptions, one
cannot match one untreated to one treated type. In the simulated data of Figure 1,
one cannot say whether the two upper arrows are of one type (as they indeed are in the
simulated data), or whether the uppermost arrow is how one of the other arrows with
black dots react to treatment. If it is important for the interpretation of the treatment
effect to get this match right, and if the experimenter suspects a heterogeneous reaction
to treatment, a hybrid design would be appropriate: one not only tests the treatment
effect between, but also within subjects. Then the within component can be used for
type classification.

At each step, CART implements the binary split of the data that explains most of
the (remaining) variance. If one draws random samples from a larger population, the
trees tend to exhibit some variance. If one is concerned about this possibility, one can
use multiple starting points or bootstrapping (which the machine learning community
calls bagging). The coefficients from local regressions are usually not hugely different
from each other. The more they are, the more it would be likely that the coefficients
with higher variance have a higher impact on the resulting tree. If one is concerned

23

about this, one can standardize the coefficients before building the tree. Finally, if one
coefficient exhibits higher variance than another, it likely will receive greater importance
in organizing the type space. For this application, this effect tends to be desirable. But
if one were concerned, one could use the procedure that the machine learning community
calls boosting. One builds multiple trees, and averages types over these trees. Each
tree randomly drops variables from the dataset. Yet if the local regression is simple, as
in the examples presented in this paper, boosting would be inappropriate. One would
frequently drop the information that should be most important for classification. At
any rate, both bootstrapping (bagging) and boosting, i.e. what the machine learning
community calls a random forest, will only yield types. One does not have a single,
easily interpretable tree.

The local regressions are not meant to predict a population effect. The fact that
a coefficient in a local regression is insignificant is therefore not per se a matter of
concern. The coefficients are just a way to characterize participants (cross sections).
Yet the fact that different participants react in more or less discernible ways to changes
over time may induce a different degree of confidence in this characterization. If different
participants exhibit very different consistency in their reaction to changes over time,
one might want to rely more on the information from participants whose reactions can
be estimated more precisely. Weighted estimation is not standard for CART. Yet one
can emulate weighting by the inverse of precision by multiplying the data, and adding
the more (identical) datapoints the more the individual estimate is precise. For detail,
please see the Appendix.

Arguably, many behavioral traits are not universal. These traits are also not just more
or less pronounced. There are discernible types. Yet organizing the type space is
challenging. This paper proposes a simple and robust method to do so, provided the
experiment is repeated.

24

References
Ahmed Alaa and Mihaela Schaar. Limits of estimating heterogeneous treatment effects:

Guidelines for practical algorithm design. In International Conference on Machine
Learning, pages 129–138, 2018.

Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects.
Proceedings of the National Academy of Sciences, 113(27):7353–7360, 2016.

Nicholas Bardsley and Peter G Moffatt. The experimetrics of public goods: Inferring
motivations from contributions. Theory and Decision, 62(2):161–193, 2007.

Leonardo Becchetti, Vittorio Pelligra, and Francesco Salustri. Testing for heterogeneity
of preferences in randomized experiments: a satisfaction-based approach applied to
multiplayer prisoners dilemmas. Applied Economics Letters, 24(10):722–726, 2017.

Paolo Berta, Salvatore Ingrassia, Antonio Punzo, and Giorgio Vittadini. Multilevel
cluster-weighted models for the evaluation of hospitals. Metron, 74(3):275–292, 2016.

Marco Bertoletti, Nial Friel, and Riccardo Rastelli. Choosing the number of clusters
in a finite mixture model using an exact integrated completed likelihood criterion.
Metron, 73(2):177–199, 2015.

Friedel Bolle, Yves Breitmoser, and Steffen Schlächter. Extortion in the laboratory.
Journal of Economic Behavior & Organization, 78(3):207–218, 2011.

Marco Bonetti and Richard D Gelber. Patterns of treatment effects in subsets of patients
in clinical trials. Biostatistics, 5(3):465–481, 2004.

Stéphane Bonhomme, Koen Jochmans, and Jean-Marc Robin. Non-parametric estima-
tion of finite mixtures from repeated measurements. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 78(1):211–229, 2016.

Antoni Bosch-Domènech, José G Montalvo, Rosemarie Nagel, and Albert Satorra. A
finite mixture analysis of beauty-contest data using generalized beta distributions.
Experimental Economics, 13(4):461–475, 2010.

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classifica-
tion and regression trees. Wadsworth International Group, 1984.

Yves Breitmoser. Strategic reasoning in p-beauty contests. Games and Economic Be-
havior, 75(2):555–569, 2012.

Alexander L Brown and Hwagyun Kim. Do individuals have preferences used in macro-
finance models? an experimental investigation. Management Science, 60(4):939–958,
2013.

25

Adrian Bruhin, Ernst Fehr, and Daniel Schunk. The many faces of human sociality: Un-
covering the distribution and stability of social preferences. Journal of the European
Economic Association, 2018.

Anna Conte and M Vittoria Levati. Use of data on planned contributions and stated
beliefs in the measurement of social preferences. Theory and Decision, 76(2):201–223,
2014.

David J Cooper and E Glenn Dutcher. The dynamics of responder behavior in ultima-
tum games: A meta-study. Experimental Economics, 14(4):519–546, 2011.

Partha Deb and Pravin K Trivedi. Finite mixture for panels with fixed effects. Journal
of Econometric Methods, 2(1):35–51, 2013.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society. Series
B (methodological), pages 1–38, 1977.

Christoph Engel. Dictator games: A meta study. Experimental Economics, 14(4):
583–610, 2011.

Urs Fischbacher and Simon Gächter. Social preferences, beliefs, and the dynamics of
free riding in public goods experiments. American Economic Review, 100(1):541–56,
2010.

Urs Fischbacher, Simon Gächter, and Ernst Fehr. Are people conditionally cooperative?
evidence from a public goods experiment. Economics Letters, 71(3):397–404, 2001.

M Gail and R Simon. Testing for qualitative interactions between treatment effects and
patient subsets. Biometrics, pages 361–372, 1985.

Justin Grimmer, Solomon Messing, and Sean J Westwood. Estimating heterogeneous
treatment effects and the effects of heterogeneous treatments with ensemble methods.
Political Analysis, 25(4):413–434, 2017.

Kosuke Imai, Marc Ratkovic, et al. Estimating treatment effect heterogeneity in ran-
domized program evaluation. The Annals of Applied Statistics, 7(1):443–470, 2013.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction
to statistical learning, volume 112. Springer, 2013.

Bachir Kassas, Marco A Palma, and Charles R Hall. Self-serving motivations of high-
and low-income individuals in public goods provisions. Technical report, 2018.

Jaromír Kovářík, Friederike Mengel, and José Gabriel Romero. Learning in network
games. Quantitative Economics, 9(1):85–139, 2018.

26

Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Meta-learners for
estimating heterogeneous treatment effects using machine learning. Technical report,
2017.

Tony Lancaster. The incidental parameter problem since 1948. Journal of econometrics,
95(2):391–413, 2000.

Min Lu, Saad Sadiq, Daniel J Feaster, and Hemant Ishwaran. Estimating individ-
ual treatment effect in observational data using random forest methods. Journal of
Computational and Graphical Statistics, 27(1):209–219, 2018.

Peter G Moffatt. Experimetrics: Econometrics for experimental economics. Macmillan
International Higher Education, 2015.

Jerzy Neyman and Elizabeth L Scott. Consistent estimates based on partially consistent
observations. Econometrica: Journal of the Econometric Society, pages 1–32, 1948.

Scott Powers, Junyang Qian, Kenneth Jung, Alejandro Schuler, Nigam H Shah, Trevor
Hastie, and Robert Tibshirani. Some methods for heterogeneous treatment effect
estimation in high-dimensions. Technical report, 2017.

Luís Santos-Pinto, Adrian Bruhin, José Mata, and Thomas Åstebro. Detecting het-
erogeneous risk attitudes with mixed gambles. Theory and Decision, 79(4):573–600,
2015.

Willi Sauerbrei, Patrick Royston, and Karina Zapien. Detecting an interaction between
treatment and a continuous covariate: A comparison of two approaches. Computa-
tional Statistics & Data Analysis, 51(8):4054–4063, 2007.

Reinhard Selten. Die strategiemethode zur erforschung des eingeschränkt rationalen ver-
haltens im rahmen eines oligopolexperimentes. Seminar für Mathemat. Wirtschafts-
forschung u. Ökonometrie, 1965.

Carolin Strobl, James Malley, and Gerhard Tutz. An introduction to recursive par-
titioning: rationale, application, and characteristics of classification and regression
trees, bagging, and random forests. Psychological Methods, 14(4):323, 2009.

Xiaogang Su, Chih-Ling Tsai, Hansheng Wang, David M Nickerson, and Bogong Li.
Subgroup analysis via recursive partitioning. Journal of Machine Learning Research,
10(Feb):141–158, 2009.

Lu Tian, Ash A Alizadeh, Andrew J Gentles, and Robert Tibshirani. A simple method
for estimating interactions between a treatment and a large number of covariates.
Journal of the American Statistical Association, 109(508):1517–1532, 2014.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment
effects using random forests. Journal of the American Statistical Association, (just-
accepted), 2017.

27

T Wendling, K Jung, A Callahan, A Schuler, NH Shah, and B Gallego. Comparing
methods for estimation of heterogeneous treatment effects using observational data
from health care databases. Statistics in medicine, 2018.

Jennifer Zelmer. Linear public goods experiments: A meta-analysis. Experimental
Economics, 6(3):299–310, 2003.

Yingqi Zhao, Donglin Zeng, A John Rush, and Michael R Kosorok. Estimating individ-
ualized treatment rules using outcome weighted learning. Journal of the American
Statistical Association, 107(499):1106–1118, 2012.

28

Appendix: CART with precision weight

If one wants to weigh datapoints by the precision of estimates from the local regressions,
this can be achieved with the following modifications of the algorithm:

Algorithm

1. Let D0 be a panel with dependent variable yit, and explanatory variables xit that
include treatment θi (which may differ over repetitions, i.e. may be θit)

2. initialize β and tval for the t-values of the local regressions

For every participant Do

3. regress yit on all time varying xit

4. collect participant id and all βi as well as tval in separate data frame D1

EndFor

5. for each datapoint, calculate mean t-value (over all coefficients that feature in the
local regression)

6. use critical t-values (taking # df into account) to assign weight to each datapoint
(e.g. 5 if p < .001, 4 if p < .01, 3 if p < .05, 2 if p < .1, 1 if p > .1)

7. expand datapoints in D1 by weight (hence add 4 identical datapoints if weight is
5, and none if weight is 1)

8. merge D1 with D0 on id

9. fit classification tree of yit on β

10. use standard algorithm to define optimal depth of tree

11. use optimal tree to assign type to each participant

12. estimate panel version of (2)

In the simulated dataset, this procedure assigns weight 1 to 108 original datapoints,
weight 2 to 5 datapoints, weight 3 to 41 datapoints, weight 4 to 39 datapoints, and
weight 5 to 207 datapoints. The resulting classification tree finds very similar cutpoints,
but has a different structure, and one final node less, see Figure 9.

29

|
beta1 < 3.03366

beta1 < −1.03408

beta1 < 0.999002

beta1 < 6.01105

−12.62
 4.35 14.87

 26.06 48.05

Figure 9: Tree Induced by Precision Weighted Local Regressions

30

