Koh, Youngsun

Research Report
Wage Inequality: How and Why it has Changed over the Decades

KDI Policy Forum, No. 274

Provided in Cooperation with:
Korea Development Institute (KDI), Sejong

Suggested Citation: Koh, Youngsun (2019) : Wage Inequality: How and Why it has Changed over the Decades, KDI Policy Forum, No. 274, Korea Development Institute (KDI), Sejong, http://dx.doi.org/10.22740/kdi.forum.e.2019.274

This Version is available at:
http://hdl.handle.net/10419/204691

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Wage Inequality: How and Why it has Changed over the Decades

Youngsun Koh, Senior Fellow at KDI (yskoh@kdi.re.kr)

Summary

- Korea’s income inequality has changed drastically since the 1990s.
 - Income inequality as measured by the Gini coefficient fell in 1990-1992 but surged in 1993-2008; a modest decline was seen thereafter until 2015.

- The trends in wage inequality (Figure 1) are similar to those of income inequality, implying that the former is a main cause of the latter.
 - Wage inequality, estimated by the difference (Q5-Q1) in hourly wages between the top (Q5) and bottom (Q1) quintile, follows closely the fluctuations in income inequality.\(^1\)
 - Wage inequality seems to be, therefore, the main driver of income inequality.
 - Wages in effect account for 64% of total household income (Statistics Korea’s Survey of Household Finances and Living Conditions, 2018).

1. [Figure 1] and the analyses below used data on workplaces with 10 or more employees from the Ministry of Employment and Labor’s Report on Wage Structure Survey. The scope of the survey has expanded continuously over time to now include workplaces with one or more employees. To maintain time-series data it was necessary to exclude workplaces with 9 or fewer employees as the number has increased over time. The differences in the data for workplaces 10 or more employees and workplaces 1 to 9 employees are set to be non-significant.
Meanwhile, the entire period witnessed a gradual moderation in wage growth (Table 1).

- The annual growth rate of the real median wage (P50) plummeted from 9.2% in the 1st phase to 4.0% in the 2nd and 1.1% in the 3rd.
- That of the top 10% (P90) similarly dropped to 1.1% in the 3rd phase while that of the bottom 10% (P10) stayed relatively steady at 3.0%.

The majority of advanced economies have experienced a continued deterioration in wage inequality since the 1980s while Korea has exhibited ups and downs. In the US, the deteriorating wage inequality is believed to have come from skill-biased technical change (SBTC) (Juhn, Murphy, and Pierce, 1993; Katz and Autor, 1999; and Goldin and Katz, 2007).

- The increasing supply of college graduates could not match the increasing demand for high-skilled workers on the back of rapid technological progress, widening the wage gap between college and high-school graduates, and deepening income inequality.
- The phenomenon was tagged as a ‘race between education and technology’ by Goldin and Katz (2007) who argued that to reduce wage inequality, college education should be actively expanded.
- In Korea, not only did wage inequality rise (in the 2nd phase) but also fell (in the 1st and 3rd). This study examines the causes of the fluctuation from the perspective of labor supply and demand and draws policy implications.
Workers’ wages are determined by the amount of skill they have and the price of skill; changes in wage inequality are determined in turn by the changing distribution of skill among workers and the changing price of skill.

- A worker’s skill is often represented by such traits as educational attainment, work experience, age, gender, etc.
- In the case of educational attainment, for instance, a college graduate generally commands a higher wage than a high-school graduate.
- When nobody (or, for that matter, everybody) has a college degree, or when the college wage premium is nil, the wage inequality that derives from educational attainment would be nil.
- Wage inequality changes as the share of college graduates increases or decreases (i.e. the distribution of educational attainment changes) and as the college wage premium rises or falls (i.e. the price of educational attainment changes).

An analysis of the 1980-2016 data reveals that the change in wage inequality can be mostly attributed to the changing price of skill.

- In <Table 2>, the contribution of each trait to the changing wage inequality is divided into ‘total effect’ (=changing distribution + changing price) and ‘price effect’ (=changing price).
- As shown in the bottom row, the sums for the ‘total effect’ and ‘price effect’ are nearly equal to each other.
 - They marked -0.022 and -0.021, respectively, in 1980-1982, 0.012 and 0.013 in 1995-2007, and -0.008 and -0.015 in 2009-2016.
- It appears that the price effect plays a dominant role in explaining the overall movement in wage inequality.
- Analyses of the American labor market using a different methodology reached a similar conclusion (Juhn, Murphy, and Pierce, 1993).

<Table 2> Decomposition of Wage Inequality (Q5-Q1) of Worker Traits (annual average)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total effect</td>
<td>Price effect</td>
<td>Total effect</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.008</td>
<td>-0.003</td>
<td>-0.006</td>
</tr>
<tr>
<td>Age</td>
<td>-0.010</td>
<td>-0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>Educational attainment</td>
<td>-0.010</td>
<td>-0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>Work experience</td>
<td>0.007</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>Firm tenure</td>
<td>0.003</td>
<td>-0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Establishment size</td>
<td>0.002</td>
<td>0.000</td>
<td>0.007</td>
</tr>
<tr>
<td>Occupation</td>
<td>-0.003</td>
<td>-0.008</td>
<td>0.004</td>
</tr>
<tr>
<td>Industry</td>
<td>-0.002</td>
<td>0.002</td>
<td>-0.002</td>
</tr>
<tr>
<td>Sum</td>
<td>-0.022</td>
<td>-0.021</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Changes in the price of skill are now examined in a supply and demand framework (Figure 2).

- Suppose that worker group 1 consists of high-school graduates and group 2 of college graduates. The relative wage \(\frac{w_2}{w_1} \) would then represent the wage premium of college education over high-school education.
- The relative wage \(\frac{w_2}{w_1} \) is determined by the interaction between the relative demand for and the relative supply of college graduates over high-school graduates.
 - Relative demand is depicted by the downward-sloping line and relative supply \(\frac{L_2}{L_1} \) by the vertical line under the assumption that the latter is fixed during short periods.
- Starting from the initial equilibrium achieved at point A, an increase in the relative supply by \(\Delta S \) would move the equilibrium to point B and reduce the relative wage.
- Similarly, an increase in the relative demand by \(\Delta D \) would move the equilibrium from point A to point C and raise the relative wage.
- Increases in both relative supply and demand would move the equilibrium to point E. In Figure 2, the relative wage rises since the increase in relative demand \(\Delta D \) is larger than that in the relative supply \(\Delta S \).

Figure 2: Relative Supply and Demand of Labor

Focusing our attention on educational attainment, which is presumably the most important determinant of skill, a relative demand function was estimated for each of the three phases.

- Specifically, the following equation was estimated:
 \[
 \log \frac{w_2}{w_1} = \alpha_k + \beta_k t - \gamma \log \frac{L_2}{L_1} + \epsilon, \quad t = 1980,...,2016, \quad k = 1,2,3.
 \]
 - The period from 1980 to 2016 was divided into 1st, 2nd, and 3rd phases and \(\beta_1 \), \(\beta_2 \), and \(\beta_3 \) were estimated.
 - This specification assumes that the relative demand increases or decreases every year by the same margin in each phase; if \(\beta_k > 0 \), the demand curve moves to the right by \(\frac{1}{\gamma} \beta_k \) every year, while if \(\beta_k < 0 \), it moves to the left by \(\frac{1}{\gamma} \beta_k \) every year.

Based on the estimated equation, changes in relative demand, relative supply, and relative wages were calculated as follows.

- Relative demand change \(= \frac{1}{\gamma} \beta_k \Delta t \)
- Relative supply change \(= \Delta \log \frac{L_2}{L_1} \)
- Relative wage change \(= \Delta \log \frac{w_2}{w_1} = \gamma(\frac{1}{\gamma} \beta_k \Delta t - \Delta \log \frac{L_2}{L_1}) \)
The relative demand for workers has changed across different phases (Figure 3).

1st phase: The relative demand for high-school graduates increased rapidly.
- The annual change in the demand for four-year college graduates relative to high-school graduates recorded -4.0%, that for two-year college graduates –17.0%, and that for middle-school graduates –2.7%.

2nd phase: The relative demand for four-year college graduates increased rapidly (8.4%), as did that for two-year college graduates (7.2%).

3rd phase: The relative demand for four-year college graduates stagnated (0.0%) and that for two-year college graduates declined (-11.0%).

Meanwhile, on the labor supply side, all phases exhibited a continuous upgrading in educational attainment (Figure 3).

1st phase: Middle-school graduates were replaced rapidly by high-school graduates following an upsurge in the supply of the latter.
- The share of high-school graduates shot up from 29.4% to 50.1% while that of middle-school graduates plunged from 59.8% to 26.1% (Table 3), resulting in a rapid drop (-9.3%) in the relative supply of middle-school graduates.
- The supply of four-year college graduates (0.7%) and two-year college graduates (4.9%) relative to high-school graduates increased at a fast pace.

2nd phase: The relative supply of four-year college graduates (6.3%) and two-year college graduates (7.8%) increased rapidly.
- This increase owes much to the adoption of the graduation quota system in the early 1980s and the partial liberalization of the college establishment regulations in the mid-1990s.

3rd phase: The relative supply of four-year college graduates (4.3%) and two-year college graduates (0.2%) continued to grow albeit at a slower pace.
Changes in the relative supply and demand lead to changes in relative wages and wage inequality.

- 1st phase: The wage gaps between high-school graduates and other groups declined, contributing to an improvement in wage inequality.
 - The relative demand for four-year college graduates and two-year college graduates decreased (-4.0% and -17.0%, respectively) and their relative supply increased (0.7% and 4.9%), reducing their relative wages (-1.6% and -1.0%).
 - For middle-school graduates, the relative supply (-9.3%) dropped more than the relative demand (-2.7%), resulting in an increase (1.3%) in the relative wage.

- 2nd phase: Wage inequality deteriorated following an increase in the relative wage of four-year college graduates.
 - The relative supply of four-year college graduates (6.3%) increased but their relative demand (8.4%) increased even more, raising their relative wage (0.7%).

- 3rd phase: Wage inequality improved with decreases in the relative wage of four-year and two-year college graduates.
 - While the relative demand for four-year college graduates stagnated (0.0%), their relative supply continued to grow, pulling down their relative wage (-1.4%).
 - The relative demand for two-year college graduates tumbled (-11.0%) and their relative wage dropped (-0.5%).
 - The sluggish growth of the top and median wages appears to be due to the decrease in the relative wage of college graduates (Table 1).

For the 1st phase, the changes in labor demand by educational attainment imply the following two possibilities:

- Shift in industrial structure: The industrial promotion policy in the 1970s drove the growth of the heavy and chemical industry in the 1980s, possibly triggering a strong demand for mid-skilled workers.
- Change in skill demand across all industries: The demand for mid-skilled workers may have strengthened not only in heavy and chemical industry but also in other industries.
 - For instance, in light of Acemoglu's (2002) endogenous technical change theory, the high demand for high-school graduates in the 1980s may have been due to the increased supply of high-school graduates following the surge in the high-school enrollment rate in the 1970s.
 - In any case, the increasing demand for high-school graduates appears to have been an important part of falling wage inequality in the 1st phase.

For the 2nd phase, several studies point to SBTC as the cause of the rising demand for high-skilled workers (Kwon and Kim, 2002; Shin, 2007).

- According to these studies, the widespread use of ICT stimulated the demand for college graduates equipped with new skills and knowledge.
- Even without ICT, the demand for high-skilled college graduates may have increased in the 2nd phase as the Korean economy was graduating from a catching-up stage and attaining a leading position in many sectors on the back of accumulated technological achievements.

For the 3rd phase, the stagnant demand for high-skilled workers indicates that SBTC was slowing.

- If the increased demand for high-skilled workers in the 2nd phase was driven by the strengthening of SBTC, the stagnant demand in the 3rd phase may have been due to the weakening of SBTC.
In this sense, the improved wage inequality in the 3rd phase may have been a mixed blessing, partly reflecting a slower pace of technological progress and a weaker demand for high-skilled workers.

- **Innovation and technological progress need to be accelerated to improve productivity and boost real wage growth.**
 - The stagnant growth of the median and 90th percentile wages in the 3rd phase indicates that policy attention should not be confined to low-wage earners.
 - To strengthen the overall wage growth, multi-faceted efforts are needed aimed at accelerating technological progress and productivity improvement through deregulation, industrial restructuring, and institutional reforms in education, labor market R&D, and other areas.

- **Proactive efforts are also needed to improve income distribution.**
 - Income distribution may deteriorate, as in the 2nd phase, if the accelerated technical progress raises the demand for high-skilled workers.
 - In response, first, the overall skill levels of the workforce should be enhanced. Given that the quality of higher education has been declining since the 1990s (Lee *et al.*, 2014), efforts should be geared towards improving the quality, not quantity, of education at colleges, particularly for those lagging behind.
 - Second, redistribution policies should be reinforced and their effectiveness improved.

References

<Sources>