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Abstract. The fetal origins hypothesis has received considerable empirical support, both

within epidemiology and economics. The present study compares the ability of two rival

theoretical frameworks in accounting for the kind of path dependence implied by the

fetal origins hypothesis. We argue that while the conventional health capital model is

irreconcilable with fetal origins of late-in-life health outcomes, the more recent health

deficit model can generate shock amplification consistent with the hypothesis. We also

develop a theory of ontogenetic growth in utero and during childhood, unify it with the

theory of adult aging, and discuss the transmission of early-life shocks to late-life health

deficit accumulation.
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1. Introduction

Half a century ago epidemiologists would tend to view the fetal state as a protected one. Since

then epidemiological evidence has been accumulating that this appears not to be the case, which

has spawned the fetal origins hypothesis. The fetal origins hypothesis suggests that morbidities

in utero may cause epigenetic changes in the fetus that instigate morbidities late-in-life though

without being directly visible for most of the life course (e.g., Almond and Currie, 2011a).

Within economics, research has considerably strengthened the case that in utero (or early-in-

life) shocks indeed appear to impact on late-in-life health (e.g., Almond, 2006; Van den Berg et

al., 2006; Almond and Mazumder, 2011; Lin and Lui, 2014; Bhalotra and Rawlings, 2011). In

addition, research has demonstrated effects beyond late-in-life health, including human capital

and labor market outcomes (e.g. Bleakley, 2007; Almond et al., 2009; Nelson, 2010; Bhalotra

and Venkataramani, 2016); welfare dependence (Almond, 2006; Oreopoulos et al., 2008), and

even investment behavior (Cronqvist et al., 2016). From a broader perspective, the fetal origins

hypothesis thus seems to be a promising avenue through which to gain further insights into the

causes and intergenerational transmission of inequality (e.g., Currie, 2011).

From a theoretical perspective, however, the fetal origins hypothesis poses a problem for the

current workhorse model within health economics: the Grossman (1972a) model. At the heart

of the model lies the concept of “health capital”, which is a stock that depreciates but can

be augmented by health investments akin to physical capital accumulation. Herein lies the

key problem: The fact that health depreciation is assumed proportional to the stock of health

implies that the late-in-life health stock becomes largely unaffected by initial conditions, such

as those prompted by in utero shocks, as the initial conditions “depreciate away” over the life

course. The problem is further aggravated by the need to assume an accelerated rate of health

depreciation with the passing of time in order for the Grossman model to account for mortality.1

These difficulties are avoided, however, in the framework of health deficits as developed in

Dalgaard and Strulik (2014). Based on research in the natural sciences the process of aging is

conceptualized as a gradual loss of redundancy in the human body, which causes increasing frailty

and ultimately death. This conceptualization of aging is anchored in the biological literature,

1Assuming that the depreciation rate is age-dependent has other counterfactual implications. For example, Zweifel
et al. (1999) demonstrate that among the elderly health expenditure is not predicted by chronological age once
“time remaining until death” is controlled for. This suggest that health status, and not the year on the birth
certificate, is what matters to health investments.
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and can be given strong micro-foundations. Moreover, it leads to a law of motion for human

frailty, which depends on physiological parameters and health expenditures. While the process

of increasing frailty, measured by health deficits, is accelerating with age it may be slowed by

health investments. In the context of the issue at hand the theory implies that health deficits

accumulate exponentially over the life course, a prediction that has been repeatedly verified in

research within gerontology, which means that small differences in initial conditions between

individuals are amplified with the passing of time. The current paper demonstrates that this

type of framework is well positioned to explain life course dynamics associated with the fetal

origins hypothesis (and shocks in early childhood) in the context of long-run health outcomes

as well as other socioeconomic outcomes. Indeed, the basic model has been adapted to study,

among other things, the link between health and education (Strulik, 2018), years in retirement

(Dalgaard and Strulik, 2017), the gender-gap in mortality (Schünemann et al., 2017b), and the

health gap between married and unmarried individuals (Schünemann et al., 2019).

The health deficit model of human aging applies from early adulthood to death such that early-

life health shocks are only indirectly represented as (small) initial health deficits in adulthood. In

order to directly discuss the origin of shocks and their transmission during child development, we

also develop a model of ontogenetic growth. This model derives child growth from conception to

adulthood from first principles in thermodynamics, i.e. the energy needs to create and maintain

body cells. We show that growth dynamics imply a natural separation of childhood into two

distinct periods; an early period, in which shocks are amplified by child growth; and a later

period, in which shocks are dampened by child growth. This provides a micro-foundation of the

frequent assumption in economic models of child development that such distinct periods exist

(Heckman, 2007; Almond and Currie, 2011a,b). The model naturally connects with the model

of human aging by conceptualizing the period of child growth as the build-up of redundancy

of (functioning) body cells and by conceptualizing the aging period as depletion of redundancy.

We thus arrive at a unified theory of human development from conception to death.

The paper proceeds as follows. In the next section we compare basic versions of the health

capital model and the health deficit model in their ability to account for the fetal origins hypoth-

esis and elaborate on their testable implications. In Section 3 we provide a profound discussion

of the impact of initial conditions on lifetime health outcomes within the health deficit model

where investments are optimally determined. In Section 4, we set up the model of ontogenetic
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growth and derive its implication for the transmission of health and nutrition shocks during

childhood and their implications for health deficit accumulation in old age. Section 5 concludes.

2. Basic Models

2.1. Health Capital Accumulation. The survey by Almond and Currie (2011a) provides an

illustration of the inability of the Grossman (1972a) model to account for fetal origins. The

illustration has the following law of motion for health capital as the main ingredient:

Ht = (1− δ)Ht−1 + It, H0 given, H > H (1)

in which H is the stock of health capital, δ is a constant rate of health capital depreciation, I

represents health investment, and H is a hypothesized lower boundary for health beyond which

individuals expire. Repeated substitution leaves us with the following expression for the stock

of health at time t:

Ht = (1− δ)tH0 +

t−1
∑

i=0

(1− δ)i It−(i+1).

The key observation to make is that shocks in utero that influence initial health, H0, depreciate

away with the passing of time. In general, events in the past are far less important to current

health than recent events. This is an inevitable consequence of the basic assumption in the

Grossman model that health depreciates in proportion to the stock of health. In principle,

the model therefore imposes that healthy individuals age faster than unhealthy (or elderly)

individuals, ceteris paribus. Consequently, initial conditions will be of little consequence later

in life.

The panel on the left hand side of Figure 1 provides some numerical illustrations of this point,

replicating Figure 1 of Almond and Currie (2011a). It shows how an initial shock, which creates

a 25 percent deviation in initial health to a reference individual, depreciates with age for three

different rates of health capital depreciation. At five percent depreciation the initial 25 percent

deviation is melted down to about a five percent deviation at age 30. At 15 percent, initial

differences are basically equalized at age 30.2

2More formally, Figure 1 shows the impact on the long run relative level of health of two individuals (1 and 2,
say) after one is hit by a shock at time zero:

d
(

H1

t /H
2

t

)

= (1− δ)t dH1

0
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Figure 1: Shock Persistence by Age: Health Capital vs. Health Deficits
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The figure shows how persistent a 25 percent negative shock to the birth endowment would be given alternative
annual depreciation rates. Left: blue (solid) line: 5 percent depreciation; red (dashed) line: 10% depreciation;
green (dash-dotted): 15% depreciation. Right: blue (solid) line: µ = 0.04; red (dashed): µ = 0.035; green
(dash-dotted): µ = 0.03 (E = 0.02 and D0 = 0.02).

As it turns out, the Grossman model actually holds a stronger prediction than what is indi-

cated by the experiment conducted in Figure 1. Observe that the absolute difference in health

capital between two individuals (i = 1, 2 respectively) with different initial conditions (i.e.,

different H0), in the absence of health investments, is given by

H1
t −H2

t = (1− δ)t
(

H1
0 −H2

0

)

.

Hence, the Grossman model implies a stronger version of non-persistence than convergence in

relative health levels: Namely, absolute convergence in health levels between individuals with

different initial conditions, holding investments fixed.

So far we have assumed a constant rate of health depreciation, δ. Naturally, in the Grossman

model the depreciation rate is not constant, as it theoretically would enable individuals to

“live forever” contingent on sufficient health capital investments (see e.g. Grossman (1972a),

section III). Instead the depreciation rate is assumed to increase with the passing of time as

the individual ages. Obviously, this only serves to strengthen the prediction that initial health

shocks lose significance with the passing of time. In this case, depreciation of initial health

differences become faster than geometric.

Notice that δ > 0 is sufficient to generate convergence. This implies that convergence is

also obtained in refinements of the health capital model. For example, we could allow for

individual-specific and/or stochastic depreciation rates, as briefly discussed in Grossman (1972b).

4



In Appendix B, we discuss a variant of the health capital model where early-life shocks imply a

greater depreciation rate of health capital. This leads to the prediction that the health impact

of early-life shocks is amplified at young ages but preserves the feature of convergence of initial

health differences in old age.

The exercise conduced in Figure 1 and the subsequent discussion set health investments to

zero. This may seem to open the door to a simple way of reconciling the Grossman model

with fetal origins, namely through investments. However, as pointed out by Almond and Currie

(2011a, p. 158) in the context of the illustration depicted in Figure 1:

If investments in all periods subsequent to the shock are affected by the shock,

then prenatal exposures could be important for adult health in the Grossman

(1972a) framework. However, the fetal origins literature posits an important and

persistent biological effect of the prenatal period – that is, holding investments

fixed.

It is important to appreciate that fetal origins, from the point of view of the medical literature,

involve a specific mechanism. The early literature argued that environmental shocks would

“program” the fetus with a predisposition towards various diseases, like coronary heart disease

(e.g., Barker, 1995). Today a widespread view is that early-in-life shocks affect late-in-life

health outcomes due to epigenetic changes. That is, changes in hereditary traits brought on by

environmental influence (e.g., Gluckman and Hanson, 2004; Wu et al., 2004; Hilakivi-Clark and

De Assis, 2006; Dolinoy el al. 2007; Waterland and Michels, 2007; Sinclair et al, 2007; Thompson

and Einstein, 2010). Animal trials have been instrumental in providing proof of the principle of

the fetal origin’s hypothesis (McMullen and Mostyn, 2009, for a review). Accordingly, in order

to fully account for the fetal origins hypothesis a theory would have to allow for an influence from

initial conditions on long run health outcomes conditional on investments, for purely biological

reasons. The Grossman model does not allow for such a line of influence, as seen above.

Finally, it should be observed that while the standard Grossman model does not suggest

that initial conditions influence subsequent investments, the more recent work by Heckman

(2007) does. The theory of human capability formation creates dynamic complementarities by

assuming that health investments happen at two (or more) distinct periods in life such that

health outcomes are produced with the distinct health investments as inputs. Since negative

early-in-life shocks, or low initial investments, reduce the productivity of future investments,

5



early-in-life events can have very persistent effects. The end result is not a given, of course. At

present, the evidence in favor of dynamic complementarities seems to be largely descriptive in

nature. Moreover, while some studies find that parental investments reinforce shocks, implying

persistence in early-in-life shocks through investments, other studies find that parents act in a

compensatory fashion.3

When dynamic complementarities are introduced into the Grossman model the resulting

framework can generate persistence, which is broadly consistent with the fetal origins hypothesis.

As should be clear, however, initial conditions only influences eventual outcomes via investments.

As a consequence, the “Grossman-Heckman” framework cannot account for an impact of initial

conditions on late-in-life outcomes holding investments fixed, and by extension it cannot ac-

count for the fetal origins hypothesis as it is conventionally understood in the medical literature.

Combining the “Heckman mechanism” with our deficit model would not have this drawback, as

will be clear from the discussion to follow.

2.2. Health Deficit Accumulation. The health deficit model of Dalgaard and Strulik (2014),

in its simplest form, can be written as

Dt −Dt−1 = µ(Dt−1 − E), for D < D̄, D0 given, (2)

where D denotes health deficits and it is measured by the health deficit index as the relative

number of health deficits that a person has out of a long list of potential deficits. Accordingly,

the index is defined on a 0 to 1 scale, and aging (declining health status) occurs as the index

gradually traverses towards one. In general, individuals with a higher deficit index are to be

considered more frail, and thus physiologically older. In practise the process of deficit accumula-

tion continues until an upper boundary for deficits, D̄, is reached at which point the individual

expires. The parameter µ is the “natural” rate of aging, and E is an “environmental constant”.

Equation (2) derives from the literature on gerontology and the underlying parameters have

been estimated with great precision (see Dalgaard and Strulik, 2014). For example, empirical

estimates suggest that µ is between 0.03 and 0.045, depending on gender and country of origin

3See Currie and Almond (2011b), Almond and Mazumder (2013), and Almond et al. (2018) for a detailed discus-
sion of the Heckmann (2007) model and reviews of the parental investment literature. In Section 4 we propose
a model of child development that endogenously generates a division of childhood in two distinct periods with
shock amplification in early childhood and shock dampening in adolescence.
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(Mitnitski et al. 2002a).4 By extension, it is worth noting that in contrast to the Grossman

model where the object of interest – health capital – is an unobserved variable, the object of

interest in the present model – health deficits – is empirically observable.

Repeated substitution of (2) leads to

Dt = (1 + µ)tD0 −

t−1
∑

i=0

µ1+i (1 + µ)iEt−(i+1).

Since (1 + µ)t grows with increasing age t, an inherent feature of the health deficit model is

that early-in-life shocks that influence the initial relative number of deficits, D0, are amplified

over time. This creates a force of divergence: initially unhealthier individuals accumulate health

deficits faster than initially healthy individuals.

The panel on the right hand side of Figure 1 provides a numerical illustration of this feature.

As in the previous section we study the impact a health shock that creates a 25% deviation in

initial deficits relative to a reference individual. The deviation from benchmark increases over

time. For µ = 0.04, the initial 25% deviation has reached 80% percent at the age of 30.5

As noted above, the interpretation of E in the natural science literature is that of “environ-

mental” influences. While some such influence can be external to individuals (such as pollution),

E may also be influenced by deliberate health investments. By increasing E such investments

will serve to slow down the process of deficit accumulation and thus provide the prospect of a

longer life. In the illustration in Figure 1, the level of E is ignored so as to provide a clean

comparison with the properties of the Grossman model in the absence of health investments.

Nevertheless it is also of interest to understand the consequences of allowing for optimal health

investments in the presence of shocks to initial deficits within the deficit model. The next section

therefore studies the impact from initial deficits in the original health deficit model.

As a final remark on the properties of the basic deficit model its worth observing that it

also holds radically different implications from the Grossman model in terms of the evolution

of absolute health differences. Comparing the absolute difference in health deficits between two

4The exponential nature of health deficit accumulation as been confirmed in a variety of studies for samples from
different populations, see e.g. Shi et al. (2011); Harttgen et al. (2013); Mitnitski and Rockwood (2013, 2016);
Abeliansky and Strulik (2018a).
5More formally, Figure 1 shows the impact on the long run relative level of health deficits of two individuals (1
and 2, say) after one is hit by a shock in utero (time zero):

d
(

D1

t /D
2

t

)

= (1 + µ)t dD1

0
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individuals (i = 1, 2 respectively) with different initial conditions (i.e., different D0), in the

absence of health investments (E = 0), is given by:

D1
t −D2

t = (1 + µ)t
(

D1
0 −D2

0

)

.

Hence, initial differences in health deficits are amplified and the model thus predicts absolute

divergence in health holding investments fixed.

2.3. Testable Implications. The theoretical discussion clarifies how an empirical researcher

can discriminate between the health capital model and the health deficit model. Indirectly,

any evidence of late-life health repercussions that can be causally related to early-life health

shocks rejects the health capital model and confirms the health deficit model. Direct evidence,

however, would employ a measure of health that can be tracked over time for individuals and

ideally it would be based on the same metric to measure health deficits as the theoretical model,

i.e. the deficit index. For a given health shock, the health deficit framework predicts that

(health) outcomes between affected and non-affected individuals amplify throughout adulthood.

In contrast, the Grossman model (even augmented with dynamic complementarities) predicts

the opposite; namely that the initial shock is diminishing during adulthood. These alternative

predictions are clearly visualized in Figure 1.

As a result, a discriminating test between the two models is to check if the health effects of

an environmental shock in utero (or during childhood) are increasing during adulthood. This

is, of course, somewhat data demanding in that it requires that the affected and non-affected

individuals are observed more than once in adulthood (i.e., a panel of individuals). Yet first

evidence along these lines is is available. Abeliansky and Strulik (2018b) show that individuals

exposed to hunger episodes during childhood diverge year-by-year during adulthood, in terms

of health deficits, from comparable non-exposed individuals. Abeliansky and Strulik (2019)

investigate a very mild health shock, namely the season of birth. They show that individuals

born in autumn develop less health deficits than those born in spring and that the difference in

health deficits gets larger with advancing age. This corresponds with the finding of Doblhammer

and Vaubel (2001) that individuals born in autumn live longer than individuals born in spring.

8



3. Shock Persistence in the Health Deficit Model

We begin by rewriting equation (2) for a continuous notion of age and separating E into a

“real” environmental constant a and the impact of health investment on health deficit accumu-

lation:

Ḋ(t) = µ (D(t)− a−Ah(t)γ) . (3)

Here, the parameters A > 0 and 0 < γ < 1 reflect the state of the health technology, and h is

health investment. While A refers to the general power of health expenditure in maintenance and

repair of the human body, the parameter γ specifies the degree of decreasing returns of health

expenditure. The larger γ the larger the relative productivity of cost-intensive high-technology

medicine in maintaining and repairing deteriorated human bodies. Bad health promotes death

such that individuals die when D̄ health deficits have been accumulated.

Individuals are interested only in maximizing their lifetime utility from consumption:

∫ T

τ
e−ρ(t−τ)u(c(t)) dt, (4)

with u(c) = (c1−σ−1)/(1−σ)+b for σ ̸= 1 and u(c) = log(c)+b for σ = 1. Here σ is the inverse

of the elasticity of intertemporal substitution and ρ is the rate of time preference. Allowing for

death to be a stochastic event and considering health as an element in the utility function leads

to some further interesting results but does not change the basic insight on the accumulation

of health deficits (see Strulik, 2015a, Schuenemann et al., 2017a). We thus focus on the simpler

model here.

Besides spending income on final goods, individuals may save or borrow at a net interest rate

r. Individuals take all prices as exogenously given. The law of motion for individual wealth k is

thus given by (5):

k̇(t) = w + rk(t)− c(t)− ph(t), (5)

in which w is the (annual) wage, r is the interest rate, and p is the price of health goods.

The problem is to maximize (4) subject to the accumulation equations (3) and (5), the initial

conditions D(τ) = Dτ , k(τ) = kτ , and the terminal conditions k(T ) = k̄, D(T ) = D̄. At the very

basic level the problem is to trade off the benefits and costs of health investments over the life

cycle. The benefits consists in, by slowing down the process of aging, a longer life which allows

for more consumption along the extensive margin. However, by increasing health investments,
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individuals forego consumption in the current period. In Appendix A we provide the details

on the analytical solution of this free terminal value problem. Here, we present the numerical

solution of a calibrated version.

We take the calibration of the model for an average 20 years old male U.S. American in the

year 2000 from Dalgaard and Strulik (2014). This means that we set the rate of aging µ to

0.043, which is the rate of health deficit accumulation estimated for Canadian men by Mitnitski

et al. (2002a). Rockwood and Mitnitski (2007) stress the similarity of their results for U.S. and

Canadian populations but they do not report the detailed results for the U.S. analysis. We set

the interest rate to 6 percent, following Barro et al. (1995), and we set γ = 0.19 to capture the

growth of health spending at an annual rate of two percent over the life cycle (Keehan et al.,

2004). From the estimates of Mitnitski et al. (2002a) we set D(0) = 0.0274 as the relevant initial

value at age 20 and D̄ = 0.1005, i.e. 55.2 years later since the life-expectancy of a 20 year old

U.S. American in the year 2000 was 55.2 years. We set a = 0.013 such that the model predicts a

life-expectancy at age 20 of 42 years for A = 0 (corresponding to the life expectancy in the late

19th century when adult life expectancy was only modestly affected by medical technology). We

set ρ = r such that the age-consumption profile is constant over the life as obtained by Browning

and Ejrnæs (2009) for childless households. We take GDP per worker in the U.S. in the year

2000 (PPP$ 77,003) and assume a capital share of 1/3, which implies an annual labor income

(in international dollars) of $ 51,335. We normalize p = 1 and set σ = 1 in order to obtain a

value of life at age 20 consistent with the estimate of Murphy and Topel (2006). Finally, we

estimate A = 0.00139 such that the individual dies with deficits D̄ at age 75.2, according to the

life-expectancy of 20 years old U.S. Americans in the year 2000.

In Figure 2 we replicate the benchmark run of Dalgaard and Strulik (2014), represented by

blue (solid lines). We then look at an individual that is initially 10 percent less healthy than the

Reference American, represented by red (dash-dotted) lines, and an individual that is initially

10 percent healthier than the Reference American. These differences in initial health deficits at

age 20 can be thought of as resulting from negative health shocks earlier in life (and perhaps in

utero). In line with observations, the model predicts that unhealthier individuals spend more

on health (panel on the right hand side). But the calibrated health technology is not powerful

enough to equalize initial health differences. In fact, initial health differences get amplified over

time: as individuals age, the vertical distance between the individuals’ deficit trajectories gets

10



Figure 2: Initial Health and Health Deficit Accumulation
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Blue (solid) lines replicate results for the Reference American in Dalgaard and Strulik (2014). Green (dashed)
lines: individual with 10 percent less initial health deficits at age 20. Red (dash-dotted) lines: individual
with 10 percent more initial health deficits at age 20.

larger, see the panel on the left-hand side of Figure 2. The underlying reason for this pattern

is that initial deficits influence the effectiveness of health investments: the greater the health

deficits the smaller the impact of a given amount of health investments in prolonging life. In this

sense the model involves dynamic complementarities akin to those found in the human capability

theory (Heckman, 2007).6

4. A Theory of Child Development and its Impact on Late-Life Health Deficits

4.1. A Simple Theory of Ontogenetic Growth. As is evident, the health deficit model

tracks the evolution of health deficits, health expenditure, and consumption over the life cycle

of adults, starting from about the age of 20. Hence, in a strict sense, the analysis does not fully

capture fetal origins. Fetal origins are “only” represented as initial values of health deficits in

adulthood D(0). In order to directly discuss the origin of shocks and their transmission during

childhood, we propose a model of ontogenetic growth, which provides the missing link between

biological aging of adults and the fetal origins of late-life health. There are at least two main

differences between health development of children and adults. (i) There is no rational health

investment from the side of the fetus or child. Instead the fetus receives nutrients and perhaps

6The simple health deficit model of Dalgaard and Strulik (2014) focusses on health expenditure and consumption
as the only behavioral variables. There exist a couple of further developments using the health deficit approach
that extend the basic model by further behavioral choices and we explored the role of fetal origins (i.e. of higher
initial health deficits) in some of these models as well. For example, the model of Dalgaard and Strulik (2017)
predicts that individuals who start out with more initial health deficits retire earlier. The model of Strulik (2018)
augmented by endogenous retirement predicts that individuals who start out with more initial health deficits
achieve less education and earn less lifetime income.
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negative health shocks from the mother, and children receive nutrition and health investments

from their parents. (ii) There is body growth. Child development can be understood as the

accumulation of body cells such that an initially nonviable fetus gets healthier over time. Here

we propose a model of ontogenetic growth that is naturally unified with the model of human

aging through the notion of redundancy. Growth in utero and in childhood can be understood

as the build-up of body-cell redundancy and organ reserve. Aging, in gerontology, is understood

as depletion of redundancy in (functioning) body cells, i.e. as accelerated loss of organ reserve

such that individuals become increasingly frail. It has been estimated that initially, as a young

adult, the functional capacity of human organs is tenfold higher than needed for survival (Fries,

1980). Gavrilov and Gavrilova (1991) provide a micro-foundation of human aging from reliability

theory, understood as the gradual loss of functionality of elements (body cells), which causes

the loss of organ functionality and, eventually, death. By combining the periods of childhood

(build-up of redundancy) and adulthood (depletion of redundancy) we arrive at a unified theory

of human development from conception to death.7

Growth of humans and other mammals is appropriately described by the von Bertalanffy

equation (von Bertalanffy, 1957; Kooijman, 2000; West et al., 2001). The equation originates

from an energy balance stating that the energy consumed is equal to the energy used for the

creation and maintenance of body cells such that B = bm + ecṁ, in which B is the energy

consumed, m is the number of body cells, b is the energy needed to maintain a cell and ec is the

energy needed to create a cell. Assume (without loss of generality) that a cell has unit weight

and that ec = 1, then the number of cells and thus the weight of the fetus evolves as:

ṁ = B − bm. (6)

Energy flow per unit of time is given by:

B = min
{

amβ , B̄
}

, (7)

7A related, yet different issue is whether and how shocks in early life affect parental child investments and whether
and to which degree these investments can remediate the effects of the shock (Almond and Currie, 2011b; Almond
and Mazumder, 2013). Here, we implicitly consider a reduced-form measure of shocks that includes already
parental adjustment behavior (e.g. the shock comprises an infection as well as the impact of parental investment
on the cure of the infection). Dalgaard and Strulik (2015; 2016) consider a simplified version of child growth in an
overlapping generations model of optimal child investments and fertility. They use the model to explain, among
others things, why children in larger families are smaller and why children grow to become taller adults in richer
societies.
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in which B̄ is an energy supply constraint. If B = amβ , energy supply is unconstrained and

equation (7) states that the metabolic rate scales with the body size of the fetus (or child).

This allometric relationship between energy consumption B and body mass m is known as

Kleiber’s Law (Kleiber, 1932). The scaling parameter β is estimated with high precision as 3/4

for mammals and almost all terrestrial animals, yielding the famous “mouse-to-elephant curve”

(Brody, 1945). West et al. (1997) provide a microfoundation of the scaling law by showing

that organisms, viewed as energy transporting networks that minimize energy dissipation, fulfil

Kleiber’s law with β = 3/4. The fact that β < 1 implies that larger bodies are more energy-

efficient in the sense that they need less energy to maintain a body cell.

Inserting B = amβ into (6) and solving the resulting Bernoulli differential equation provides

the famous von Bertalanffy equation for body size (von Bertalanffy, 1957):

m(t) =
{

a/b−
[

a/b−m(τ)1−β
]

e−(1−β)b(t−τ)
}

1

1−β
, (8)

in which τ is the initial time and m(τ) is the initial body mass. For τ = 0 the equation describes

ontogenetic growth from the time of conception. West et al. (2001) provide a microfoundation

for the von Bertalanffy equation for β = 3/4.

Figure 3: Ontogenetic Human Growth

t

m(t)

mI =
(

βa
b

)
1

1−β

tI ~T

Graphical representation of the von Bertalanffy equation; (tI ,mI): inflection point; T̃ : age at end of growth.

Empirically, the von Bertalanffy equation is a good approximation of body growth if food

supply is abundant and it is frequently used to describe ontogenetic growth of humans and

other animals (Kooijman, 2000; Karkach, 2006). Graphically, the von Bertalanffy equation has

a sigmoid shape, as shown in Figure 3. The figure shows the full trajectory of human growth

from conception to adulthood. If growth would never stop, body size would converge towards
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m = (a/b)1−β , as can be read off from (8) for t → ∞. However, human growth is determinate,

which means that it stops at a certain age t = T̃ . While T̃ is idiosyncratic it is typically

reached a few years after sexual maturity. An implication that we note for later purpose is that

m(τ) < (a/b)1/(1−β) for any arbitrary initial body size m(τ).

The sigmoid shape implies that there exists an inflection point (at age tI) at which the shape of

the growth curve changes from convex to concave. The existence of the inflection point requires

no additional assumption but follows as result from the simple thermodynamics underlying

(8). This provides a natural explanation for why shocks in utero and in early childhood are

particularly damaging for human development: they occur at an age t < tI , for which initial

shocks are amplified during ontogenetic growth. In order to develop this feature in more detail,

consider the differential equation ṁ = amβ − bm that follows from (6) and (7) in the case of no

energy supply restrictions. Taking the second derivative we obtain m̈ = βamβ−1 − b. Noticing

that the age-growth pattern is convex for m̈ > 0, we conclude a convex growth for

m(t) < mI ≡

(

βa

b

)
1

1−β

, (9)

in which mI is body size at the inflection point (see Figure 3). Inserting mI for m(t) in (8) and

solving for age, we obtain an analytic solution for age at the inflection point (tI) and conclude

that human growth follows a convex pattern at ages

t < tI ≡
1

(1− β)b
log

[(

a/b−m(τ)1−β

a/b

)

1

1− β

]

+ τ, (10)

in which m(τ) is initial body size at age τ < tI . Since m̈ > 0 for t < tI , shocks (due to nutrition

constraints, accidents, or infections) that occur at ages smaller than tI are amplified during

ontogenetic growth, whereas shocks at ages larger than tI are dampened.

In order to see the condition for shock amplification more clearly, consider a shock that changes

body size at time τ and compute how it translates into a change in body size at age t, t > τ :

∂m(t)

∂m(τ)
=

{

a/b−
[

a/b−m(τ)1−β
]

e−(1−β)b(t−τ)
}

β

1−β
e−(1−β)b(t−τ)m(τ)−β .

Next, compute how this effect changes with advancing age of the individual:

∂2m(t)

∂m(τ)∂t
=

β

1− β
x

β

1−β
−1

[

a/b−m(τ)1−β
]

(1− β)be−(1−β)b(t−τ)e−(1−β)b(t−τ)m(τ)−β

− x
β

1−β (1− β)be−(1−β)b(t−τ)m(τ)−β , (11)
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with x ≡ a/b−
[

a/b−m(τ)1−β
]

e−(1−β)b(t−τ). Generalizing the computational experiments from

Section 3, we conclude that initial differences between individuals of different body size at time

t (individuals who experienced different shocks) are amplified with age if ∂2m(t)
∂m(τ)∂t > 0 and that

initial differences are dampened with age if ∂2m(t)
∂m(τ)∂t < 0. For ∂2m(t)

∂m(τ)∂t = 0 the initial difference is

preserved as individuals get older. Solving ∂2m(t)
∂m(τ)∂t = 0 for t, we obtain after some algebra, that

initial differences are amplified for ages t < tI (see Appendix C for details).

In related studies, Heckman (2007) and Almond and Currie (2011a,b) propose a model of

childhood development inspired from production theory in economics. There, childhood is ar-

bitrarily divided into two periods and child investments in the two periods combine via a CES

production function to produce health or human capital of the child. For specific assumptions

on the parameters, the result can be achieved that shocks matter more in the first period in the

sense that a shock in the first period cannot be completely reversed by an equally sized shock

in the opposite direction in the second period. Here, we consider development of the child to be

continuous in time with no arbitrary separation into periods and without imposing an economic

production function. We then derive from simple thermodynamic principles of cell maintenance

and creation an inflection point that endogenously separates childhood into two periods. In the

first period, shocks are amplified during ontogenetic growth while in the second period shocks

are dampened.

4.2. In Utero Development. Figure 4 shows a calibration of the model for in-utero develop-

ment when energy supply is unconstrained and there are no shocks. Parameters are a = 1.08,

b = 0.07, β = 3/4 and m(0) = 0.0001. Body weight is measured in grams. The blue solid line

shows the model prediction for body weight by week of gestation, the red dotted line shows

the data for American boys from Kiserud et al. (2017). The age growth curve is clearly convex

during in-utero growth, implying that shocks during this period will be amplified as the child

develops.

The model offers two distinct possibilities to introduce impediments to child development:

energy constraints and cell-damaging shocks. We first consider cell-damaging shocks. For these

considerations it is helpful to recall that the microfounded model of human aging (Gavrilov and

Gavrilova, 1991) derives the Gompertz-Makeham law of human aging from the assumption that

not all elements of the body are perfectly functioning at the initial age of adulthood. Here, we

use the fact that the beginning of adulthood coincides with the end of childhood and associate
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Figure 4: Ontogenetic Human Growth in Utero
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Solid blue line: model; dotted red line: data from Kiserud et al. (2017) for male fetal weight during gestation.

body cells with the “elements” in Gavrilov and Gavrilova (1991). We measure functionality of

the body by the total mass of functioning body cells. Health shocks (like accidents or infections)

are then conceptualized as exogenous damage or destruction of body cells. In Figure 5 we apply

this methodology to the calibrated model. The solid line re-iterates the unshocked trajectory of

in-utero growth (for which created body cells are equal to functioning body cells). In the panel

on the left hand side we consider the loss of functionality of 75g of body cells at the beginning

of the second trimester (red dashed lines) and at the beginning of the third trimester (green

dash-dotted lines). Obviously, since growth is convex in utero, shocks of a given size matter

more when they happen earlier in the gestation period and the distance of functionality between

the shocked embryo and the unshocked embryo increases during the in-utero growth period.

Figure 5: Shocks and Functionality during In-Utero Growth
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Solid blue lines: benchmark model (unhindered growth). Left: functionality shock (accident) in form of
loss of 75g of functioning body cells at the beginning of the second trimester (red dashed lines) and at
the beginning of the third trimester (green dashed-dotted lines). Right: nutritional constraint binding at
B̄ = bm(τ) for 4 weeks (Ramadan) with onset at τ = 13 (red dashed lines) and τ = 26 (green dash-dotted
lines).

Next consider energy constraints. If food is not abundant, fetal growth is constrained by

maternal supply of energy (or, more generally, nutrients), B = B̄. Naturally, if the fetus is

energy-constrained, a larger share of energy is needed for maintenance and less is available for
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cell creation such that growth is retarded in these periods. Suppose energy supply in utero is

proportional to the metabolic rate of the mother and that the mother’s metabolic rate scales

with her size according to Kleiber’s law such that B̄ ∝ M3/4 where M is the size of the mother

and M3/4 is the metabolic rate of the mother (Kleiber, 1932; West et al., 1997). We then

conclude that, ceteris paribus, fetuses with larger mothers are less likely (or less frequently)

energy-constrained and are thus larger at birth. More generally, we conclude from equations

(6)–(8) that (i) fetuses who are less frequently energy-constrained in utero are bigger at any

time in utero and thus also at birth, (ii) individuals who are born too early, i.e. at low t, are

smaller at birth.

As an example application, consider a Muslim mother who observes the Ramadan during

pregnancy (Almond and Mazumder, 2011). We model this in a drastic sense such that for the

four weeks during Ramadan there is no child growth and consider an onset of Ramadan at the

beginning of the second or third trimester. Formally, we normalize the nutritional shock such

that the nutritional constraint binds at B̄ = bm(τ) for 4 weeks with τ = 13 and τ = 26. The

panel on the right hand side of Figure 5 shows the results. The solid line reiterates again the

growth trajectory for unconstrained energy supply. Dashed lines show results for Ramadan onset

at τ = 13 and dash-dotted lines for τ = 26. The results can be interpreted in two different ways.

First, the model predicts that the mother’s observation of Ramadan during pregnancy leads

to lower birth weight. Second, the model predicts that the newborn child has a lower number

of functioning body cells (compared to unhindered growth) and is thus of inferior health. The

figure also shows the limitations of the small model. Since all body cells are treated equally,

there is no impact of the timing of Ramadan during pregnancy. In order to explain a greater

impact of early life nutrition shocks one would need to differentiate between the importance of

body cells and introduce a mechanism why energy constraints have more severe impact early in

the gestation period.8 Notice the difference between body growth and functionality in the two

scenarios. In the scenario on the left hand side of Figure 5 (accidents, infections) the body grows

unhindered from an energy perspective and the shock reduces functionality of existing cells. In

8Alternatively, one could argue that the energy constraint (7) is more likely to be binding if the fetus is already
large. This feature would imply that the last trimester is more important for body growth and nutritional
constraints. Such an outcome would be consistent with the finding of Doblhammer and Vaupel (2001) and
Abeliansky and Strulik (2019) that individuals born in autumn (for whom fresh fruits have been abundant in
summer) age slower than individuals born in spring.
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the scenario on the right, energy restrictions impede body growth and thus the full development

of functioning cells during ontogenetic growth.

4.3. Childhood Development. The theory of in utero development can be linked with the

theory of aging, which applies to full-grown adults (starting at about age 20) by a period of

growth in childhood. This leads to an encompassing theory of ontogenetic growth from concep-

tion to adulthood. Child growth after birth can also be approximated by the von Bertalanffy

equation but less accurately than during gestation. The reason is that there are periods of growth

spurts and growth slowdowns in childhood and the simple equation is not able to capture these

details precisely. The supply of energy (nutrients) in childhood is no longer constrained by the

metabolic rate of the mother but by the provision of food by the parents. In Dalgaard and

Strulik (2015; 2016) we developed a theory of human growth where nutritional investments were

conceptualized as a choice variable of parents. Here, for simplicity, we take again the position

of the developing child for whom nutrition is exogenous and the energy flow is thus given by

differential equation (6) and constraint (7).

For child growth, we measure t in units of years and body mass in kilograms. Figure 6 shows

a calibration for a = 1.52, b = 0.5, β = 3/4, and birth weight m(0) = 3.4 kg (solid line). Dots

show the actual average weight of US boys in the year 2000 according to CDC (2000). The end

of the solid line at age 20 indicates the end of the determinate growth period. The dashed line

indicate how growth would proceed if growth would be indeterminate and would never stop.

We see that the growth trajectory is concave in middle childhood and adolescence (after about

age 7) but that the concavity is not strong (compared to convexity in utero). The trajectory

from age 7 to 20 is almost linear. This means that there is small amplification of shocks in early

childhood until about age 7 followed by a period of small dampening of shocks until the onset

of adulthood.

Like in utero development, the development of child health is potentially affected in two

distinct ways. (i) The nutritional constraint B̄ is occasionally binding, e.g. the child experiences

a hunger period. (ii) Adverse shocks (infections and accidents) reduce the number of functioning

cells. We could also imagine a combination of both, e.g. if fighting infections needs energy and

thus reduces the energy available for body growth. This could be conceptualized as an increase

in the energy needed to maintain a body cell, i.e. a larger b during the infection period.
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We next investigate how adverse shocks affect the development of functioning body cells at

different ages. Functionality is again measured by the mass of functioning body cells. Specif-

ically, we consider shocks conceptualized as loss of functionality of 3 kg of body cells at age 1

(red dashed lines) and at age 5 (green dashed-dotted lines). These are drastic shocks resulting,

for example, from a severe accident or illness. This is admittedly a crude measure that does

not take into account any difference of importance of specific cells (e.g. eye-cells vs. bone-cells).

We solve the model as calibrated above twice: once for the health shocked and once for unhin-

dered (optimal) childhood development. We then compute at any age the difference in body

functionality between the shocked and the unshocked growth trajectory. In the panel on the left

hand side of Figure 7, the solid (blue) lines represent differential development when the shock

hits at age 1 and dashed (red) lines consider the shock at age 5. Shocks are amplified during

child growth when the growth trajectory is convex, which is in the calibrated model until about

age 7. After the inflection point, differences in functionality are dampened with further child

development. In the application, this means that the child does not recover from the shock

in early childhood. At age 20 (when development stops) the loss of functionality is about the

same as at age 1 (with an interim phase of higher damage). The shock at age 5 is closer to the

inflection point and is thus amplified for only a short period and then dampened, implying that

the developing child recovers about 50% of the loss from the shock.

We finally consider whether and to which degree child investments in the second stage of child

development can make up for or overturn the consequences from of shocks in early childhood.

This exercise is inspired by the comparative static exercise performed in Almond and Currie

Figure 6: Ontogenetic Growth in Childhood and Adolescence
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Solid line: model; dots: weight for age data for boys from CDC (2000); dashed line:
hypothetical growth if growth were indeterminate (solution of (8) for age > 20).
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Figure 7: Loss of Functionality and Repair during Childhood Growth
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Left panel: functionality shock (accident) in form of loss of 3 kg of functioning body cells at age 1 (solid
blue lines) and at age 5 (red dashed lines). Loss of functionality is measured in terms of the difference in
functioning body cells between the shocked child and an otherwise identical unshocked child. Right panel:
as for left panel plus repair shock of the same size at age 15.

(2011b, Section 2.2.1) using the Heckman (2007) model. Specifically, we consider a positive

shock in cell functionality at age 15 of the same absolute size as the negative shock experienced

at age 1 or 5, respectively. Investigating such an admittedly naive repair shock is nevertheless

interesting since it reveals non-obvious insights on the importance of the timing of shocks for child

development. Results are shown in the panel on the right hand side of Figure 7. We see that the

shock at age 5 is almost fully remediated by investments in adolescence. The shock at age 1, in

contrast, is only incompletely repaired. As argued above, the inflection point can be considered

as a natural subdivision of childhood (into an amplification period and a dampening period of

shocks). Knowledge about whether a shock occurred in the earlier or later period, however, is not

enough to infer whether it could be compensated with late-life investments. Instead, the timing is

important. As a rule, the earlier shocks occur in childhood (including in-utero development) the

less can they be remediated by investment in late childhood. Child development conceptualized

as ontogenetic growth according von Bertalanffy is more complicated than the simple two-period

model of Heckman (2007) suggests.

4.4. From Conception to Death: Ontogenetic Development, Aging, and Late-Life

Health. Finally, we fit the pieces together. Based on insights from biology (Fries, 1980; Gavrilov

and Gavrilova, 1991), we consider the period of ontogenetic growth in utero and in childhood

as build-up of redundancy (of functioning body cells) and the adult period as depletion of

redundancy which leads to loss of functioning, accumulation of health deficits, and eventually

death. We connect the periods of ontogenetic growth and aging by assuming that health deficits

at age 20 are inversely proportional to the mass of functioning body cells at age 20. Specifically,

let the outcome of unhindered (optimal) ontogenetic growth in terms of cell functionality be
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denoted by F (20)∗ and actual functionality be denoted by F (20). Then, actual health deficits

at age 20 fulfil D(20)/D(20)∗ = F (20)∗/F (20), in which D∗(20) are initial health deficits given

optimal child development.

For in-utero growth we use the von Bertalanffy equation as calibrated in Section 4.2. For

childhood growth, the function calibrated in Section 4.3 does not fit the data very well. We thus

follow the usual approach in empirical models of childhood growth models and estimate the

equation piecewise (Karkach, 2006). It turns out that a subdivision in two periods leads already

to a good fit of the data. The inflection point is obtained at age 11, suggesting that humans

grow differently in early childhood and in adolescence. The best fit of the data is reached when

the in-utero growth equation continues to hold for 22 weeks (0.4 years) after birth, suggesting

that the period of rapid (strongly convex) growth is continued for a while after birth. We solve

the model for time measured since conception. In representing the results, however, we follow

the convention and convert time since conception to age and birth is associated with age zero.

This means that conception takes place at age -0.75 (9 months before birth).

The solid (blue) line in the panel on the left-hand side of Figure 8 shows the matched curves

when there are no shocks during ontogenetic growth. The black dots reiterate the data from

Figure 6. The dash (red) line shows the trajectory for an otherwise identical individual who

experienced an in-utero shock at the start of the second trimester that results in the loss of 100g

of functioning body cells. The shock is greatly amplified during the gestation period, leading to

a loss in birth weight of 1400g (birth weight 2.0 kg instead of 3.4 kg when unshocked). After

birth, the shock is mildly amplified further until age 11 and then it is mildly dampened during

adolescence. At age 20, the individual who experienced the in-utero shock, has accumulated

97% of the potential (optimal) cell functionality, implying that the dis-functionality and thus

health deficit index is 3.0 percent greater than that of an un-shocked individual.

The center-panel of Figure 8 shows the aging process. The solid (blue) line reflects aging

without in-utero shock, as calibrated in Dalgaard and Strulik (2014), see Figure 2. The dashed

(red) line shows aging given the in-utero shock. The small initial difference is gradually amplified

and the health distance between both individuals is greatest in old-age. Given the small shock,

however, the distance is not great. The micro-foundation of aging, however, does not necessarily

imply an exactly inversely proportional relation between health deficits and body functionality.

It implies only a monotonous relationship (Gavrilov and Gavrilova, 1991). Generalizing, we next
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Figure 8: Child Development and Adult Aging
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Left panel: Blue (solid) line unshocked (optimal) growth in utero and childhood. black dots: data according
to CDC (2000). Red (dashed) line: functionality shock in form of loss of 100 g of functioning body cells in
the 13th week of gestation. Middle panel: aging of the benchmark individual (solid blue line) and of the
individual with shock experience in utero. Red (dashed) line: functioning body cells at 20 and health deficits
at 20 are inversely proportional, D(20)/D(20)∗ = F (20)∗/F (20). Green (dash-dotted) line: monotonous
transformation, D(20)/D(20)∗ = 1.02F (20)∗/F (20): Right panel: associated health expenditure.

assume that D(20)/D(20)∗ = κF (20)∗/F (20) and set κ = 1.05 (instead of 1.00), implying that

a three percent difference in functionality translates to a 8 percent difference in initial health

deficits. The dash-dotted (green) line shows the implied aging trajectory. The divergence in

health deficits is now better visible.

The panel on the right hand side of the figure shows the associated optimal health expenditure.

Individuals who start out with more health deficits take countermeasures to reduce their faster

aging but these investments do not fully remediate the initial disadvantage. In other words, the

health difference between individuals diverges despite optimal countermeasures. Without the

additional health investments of the shocked individuals, divergence would be greater.

A remaining question is whether individuals are able to observe slight deteriorations of health

(as assumed by the health deficit model). Alternatively, these damages may go unnoticed in

young and middle adult age and are only diagnosed in old age when the associated health

deficits become sufficiently visible. Given such a visibility threshold, health deficit become

earlier diagnosed in old age if they were initially larger. These perceptibility issues may explain

why aging related health problems are diagnosed in old age although they are de facto always

present and originate from sub-optimal development in young age and perhaps in utero. While

health deficits are slowly accumulating (from e.g. mild hypertension to difficulties running or

lifting weight to more severe cardiovascular problems), the empirical association between early-

life health shocks and late life-life health outcomes is in many studies only observed when health
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problems became sufficiently severe. In this sense, the health deficit model, fills the “invisible”

gap from early-life health shocks to health outcomes in old age.

Finally, notice that the health deficit model predicts that individuals who achieved optimal

development in childhood eventually experience the same health deficit index as the individuals

with unfavorable health- or nutrition-shocks in early life. This is a manifestation of the gener-

ality of human aging understood as “intrinsic, cumulative, progressive, and deleterious loss of

function that eventually culminates in death” (Arking, 2006). The shocked individuals, however,

experience these health deficits earlier.

5. Conclusion

An influential strand of literature within health economics has over the last decade provided

convincing evidence in favor of the fetal origins hypothesis: in utero shocks have the ability to

influence late-in-life outcomes. Relevant outcomes involve both health issues as well as a range

of socio-economic outcomes. In this study we have argued that the current workhorse model

of health economics, the Grossman (1972a) model, is incapable of accounting for such effects.

Indeed, since the notion of health – health capital– is analogous to physical capital, the model

posits that health status depreciates more when the health status of individuals is high and less

when the health status is low. These features imply, as demonstrated above, that the Grossman

model generates the prediction that individuals with different initial conditions, prompted by in

utero shocks, converge in health status during life, holding investments fixed. Convergence in

health status in the aftermath of early-in-life shocks occurs both in a relative and in an absolute

sense. This prediction is strengthened if one allows the health depreciation rate to grow over

time, as it is required for the Grossman model to be reconcilable with the fact of mortality.

It is possible to generate important persistence in health outcomes through investments; for

example, by introducing the human capability theory of Heckman (2007). But since the fetal

origins hypothesis asserts an impact from in utero influences conditional on investments, the

Grossman model remains irreconcilable with the hypothesis.

In contrast, this paper demonstrates that the health deficit model offers radically different

predictions. At its core the model conceptualizes aging as a continual process of loss of function

– increasing frailty – that culminates in death. The notion of frailty is captured by way of the

deficit index: as humans age (health declines) the relative fraction of potential age-related health
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conditions climbs steadily upward. This underlying process, which can be slowed down by health

investments, is exponential in nature. By implication, small differences in initial conditions at

young age are amplified during life. The exponential nature of increasing deficits during life

has been confirmed repeatedly by empirical work within gerontology. Overall, the deficit model

seems well positioned to account for the type of dynamics implied by the fetal origins hypothesis.

Finally we have linked our biologically-founded model of aging and health deficit accumulation

(originating from a loss in redundancy in organ reserve) with a biologically-founded model of

ontogenetic growth (conceptualized as the build-up of redundancy in organ reserve). We have

shown how the ontogenetic growth model is derived from the energy needs for cell creation

and maintenance that fulfil a simple law of energy conservation and Kleiber’s scaling law for

human metabolism. The model of ontogenetic growth naturally divides childhood in two distinct

periods, an early period of shock amplification and a later period of shock dampening growth.

We have shown how in utero shocks are transmitted during childhood towards the onset of

health deficit accumulation in adulthood and how they affect aging and health in old age.

Taken together, we have thus proposed a new model of human development from conception to

death, which motivates the fetal origins hypothesis of late-life health deficits.
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Appendix A: Solution of the Health Deficit Model

The maximization problem given in equations (3)–(5) together with the initial conditions

k(τ) = 0, D(τ) = Dτ and the terminal conditions k(T ) = k̄ and D(T ) = D̄ constitutes a free

terminal time problem of optimal control. The unknown terminal time is the age at death. The

Hamiltonian associated with this problem reads

H =
c1−σ − 1

1− σ
+ λµ (D − a−Ahγ) + φ (rk + w − c− ph) .

For σ = 1 the first term is replaced by log(c). The first order conditions wrt. c and h and the

co-state equations are

c−σ − φ = 0 ⇒ c−σ = φ ⇒ σċ/c = −φ̇/φ (A.1)

− λµAγhγ−1 − pφ = 0 (A.2)

λµ = λρ− λ̇ ⇒ µ− ρ = −λ̇/λ (A.3)

φr = φρ− φ̇ ⇒ r − ρ = −φ̇/φ. (A.4)

Equation (A.4) is the well known Euler equation requiring that the shadow price of consumption

(φ) grows at the rate of the interest rate less the time preference rate. Analogously, the Euler

equation (A.3) requires that the shadow price of health grows at the rate of health deterioration

(µ) less the time preference rate.

Log-differentiate (A.2) wrt. time and insert (A.3) and (A.4) to obtain optimal growth of health

expenditure:
λ̇

λ
−

φ̇

φ
= (1− γ)

ḣ

h
⇒ − µ+ ρ+ r − ρ = (1− γ)

ḣ

h
.

Solving for the growth rate of health expenditure we obtain the “Health Euler equation”

gh ≡
ḣ

h
=

r − µ

1− γ
. (A.5)

By inserting (A.3) into (A.1) we obtain the Ramsey rule

gc ≡
ċ

c
=

r − ρ

σ
. (A.6)

The dynamic model can be solved without numerical integration since the differential equa-

tions can be solved analytically. We set (wolog) τ = 0 and begin with noting that, because

gh is optimally constant according to (A.5), the differential equation (3) can be rewritten as

Ḋ = µ(D − a−Ah(0)γ exp(γght)). Given D(0) = D0 the solution at time T is:

D(T ) = D0 exp(µT )− µAh(0)γ exp(µT )

∫ T

0
exp(γgh − µ)dt+ µa exp(µT )

∫ T

0
exp(−µt)dt.

At the time of expiry the boundary condition requires D(T ) = D̄. Solving the integrals in the

above equation we get

D̄ = D0 exp(µT )−
µAh(0)γ exp(µT )

gD
[exp(gDT )− 1]− a [exp(µT )− 1] , (A.7)
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where gD ≡ (γr − µ)/(1− γ). Next, we integrate (3) and insert k(0) = k0 and k(T ) = k̄ to

obtain

k̄ = k0 exp(rT ) + w exp(rT )

∫ T

0
exp(−rt)dt

− c(0) exp(rT )

∫ T

0
exp[(gc − r)t]dt− ph(0) exp(rT )

∫ T

0
exp[(gh − r)t]dt.

Divide by exp(rT ). Note that gh − r = (γr − µ)/(1− γ) ≡ gD and solve the integrals to obtain

k̄ exp(−rT ) = k0 −
w

r
[exp((r)T )− 1]−

c(0)

gc − r
[exp((gc − r)T )− 1]−

ph(0)

gD
[exp(gDT )− 1] .

(A.8)

The condition for optimal T requires that the Hamiltonian assumes the value of zero at T .

Otherwise, it would have been optimal to live longer or die earlier. Also, at expiry D(T ) = D̄

and k(T ) = k̄. Thus the Hamiltonian at age T reads

0 = H(T ) = u(c(T )) + λ(T )µ
[

D̄ − a−Ah(T )γ
]

+ φ(T )
[

rk̄ + w − c(T )− ph(T )
]

.

Insert λ(T ) and φ(T ) from (A.1) and (A.2) to get

0 = u(c(T ))−
p

c(T )σ

[

(D̄ − a)h(T )1−γ

γA
−

h(T )

γ
−

w + rk̄

p
+ c(T ) + h(T )

]

where uT ≡ log c(T ) in the case of log-utility and uT ≡ [c(T )− 1]1−σ/(1− σ) otherwise. Noting

that c(T ) = c(0) exp(gcT ) and h(T ) = h(0) exp(ghT ) this provides

0 = uT −
exp(−σgcT )

c(0)σ
× (A.9)

{

(D̄ − a)

γA
ph(0)1−γ exp((1− γ)ghT )−

1− γ

γ
ph(0) exp(ghT )− w − rk̄ + c(0) exp(gcT )

}

,

with uT ≡ log(c(0))+gcT+b in the case of log-utility and uT ≡ [c(0) exp(gcT )−1]1−σ/(1−σ)+b

otherwise. The three equations (A.7) – (A.9) can be solved for the three unknowns: c(0), h(0),

and T . Having found the optimal initial values and the optimal terminal time, the dynamic

system consisting of (3), (5), (A.5), and (A.6) is fully specified and it can be solved for the

optimal life-cycle trajectories of c, h, k and D.

Appendix B: Health Shocks Increase Health Capital Depreciation

Here, we consider an interesting refinement of the health capital model and show that it does

not resolve the problem of convergence of initial health differences in old age. Specifically, we

implement the assumption that the rate of depreciation of the stock of health capital is a positive

function of the initial health shock. To see the implications by way of example, let us reconsider

the 25% health shock from the computational experiment in the main text (and from Almond

and Currie, 2011). The blue line in the panel on the left-hand side in Figure A.1. reiterates

the result from Figure 1 in the main text. It shows the difference of health capital between an

unshocked individual and an individual who experienced 25% health reduction at time 0. The

initial health difference is depreciated away as the individuals grow older. Suppose now that

health depreciates faster for individuals who experienced a negative initial health shock. Red
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(dashed) lines show the case where the health shock implies an increase of the depreciation rate to

15%. Green (dash-dotted) lines repeat the experiment when the shock increases the depreciation

rate to 20%. We see that this leads to an increase in the health difference between individuals

in young adulthood, implying divergence and, temporarily, shock amplification. As individuals

grow older, however, convergence sets in and health differences are depreciated away. This

variant of the model thus predicts that early-life health shocks lead to large health impediments

at young age but only to insignificant health impediments in old age. It fails to motivate fetal

origins of late-life health deficits.

Figure A.1: Health Capital Depreciation Increases with Experience of

In-Utero Shock
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The figure shows how a 25 percent negative shock at time 0 develops given alternative annual depreciation
rates. Left: constant rate of depreciation; blue (solid) line: 10 percent depreciation; red (dashed) line: initial
shock associated with increase of depreciation rate to 15%; green (dash-dotted) line: initial shock associated
with increase of depreciation rate to 20%. Right: Same exercise with the additional assumption that health
depreciation increases at a rate of 5 percent per year as individuals age.

The result can also be derived more formally, following the argument made in the main text

(subsequent to equation (1)). The difference in health capital between two individuals (1 and

2) is given by

H1
t −H2

t = (1− δ1)tH1
0 − (1− δ2)tH2

0 .

Let the individual who experienced the shock be indexed by 2, H2
0 < H1

0 and assume that the

shock is associated with a higher rate of health capital depreciation, δ1 < δ2. Then, the difference

H1
t −H2

t becomes larger for small positive t (compared to the case of shock-independent δ). For

large t, however, the difference H1
t −H2

t converges to zero, irrespective of the difference in the

δ’s. The reason is that the sufficient condition for convergence to zero is 0 < δ < 1, which is

always fulfilled in the Grossman model, irrespective of any additional assumptions on the size of

δ. It is an inherent feature of the Grossman model. This can be illustrated further by assuming

that δ is increasing with age, an assumption frequently made in applications of the Grossman

model.

In the panel on the left hand side of Figure A.1, we assume that the depreciation rate increases

exponentially in age, δi(t) = δi(0) · eνt, ν > 1 and i = 1, 2. We set ν = 0.05 and assume that

δ1(0) = 0.1 for the unshocked individual while for the individual who experienced the in-utero

shock δ2(0) = 0.15 (red dashed lines) and δ2(0) = 0.2 (green dash-dotted lines). We see that,

as explained in the main text, the positive age-dependence leads to faster convergence of initial

health differences.
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Appendix C: Proof that Shocks are Amplified iff t < tI

In order to find the threshold for shock amplification, we solve (11) for ∂2m(t)
∂m(τ)∂t = 0, i.e. we

solve
[a

b
−m(τ)1−β

] β

1− β
e−(1−β)b(t−τ) − a/b+

[

a/b−m(τ)1−β
]

e−(1−β)b(t−τ) = 0

⇒
[a

b
−m(τ)1−β

]

(

β

1 + β
+ 1

)

e−(1−β)b(t−τ) =
a

b

⇒

[

a
b −m(τ)1−β

a/b

]

1

1 + β
= e(1−β)b(t−τ).

Taking logs and solving for t provides tI from (10) in the main text.
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