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Abstract 

 

The purpose of the paper is to introduce the framework for decomposing the forecast of headline 

inflation, obtained by macroeconomic model of NBRM for monetary policy analysis and medium 
term projections (MAKPAM), into its components: food, energy and core inflation. The model for 

inflation decomposition is a small structural model, set up in state space framework. Kalman filter 

procedure is applied to filter the future paths of CPI components, given projected headline 
inflation obtained by MAKPAM model and exogenous determinants, such as output gap, world 

commodity prices, and foreign effective inflation. The results of the model’s forecasting 
performance suggest that this model can be a useful analytical tool in the process of inflation 

forecast, with relatively good fit of equations for food and domestic oil prices. This model serves 

as satellite model to MAKPAM and enriches the set of tools for forecasting and monetary policy 
analysis in NBRM. In this paper we highlight its most important equations, results and model 

performances. 
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1. Introduction 

 

The price stability is the main objective for most of the central banks, including the National bank 

of the Republic of Macedonia (NBRM). Development of inflation is crucial for monetary policy, 

particularly the forecast of future inflation, as the transmission of monetary policy decisions to 

real economy occurs with time delay. Therefore, the projection of inflation in central banks plays 

important role. NBRM also pays a lot of attention to inflation forecasting, and there are set of 

different methods, for near term and medium term inflation forecasting. There are suits of 

models for near term forecasting, starting from simple time series models to small structural 

model (Petrovska et al., 2017). Currently, NBRM is using the following models for short-term 

forecasting of inflation: ARIMA models (aggregated and disaggregated approach), dynamic factor 

model and a small (three equation) structural model. The medium term inflation forecast is 

obtained by Macedonian Policy Analysis Model (MAKPAM), which is a consistent framework of the 

transmission mechanisms in the Macedonian economy (Hledik et al., 2016). Within this model, 

the inflation process is modeled through New Keynesian, forward looking, Phillips curve. In line 

with the theory, the equation for consumer price inflation (without administered prices) is defined 

as a function of expected inflation, lagged inflation and the real marginal cost, which is weighted 

sum of the output gap (domestic inflation pressures) and imported prices (imported inflation 

pressures).  

 

However, the policymakers and the general public usually follow inflation developments by 

Consumer price index (CPI) components, such as food, energy and core inflation, which are 

published by state statistical offices on monthly basis. However, these CPI components are not 

directly connected with inflation equation in MAKPAM model. Additionally, the policymakers would 

be interested which inflation component contributes the most to the total inflation on medium 

term and according to that whether should react or not. For example, if the domestic prices are 

driven by exogenous factors such as world oil prices, to which monetary policy has no direct 

control, than it is more likely the monetary authorities not to react to such shocks, which are 

usually perceived as temporary shocks. Thus, the forecasters need to explain and justify the main 

driving forces of the medium term forecast to the general public and to policymakers as simple as 

possible. Having in mind this, it is much easier to communicate and to explain the future inflation 

development by the dynamics and contributions of its price components. Therefore, 

decomposition of projected total inflation on medium term to individual price components is also 

important in the process of monetary policy decision making. NBRM projection team has putted 

effort to make inflation decomposition model as additional set of projection information and this 

study is trying to explain the model of decomposition of medium term inflation obtained by 
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MAKPAM. With other words, this model links projected inflation by MAKPAM model with the 

future path of CPI components, which is the main contribution of this framework for inflation 

forecast’s analysis. The model was actively used since April 2016 projection rounds1. 

 

The framework for inflation decomposition is based on the framework that is used in Czech 

National bank (CNB, 2015), and adapted for our country specifics. The model for inflation 

decomposition is small structural model, which decomposes the headline inflation on three main 

CPI subgroups – food prices, energy prices and core inflation. This model by structure is very 

similar to the small structural model which is used by NBRM for short term forecasting. The small 

structural model for short term projection defines the overall inflation as weighted sum of three 

sub-components – energy inflation, food inflation and core inflation, which are modeled by 

separate behavioral equations (Petrovska et al., 2017). Similarly, the model for decomposition of 

medium term inflation projection is consisted of behavioral equations for food, domestic oil 

prices, core inflation of goods and services, and identity equations for energy and total core 

inflation, as well as equation for total inflation (weighted sum of food, energy and core inflation). 

Unlike the structural model for short term forecasting, where the approach is bottom-up, in this 

case the approach is top-down. This framework is not a rival model to short term forecasts; 

moreover, the comparison of decomposed inflation parts with their near term forecasts should be 

an integral part of the projection process, as it is in CNB (CNB, 2015). 

 

The model is defined as state space model, using Kalman filter, where the total inflation is given 

as observable variable. The model is actually filtering the future dynamic of each component 

through information that are contained in exogenous variables and according to total inflation 

dynamic. More precisely, we are trying to distribute the part of total inflation that is not explained 

by determinants in the component equations to the dynamics of each of the components.  

 

Additional feature of this framework is that it provides comparison of projected inflation and its 

decomposition between two different rounds of projections, as well as comparison between 

baseline and shock scenario. Although, this is integral part of projection process, it will not be 

presented here.  

 

The paper is organized as follows. Description of state space framework and Kalman filter is 

given in the next section. In section 3 the main equations of the model for inflation 

                                                 
1 NBRM conducts two rounds of projections per year, in April and in October. 
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decomposition at the NBRM are explained, while the data and the results, as well as model 

performance are exposed in section 4. Finally section 5 concludes. 

 

 

2. State Space Models and the Kalman Filter 

 

The Kalman filter is a cast of state space models, which is useful framework in the modelling. 

Among its uses, it is useful tool for unobserved components modelling, such as output gap, 

NAIRU and time varying parameters, which are at the same time unobservable and time varying. 

The method that can be used to estimate the unobservable variables (`the state') given all 

observable data we have is known as the Kalman filter. The filter has its origin in Kalman’s paper 

(1960), who describes a recursive solution to the linear filtering problem of discrete data.  

 

The linear state-space model postulates that an observed time series is a linear function of a 

(generally unobserved) state vector and the law of motion for the state vector is first-order 

vector autoregression. The general linear state space form applies to a multivariate time series, 

𝑦𝑡, containing N elements, that are observed variables at date t. These observable variables can 

be described in terms of possibly unobserved m × 1 vector, 𝛽𝑡, known as the state vector 

(Hamilton, 1994, Harvey, 1998). Let F and H be 𝑚 × 𝑚 and 𝑁 × 𝑚 matrices of constants. We 

assume that 𝑦𝑡 and 𝛽𝑡 are generated by: 

𝑦𝑡 = 𝐻𝛽𝑡 + 𝑒𝑡,  𝑣𝑎𝑟(𝑒𝑡) = 𝑅 (1) 

𝛽𝑡 = 𝜇 + 𝐹𝛽𝑡−1 + 𝑣𝑡, 𝑣𝑎𝑟(𝑣𝑡) = 𝑄 (2) 

 

where 𝛽𝑡 is a vector of stochastic or unobservable variables (states) and 𝑦𝑡 is a vector of 

measurement variables (observed data). 𝑒𝑡 and 𝑣𝑡 are measurement error/ structural shock, that 

are white-noise processes, independent of each other with mean zero (𝑒𝑡~𝑁(0, 𝑅), 𝑣𝑡~𝑁(0, 𝑄), 

and 𝑐𝑜𝑣(𝑒𝑡 , 𝑣𝑡 = 0)), where matrices 𝑅 = 𝐸(𝑒𝑡𝑒𝑡
′) and 𝑄 = 𝐸(𝑣𝑡𝑣𝑡

′). The specification of the state 

space system is completed by assuming that the initial state vector, 𝛽0 has a mean of 𝛽0 and a 

covariance matrix P0, (𝐸(𝛽0) = 𝛽0 and 𝑉𝑎𝑟(𝛽0) = 𝑃0).  

 

Equation 1 is called the “measurement” or “signal” equation, while equation 2 is called the 

“transition” or “state” equation. The measurement equation describes the relationship between 

observed and unobserved (state) variables, and the state equation describes the dynamics of the 

unobserved variables over time. The assumption for first-order autoregression in transition 

equation is not restrictive, since as any AR(p) process can always be re-written in first order 

companion form (Blake and Mumtaz, 2012).  
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The complete estimation procedure with Kalman filter includes: formulation of model in state-

space form and given set of initial parameters, the model prediction errors are generated from 

the filter. These are then used to recursively evaluate the likelihood function until it is maximized 

(Jalles, 2009).  Actually, the Kalman filter is a recursive algorithm for producing optimal linear 

forecasts of 𝛽t+1 and 𝑦𝑡+1 conditional on an information set (observed data-𝑌𝑡), assuming that H, 

F, R and Q are known. The Kalman filter assumes that the transition and measurement equations 

are linear and the shocks to the system, 𝑒𝑡 and 𝑣𝑡, as well as the initial state, are all normally 

distributed (Gaussian). The full representation of the Kalman filter algorithm is given in Appendix.  

 

 

3. Model Structure and Core Equations 

 

The model for inflation decomposition is a small structural model with several behavioral 

equations, identities, definitions and calculations. It is a system of linear equations. The model 

decomposes total inflation on three main sub groups: food, energy and core inflation. Unlike food 

inflation, for which there is one equation, Energy and Core inflation are weighted sum of their 

components. Energy component has three sub components: domestic oil derivatives prices 

(petroleum), electricity and heating. As the electricity and heating components are regulated 

prices, there are no behavioral equations for them, only for petroleum prices. Core inflation is 

composed of goods and services, and for each of them there is behavioral equation. Figure 1 

presents the “price tree”. 

 

The food inflation (𝛥𝑐𝑝𝑖𝑡
𝑓𝑜𝑜𝑑

) is assumed to be determined by inertia, lag of domestic petroleum 

prices, domestic output gap, lag of world grain food prices and foreign effective food prices: 

 

𝛥𝑐𝑝𝑖𝑡
𝑓𝑜𝑜𝑑

= f(𝛥𝑐𝑝𝑖𝑡−1
𝑓𝑜𝑜𝑑

, 𝛥𝑐𝑝𝑖𝑡−1
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

, 𝑌 𝑔𝑎𝑝𝑡, ∆𝑔𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑒𝑥𝑡−1, 𝑐𝑝𝑖_𝑒𝑓𝑡
𝑓𝑜𝑟𝑖𝑒𝑔𝑛 𝑓𝑜𝑜𝑑

) (3) 

 

where 𝑐𝑝𝑖𝑡
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

 stands for domestic oil derivatives prices, 𝑌 𝑔𝑎𝑝𝑡 is domestic output gap,   

𝑔𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑒𝑥𝑡 is composed index of world wheat and maize prices, 𝑐𝑝𝑖_𝑒𝑓𝑡
𝑓𝑜𝑟𝑖𝑒𝑔𝑛 𝑓𝑜𝑜𝑑

 is foreign 

effective food index. The operator ∆ is a first (quarter) difference operator. 

 

The equation describes that food inflation is determined by domestic factors and import prices. 

Output gap represents the impact from the domestic demand, and an increase in domestic 

demand will increase food prices. Domestic prices of oil derivatives are included as cost factor, 
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which means that rise in oil prices will put pressure on production costs and to the final food 

prices. Grain index represents the import prices of raw food, while the foreign effective food 

index represents the import prices of final products. Both import prices have positive effect on 

domestic food prices. 

 

The domestic oil derivatives prices (𝛥𝑐𝑝𝑖𝑡
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

) are determined by inertia and world oil prices 

(current and first lag): 

 

𝛥𝑐𝑝𝑖𝑡
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

= f(𝛥𝑐𝑝𝑖𝑡−1
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

, 𝛥𝑜𝑖𝑙_𝑖𝑛𝑑𝑒𝑥𝑡, 𝛥𝑜𝑖𝑙_𝑖𝑛𝑑𝑒𝑥𝑡−1) (4) 

 

where 𝑜𝑖𝑙_𝑖𝑛𝑑𝑒𝑥𝑡 stands for world oil prices. Domestic prices of oil derivatives are determined by 

Regulatory energy commission (REC), which makes price’s adjustment every two weeks 

according to world prices and exchange rate MKD/USD in the previous two-week period. Hence, 

current world oil prices value have the bigger coefficient than the lagged one.   

 

The core inflation, which in our case is the headline inflation excluding food and energy 

components captures lower frequency changes in the general price level. For core inflation or 

“underline inflation” we adopt the approach of using separate models for core goods and core 

services to explain the dynamics of aggregate core inflation. Domestic factors are seen as those 

factors that influencing services inflation primarily, while global factors play a larger role in the 

goods inflation process (Peach et al., 2013).  

 

The equations for core good and services prices (𝛥𝑐𝑝𝑖𝑡
𝑐𝑜𝑟𝑒_𝑔

and 𝛥𝑐𝑝𝑖𝑡
𝑐𝑜𝑟𝑒_𝑠) are very similar, but 

still different, and are given in equations 5 and 6, accordingly:   

 

𝛥𝑐𝑝𝑖𝑡
𝑐𝑜𝑟𝑒_𝑔

= f(𝛥𝑐𝑝𝑖𝑡−1
𝑐𝑜𝑟𝑒_𝑔

, 𝑌 𝑔𝑎𝑝𝑡, 𝛥𝑐𝑝𝑖𝑡−3
𝑒𝑛𝑒𝑟𝑔𝑦

, ∆𝑐𝑝𝑖_𝑒𝑓𝑡−2
𝑓𝑜𝑟𝑖𝑒𝑔𝑛

) 

 

(5) 

𝛥𝑐𝑝𝑖𝑡
𝑐𝑜𝑟𝑒_𝑠 = f(𝛥𝑐𝑝𝑖𝑡−1

𝑐𝑜𝑟𝑒_𝑠, 𝑌 𝑔𝑎𝑝𝑡−1, 𝛥𝑐𝑝𝑖𝑡−3
𝑒𝑛𝑒𝑟𝑔𝑦

) (6) 

 

where 𝑐𝑝𝑖𝑡
𝑒𝑛𝑒𝑟𝑔𝑦

 is domestic energy price index and 𝑐𝑝𝑖_𝑒𝑓𝑡
𝑓𝑜𝑟𝑖𝑒𝑔𝑛

 is foreign effective inflation 

index. In standard models of Philips curve for core inflation forecasting, one of the main 

explanatory variable is activity gap (output gap or unemployment gap). Activity gap variable 

measures the resource utilization, or the extent of excess demand or slack in an economy. The 

link between excess demand and inflation does not apply in the same way to the parts of the CPI 

that change for exogenous reasons. Hence, the activity gap is a kind of measure for domestic 

pressures on prices. In our case, output gap is included as a proxy for domestic demand. Other 
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variable is the domestic energy index, which is included with a three-quarter lag in order to 

capture the indirect effect of energy prices changes, as firms gradually pass on their increased 

costs of production in the form of higher prices for final goods or services. One of the main 

differences between the two core equations is that core goods inflation has one additional factor, 

which is the foreign effective inflation index. As it was already mentioned, it is considered that 

reasonable part of the goods is imported and foreign prices have also effect on domestic goods 

prices excluding food and energy (Peach et al., 2013). The lagged core inflation represents 

intrinsic dynamics, that is the effects of things like contractual lags or other costs of adjustment 

that lead to stickiness in prices, even in the absence of expectations lags (Benes and N’Diaye, 

2004). 

 

Additionally to these behavioral equations, the electricity and heating prices are determined as 

sum of prices with no change assumed (the index is kept same as the last known value for the 

whole period of projection, i.e. zero q-o-q change) plus regulatory change: 

  

∆𝑐𝑝𝑖𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦_𝑡𝑜𝑡

= ∆𝑐𝑝𝑖𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

+ 𝐴𝐷𝑀𝑡
𝑒 

 

(7) 

∆𝑐𝑝𝑖𝑡
ℎ𝑒𝑎𝑡𝑖𝑛𝑔_𝑡𝑜𝑡

= ∆𝑐𝑝𝑖𝑡
ℎ𝑒𝑎𝑡𝑖𝑛𝑔

+ 𝐴𝐷𝑀𝑡
ℎ (8) 

 

where ADM are series that capture the regulatory change if some regulatory decision regarding 

these prices is known in advance, or it will take 0 otherwise. 

 

The identity equations regard to Energy prices (∆𝑐𝑝𝑖𝑡
𝑒𝑛𝑒𝑟𝑔𝑦

), Core Inflation (∆𝑐𝑝𝑖𝑡
𝑐𝑜𝑟𝑒) and Total 

inflation (∆𝑐𝑝𝑖𝑡
𝑡𝑜𝑡𝑎𝑙), which are weighted sum of their sub-components: 

 

∆𝑐𝑝𝑖𝑡
𝑒𝑛𝑒𝑟𝑔𝑦

= 𝑤𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚 ∗ ∆𝑐𝑝𝑖𝑡
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

+ 𝑤𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑡𝑦 ∗ ∆𝑐𝑝𝑖𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦_𝑡𝑜𝑡

+ 𝑤ℎ𝑒𝑎𝑡𝑖𝑛𝑔_𝑡𝑜𝑡

∗ ∆𝑐𝑝𝑖𝑡
ℎ𝑒𝑎𝑡𝑖𝑛𝑔

/ (𝑤𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚 + 𝑤𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑡𝑦 + 𝑤ℎ𝑒𝑎𝑡𝑖𝑛𝑔) 

 

 

(9) 

∆𝑐𝑝𝑖𝑡
𝑐𝑜𝑟𝑒 = 𝑤𝑐𝑜𝑟𝑒_𝑔 ∗ ∆𝑐𝑝𝑖𝑡

𝑐𝑜𝑟𝑒𝑔
+ 𝑤𝑐𝑜𝑟𝑒𝑠 ∗ ∆𝑐𝑝𝑖𝑡

𝑐𝑜𝑟𝑒𝑠/(𝑤𝑐𝑜𝑟𝑒𝑔 + 𝑤𝑐𝑜𝑟𝑒𝑠) 

 

(10) 

∆𝑐𝑝𝑖𝑡
𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑓𝑜𝑜𝑑 ∗ ∆𝑐𝑝𝑖𝑡

𝑓𝑜𝑜𝑑
+ 𝑤𝑒𝑛𝑒𝑟𝑔𝑦 ∗ ∆𝑐𝑝𝑖𝑡

𝑒𝑛𝑒𝑟𝑔𝑦
+ 𝑤𝑐𝑜𝑟𝑒 ∗ ∆𝑐𝑝𝑖𝑡

𝑐𝑜𝑟𝑒 (11) 

 

where elements marked with w are weights of each component to total CPI and the weights of 

energy and core inflation are sum of the weight of their sub-components. 
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Figure 1 

CPI components (”price tree”)  

 

 

 

 

 

The Kalman filter is used for estimation of separate components of inflation (food inflation, 

domestic oil derivatives prices, core inflation of goods and of services), where inflation 

components are filtered as unobserved variables at forecast. All other exogenous variables are 

treated as observed variables (headline inflation obtained by MAKPAM model, domestic output 

gap, exchange rate, oil prices, wheat prices and maize prices, foreign effective inflation and 

foreign effective food prices).  
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The parameters in the model are calibrated. The process of calibration is based on combination 

of expert judgments, individual estimations of the variables and trial and error process, taking 

into account country specific behavior of domestic consumers.  

 

 

4. Data and Results 

 

4.1. Data   

The dataset is on quarterly basis, starting from 2003. The choice of this starting sample point has 

been dictated by statistical database, as inflation sub components by COICOP classification start 

from January 2003. Domestic components price indices and the weights of all sub-components 

are according to State Statistical Office of Republic of Macedonia (SSO) with base year 

2016=1002 and they are seasonally adjusted. Domestic Output gap and total inflation are taken 

as output of MAKPAM model (NBRM Projection April 2017). All foreign prices are expressed in 

Euros, as Macedonia is a country with de facto fixed exchange rate to the Euro. World oil, wheat 

and maize prices are taken from IMF Prices commodity database, while the Exchange rate 

USD\EUR is from ECB - Euro foreign exchange reference rates database3; Foreign effective 

inflation index and Foreign effective food index are calculated by NBRM staff as weighted sum of 

the most significant trade partners for import of consumption goods and food4, accordingly, for 

which Eurostat data is used. For the projection period, various international projections are used 

such as Consensus Forecast or IMF WEO database5. 

  

4.2. Results  

 

For the purpose of this study and presentation of model results, NBRM Projections of April 2017 

data are used. According to MAKPAM projections, the inflation is expected to increase gradually 

by 1.3% and 2.1% in 2017 and 2018, accordingly. This dynamic is given exogenous to the 

decomposition model. Additionally, for the regulated prices – heating and electricity prices, which 

are part of energy component, it is assumed that there will be no changes in the level prices in 

                                                 
2 The indices and the weights of domestic inflation and its components are subject of change each year by SSO, taking 
last year as a base.  
3 For the purposes of April 2017 projection, IMF Prices commodity database with last available data of February 2017 is 
used, while for the exchange rate ECB database, the data available up to 23.03.2017 are used.  
4 The Foreign effective inflation index includes Bulgaria, Germany, Greece, France, Italy, Austria, Slovenia, Croatia and 
Serbia, while the Foreign effective food index includes Bulgaria, Germany, Greece, Austria, Croatia and Serbia. The weight 
structure is based on the normalized shares of their average shares in the period 2013Q1-2016Q3.  
5 For the purposes of April 2017 projection, Consensus Forecast and Eastern Europe Consensus Forecasts, March 2017 
and WEO October 2016 are used.  
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the projection period6, due to absence of any announcement for future changes by the 

Regulatory energy comission. Figure 2 shows the annual growth rates of total inflation and 

projected (filtered) dynamics of its sub components. 

 

The decomposition of total inflation shows negative food inflation in the first year of projection 

and solid recovery in the next one. Domestic oil derivatives prices will grow in 2017, as well as in 

2018, but with slower pace. Core inflation will continue to grow in 2017, but it will slow down in 

2018, the dynamics that show both of its sub categories (goods and services). The 

decomposition of total inflation is very similar to the projections obtained from near term 

forecast. 

 

Figure 2 

Annual growth rates of total inflations and its components 

(in %) 

 

 

4.3. Model performance 

4.3.1. Factor explanation 

                                                 
6 The assumption for no change in the level prices in the projection period implies only 0% q-o-q change, but still there 
might be some price changes on annual base in the first year of projection as result of base effect. 
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In this section model performances will be presented, more specifically how well the endogenous 

variables in the model given in Section 3 are explained by their determinants and what are the 

contributions of those determinants in the dynamics of each inflation component. This is easily 

answered by simple decomposition of inflation components, taking into account the data, the 

equations and calibrated coefficients. The decomposition analysis for past data will show us the 

fit of the model, while the decomposition for period of projections will give us the true meaning 

of this exercise. In other words, it will show us, to which extend the projected dynamics of each 

inflation sub components is explained by exogenous factors’ projections and by the projected 

dynamics of total inflation, which is distributed among components, with exception of regulated 

prices. The distributed part is transferred into component’s dynamics through equation shocks. 

Two aspects of decomposition are considered: (i) the total effect of each inflation sub 

component; and (ii) the true contribution of each sub component that is determined only by its 

factors included in their equations. The last decomposition will show us roughly how much of the 

projected dynamics of total inflation, that is given to the model, is not explained by factors 

included in the model and should be redistributed in the dynamics of the sub components. The 

distributed part is different in each process of projection, depending on model setting, projected 

total inflation and projected path for other exogenous factors, thus the results presented here are 

just an illustration how the model is functioning.  

 

The first two panels in Figure 3 (A and B) are showing the decomposition of total inflation on its 

sub components. The analysis will be focused on only of the period of projection. Analyzing Panel 

B, which is decomposition of inflation on more aggregate components, it shows that Energy and 

Core components have positive contribution through whole projection period, while food inflation 

has a small negative effect in 2017, while in the later period food has dominant positive 

contribution. As it can be seen, contribution of all components sum up to total inflation. Unlike 

this, in the graph in panel C is shown the contribution of the components explained only by their 

determinants in each of the equations in the model as well as the effect of regulated prices. The 

rest, marked with grey, represents the unexplained part of the total inflation that is distributed in 

the inflation sub components dynamics by Kalman filter, except regulated prices. 
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Figure 3 

Headline inflation (y-o-y) and the contribution of the sub components 

(in % and in p.p.) 

A)  B)  

  

C)   

 

 

In the following part, it will be shown the decomposition of individual equations, where historical 

data decomposition will give the goodness of the equation fit, while the decomposition in the 

period of projections will give the answer about contribution of determinants as well as the 

distributed part, captured through the residuals. Figure 4 shows the decomposition of each 

inflation component equation, as well as the identities, such as Energy and Core inflation.  

 

The decomposition of food inflation shows that its determinants explain most of the dynamics in 

the past, which point to good fit of the equation. As it can be seen, the world grain food prices 

have the biggest contribution in most of the time, while domestic oil prices have significant 

negative effect starting from second half of 2015, which is expected as the oil prices had a 

significant fall from 2014Q4 onwards (see panel B). In the period of projection, beside the 

previous two factors, the food inflation is explained additionally by foreign food inflation, while 
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output gap has a small positive effect. The shock (redistributed part) also has solid contributing 

effect7, which adds up to the total dynamics of food inflation.  

 

Domestic oil inflation, which is determined only by world oil prices, has a fairly good fit for the 

historical data. This is expected, as it was already explained in Section 3, domestic oil prices are 

set on regular basis, every two weeks, in accordance of world prices and exchange rate 

developments in previous two-week period. Apart from world prices, redistributed effect from 

total inflation dynamics is also present in projected dynamics, contributing additionally in 

domestic oil prices growth.  

 

Figure 4 

Various domestic inflations (y-o-y) and contributions of its determinants  

(in % and in p.p.) 

A) Food inflation B) Domestic oil inflation 

 

C) Core inflation  

 

 

 

                                                 
7 Part of the shocks in the begging of the projection period is due to inertia (the measurement error in the past); it is not 
the true effect of redistribution of total inflation dynamics. This is valid for all core equations in the model, as they all 
include inertia. 
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D) Core inflation - Goods E) Core inflation - Services 

  

F) Core inflation G) Energy inflation 

  

 

The figures in panels C-E refer to Core inflation and its sub components. As it was already 

mentioned, the aggregate core inflation was divided in two parts: goods and services. The both 

core inflations don’t have a satisfactory fit; the determinants don’t explain much of their 

dynamics, particularly for goods. As it can be seen on Figure 4 in Panel D, goods core inflation it 

is partly determined by import prices at the beginning of the analyzed period, while in the later 

period, only domestic demand, albeit very weak, contributes to price’s growth. The explanatory 

power of domestic demand is higher in case of services core inflation (Panel E), which is 

expected, as services are mostly driven by domestic factors. To this end, aggregate core inflation 

decomposition (Panel C) is very similar to that of goods, as goods consists almost 2/3 of total 

core inflation. The weak explanatory power of the determinants of core inflation to some extent 

lay in the fact that some of the prices developments were not related with economic factors, but 

were determined by one time factors, such as excise duty on alcohol and tobacco, changes in 

some other administered prices8 or effects of changes in the process of inflation measurement9 

etc. Regarding projections of core inflation, all factors contribute positively, except for negative 

                                                 
8 Such as tuitions, fees for administrative documents etc. 
9 Change in the type of the product that was followed for prices collection. 
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effect of the domestic energy prices in 2017, while the redistributed part of total inflation 

dynamics also has positive contribution in the future dynamics, with stronger effect in 201710 and 

smaller in 2018.  

 

The identities, Core and Energy inflation, are the weighted sum of its components. The projected 

core inflation is mostly driven by goods’ component, although services also have solid 

contribution. Energy inflation is almost completely determined by the projected dynamics of 

domestic oil prices. 

 

 

4.3.2. In-sample forecast 

 

The forecasting properties, shown in previous section, are evaluated using the regular fully-

fledged forecasts since Q2 2017. Other option for model performance check is in-sample 

forecasting, which is the recursive filtering and forecasting exercises. In principle, the iterations 

are based on the regular forecast scheme, with assumption that all exogenous variables are 

known ex ante for the whole horizon and without imposing any expert judgment. Each time, a 

filter is run, given the available data, and the forecast is simulated. Then the sample is extended 

by one period and the forecasting process is repeated until the last observable data is available. 

The final result of the in-sample analysis consists of a large number of mechanical model 

simulations. 

 

Figure 5 presents an example of recursive filtering and forecasts of inflation components. The 

mechanical structure and absence of conditioning makes these forecasts different from the 

regular process of forecasts. Actually, according to Andrle et al. (2009), this exercise of in sample 

simulations is more an illustration of the procedure than a measure of the model’s dynamic and 

forecasting properties. Nevertheless, the blue line represents the actual historical data, while red 

lines are 8 quarters ahead in-sample forecasts at various points in the past.  

 

 

 

 

 

 

                                                 
10 See footnote 8.  
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Figure 5 

Recursive forecasts (In sample forecast) 

 

 

 

 

The results of in sample analysis confirm the conclusions of the decomposition analysis. Food and 

domestic oil prices have a relatively good fit, as the in-sample forecast is generally close to actual 

outcomes and it captures turning points quite well. Although domestic oil prices are forecasted 

well in most of the time, still energy prices don’t share the same outcome. The deviation of in 

sample simulations from actual data is the result of regulated prices that are not controllable in 

this exercise as in the regular forecast process, where they are actually determined a priori. In-

sample forecasts for core inflation components and for aggregate core inflation show mixed 

goodness of fit. There are relatively better forecasts up to 2012, while in the following period the 

simulations are not so good in capturing the turning points and mostly show undershooting 
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compared with the actual outcome. Overall, the results indicate that the forecasting performance 

of the model is good enough for the model to be a useful analytical tool in the process of 

inflation forecast.  

 

 

5. Conclusions 

 

This paper has developed a methodology for decomposition of total inflation, obtained with 

macroeconomic model (MAKPAM) of NBRM, to CPI components. This decomposition of inflation 

to its components - food, energy and core inflation can facilitate discussion on inflation and help 

monetary policy decision making. Our methodology uses a small system that accounts for the 

interactions among total inflation dynamics and other exogenous factors, such as output gap, 

world commodity prices, and foreign effective inflation, to obtain projections for inflation 

components by applying the Kalman filter procedure. 

 

We applied the model to Macedonian data, and adapted it in accordance with country specifics. 

We have introduced the main characteristics of the model and focused mainly on forecasting 

performances of the model. The results of CPI component projections are in line with the 

expectations, and we believe that obtained filtrations of inflation components are realistic and 

provide a solid base for a deeper analysis of inflation. It was also shown by decomposition 

analysis and by performing an in sample forecast exercise, that most of our estimates, except for 

the core inflation components, give satisfactory results.  Namely, food and domestic oil prices 

have a relatively good fit, and the recursive forecasting shows that the capture of turning points 

is quite well. Regarding the core inflation, there is weak explanatory power of the determinants 

after 2012, which to some extent is effect of one time factors rather than economic factors. 

Overall, the performances tests showed that the model is useful analytical tool in the process of 

inflation forecast.  

 

Nevertheless, there is still room for improvement and future work on this model. One point of 

improvement is including forward-looking inflation expectations in some of the core equations, 

which is in accordance with the modern macroeconomic theories.  
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Appendix 
 
Kalman filter  
 
The Kalman filter operates within a state-space representation. The linear state-space model 

postulates that an observed time series is a linear function of a (generally unobserved) state 

vector and the law of motion for the state vector is first-order vector autoregression, given in 

equation 1 and 2: 

 
𝑦𝑡 = 𝐻𝛽𝑡 + 𝑒𝑡,  𝑣𝑎𝑟(𝑒𝑡) = 𝑅 (1) 

𝛽𝑡 = 𝜇 + 𝐹𝛽𝑡−1 + 𝑣𝑡, 𝑣𝑎𝑟(𝑣𝑡) = 𝑄 (2) 

 

where 𝛽𝑡 is a vector of stochastic or unobservable variables (states) and 𝑦𝑡 is a vector of 

measurement variables (observed data); 𝑒𝑡 and 𝑣𝑡 are measurement error/ structural shock, that 

are white-noise processes, independent of each other and of the initial value 𝛽0 with mean zero 

(𝑒𝑡~𝑁(0, 𝑅), 𝑣𝑡~𝑁(0, 𝑄), and 𝑐𝑜𝑣(𝑒𝑡 , 𝑣𝑡 = 0)), where 𝑅 = 𝐸(𝑒𝑡𝑒𝑡
′) and 𝑄 = 𝐸(𝑣𝑡𝑣𝑡

′); F and H are 

𝑚 × 𝑚 and 𝑁 × 𝑚 matrices of constants. The specification is completed by assuming that the 

initial state vector, 𝛽0 has a mean of 𝛽0 and a covariance matrix P0, (𝐸(𝛽0) = 𝛽0 and 𝑉𝑎𝑟(𝛽0) =

𝑃0).  

 

In state-space representation, Equation 1 is called the “measurement” or “signal” equation, while 

equation 2 is called the “transition” or “state” equation. 

 

The Kalman filter is a recursive algorithm for producing optimal linear forecasts of 𝛽t+1 and 𝑦𝑡+1 

conditional on an information set (observed data-𝑌𝑡), assuming that H, F, R and Q are known. 

The Kalman filter assumes that the transition and measurement equations are linear and the 

shocks to the system, 𝑒𝑡 and 𝑣𝑡, as well as the initial state, are all normally distributed 

(Gaussian). Because a normal distribution is characterised by its first two moments, the Kalman 

filter can be interpreted as updating the mean (𝛽𝑡) and variance-covariance matrix (𝑃𝑡) of the 

conditional distribution of the state vector as new observations become available. When the 

normality assumption is dropped, the Kalman filter is still optimal estimator, as it minimises the 

mean square error within the class of all linear estimators (Harvey, 2006).  

 

The Kalman filter provides solution of three types of estimation problems (Kalman, 1960; CNB, 

2015): 

- Filtering - estimation of 𝛽𝑡 using information up to time t  {𝑦𝑠}𝑠=1
𝑡 , which aims to update 

our knowledge of the system in general and that of the state; 
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- Smoothing – estimation of 𝛽𝑡 using information of the whole sample {𝑦𝑠}𝑠=1
𝑇 (𝑇 ≥ 𝑡) 11; 

- Prediction – estimation of 𝛽𝑇+ℎ given the information {𝑦𝑠}𝑠=1
𝑇 , which aims to forecast 𝛽𝑇+ℎ 

or 𝑦𝑇+ℎfor ℎ > 0.  

 

Single iteration of Kalman filter consists of two steps: prediction and update. The initialization of 

the Kalman filter is starting from initial condition, which can be specified as β0 and P0 or β1|0 and 

P1|0. Given these initial conditions, the Kalman filter delivers the optimal estimator of the state 

vector as each new observation becomes available. When all observations have been processed, 

the filter yields the optimal estimator of the current state vector, and/or the state vector in the 

next time period, based on the full information set. 

 

The filter evaluates following equations recursively:  

𝛽𝑡|𝑡−1 = 𝜇 + 𝐹𝛽𝑡−1|𝑡−1 (Prediction of state β)     

                                                      

(3) 

𝑃𝑡|𝑡−1 = 𝐹𝑃𝑡−1|𝑡−1𝐹′ + 𝑄 (Prediction of P – covariance matrix of predicted state)  

 

(4) 

𝑦𝑡|𝑡−1 = 𝐻𝛽𝑡|𝑡−1  (Prediction of observables yt)            

                                     

(5) 

𝜂𝑡|𝑡−1 = 𝑦𝑡 − 𝑦𝑡|𝑡−1 = 𝑦𝑡 − 𝐻𝛽𝑡|𝑡−1 (Prediction error)  

 

(6) 

𝑓𝑡|𝑡−1 = 𝐻𝑃𝑡|𝑡−1𝐻′ + 𝑅 (Variance of predicted error)  

 

(7) 

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻′𝑓𝑡|𝑡−1
−1  or 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻′(𝐻𝑃𝑡|𝑡−1𝐻′ + 𝑅) −1 (Kalman gain)  

 

(8) 

𝛽𝑡|𝑡 = 𝛽𝑡|𝑡−1 + 𝐾𝑡𝜂𝑡|𝑡−1 or 𝛽𝑡|𝑡 = 𝛽𝑡|𝑡−1 + 𝑃𝑡|𝑡−1𝐻′𝑓𝑡|𝑡−1
−1 𝜂𝑡|𝑡−1 (Update of β)  

 

(9) 

𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝑃𝑡|𝑡−1𝐻′𝑓𝑡|𝑡−1
−1 𝐻𝑃𝑡|𝑡−1 or 𝑃𝑡|𝑡 = (1 − 𝐾𝑡𝐻)𝑃𝑡|𝑡−1 (Update of P)  (10) 

 

Kt is known as Kalman gain and it shows how the new information (a prediction surprise) is 

reflected in the update of state estimation or the weight attached to new information (about the 

state) contained in the prediction error.  

 

Taken together the equations 3 to 10 make up the Kalman filter. 

 

In the case of smoothing, the estimates of 𝛽𝑡 are based on observation available for t=0,…T, 

using the notation 𝛽𝑡|𝑇. Unlike the Kalman filter, the smoother estimate final state using all 

variable information, but also taking into account previous estimates. It is backwards recursions 

to update the filtered estimates. The Kalman smoother is represented and recursively run as 

follows: 

                                                 
11 The Kalman filter is a one-sided, causal estimate of the state βt based on information up to the period [t0,….,t]. The 
Kalman smoother is a two-sided, non-causal filter that uses all available information to estimate the state βt|T based on 
[t0,….,T] (Andrle, 2013).   
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𝛽𝑡|𝑇 = 𝛽𝑡|𝑡 + 𝐶𝑡(𝛽𝑡+1|𝑇 − 𝛽𝑡+1|𝑡) 

 

(11) 

𝑃𝑡|𝑇 = 𝛽𝑃𝑡|𝑡 + 𝐶𝑡(𝑃𝑡+1|𝑇 − 𝛽𝑡+1|𝑡) 𝐶𝑡′ 

 

(12) 

𝐶𝑡 = 𝑃𝑡|𝑡𝐹(𝑃𝑡+1|𝑡)−1 (13) 

 

where the initial condition is 𝛽𝑇|𝑇.   

 

Running the Kalman filter up to time T gives the current estimate of the state vector. In addition 

it gives 𝛽𝑇+1|𝑇 and the one-step-ahead predictor𝑦𝑡+1|𝑇. With initial value 𝛽𝑇|𝑇 = 𝛽𝑇, the multi-step 

predictor of state can be written as: 

𝛽𝑇+ℎ|𝑇 = 𝜇 + 𝐹𝛽𝑇−1+ℎ|𝑇 (14) 

 

Similarly, with 𝑃𝑇|𝑇 = 𝑃𝑇, it gives: 

𝑃𝑇+ℎ|𝑇 = 𝐹𝑃𝑇+ℎ|𝑇𝐹′ + 𝑄 (15) 

 

Thus 𝛽𝑇+ℎ|𝑇 and 𝑃𝑇+ℎ|𝑇 are evaluated by repeatedly applying Kalman filter prediction equations. 

The minimum mean square error (MMSE) of 𝑦𝑇+ℎ can be obtained directly from 𝛽𝑇+ℎ|𝑇. Taking 

conditional expectations in the measurement equation for 𝑦𝑇+ℎ gives: 

𝐸(𝑦𝑇+ℎ|𝑌𝑇) = 𝑦̃𝑇+ℎ|𝑇 = 𝐻𝛽𝑇+ℎ|𝑇 (16) 

 

with MSE matrix: 

𝑀𝑆𝐸(𝑦̃𝑇+ℎ|𝑇) = 𝑓𝑇+ℎ|𝑇 = 𝐻𝑃𝑇+ℎ|𝑇𝐻′ + 𝑅 (17) 

 

When the normality assumption is relaxed, 𝛽𝑇+ℎ|𝑇 and 𝑦̃𝑇+ℎ|𝑇 are still minimum mean square 

linear estimators (Harvey, 2006). 

 

 
 


