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Abstract 

From a macro perspective, inventor networks are characterized by rather stable 
structures. However, the high levels of fluidity of inventors and their ties found in 
reality contradicts this macro pattern. In order to explain these contradicting patterns, 
we zoom in on the intermediate group structures of co-patenting relationships found 
among inventors in German laser technology research over a period of 45 years. Our 
findings suggest that continuity of individual actors is not a key factor in maintaining 
structural stability of networks. Group level explorations indicate that the successor of 
an existing key player belonged to the exiting key player’s ego-network, indicating 
that the group level provides a source of stability and functionality to the system. 
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1. Introduction 

Over the past decades a strong growth of newly established R&D 

cooperation (Hagedoorn 2002; Tomasello et al. 2017) is observed, 

indicating that innovation processes are increasingly characterized by a 

division of innovative labor (Wuchty et al. 2007). The reasons for this trend 

are straightforward; R&D cooperation enables knowledge exchange and 

collective learning, and may lead to cost saving, risk sharing, as well as 

reduced time to market (Hamel 1991; Grant and Baden-Fuller 2004; 

Mowery et al. 1996; Hagedoorn 2002). The network of cooperative 

relationships among innovative actors constitutes an important element of 

the innovation system (Chaminade et al. 2019). Previous research 

indicates that it is not only an actor’s individual network position (Powell et 

al. 1996; Stuart 2000), but that the structural characteristics at the overall 

network level, such as core-periphery patterns (Borgatti and Everett 1999), 

scaling properties (Barabasi and Bonabeau 2003), and small-world 

characteristics (Watts and Strogatz 1998) also matter when it comes to 

explaining innovation outcomes.1 This indicates that the system’s topology 

opens up favorable cooperation and positioning opportunities for individual 

actors and enables direct and indirect knowledge transfer, mutual learning, 

and collective innovation processes.  

Pervious research shows (e.g., Tomasello et al. 2017) that innovation 

networks tend to emerge in quite typical and structurally stable patterns at 

the macro level.2 Contrary to the widespread notion of network stability, 

however, recent empirical investigations indicate a high level of fluidity at 

the micro level and that network actors as well as their ties are in a 

constant state of flux.(Fritsch and Kudic 2016; Fritsch and Zoellner 2018; 

2019). This includes the entry of new actors and establishment of new 

ties, the discontinuation of actors and ties, as well as changes in the 

                                            
1 For instance, empirical evidence suggests a positive and significant relationship 
between small-world characteristics, creativity and the innovative performance of the 
actors involved (Uzzi and Spiro 2005; Schilling and Phelps 2007). 
2 We define ‘structural stability’ from a holistic perspective. It describes a network’s 
tendency to develop typical, non-random topologies in order to keep its functionality and 
its ability to retain or regenerate these characteristic patterns over time. 
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quality of the relationships (Graebner et al. 2018). At least at first glance, 

the high level of micro-level fluidity may appear to be incompatible with 

structural stability at the macro level. 

In this paper, we seek to contribute to a better understand of the 

complex interplay between micro-level fluidity and structural stability at the 

aggregate level of inventor networks3 by addressing this question: Who or 

what explains the co-existence of macro-level stability and high levels of 

fluidity at the micro level? We base our empirical analysis on a unique 

dataset encompassing all patent applications in the field of laser 

technology in West Germany from the inception of the technology in the 

year 1961 until 2005. We employ this longitudinal data to reconstruct the 

co-patenting inventor network and its structural evolution for almost half a 

century.4 This exploration along different levels of aggregation provides us 

with important insights into the evolution of the network’s structural 

properties. We then turn our attention to the micro level and analyze the 

extent to which individual actors and their connections persist over time. 

Finally, we employ ‘key player analyses’ (Borgatti 2006) to identify the 

cohesive forces that pull the overall network structure together despite the 

high levels of fluidity at the micro level. 

Section 2 summarizes the main contributions of previous research 

concerning the development and underlying relationships of network 

structures. Section 3 introduces the data and provides a brief overview of 

the development of inventor networks in the West German laser industry. 

Next, we corroborate the macro-level stability of network structures and 

                                            
3 We focus exclusively on inventor networks, which are considered to be one specific 
type―among many others―of innovation networks in which nodes represent individual 
actors (persons) and ties reflect joint R&D activities. 

4 As an alternative to inventor networks, one could analyze cooperative patenting 
activities between organizations (e.g., public research institutes and firms). This assumes 
that researching organizations hold the relevant knowledge rather than the inventors. If 
the patent document names several organizations as applicants, identifying such 
cooperative relationships between organizations can be accomplished using the patent 
statistics. As compared to ties among inventors, co-applications of patents with several 
organizations are relatively rare and the construction of applicant networks is not 
conclusive. For example, at the onset (1961-65), we found 33 applicants while the share 
of isolated applicants amounts to 87%. In the middle of our observation period (1981-85), 
we found only 119 applicants, and again a very high share of isolates (86.3%). 
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show the high levels of micro-level fluidity (Section 4). The stability of 

network relationships at the intermediate group level is then analyzed in 

Section 5. Finally (Section 6) we discuss the main findings and outline 

some fruitful avenues for further research.  

2. Previous research and own research design 

2.1 The structural dimension of networks revisited  

A considerable number of studies show that the emergence of typical real-

world network topologies is systematically shaped by complex processes 

and mechanisms (see, for example, Newman et al. 2006). This clearly 

indicates that real-world networks are not random. The structural 

divergence between random and real-world networks becomes particularly 

evident when looking at network properties such as ‘scaling’, 

‘connectedness’, ‘clustering’, and ‘core-periphery structures’. 

Even though random networks typically have no direct practical 

relevance, they may serve as reference points or benchmarks for real-

world networks. In its most basic sense, a random network (cf. Erdős–

Rényi 1959) can be defined as a system that consists of a well-defined 

number of nodes, where each of these nodes attracts ties with the same 

probability.  

Barabási and Albert (1999) argue that simplistic random network 

models typically fail to account for key features of real-world networks 

such as growth and preferential attachment.5 Accordingly, their network 

model incorporates the idea that actors with an above average number of 

ties (degree) have a higher probability of attracting additional ties than 

actors with fewer ties. Over time, this mechanism leads to the emergence 

of a ‘fat-tailed’ degree distribution that is characterized by a sharp bell 

shape and a high skewness. Barabási and Albert (1999, 510) showed that 

‘[…] large networks tend to self-organize into a scale-free state’. The 

implication of such a degree distribution is straightforward: a small number 

                                            
5 For an overview, see Albert and Barabási (2000, 2002).  
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of actors attracts ties at a significantly higher rate than others. As these 

‘network hubs’ (or ‘high degree’ actors) continue to expand their dominant 

network position, the majority of actors has only a very small number of 

direct ties. A broad range of studies have observed and empirically tested 

‘scaling’ properties of networks. For instance, Powell et al. (2005) 

analyzed degree distributions for six networks (differentiated by type of 

partner) in the US Life Science Industry. The results suggest that a small 

number of actors tend to attract a significantly higher number of ties 

compared to the large majority of other network actors.6  

Emerging real-world networks are typically characterized by a 

simultaneous increase in size and a decrease in density (Kudic 2015; 

Tomasello et al. 2017). Even more interesting, the clustering of real-world 

networks noticeably increases over time. Simply put, a cluster can be 

described as a densely interconnected sub-set of actors within a network. 

Typically, different clusters are either completely disconnected or only 

loosely coupled. Several authors have demonstrated that the co-existence 

of high clustering and short path length in networks (frequently referred to 

as ‘small-world’ phenomenon (Milgram 1967; Watts and Strogatz 1998)) 

affects the exchange of information, ideas and knowledge, and is 

positively related to creativity and innovativeness of the actors involved 

(Uzzi and Spiro 2005; Fleming et al. 2007; Schilling and Phelps 2007). 

‘Core-periphery’ network structures can be defined as “[…] a dense, 

cohesive core and a sparse, loosely connected periphery” (Borgatti and 

Everett 1999, 375). The core is composed of key members of the 

community and includes actors who have developed dense connections to 

others and act as network coordinators. The periphery includes actors who 

are only loosely connected to the core, as well as to the other actors in the 

periphery (Cattani and Ferriani 2008, 826). It has been argued that the 

                                            
6 A fat-tailed or scale-free degree distribution of a real-world network is typically explained 
and interpreted as follows: “Unlike the tail of a random bell curve whose distribution thins 
out exponentially as it decays, a distribution generated by a popularity bias has a ‘fat’ tail 
for the relatively greater number of nodes that are highly connected. The fat tail contains 
the hubs of the network with unusually high connectivity” (Powell et al. 2005, 1151).  
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core of sectoral innovation networks contains essential elements of the 

industry’s technological knowledge (Rank et al. 2006). 

In research based on publicly funded innovation networks between 

1990 and 2010, Kudic et al. (2015) show the emergence and solidification 

of a core-periphery structure in the German laser industry. One potential 

explanation for the emergence of a loosely coupled and highly fragmented 

network periphery is based on the cooperation options available to new 

network entrants. Core actors prefer to connect to other well-embedded 

actors, while newcomers tend to enter the network by establishing 

partnerships with one another and only later gain access to high-degree 

actors. Rosenkopf and Padula (2008) confirm this line of reasoning by 

showing that the likelihood that an entrant attaches to a network 

incumbent increases with the incumbent’s ‘prominence’ in the network as 

proxied, e.g., by his degree centrality or his eigenvector centrality 

(Bonacich 1987). From a macro perspective, this is reflected in the 

emergence of a loosely coupled and highly fragmented network periphery. 

In summary, theoretical and empirical studies suggest that real-world 

networks show a pronounced tendency to develop stable structural 

patterns at the macro level. Specifically, a fat-tail degree distribution, 

clustering patterns and core-periphery structures distinguish real-world 

networks from random networks.  

2.2  Network dynamics and the fluidity of actors and ties 

The micro-level dynamics of networks comprise entries and exits of actors 

(nodes), as well as the formation and the termination of partnerships (ties) 

among actors. This micro fluidity affects the structural configuration at 

higher levels of aggregation (cf. Kudic 2015) in nontrivial ways. 

 The main reason to expect high levels of stability of ties among 

actors is that establishing and maintaining cooperative relationships in 

research and development (R&D) requires considerable effort. The costs 

of establishing and maintaining R&D cooperation particularly include the 

effort of identifying a suitable cooperation partner, negotiating the terms of 
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the cooperation, and establishing a well-working and trust-based 

relationship that may require frequent face-to-face contacts (Ejermo and 

Karlsson 2006; Storper and Venables 2004; Gilsing and Nooteboom 

2005). Moreover, the relationship may require investment in absorptive 

capacity, such as specific skills and equipment (e.g., Powell et al. 2005; 

Powell and Gianella 2010). Since these investments will be sunk if an 

R&D cooperation is abandoned, one may expect an incentive for actors to 

maintain a relationship over longer periods of time, unless continuing the 

relationship is more costly than establishing a more rewarding new 

relationship with a different actor. 

There are, however, also a number of solid arguments for terminating 

existing partnerships and establishing new ones. The main rationale for 

discontinuing a cooperative relationship is that the dynamics of innovation 

processes require the continuous acquisition of new knowledge, and the 

recognition that parts of the existing knowledge may become obsolete. 

These changing requirements induce reorganizations of innovation 

activities, particularly establishing new ties to new actors while some of the 

established relationships are no longer needed. Similarly, the knowledge 

pool of inactive network incumbents erodes over time. For these reasons, 

one may expect high levels of fluidity of actors and their ties. 

The rather few empirical studies that analyze the levels of fluidity 

of actors and their ties in innovation networks (Fritsch and Zoellner 2018, 

2019; Greve et al 2009; Ramlogan and Consoli 2014) show surprisingly 

high levels of new and exiting actors, as well as newly established and 

terminated ties. For example, in an analysis of regional inventor networks 

Fritsch and Zoellner (2019) found that more than 78% of all inventors are 

only present in one three year period, 14.51% are active in two periods 

and only about 7% appear in networks for more than two successive 

periods.7 Only 9.7% of all ties between inventors can still be found in the 

                                            
7 Analyzing the effect of fluidity on the structure of the inventor networks, Fritsch and 
Zoellner (2019) find some statistically significant relationships with the share of the 
largest network component and the share of isolates. The results suggest that fluidity 
leads to some fragmentation of the networks, but that the effect is not very pronounced. 
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successive period. A study by Ramlogan and Consoli (2014) on 

collaborative research in medicine finds that the share of new 

collaborations over all collaborations is always above 70% in all years of 

the observation period 

2.3 What do we want to know and how can we get there?  

The co-existence of macro-level stability and micro-level fluidity in 

innovation networks is a largely unexplored phenomenon. Our analysis of 

the co-existence of macro-level stability and micro-level fluidity is based on 

a unique dataset of co-patenting relationships among inventors in the 

German laser industry over a period of 45 years.  

We employ a three-stage research design. The first step is analyzing 

the structural stability of the inventor network by exploring the structural 

features and pattern formation processes along different lines. We consult 

a set of standard metrics to gain an initial intuition of the system’s overall 

topology and related development patterns. Next, we test for the 

emergence of two exemplary structural phenomena that are frequently 

emphasized in the pertinent literature (scaling properties and segregation 

into a core-periphery structure) to check whether the system is 

characterized by stable pattern formation processes at the macro level. In 

a second step, we turn our attention to the micro level and analyze the 

degree of fluidity by exploring node and tie re-occurrence rates over time. 

Third, in order to determine who or what keeps the system together, we 

begin at the micro level and identify two types of key players: (1) those 

who warrant diffusion properties of the system, and (2) those who are 

responsible for the structural cohesion of the system.  

Our analyses clearly show that these two types of actors are 

anything but persistent over time. This result raises a number of 

interesting questions. Who are these key players, where do they come 

from and why do they occupy their roles for only such a short period of 

                                            
Relating the levels of fluidity to the performance of networks in terms of the number of 
patents per R&D employee (patent productivity) suggests positive effects of new actors 
and ties. 
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time? If an ‘old’ key player disappears from the network, who takes over 

this important role? Is a key player and his successor connected? Was 

there an exchange of knowledge before the role change so that the 

knowledge of the ‘old’ key player remains in the system? To answer at 

least some of these questions, we turn our attention to the intermediate 

network level, specify the ego networks for each of the top key players 

over time and analyze to what extent these highly important roles are 

passed over to members of the same group. 

3. Technology and data 

3.1 German Laser research 

The acronym ‘laser’ was originally coined by Gould R. Gordon (1959) and 

stands for ‘Light Amplification by Stimulated Emission of Radiation‘8 

German laser research provides an ideal empirical setting for the 

purposes of this study for several reasons. First, laser technology can be 

characterized as knowledge intensive and science-driven (Bertolotti 2005; 

Bromberg 1991; Grupp 2000). Second, the development of laser 

technology requires expertise from various scientific disciplines such as 

optics, electronic engineering and physics (Fritsch and Medrano 2015). 

Thus, the creation of novel products and services in this field is often a 

collective process characterized by a pronounced division of labor 

between various actors and institutions. Third, German laser research is a 

well-defined and documented technological field (Albrecht 2019; 

Buenstorf, Fritsch, and Medrano 2015; Fritsch and Medrano 2015; Kudic 

2015). 

Although the roots of laser research reach back into the early 20th 

century (Albrecht 2019; Bromberg 1991), a research group led by 

Theodore H. Maiman at the Laboratories of the Hughes Aircraft Company 

                                            
8 It describes a wide range of devices for the amplification of coherent light by stimulated 
photon emission generated by pumping energy through an adequate medium. A laser 
device emits a coherent light beam, both in a spatial and a temporal sense that can be 
generated based on different gain media, such as solid crystals and semiconductors, for 
example. The coherent light beam can be modulated and amplified. 
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in Malibu (California, USA) realized the first laser in early 1960. The first 

realization of a laser in Germany occurred in the Siemens Company’s 

Munich laboratories in November of the same year. Over the following 

decade Siemens dominated German research in the field of laser 

technology (Albrecht 2019; Buenstorf and Fritsch 2019; Fritsch and 

Medrano 2015).  

3.2 Data sources, co-patenting, and the construction of inventor 
networks 

Our empirical study is based on patent applications in the field of laser 

technology in West Germany from 1961 to 2005, a period of nearly half a 

century. In order to isolate the effect of German unification in the year 

1990, we exclude laser patents by inventors located in East Germany and 

strictly limit the analysis to inventors in West Germany. In total, we 

identified 4,371 laser-related patent applications between 1961 and 2005. 

A main benefit of our data is that it comprises the full population of all 

inventors active in the field of laser research over the entire observation 

period. The data allows us to analyze R&D cooperation activities and 

network entry modes for the entire population of inventors from the early 

emergence of this technological field onwards. The patent data provides 

us with information about the applicant organizations and all of the 

inventors, and are the basis for identifying ties between these actors.  

The patent information was obtained from the database DEPATISnet 

(www.depatisnet.de), which is maintained by the German Patent and 

Trade Mark Office. From this source we selected all patent applications 

with priority in West Germany that were assigned to the technological field 

‘devices using stimulated emission’ (IPC H01S) as either the main or 

secondary class. Research in this IPC class is related to laser beam 

sources that constitutes the basis for all kinds of applications. We account 

for important applications of laser technology by including those patent 

applications in the fields of material processing (IPC B23K), medical 

technology (IPC A61 without IPC A61K) and spectroscopy (IPC G01N) 

that mention the term ‘laser’ in the document. We found an increasing 
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number of patents in all these IPC classes over the entire observation 

period. In the early years of the technology, patenting activities reflect a 

clear dominance of research related to beam sources (IPC H01S). After 

the year 2000, we observe a clear trend shift from patenting in the basic 

technology of beam sources to its applications. Figure A1 and Table A1 in 

the Appendix provide further details on patenting and co-patenting 

activities in West German laser research.9 

The construction of networks based on co-patenting information 

requires some basic theoretical considerations and assumptions. From a 

graph-theoretical perspective, a network is completely defined by a well-

specified set of nodes and ties among them (Newman 2010).10 A graph 

(N, g) consists of a set of nodes N= {1…n} and a real-valued adjacency 

matrix g (=n x n), where gij represents the relation between the node i and 

the node j in the network (Jackson 2008).  

For the purpose of this study, we specify unvalued (i.e. the adjacency 

matrices that can only take the values of 0 or 1) and undirected (i.e. the 

adjacency matrices are symmetric) adjacency matrices. We assume that 

all inventors that are listed in a patent document have cooperated in R&D 

in order to achieve a common goal. From a methodological perspective, 

this is reflected by the second assumption that all partners listed in a 

patent document are connected to each other. Finally, we used the priority 

filing date of a patent application to assign a timestamp to the created 

network data. In order to investigate the development of inventor networks 

we divide the entire period of analysis into nine five-year windows of 

observation. Hence, we account for the limited lifetime of cooperative ties 

                                            
9 A closer look at the size distribution of inventor teams clearly indicates an increasing 
tendency towards co-patenting activities over time, and an increasing tendency towards 
larger teams over time. Of all patent applications filed between 1961 and 2005, 71% are 
co-patented by two or more inventors. This confirms the assessment by Wuchty at al. 
(2007) according to which innovation processes are increasingly characterized by a 
division of innovative labor for the German laser industry. 
10 Nodes are frequently referred to as ‘actors’, ‘agents’, ‘players’ or ‘entities’, while ‘ties’ 
are frequently called ‘links’, ‘connections’ or ‘relationships’. In this study, a node 
represents an inventor and a tie represents a co-patent. 
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by assuming that co-patenting relationships persist for a limited period of 

up to five years.11  

For benchmarking purposes, we generate Erdös-Renyi random 

graph networks, comparable in terms of size and density to their real-world 

counterparts.12 For analytical purposes, we employ the software package 

UciNet 6 (Borgatti et al. 2002; 2013). 

We are well aware that patents reflect only a part of the diverse types 

of formal and informal relationships among inventors.  It is, however, 

plausible to assume that documented co-inventorship implies other forms 

of cooperation, such as co-publications and informal knowledge exchange. 

A comprehensive data source that accounts for the variety of relationships 

between innovating actors does not exist.13  

4. Macro-level stability and micro-level fluidity 

4.1 Prevalence of macro-level stability 

To explore the structural characteristics of the German laser industry 

inventor network, we draw upon basic graph-theoretical concepts and 

employ social network analysis (SNA) metrics (Wasserman and Faust 

1994, Jackson 2008, Borgatti et al. 2013; Newman 2010).  

We begin by focusing on a number of measures that describe the 

topology of the entire system. Network size is simply defined as the 

number of inventors with at least one dyadic relationship, while the total 

                                            
11 This assumption is necessary since patent data provides no direct indication of tie-
duration or tie-termination dates. Although durations of projects can vary considerably, 
many patent applications maybe based on joint research over a period of two to three 
years (Greve et al. 2009; Phelps 2010; Ramlogan and Consoli 2014). According to Park 
and Russo (1996), the average duration of a cooperative R&D project between 
organizations is less than five years. We conducted several robustness checks and also 
experimented with four-year and six-year windows, without significant differences in the 
reported results. 
12 This procedure was always sufficiently often applied (n>30) to generated 
representative random benchmarks.  

13 A comparison of regional innovation networks constructed with different data sources 
(Fritsch, Titze and Piontek 2019) finds that patent data tend to underestimate ties among 
private sector firms, while universities and other public research institutions are well-
represented in patent data. 
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number of actors encompasses both inventors with co-inventors as well as 

unconnected inventors (isolates). The share of isolated inventors is 

expressed in percentage terms. The average degree indicates the 

average number of ties maintained by actors in the network. Network 

density is the total number of ties divided by the number of possible ties.  

A component is defined as a connected sub-graph, while the 

component size simply reflects the number of actors involved in this 

component. The network diameter reflects the length of the longest 

geodesic path, while the measure of an average path length incorporates 

all geodesic distances among reachable pairs of actors, and provides an 

average measure at the systemic level. The clustering coefficient reflects 

the density of each actor’s nearer surrounding by measuring how many of 

the actor’s directly neighboring partners are interconnected. 

Interestingly, the numbers of inventors and the number of inventors 

with at least one link to a co-inventor are continuously increasing, while 

the share of isolates decreases over time. The exception to this trend 

occurs during the observation window 2001-2005 (Table 1). At the same 

time, the number and average degree of observed R&D linkages among 

inventors is increasing. A network’s average density is simply the total 

number of actually observed ties divided by the total number of possible 

ties (Wasserman and Faust 1994). 

 The component-based network measures provide an interesting 

picture of the system’s overall tendency of fragmentation. We observe an 

increase of the number and the average size of components. A closer look 

at the component size distribution of the three largest components reveals 

particular strong growth of the main component. Finally, the network 

diameter and the average path length follows no clear trend. The same 

holds for the overall clustering coefficient. However, when using measures 

from our random benchmark networks (see Figures A2 and A3 in the 

Appendix), a comparison of the average path length with the overall 

clustering coefficient reveals an interesting insight. We find that German 

laser research networks exhibit a significantly shorter path length and 
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higher overall clustering coefficients, which indicates small-world 

properties.  

Table 1: Basic network metrics, 1961-2005 

Description  61-65 66-70 71-75 76-80 81-85 86-90 91-95 96-00 01-05

Total number of inventors 95 189 215 260 419 723 923 1,284 1,369

Number of inventors in the network 65 134 172 212 359 632 820 1196 1212

Share of isolates (%) 31.58 29.10 20.00 18.46 14.32 12.59 11.16 6.85 11.47

Number of ties  86 205 278 409 643 1135 1888 2608 2921

Average degree 1.969 2.09 2.36 2.575 2.735 2.873 3.249 3.61 3.893

Network density 0.031 0.016 0.014 0.012 0.008 0.005 0.004 0.003 0.003
 
Number of components 19 39 44 60 97 145 173 218 215

    Component size distribution                    

    Largest component 15 19 23 13 35 84 59 114 115

    2nd largest component 5 10 11 10 11 22 28 59 72

    3rd largest component  5 9 8 10 11 15 27 33 39

Average component size 3.42 3.44 3.91 3.53 3.70 4.36 4.74 5.49 5.64
Network diameter 5 7 5 4 5 7 9 11 9

Average path-length  2.107 2.193 1.966 1.425 2.197 2.402 2.524 3.775 2.916

Overall clustering coefficient  1.071 1.316 1.166 1.417 1.3 1.169 1.449 1.163 1.15

 

Figure 1 illustrates the degree distribution of the German laser 

research network for the entire observation period (1961-2005). The graph 

on the left hand side provides degree distribution based on the total 

number of actors for the entire observation period. On the right hand side, 

we show the normalized numbers plotted on a log-log scale. In the case of 

random networks, the values on the logarithmic scale should represent a 

curved line (towards the upper right), while the straight line (from the upper 

left to the lower right) that we find indicates a fat-tailed degree distribution. 

Hence, the German laser research inventor network exhibits a typical 

scale-free degree distribution. In other words, there is a small number of 

actors with an extremely high number of ties (up to 40), while the majority 

of the actors have degrees far below ten.  
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Total number of inventors     LOG (norm.), total number of inventors  

 
Degree       LOG (norm.), Degree  

Figure 1: Degree distribution, 1961-2005 

Finally, we explore the core-periphery structure of the German laser 

inventor network by using k-core measures.14 A k-core measure includes 

all nodes (inventors) that are adjacent to at least a minimum number, k, of 

other nodes in the component (Wasserman and Faust 1994). In a first 

step, we calculate k-core measures for all inventors over time. The 

repeated calculation of k-core measures (for k = 1, … n) enables us to plot 

coreness layers for different k-core intensities over time, typically referred 

to as k-core strata. The coreness strata allows us to check for the 

existence and emergence of a core-periphery structure. For the sake of 

simplicity, we group all network actors into four categories based on their 

k-core values (c4:12>k>10, c3: 9>k>7, c2: 6>k>4 and c1: 3>k>1) and plot 

the k-core strata over time. The dashed line (top of Figure 2) provides the 

total number of actors with a k-core value between one and three. These 

actors can be considered to be located at the network periphery. In 

contrast, the solid thin line depicts the number of actors with extremely 

high k-core measures in absolute terms. These actors can be regarded as 

                                            
14 For an overview of approaches for identifying core-periphery patterns, see Csermely et 
al. (2013). 
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constituting the very core of the network. In addition, we calculated an 

average k-core level, plotted in Figure 2 (top) as a solid fat line.  

 

Figure 2: K-core strata and core-periphery structure, 1961-2005 

A high spread between the low-level k-core category (i.e. dashed 

line) and the higher-level categories (i.e. solid thin line, dashed-dotted line, 

and dotted line) indicates the existence of a core-periphery structure in the 

German laser inventor network for the entire observation period. The 

bottom of Figure 2 reports the relative changes compared to the average 

k-core level. The k-core average is represented by 0 on the y-axis of the 

graph. Below average k-core values are represented by the black bar 

while above average k-core values are represented by the other bars in 

the chart. The exploration indicates a quite stable and persisting core-

periphery structure over the entire observation period.  

In sum, basic network metrics for the inventor networks in German 

laser technology indicate an increasing tendency towards a division of 

labor. A closer look at the connectedness and cohesiveness of the 
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network exhibits a remarkable degree of structural stability in terms of 

size, density and component size distribution. The network’s overall 

topology is characterized by a scale-free degree distribution. The 

exploration of k-core strata reveals a structurally stable and persistent 

pattern formation process. These results may be regarded as a stable 

segregation trend reflecting a core-periphery structure over the entire 

observation period. Overall, the reported patterns are largely in line with 

findings reported for other real-word networks (Powell et al. 2005; Kudic, 

2015; Tomasello et al. 2017).  

4.2 The various facets of micro-level fluidity 

In accordance with previous studies (Fritsch and Zoellner 2018, 2019; 

Phelps 2010; Raamlogan and Consoli 2014), we find rather high levels of 

fluidity of actors and ties over time. The upper right part of Table 2 report 

the shares of identical inventors in the networks across the different 

periods of analysis. The values are the shares of identical actors (in 

percentage terms) for two compared time periods. For instance, the 

comparison between the first time period (1961-1965) and the second 

period (1966-1970) shows that only 8.54 % of inventors remain in the 

network. The maximum share of identical actors in two subsequent time 

periods is 13.02%. This share strongly converges towards zero as the time 

distance between the compared sub-periods increases. This rather high 

fluctuation of network inventors over time indicates a low structural stability 

at the node level. 

 The numbers below the diagonal in the lower left of Table 2 shows 

the reoccurrence of ties between pairs of inventors across different time 

periods. We find that only 5.85% of all ties between inventors in the period 

1966-1970 had already been established in the preceding observation 

period (1961-1965). For more distant periods this share also strongly 

converges towards zero.  
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Table 2:  Reoccurrence of inventors and ties across periods of analysis 

  
1961-
1965 

1966-
1970 

1971-
1975

1976-
1980

1981-
1985

1986-
1990

1991-
1995 

1996-
2000 

2001-
2005

1961-1965 - 8.54 3.80 0.72 0.94 0.00 0.11 0.08 0.16 

1966-1970 5.85 - 10.13 5.49 3.25 1.04 0.84 0.38 0.15 

1971-1975 0.72 6.12 - 13.02 6.78 2.49 1.41 0.88 0.14 

1976-1980 0.00 1.22 6.36 - 11.03 4.50 2.71 1.14 0.56 

1981-1985 0.00 0.00 0.93 11.66 - 9.28 4.50 2.96 1.59 

1986-1990 0.00 0.09 0.35 1.32 8.99 - 10.95 5.58 3.69 

1991-1995 0.00 0.05 0.00 0.11 0.79 7.84 - 10.71 6.00 

1996-2000 0.00 0.00 0.00 0.00 0.11 0.99 8.18 - 12.54

2001-2005 0.00 0.00 0.00 0.00 0.00 0.51 2.33 6.06 - 

 

The very high levels of fluidity of inventors and their ties clearly 

demonstrate that the German laser research network exhibits a very high 

level of instability at the micro-level. After only two observation periods, 

nearly the entire population of inventors is replaced by new actors. The 

fluidity of ties is even more pronounced; almost no tie between inventors 

lasts for more than two periods. This raises the question: How is it 

possible that there is so much structural stability at the macro level, when 

the micro level exhibits extremely fluid or unstable characteristics? 

5. The co-existence of macro stability and micro fluidity 

In order to shed some light on the co-existence of structural stability at the 

macro level and micro-level fluidity we conduct a key player analysis 

based on Borgatti (2003, 2006). The primary aim of a network-based key 

player analysis is to identify a set of inventors who either warrant the 

diffusion properties or stabilize the structural configuration of a given 

network. Hence, key player metrics go way beyond typical centrality 

measures, such as degree centrality, betweenness centrality, or 

eigenvector centrality, which are typically applied to address an actor’s 

position within a network. 

The first identification criterion KPPNEG allows us to detect so-called 

(type-1) key players whom, if removed from the network, would cause the 
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most significant fragmentation of the network (Borgatti 2006). In other 

words, the measure allows us to identify those inventors who keep the 

inventor network together. The second criterion KPPPOS identifies those 

key players (type-2) who are most relevant for the diffusion knowledge in a 

given network structure (ibid). Hence, it enables us to determine the most 

significant inventors in the passing of information and knowledge through 

the system. The two measures are highly correlated, but they capture two 

qualitatively different facets of networks stability. While KPPNEG measures 

address the physically observable link structure, KPPPOS measures relate 

directly to the functionality of the system.  

Table 3 provides results of the functionally-oriented key player 

analysis (KPPPOS metrics) for each of the nine observation windows.15 We 

run the analyses for each of the nine observation periods and employ the 

results to find out whether the same or different actors are responsible for 

the structural stability at the overall network level.16 Table 3 reports key 

players metrics in the period before (t-1) and after (t+1) a given 

observation period (t=0). 

Our findings show that only a very small share of actors occupy a 

stabilizing function in the network for a given observation period. This is 

not so surprising against the backdrop of our macro-level analyses. More 

interesting, we find that the key player metrics for the same inventors 

significantly vary over time. The changing set of top key players and the 

highly volatile key player metrics clearly indicate that most inventors 

occupy this role for only a very short duration. Thus, contrary to our initial 

expectations, individual inventors are not responsible for maintaining the 

structural stability or diffusion properties of the network over time. This 

observation underscores our initial finding that networks are characterized 

                                            
15 KPPNEG identifies (with very view exceptions) the same set of key players for all 
observation windows. This implies that the same individuals occupy key player roles 
according to both, the ‘diffusion’ and the ‘fragmentation’ criterion. Table A2 in the 
Appendix provides detailed results for the structurally-oriented key player analysis 
(KPPNEG metrics). 

16 We used specific key player software (Borgatti 2003) to identify type-1 and type-2 key 
players for the main component of the inventor networks in each of the 9 sub-periods. 

Jena Economic Research Papers # 2019 - 004



19 

 

 

 

by a high level of micro-level fluidity. At the same time, this raises the 

question of what keeps the network together and ensures its functionality.  

Table 3: Key player analysis, actor-specific, diffusion-based.  

 

Based on our considerations outlined in Section 2, we have good 

reasons to assume that the intermediate network level may provide some 

deeper insights into the co-existence of the characteristic macro stability 

and micro fluidity of innovative networks. In particular, we are curious to 

see whether key player positions are passed on from a prominent inventor 

in a given time period to members of his or her direct cooperation 

environment, proxied by inventor-specific ego networks.17  

To test this presumption, we proceed as follows. First, we explore the 

component size distribution for each of the nine observation windows 

                                            
17 An ego-network is defined as an actor’s (i.e., the ‘ego’) direct cooperation environment. 
This environment includes the ego, all directly connected actors (so-called ‘alters’), and 
all indirect ties between the alters (Ahuja 2000; Hite and Herterly 2001). 

_61-65 _66-70 _71-75

ID (t-1) t0 (t+1) ID (t-1) t0 (t+1) ID (t-1) t0 (t+1)

Inv4061 --- 4.563 1.000 Inv3008 2.000 5.688 0.500 Inv1009 --- 7.625 ---

Inv1129 --- 4.375 4.000 Inv2216 1.500 4.813 --- Inv2310 1.500 7.500 2.625

Inv1369 --- 4.125 1.000 Inv1145 --- 4.344 1.250 Inv2966 --- 6.875 1.000

Inv146 --- 3.750 --- Inv4157 1.250 4.906 0.500 Inv3946 --- 6.500 ---

Inv2496 --- 3.313 0.500 Inv179 --- 4.281 0.500 Inv259 --- 6.125 ---

_76-80 _81-85 _86-90

ID (t-1) t0 (t+1) ID (t-1) t0 (t+1) ID (t-1) t0 (t+1)

Inv2869 --- 5.000 1.000 Inv2579 3.750 11.500 1.500 Inv274 3.750 13.563 18.594

Inv3703 --- 4.750 --- Inv774 --- 9.250 --- Inv2189 3.250 12.875 6.609

Inv3136 --- 4.625 --- Inv3486 --- 9.000 0.875 Inv1346 4.750 12.625 9.547

Inv3856 3.070 4.250 1.750 Inv1039 --- 8.500 --- Inv3769 --- 12.250 12.547

Inv425 --- 4.125 --- Inv3992 --- 8.500 --- Inv2790 3.125 12.125 4.500

_91-95 _96-00 _01-05

ID (t-1) t0 (t+1) ID (t-1) t0 (t+1) ID (t-1) t0 (t+1)

Inv274 13.563 18.594 6.625 Inv2222 4.000 19.203 22.172 Inv183 --- 26.156 ---

Inv1925 --- 14.281 2.000 Inv1250 --- 16.813 --- Inv675 --- 25.938 ---

Inv2188 8.688 12.875 --- Inv20 --- 16.609 13.727 Inv3567 --- 25.891 ---

Inv4076 6.156 12.797 7.000 Inv3512 4.500 16.609 20.578 Inv2156 11.164 25.875 ---

Inv3769 12.250 12.547 3.000 Inv1170 --- 15.742 23.531 Inv3644 --- 24.109 ---
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separately and sort the components by size. Second, we identify the 

largest components (containing around 30%18 of all network actors) for 

each observation window and calculate key player metrics for each 

component separately, based on both the diffusion and the fragmentation 

criterion.19 Third, we define two categories of key players for each of the 

largest components over all time windows based on the KPPPOS criterion. 

Category I refers to the top 12.5% key players, and Category II includes 

the top 25% of all identified key players. In other words, if removed from 

the network, any of these top key players (ordered by his or her impact 

based on the diffusion or fragmentation key player criterion used) would 

hamper diffusion and cause major damage to the network structure. 

Fourth, in order to identify the direct network surrounding of the top 

key players, we apply an ego network approach where we treat the top 

key players as focal actors and identify all of their direct ties to any other 

actor in the network (alters) and all indirect ties among alters. By definition, 

second tier ties are excluded from this group concept. Finally, we 

construct random ego network benchmarks for the full set of the top 12.5% 

(25%) key players identified and reported above.20 These random ego 

network benchmarks are comparable in terms of size and structure to their 

real-world ego network counterparts. The main difference between the two 

networks is that alters in the benchmark networks are selected randomly. 

Hence, Step 4 and 5 allow us to assign empirically observable real-world 

ego networks and a randomly generated benchmark ego network to each 

key player. 

  

                                            
18 Since the size distribution is characterized by discrete size categories and varies for 
each observation window. The 30% value is an approximate threshold criterion. For 
instance, in the first time window (61-65), the three largest components contain 36.9 % of 
all actors. In the last time window (01-05), the largest components account for 29.6 % of 
all actors.  

19 Since components can be interpreted as autarkic elements of an overall network, we 
run the key player analysis for the entire network and identify the most dominant key 
player for each component separately.  

20 The random selection procedure was repeated 30 times to control for fluctuations 
caused by outliers.  
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1976-1980  

Top 12.5% key-player threshold    Top 25% key-player threshold  

 

 

1986-1990  

Top 12.5% key-player threshold    Top 25% key-player threshold  

 

 

1996-2000  

12.5% top key-player threshold    25% top key-player threshold  

 

 

Figure 3: Real-world ego networks compared to random benchmarks, for 
top 12.5% (l.h.s.) and top 25% key players (r.h.s.) 
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Figure 3 shows a comparison of real-world ego networks with 

random benchmarks for the top key players in the German laser research 

network.21 The rationale behind our analytical design is straightforward. If 

top key player positions are passed on from a prominent inventor to 

partners located in his direct cooperation environment, the top key players 

of a successive period should be found (according to our considerations 

outlined above) at a higher rate in the ego network of the focal actor than 

elsewhere. The explorations on the left hand side show comparisons 

between the real-world and randomly generated benchmark ego networks 

for the top 12.5% key players. The dotted blacklines show the rate at 

which subsequent key player positions are filled with actors from the key 

players’ direct ego networks for three selected reference periods, while the 

grey lines represent the random ego network benchmarks. On the right 

hand side, we see the results of the same analysis for the top 25% key 

players. The results clearly show that there is a much higher probability for 

the successor of a top key player to be a member of the previous key 

player’s ego network as compared to alters from randomly generated 

benchmark ego networks. 

6. Discussion and conclusions 

We analyzed the development of the inventor network in German laser 

research from the inception of the technology in 1960 until 2005, a period 

of 45 years. From a macro perspective, the development of this network 

appears to be a continuous process where each step builds on the 

previous one. The basic properties of the network and their development 

are according to our expectations. In line with previous empirical findings 

(Wuchty et al. 2007), the propensity for co-inventorship, as well as the 

average size of inventor teams increased considerably over time. Finally, 

we identified a persistent tendency towards scaling, and observed the 

                                            
21 The full set of results (for all observation periods) is provided in Figure A4 of the 
Appendix. Robustness checks reveal similar results and are available upon request.  
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emergence of a core-periphery structure. Overall, the results indicate a 

high level of structural stability at the macro level.   

Investigating the development of the network at the micro level of 

actors and their ties, we found high levels of fluidity. Only a rather small 

share of inventors in a certain five-year period reoccurs in the subsequent 

period (between 8.5 and 13%). After only two periods, nearly the entire 

population of inventors has changed completely. According to these high 

levels of inventor fluidity, there is an equally pronounced degree of 

instability at the level of ties. Repeated and long-term ties are an 

exception. In sum, these findings clearly indicate rather high levels of 

turbulence under the surface of slowly changing macro structures. 

Accordingly, our results challenge a number of theories that imply 

longevity and persistence of partnerships. For instance, transactions-cost 

arguments suggest that firms typically spend considerable time and 

resources to identify a suitable cooperation partner and to build up trust 

(Das and Teng 2000) in order to counteract opportunistic behavior and 

reduce the risk of terminating unsuccessful partnerships (Doz 1996). In 

other words, a high level of micro-level fluidity caused by the frequent 

termination of relationships implies considerable sunk costs for the 

partners involved. Similarly, principle-agent theory (Spence 1976) 

suggests that network actors have strong incentives to remain in the 

networks since it allows them to continuously improve their strategic 

positioning and reduce information asymmetries by sending out signals to 

potential partners. For instance, a high and continuously increasing 

number of partner (reflected by an actor’s degree) signifies a high 

willingness and ability of cooperation that may generate valuable 

opportunities for future cooperation. In a similar vein, network theorists 

frequently refer to the rich-get-richer argument, suggesting that actors with 

a high degree in a given period attract ties at a higher rate than other 

actors in subsequent time periods (Barabasi and Bonabeau 2003).          

To explore the relationship between macro-level stability and micro-

level fluidity a bit more deeply, and to gain a better understanding of who 
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or what keeps the network together, we conducted a key player analysis. 

Our analysis reveals high levels of fluidity in even key player positions in a 

network (based on both the diffusion and the fragmentation criterion), 

because these positions are only rarely occupied by the same actors in 

successive periods. Our explorations show, however, a pronounced 

tendency for key player positions to be passed on to actors who belong to 

the ego network of the previous key player. Hence, there is a tendency for 

continuity at the team level that may complement our understanding of the 

co-existence of macro stability and micro fluidity. 

The high levels of fluidity at the micro level raise some fundamental 

questions: Why do actors choose to establish a cooperative R&D 

relationship? How do they select their cooperation partners? Why is an 

established relationship maintained or abandoned? Our findings indicate 

that there must be forces at work that are more important than the sunk 

costs that occur if a relationship is abandoned. Our results could be 

regarded an indication that trust may not only be relevant at the 

interpersonal or interorganizational level, but also at the group level. In 

such a case, individual investments in trust building and knowledge 

generation may benefit a group as a whole and are, therefore, not 

completely lost if a relationship between two actors is terminated. In other 

words, sub-groups within inventor networks seem to play an important role 

as intertemporal repositories where knowledge may persist despite entry 

and exit of single members.  

Any policy measure should account for the significant role of the 

group level that we find. Consequently, it is important to design policy 

measures that do not exclude any members of already existing groups. 

For example, this may be relevant for schemes designed for a specific 

region if members of the group being supported are not co-located but in 

different regions.  

Currently, we know very little about the dynamics of innovation 

networks. Particularly, the levels of discontinuing actors and of new actors 
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in a network are largely unexplored.22 More research in different 

technological fields and countries is desirable to assess the levels and 

patterns of network dynamics, particularly the fluidity of actors and ties in 

different environments. In addition, the reasons for abandoning a 

cooperative relationship are not very clear. To the best of our knowledge, 

there is still no sound empirical evidence about the drivers and structural 

consequences of unintended tie terminations resulting from unsuccessful 

partnerships. Similarly, knowledge and learning-related drivers of tie 

terminations confront us with a number of highly interesting question. 

Does a new cooperation partner become more attractive primarily after the 

knowledge of the old partners is completely absorbed? Does the 

knowledge of the partner of a discontinued relationship become 

uninteresting or obsolete due to the general dynamics of the innovation 

process?23 Do network actors follow a long-term cooperation strategy and, 

if so, are these decision sequences mirrored in actor-specific network 

trajectories or do relevant patterns only become visible at higher 

aggregation levels? Do these association patterns differ between 

established network members and newcomers? 

Finally, we know nearly nothing about the role of actor fluidity on the 

performance of the respective innovation system. On the one hand, one 

might argue that a high level of fluidity indicates an effective allocation of 

talent and a fast diffusion of knowledge. On the other hand, fluidity of 

actors and ties may involve high levels of sunk costs and loss of 

knowledge of discontinuing actors. Hence, it is unclear if a high level of 

fluidity has a positive or negative effect on system performance.24 To what 

                                            
22 The only comparable study of actor fluidity that we are aware of is the analysis of 
Fritsch and Zoellner (2018, 2019) for nine German regions over a period of 15 years. The 
study is based on patent data and identifies quite similar levels of actor fluidity 
23 The few available studies that consider the discontinuation of cooperative ties (e.g., 
Greve et al. 2009; Park and Russo 1996; Thune and Gulbrandsen 2014) name 
completion of the R&D project and project failure as main reasons for abandoning a 
cooperative relationship. 

24 Belderbos et al. (2015) investigate the relationship between the dynamics of R&D 
cooperation and innovation performance based on a panel of Spanish firms. They 
conclude from their analysis that it is more the persistent collaboration that has a positive 
effect on firm innovativeness, while the effect of discontinued cooperation was 
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extent is the knowledge of discontinuing actors lost for the respective 

innovation system? How do new actors impact the performance of the 

system? Answers to such questions could considerably contribute to our 

understanding of collective innovation and the division of innovative labor.

                                            
insignificant. Fritsch and Zoellner (2019) measure performance based on the number of 
patents per R&D employee (patent productivity), and find a positive relationship between 
the share of new actors and ties and the performance of the respective innovation 
system. While there is a positive relationship between the share of discontinued inventors 
and patent productivity, the relationship between the share of discontinued ties and 
patent productivity is positive. 
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Appendix 

 

Figure A1: Patent applications of laser technology in different applications: West 
Germany 1961-2005 

Table A1: Descriptive statistics – number of single patents and co-patents over 
time 

 
1961
1965 

1966
1970 

1971
1975

1976
1980

1981
1985

1986
1990

1991
1995 

1996
2000 

2001
2005 

Sum 

Single 
patents 

117 178 142 130 140 242 243 268 251 1,711 

2 inventors 41 75 68 73 112 177 194 226 196 1,162 

3 inventors  9 29 28 40 66 121 122 177 208 800 

4 inventors  3 3 11 16 21 46 76 112 117 405 

5 inventors  0 1 6 2 7 15 40 41 53 165 

6 and more 
inventors 

0 1 0 5 7 10 26 36 53 138 

Co-patents 
(all) 

53 109 113 136 213 369 458 592 627 2,670 

Patents 
(all)  

170 287 255 266 353 611 701 860 878 4,381 

Average 
team size 

2.28 2.39 2.60 2.75 2.76 2.82 3.12 3.18 3.37 - 
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Figure A2:  Average path length (real-world inventor network vs. random 
benchmark) 

 

 

 

 

Figure A3:  Clustering coefficient (real-world inventor network vs. random 
benchmark) 
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Table A2: Key player analysis, actor-specific, fragmentation-based  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_61-65 _66-70 _71-75

ID (t-1) t0 (t+1) ID (t-1) t0 (t+1) ID (t-1) t0 (t+1)

Inv4061 --- 0.032 0.000 Inv3008 0.004 0.012 0.000 Inv2966 --- 0.005 0.000

Inv1129 --- 0.030 0.004 Inv2216 0.002 0.010 --- Inv2310 0.000 0.003 0.000

Inv1369 --- 0.013 0.000 Inv1145 --- 0.010 0.000 Inv3946 --- 0.003 ---

Inv2496 --- 0.013 0.000 Inv4157 0.002 0.007 0.000 Inv1495 --- 0.003 ---

Inv146 --- 0.007 --- Inv179 --- 0.004 0.000 Inv1049 --- 0.003 0.000

_76-80 _81-85 _86-90

ID (t-1) t0 (t+1) ID (t-1) t0 (t+1) ID (t-1) t0 (t+1)

Inv3136 --- 0.002 --- Inv2579 0.000 0.005 0.000 Inv2480 --- 0.003 0.000

Inv2869 0.001 0.001 0.000 Inv774 --- 0.005 --- Inv1169 0.000 0.002 ---

Inv3703 --- 0.001 --- Inv2480 0.000 0.005 0.003 Inv1076 0.001 0.002 0.000

Inv3856 0.001 0.001 0.000 Inv2631 0.000 0.004 --- Inv3431 --- 0.002 0.000

Inv425 --- 0.001 --- Inv3486 --- 0.002 0.000 Inv274 0.000 0.001 0.003

_91-95 _96-00 _01-05

ID (t-1) t0 (t+1) ID (t-1) t0 (t+1) ID (t-1) t0 (t+1)

Inv274 0.001 0.003 0.000 Inv1250 --- 0.004 --- Inv2773 0.000 0.001 ---

Inv2188 0.000 0.002 --- Inv3801 --- 0.004 --- Inv1699 --- 0.001 ---

Inv1925 --- 0.001 0.000 Inv1869 --- 0.003 --- Inv397 --- 0.001 ---

Inv3769 0.001 0.001 0.000 Inv2222 0.000 0.002 0.000 Inv3289 0.000 0.001 ---

Inv3429 --- 0.001 --- Inv2223 0.000 0.002 0.000 Inv2638 --- 0.001 ---
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Figure A4: Real-world ego networks vs. random benchmarks, for top 12.5% 

(l.r.s.) and top 25% key players (r.h.s), full observation period 
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