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Abstract. We study the estimation of the lag parameter of linear dynamic panel data models

with first order dynamics based on the quadratic Ahn and Schmidt (1995) moment conditions.

Our contribution is twofold: First, we show that extending the standard assumptions by mean

stationarity and time series homoscedasticity and employing these assumptions in estimation re-

stores standard asymptotics and mitigates the non-standard distributions found in the literature.

Second, we consider an IV estimator based on the quadratic moment conditions that consistently

identifies the true population parameter under standard assumptions. Standard asymptotics hold

for the estimator when the cross section dimension is large and the time series dimension is finite.

We also suggest a data-driven approach to obtain standard errors and confidence intervals that

preserves the time series dependence structure in the data.
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1 Introduction

In this paper, we demonstrate the practical relevance of using the quadratic (in parameters) Ahn

and Schmidt (1995) moment conditions in estimation of and inference on linear dynamic panel

data models with first order dynamics for the case where the cross section dimension is large

and the time series dimension is finite. We provide a practical perspective as to which regions

of the parameter space and which elements of the data generating process (DGP) these moment

conditions are likely to be more useful – especially when considered in isolation from other moment

conditions.

Estimation of linear dynamic panel data models by the generalized method of moments (GMM)

using a set of default linear (in parameters) moment conditions, such as those proposed by An-

derson and Hsiao (1981), Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bover (1995),

is popular in econometric practice due to the availability of routines in standard software (e.g.,

Roodman, 2009a; Kripfganz, 2018 for Stata and Croissant and Millo, 2008; Fritsch, Pua, and

Schnurbus, 2019 for R). Ahn and Schmidt (1995) propose quadratic moment conditions that also

arise from standard assumptions.4 Incorporating these moment conditions in GMM estimation is

not popular in practice because it requires nonlinear optimization. Unfortunately, Kiviet, Pleus,

and Poldermans (2017) document extensively that the finite sample performance of the more

popular linear GMM estimators is poor. Monte Carlo evidence from Bun and Sarafidis (2015)

indicates that once the quadratic moment conditions are accounted for, finite sample performance

may improve substantially.

Bun and Kleibergen (2014) and Gorgens, Han, and Xue (2016b) consider linear dynamic panel

data models with first order dynamics and highlight the potential of using quadratic moment

conditions to deal with identification failures that arise when employing the usual sets of linear

moment conditions. In particular, Bun and Kleibergen (2014) modify the quadratic moment

conditions to deal with the case where the true value of the lag parameter is unity. By considering

worst case DGPs, they also show that GMM diagnostic testing may be affected and propose

corrected versions of these tests. Gorgens, Han, and Xue (2016b) show that the quadratic moment

conditions can provide full or partial identification of the lag parameter when the linear moment

conditions fail to do so. They focus on characterizing the conditions for GMM identification

(and failures thereof). Gorgens, Han, and Xue (2016a) derive the asymptotic distribution for a

GMM estimator which employs linear and quadratic moment conditions under a set of standard

4Ahn and Schmidt (1997) propose a linearized GMM estimator that is asymptotically as efficient as the

GMM estimator employing the quadratic moment conditions.
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assumptions from the literature and the condition that point identification holds. They obtain

non-standard distributions for DGPs besides the unit root case. We contribute to the literature as

follows: First, we show that extending the standard assumptions by mean stationarity and time

series homoscedasticity leads to point identification and retains standard asymptotics – even in

the unit root case. Second, we consider the IV estimator of Pua, Fritsch, and Schnurbus (2019)

based on quadratic moment conditions that consistently identifies the true population parameter

under standard assumptions. The estimator incorporates a selection rule to choose from a set

of candidate roots (or solutions) that does not depend on knowledge about the true population

parameter or any population moment; standard asymptotics hold. Additionally, we propose a

data-driven approach to compute standard errors and confidence intervals that preserves the time

dependence structure of the data.

This paper is structured as follows: In Section 2, we introduce the modeling framework, discuss

the practical relevance of existing results on quadratic moment conditions that point towards non-

standard inference, and show how to restore standard asymptotics based on mean stationarity and

time series homoscedasticity. We then sketch the IV estimator, the corresponding root selection

rule, and the computation of standard errors and confidence intervals. Section 3 concludes.

2 Main results

2.1 Modeling framework

Consider the two equation form of the linear dynamic panel data model,

yi,t = ρ0yi,t−1 + ui,t, i = 1, . . . , n; t = 2, . . . , T, (1)

ui,t = ci + εi,t, (2)

where yi,t and yi,t−1 are the dependent variable and its lag, ρ0 is the true lag parameter, ui,t

is a composite error term, ci is an unobservable individual-specific effect, εi,t is an idiosyncratic

remainder component, i indicates the individual, t denotes the time dimension, and t = 1 is the

initial time period.
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We impose the assumptions:

(A.1 ) E[εi,t · yi,1] = 0, ∀i, t,

(A.2 ) E[εi,t · ci] = 0, ∀i, t,

(A.3 ) E[εi,t · εi,s] = 0, ∀t 6= s,

(A.4 ) ρ0 ∈ [−1, 1] \ {0},

(A.5 ) n→∞, while T is fixed, such that n/T → 0,

(A.6 ) yi,1 is observable.

The Assumptions (A.1 )-(A.3 ) require orthogonality of the idiosyncratic remainder components

with the following model components: The initial conditions of the yi,t-process, the unobservable

individual-specific effects, and the idiosyncratic remainder components of other time periods. The

latter requirement is also referred to as absence of serial correlation in the εi,t. Assumption (A.4 )

requires that |ρ0| ≤ 1 and that ρ0 is non-zero. Assumption (A.5 ) requires that the cross section

dimension is large, while the time series dimension is fixed, and Assumption (A.6 ) requires that

the initial conditions are observable. Our assumptions are similar to the ones imposed in Ahn and

Schmidt (1995); the only difference is that we also include the unit root case.

Plugging Equation (2) into Equation (1) yields the single equation form of the linear dynamic

panel data model

yi,t = ρ0yi,t−1 + ci + εi,t, i = 1, . . . , n; t = 2, . . . , T. (3)

First differencing the equation eliminates the unobserved individual-specific effect ci; we obtain

∆yi,t = ρ0∆yi,t−1 + ∆ui,t, with ∆ui,t = ∆εi,t, (4)

and ∆εi,t = εi,t − εi,t−1.

Under the Assumptions (A.1 )-(A.6 ), the linear moment conditions of Holtz-Eakin, Newey, and

Rosen (1988) and the quadratic moment conditions of Ahn and Schmidt (1995) can be employed

to estimate the lag parameter. In the following, we restrict our attention to estimation based on

the quadratic moment conditions5

E [ui,T ·∆ui,t−1] = 0, t = 4, . . . , T. (5)

5Compared to the originally proposed version of the moment conditions, we slightly adjust the time

index of the first differenced composite error term for notational convenience.
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Ahn and Schmidt (1995) note that the instruments ui,T are unobservable but can be represented

in terms of parameters and observable model components. Rewriting the moment conditions in

Equation (5), and using Assumption (A.2 ) to drop the ci when replacing the ui,T , gives

E [(yi,T − ρyi,T−1) · (∆yi,t−1 − ρ∆yi,t−2)] = 0. (6)

The usual estimation strategy combines these quadratic moment conditions with linear moment

conditions, like those proposed by Holtz-Eakin, Newey, and Rosen (1988), to form a GMM estima-

tor and then employs nonlinear optimization techniques to obtain estimates of the lag parameter.

Instead of the GMM approach, we focus on the individual moment conditions in the first part of

the paper. In the second part, we consider a simple IV estimator based on Equation (6), where

the instrument is of the form yi,T −ρyi,T−1. We obtain estimates of the lag parameter from solving

the quadratic equation

1

n

n∑
i=1

T∑
t=4

(yi,T − ρyi,T−1) · (∆yi,t−1 − ρ∆yi,t−2) = 0. (7)

2.2 Mean stationarity, homoscedasticity, and standard asymp-

totics

Theoretical analysis frequently imposes two auxiliary assumptions to simplify the derivations (see,

e.g., Alvarez and Arellano, 2003; Hayakawa, 2015):

(A.7 ) E[∆yi,tci] = 0, ∀i, t,

(A.8 ) E[ε2i,t] = σ2, ∀t,.

The former assumption, which is commonly referred to as mean stationarity (see, e.g., Arellano,

2003), requires that the dependent variable and the unobserved individual-specific effects are con-

stantly correlated over time. The latter assumption of time series homoscedasticity requires that

the variance of the idiosyncratic remainder components is constant over time.

The Assumptions (A.7 ) and (A.8 ) provide additional restrictions that can be employed when

estimating the lag parameter in Equation (3) based on the quadratic moment conditions. We

consider the case where T = 4 to simplify the notation and assume that the Assumptions (A.1 )-

(A.8 ) hold. From Equation (6), one moment condition is available for estimation. Rewriting the

condition gives

E [m1 (ρ)] = E
[
yi,4∆yi,3 − ρ(yi,3∆yi,3 + yi,4∆yi,2) + ρ2(yi,3∆yi,2)

]
= 0. (8)
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The function m1(·) is a quadratic polynomial in ρ.

Under the Assumptions (A.1 )-(A.6 ), the expected values of the terms corresponding to the three

coefficients 1, ρ, and ρ2 of the quadratic polynomial can be represented by:

E [yi,4∆yi,3] =ρ0 E
[
ε2i,3
]

+ ρ20(ρ0 − 1) E
[
ε2i,2
]

+ ρ0 E [(ci − (1− ρ0)yi,1)yi,1]

+ ρ0
(
ρ20 + ρ0 + 1

)
E
[
(ci − (1− ρ0)yi,1)2

]
,

E [yi,3∆yi,3 + yi,4∆yi,2] =
(
ρ20 + ρ0(ρ0 − 1)

)
E
[
ε2i,2
]

+ E
[
ε2i,3
]

+ (ρ0 + 1) E [(ci − (1− ρ0)yi,1)yi,1]

+
(
ρ0(ρ0 + 1) + (ρ20 + ρ0 + 1)

)
E
[
(ci − (1− ρ0)yi,1)2

]
,

E [yi,3∆yi,2] =ρ0 E
[
ε2i,2
]

+ E [(ci − (1− ρ0)yi,1)yi,1]

+ (1 + ρ0) E
[
(ci − (1− ρ0)yi,1)2

]
.

A helpful implication of Assumption (A.7 ) for simplifying the three terms can be derived from the

initial conditions restriction for a mean stationary process (see, e.g., Blundell and Bond, 1998):

yi,1 =
ci

1− ρ0
+ vi,t, with E[vi,t] = 0.

By rewriting the restriction, squaring the result, and taking expectations, it can be shown that

the following expression holds:

E
[
(ci − (1− ρ0)yi,1)2

]
= 0.

It can then be derived from the Cauchy Schwarz inequality that

(E [(ci − (1− ρ0)yi,1)yi,1])2 ≤ E
[
(ci − (1− ρ0)yi,1)2

]
E
[
y2i,1
]

= 0. (9)

Using this result and Assumption (A.8 ), it can be shown that the three terms corresponding to

the coefficients 1, ρ, and ρ2 of Equation (8) reduce to

E [yi,4∆yi,3] = ρ0σ
2 + ρ20(ρ0 − 1)σ2,

E [yi,3∆yi,3 + yi,4∆yi,2] =
(
ρ20 + ρ0(ρ0 − 1)

)
σ2 + σ2,

E [yi,3∆yi,2] = ρ0σ
2

under mean stationarity and time series homoscedasticity.

We obtain the two roots (or solutions) from applying the quadratic formula to solve Equation (8)

for ρ when imposing the Assumptions (A.1 )-(A.8 ):

ρ1/2 =
ρ20 + ρ0(ρ0 − 1) + 1± |ρ0 − 1|

2ρ0
, with (10)

ρ1 = ρ0 and ρ2 = ρ0 − 1 +
1

ρ0
.
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The solution ρ1 corresponds to the true population parameter. Note that since ρ0 − 1 ≤ 0 for

ρ0 ∈ [−1, 1] \ {0}, we are able to identify the true lag parameter – provided that we choose the

solution which is closer to zero (i.e., the negative branch).

Although we achieve point identification of the estimator via a root selection rule that works asymp-

totically, standard asymptotics fail. To see the reason for this, consider the function underlying

the quadratic moment conditions for T = 4:

m1(ρ) = (yi,4 − ρyi,3)(∆yi,3 − ρ∆yi,2). (11)

The first derivative of the function with respect to ρ is given by

∂m1(ρ)

∂ρ
= −(yi,3∆yi,3 + yi,4∆yi,2) + 2ρyi,3∆yi,2. (12)

When the Assumptions (A.1 )-(A.8 ) hold, computing the expected value of the first derivative

yields

σ2(−2ρ20 + ρ0 − 1 + 2ρρ0). (13)

In case ρ = ρ0, this derivative simplifies to −σ2(1− ρ0) and equals zero in the unit root case (i.e.,

when ρ0 = 1).

This violates one of the assumptions required to establish the standard results for the asymptotic

distribution of the GMM estimator: The matrix containing the expected first derivatives of the

functions underlying the moment conditions with respect to the model parameters needs to have

full column rank (see, e.g., Proposition 7.10 in Hayashi, 2000 and Theorems 3.4 and 4.5 of Newey

and McFadden, 1994) or, stated differently, the rank of the matrix needs to equal the length

of the vector of estimated parameters. Note that as we consider a setting where we estimate

only one parameter from a single moment condition in this section, the matrix of expected first

derivatives reduces to a scalar, and this scalar is required to be non-zero to fulfill the rank condition.

As mentioned after Equation (13), this condition does not hold in the unit root case under the

Assumptions (A.1 )-(A.8 ) and standard GMM asymptotics do not apply when estimating the lag

parameter of the linear dynamic panel data model in Equation (3) based on the quadratic Ahn

and Schmidt (1995) moment conditions.

2.3 Restoring standard asymptotics

The invalidity of standard GMM asymptotics sketched in Section 2.2 can be mitigated by deriving

additional moment conditions from Assumption (A.8 ) and employing the conditions in the esti-

mation of the lag parameter of Equation (3). Ahn and Schmidt (1995) derive moment conditions
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from time series homoscedasticity that are of the form

E [ūi∆ui,t] = 0, t = 3, . . . , T, with (14)

ūi =
1

T − 1

T∑
s=2

ui,s.

The variable ūi denotes the time series average of the composite error terms. Similar to Equation

(5), the time index in Equation (14) is slightly adjusted.

Consider again the setting where T = 4 and the Assumptions (A.1 )-(A.8 ) hold. One of the

additional moment conditions from imposing time series homoscedasticity is

E [m2(ρ)] = E [ūi∆ui,4] = 0, (15)

where the function m2(·) denotes a function of ρ.

The lag parameter can then be estimated based on the two moment conditions E [m1(ρ)] and

E [m2(ρ)]. Employing the Assumptions (A.1 )-(A.8 ) to simplify the conditions and computing the

expectations yields the two restrictions

ρ0σ
2 + ρ20(ρ0 − 1)σ2 −

((
ρ20 + ρ0(ρ0 − 1)

)
σ2 + σ2

)
ρ+ρ

2ρ0σ
2 = 0,

−(1− ρ)σ2 − ρ0σ2 + σ2 = 0.

The first restriction arises from E [m1(ρ)] and the second from E [m2(ρ)]. Further simplifying the

two equations and dividing both sides of both equations by σ2 gives:

ρ0 + ρ20(ρ0 − 1)−
(
ρ20 + ρ0(ρ0 − 1) + 1

)
ρ+ ρ2ρ0 = 0,

ρ− ρ0 = 0.

The second equation shows that the lag parameter is point identified (i.e., ρ = ρ0) by the restriction

resulting from time series homoscedasticity.
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As noted in Section 2.2, the matrix containing the expected first derivative of the functions under-

lying the moment conditions with respect to ρ needs to have full column rank. Since two moment

conditions are available, and we only estimate the lag parameter here, the matrix reduces to a

vector and can be represented by

G(ρ) = E


∂m1 (ρ)

∂ρ
∂m2 (ρ)

∂ρ

 =

 −σ2 (1− ρ0)

σ2

 . (16)

The expected first derivatives are collected in G(ρ). Considering the two elements of the vector in

greater detail reveals that the full column rank condition is now fulfilled for G(ρ) – as long as the

variance of the idiosyncratic remainder components σ2 is not equal to zero – and standard GMM

asymptotics hold.

The practical implication of this result is that mean stationarity and time series homoscedasticity,

and the restrictions implied by the assumptions, should be employed in the estimation of linear

dynamic panel data models based on quadratic moment conditions, when the assumptions seem

reasonable or when they are imposed by the study design anyway. This may be the case when

building on theoretical work which uses these assumptions or when economic reasoning or theory

indicate that the assumptions might be plausible. Given that the variance of the idiosyncratic

remainder component is not equal to zero, using the assumptions assures point identification in

the unit root case and ensures that standard asymptotics are valid. Note that these results are

derived for first order dynamics and in the absence of non-lagged dependent explanatory variables.

Generalizing the results may lead to further valuable insights.

2.4 Root selection in practice

Given the results in Section 2.3, it is natural to wonder if standard asymptotics can be established

without imposing either of the two Assumptions (A.7 ) and (A.8 ) when estimating the lag parame-

ter of Equation (3) based on the quadratic moment conditions. To investigate the matter, consider

again the setting where T = 4 and impose only the Assumptions (A.1 )-(A.6 ). Further define

M1 = E
[
(ci − (1− ρ0)yi,1)2

]
and

M2 = E [(ci − (1− ρ0)yi,1)yi,1] .
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From solving the quadratic moment condition in Equation (6) for ρ with the quadratic formula,

we obtain

ρ1/2 =
E [yi,3∆yi,3 + yi,4∆yi,2]±

√
(E [yi,3∆yi,3 + yi,4∆yi,2])

2 − 4 E [yi,4∆yi,3] E [yi,3∆yi,2]

2 E [yi,3∆yi,2]

=
(2ρ20 − ρ0)σ22 + σ23 +

(
2ρ20 + 2ρ0 + 1

)
M1 + (ρ0 + 1)M2

2
(
ρ0σ22 + (1 + ρ0)M1 +M2

)
±
∣∣σ23 − ρ0σ22 +M2(1− ρ0) +M1

∣∣
2
(
ρ0σ22 + (1 + ρ0)M1 +M2

) .

We interrupt solving the expression briefly at this step to note that the term

D = σ23 − ρ0σ22 +M2 (1− ρ0) +M1

has a neat interpretation. To see this, compute the expected first derivative of the function

underlying the quadratic moment condition with respect to ρ and evaluate the derivative at ρ = ρ∗:

E

(
∂m1(ρ)

∂ρ

)∣∣∣∣
ρ=ρ∗

= −
(
σ23 − ρ∗σ22 +M2(1− ρ∗) +M1

)
. (17)

When evaluating the first derivative at the true population parameter (i.e., when setting ρ∗ = ρ0),

the expression corresponds to −D.

Since the absolute value of D is taken when solving the quadratic equation with the quadratic for-

mula, the roots of the quadratic moment condition obtained from applying the quadratic formula,

regardless of the sign of D, are either ρ1 = ρ0 or

ρ2 =
σ23 + (ρ20 − ρ0)σ22 + (ρ20 + ρ0 + 1)M1 +M2

ρ0σ22 + (1 + ρ0)M1 +M2

= ρ0 +
σ23 − ρ0σ22 +M1 +M2(1− ρ0)
ρ0σ22 + (1 + ρ0)M1 +M2

= ρ0 +
D

E [yi,3∆yi,2]
.

Evaluating the expected first derivative in Equation (17) at this root (i.e., using ρ∗ = ρ0 +

D/E[yi,3∆yi,2]) coincides with +D.

Although the preceding results are neat, they are not sufficient to construct a root selection al-

gorithm to choose between the two roots without any knowledge about the (sign of the) true

population parameter or any population moments. In particular, when working with real world

data sets, the expression inside the square root (i.e., D) could be negative – rendering the two

roots to be complex conjugates of each other.

In order to establish a selection rule, first start by noting that when evaluating the first derivative

in Equation (17) at ρ∗ = ρ0, we obtain

−E [yi,3∆yi,3 + yi,4∆yi,2] + 2ρ0 E [yi,3∆yi,2] ,
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while when evaluating at ρ∗ = D/E[yi,3∆yi,2], we get

−E [yi,3∆yi,3 + yi,4∆yi,2] + 2ρ0 E [yi,3∆yi,2] + 2D.

Then, consider subtracting the term D/E[yi,3∆yi,2] from the probability limit of both roots. We

refer to these roots as adjusted roots. We either have

ρ0 − D
E [yi,3∆yi,2]

= −ρ0 +
E [yi,3∆yi,3 + yi,4∆yi,2]

E[yi,3∆yi,2]
, (18)

or

ρ0 + D
E[yi,3∆yi,2]

− D
E[yi,3∆yi,2]

= ρ0. (19)

Therefore, we have established a root selection strategy: The root to be selected from the two

candidate roots is the one where the root obtained from solving the quadratic formula matches

the adjusted root. We propose the following algorithm:

1. Calculate the two roots of the quadratic equation. Refer to the negative branch of the roots

of the quadratic formula as ρ̂1 and to the positive branch as ρ̂2. If the roots are complex

conjugates of each other, take the absolute value of the discriminant and recalculate the

roots.

2. Evaluate the sample counterpart of the expected first derivative of the function underlying

the quadratic moment conditions with respect to ρ at the two roots obtained previously.

Call them d1 and d2, respectively.

3. Compute ρ̂1−d1 and ρ̂2−d2. Choose ρ̂1, if ρ̂2−d2 = ρ̂1; otherwise, choose ρ̂2, if ρ̂1−d1 = ρ̂2.

Note that the proposed algorithm does not require any knowledge about the sign of D, the sign

of E [yi,3∆yi,2], and ρ0 to select one of the roots. As a result, we also do not need to determine

which is the smaller or larger of the two roots for root selection purposes.

2.5 Implementation details

Computing the quadratic IV estimator given in Equation (7) is straightforward, as solving for the

unknown parameter ρ in the quadratic equation is possible by using the quadratic formula. Given

the advice in Section 2.4, directly computing the two roots only requires calculating certain sample

averages from the data.

Since standard asymptotics apply as long as there is variation in the idiosyncratic remainder

component, there are no separate limit laws when ρ0 < 1 and ρ0 = 1. We have the same root-n
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rate of convergence for both cases. Furthermore, by not relying on the optimization of an objective

function, no boundary issues arise since the asymptotic distribution of the consistent root may be

directly obtained without reference to a local linear or Taylor series expansion. This allows for

standard inference without any modifications.

We propose using the nonparametric bootstrap to compute standard errors and confidence intervals

for the estimated parameter. Instead of sampling every observation with replacement, we sample

the individual time series together for each cross sectional unit with replacement. This allows

us to preserve the dependence structure in the time dimension of the panel. Bootstrap standard

errors are obtained in the usual manner, while bootstrap 100 (1− α) % confidence intervals are

obtained as follows: First compute the α/2 and 1− α/2 quantiles of the statistic formed by using

the estimated root to center the bootstrapped roots. The lower and upper limit of the interval

then result from subtracting the 1− α/2 and α/2 quantiles from the estimated root.

3 Concluding remarks

We analyze the estimation of the lag parameter in linear dynamic panel data models with first

order dynamics based on quadratic moment conditions. We employ standard assumptions from

the literature and consider the setting where n is large and T is fixed and where the absolute value

of the lag parameter is smaller or equal to one.

In the first part of the paper, we illustrate the reason for the non-standard distributions obtained

in the literature for the unit root case: Standard GMM asymptotics are invalid, because the matrix

containing the first derivatives of the functions underlying the quadratic moment conditions with

respect to the parameter vector does not possess full column rank. We show that by imposing

mean stationarity and time series homoscedasticity of the idiosyncratic remainder components and

employing the implications of these assumptions in estimation, the lag parameter is point identified

in the unit root case and standard GMM asymptotics can be retained. The requirement for this

result to hold is that the variance of the idiosyncratic remainder components is not equal to zero.

In the second part of the paper, we consider an IV estimator based on quadratic moment conditions

that does not require the assumptions of stationarity and time series homoscedasticity. In essence,

parameter estimation boils down to solving a quadratic equation by the quadratic formula and

yields two candidate roots (or solutions). The estimator incorporates a root selection rule that

does not depend on knowledge about the true lag parameter or any population moment and

chooses the correct root asymptotically. Thus, the true lag parameter is point identified by the

12



estimator and standard asymptotics hold. Additionally, we propose to compute the standard

errors and confidence intervals by a nonparametric bootstrap, where the individual time series (i.e.,

the individuals) are sampled instead of the individual observations, to preserve the dependence

structure in the time dimension.

Our results shed light on the nature of the roots and which root is the consistent one. We believe

that the alternative of looking into a GMM objective function is much less manageable. The results

in this paper can be extended in different directions. Avenues for future research may be including

non-lagged dependent explanatory variables into the analysis, considering higher-order dynamics,

and/or generalizing the results to settings where n and T are large.
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