
Pua, Andrew Adrian Yu; Fritsch, Markus; Schnurbus, Joachim

Working Paper

Large sample properties of an IV estimator based on the
Ahn and Schmidt moment conditions

Passauer Diskussionspapiere - Betriebswirtschaftliche Reihe, No. B-37-19

Provided in Cooperation with:
University of Passau, Faculty of Business and Economics

Suggested Citation: Pua, Andrew Adrian Yu; Fritsch, Markus; Schnurbus, Joachim (2019) : Large
sample properties of an IV estimator based on the Ahn and Schmidt moment conditions,
Passauer Diskussionspapiere - Betriebswirtschaftliche Reihe, No. B-37-19, Universität Passau,
Wirtschaftswissenschaftliche Fakultät, Passau

This Version is available at:
https://hdl.handle.net/10419/204582

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/204582
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 

Large sample properties of an IV estimator based on the 
Ahn and Schmidt moment conditions 

 
 
 

Andrew Adrian Yu Pua, Markus Fritsch, Joachim Schnurbus  
 
 

Diskussionsbeitrag Nr. B-37-19 
 

Betriebswirtschaftliche Reihe ISSN 1435-3539 

 
 
 
 
 
 
 
 

PASSAUER 
DISKUSSIONSPAPIERE 



Herausgeber: 
Die Gruppe der betriebswirtschaftlichen Professoren 
der Wirtschaftswissenschaftlichen Fakultät 
der Universität Passau 
94030 Passau 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Adresse des Autors/der Autoren: 
 
Markus Fritsch 
Wirtschaftswissenschaftliche Fakultät 
Universität Passau 
94030 Passau 
 
Telefon: +49 851 509 2565 
Telefax: +49 851 509 2562 
E-Mail:  markus.fritsch@uni-passau.de 
 
 
Für den Inhalt der Passauer Diskussionspapiere ist der jeweilige Autor verantwortlich.  
Es wird gebeten, sich mit Anregungen und Kritik direkt an den Autor zu wenden. 

Large sample properties of an IV 
estimator based on the Ahn and Schmidt 

moment conditions 
 
 
 

Andrew Adrian Yu Pua, Markus Fritsch, Joachim 
Schnurbus  

 
 

Diskussionsbeitrag Nr. B-37-19 
 

Betriebswirtschaftliche Reihe ISSN 1435-3539 



 



Large sample properties of an IV estimator based on the Ahn and

Schmidt moment conditions

Andrew Adrian Yu Pua1, Markus Fritsch2, Joachim Schnurbus3

September 20, 2019

Abstract. We propose an instrumental variables (IV) estimator based on nonlinear (in param-

eters) moment conditions for estimating linear dynamic panel data models and derive the large

sample properties of the estimator. We assume that the only explanatory variable in the model

is one lag of the dependent variable and consider the setting where the absolute value of the true

lag parameter is smaller or equal to one, the cross section dimension is large, and the time series

dimension is either fixed or large. Estimation of the lag parameter involves solving a quadratic

equation and we find that the lag parameter is point identified in the unit root case; otherwise,

two distinct roots (solutions) result. We propose a selection rule that identifies the consistent root

asymptotically in the latter case and derive the asymptotic distribution of the estimator for the

unit root case and for the case when the absolute value of the lag parameter is smaller than one.
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1 Introduction

We propose an IV estimator based on the nonlinear (in parameters) Ahn and Schmidt (1995)

moment conditions for the estimation of linear dynamic panel data models and derive the large

sample properties of the estimator. We consider a model with first order dynamics and no further

explanatory variables besides the lagged dependent variable; we focus on the setting where the

absolute value of the lag parameter is smaller or equal to one and where the cross section dimension

is large and the time series dimension is either fixed or large. We show that the assumption

that there is no serial correlation in the idiosyncratic remainder components – from which the

nonlinear moment conditions arise – turns out to have more identifying power than what Anderson

and Hsiao (1981) or even Arellano and Bond (1991) estimators suggest. In particular, persistent

autoregressive parameters can be identified even for the unit root case. We confront the possibility

of multiple roots, which affects the asymptotic analysis. The derivations in this paper show that

fixed-T and large-T results are very different (especially for the unit root case) and that inferences

obtained from the asymptotic approximations tend to depend on higher-order moments of the

idiosyncratic remainder component. Our results indicate the regions of the parameter space and

the settings of the data generating process (DGP) for which the nonlinear moment conditions are

particularly useful.

The popularity of GMM estimators for estimating linear dynamic panel data models has increased

given the availability of software4 allowing for the use of a set of default linear moment conditions

such as those proposed by Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bover (1995).

Ahn and Schmidt (1995) propose the nonlinear moment conditions that also arise from standard

assumptions, while Ahn and Schmidt (1997) derive an asymptotically equally efficient linearized

GMM estimator. Using nonlinear moment conditions in estimation is not very popular in practice

because a closed form solution does not exist and nonlinear optimization techniques are required.

Unfortunately, the finite sample performance of the more popular linear GMM estimators may be

poor for certain DGPs (for an extensive Monte Carlo study see Kiviet, Pleus, and Poldermans,

2017). As indicated by Monte Carlo evidence of Bun and Sarafidis (2015), however, finite sample

performance may improve by quite a large margin, when the nonlinear moment conditions are

taken into account.

Bun and Kleibergen (2014) and Gorgens, Han, and Xue (2016) highlight the potential for using

4See, e.g., the programs xtabond2 (Roodman, 2009a) and xtdpdgmm (Kripfganz, 2018) for Stata and

the packages plm (Croissant and Millo, 2008), panelvar (Sigmund and Ferstl, 2019), and pdynmc (Fritsch,

Pua, and Schnurbus, 2019) for R.

2



nonlinear moment conditions to deal with identification failures in linear dynamic panel data

models that arise from relying on the usual sets of linear moment conditions only. More specifically,

Bun and Kleibergen (2014) modify the nonlinear moment conditions to deal with the case where

the true value of the lag parameter is unity. They consider the worst case DGPs. Gorgens, Han,

and Xue (2016) focus on characterizing the conditions for GMM identification and establish that

the nonlinear moment conditions can provide full or partial identification of the lag parameter

even when linear moment conditions fail to do so.

Alvarez and Arellano (2003) show that the GMM estimator for linear dynamic panel data models

is consistent but has a limiting distribution with a nonzero center when both n, T →∞ and T/n

tends to a nonzero positive constant. The reason for the nonzero center can be traced to instrument

proliferation since the moment conditions proposed by Holtz-Eakin, Newey, and Rosen (1988) are

of order T 2. Recently, Hsiao and Zhang (2015) show that the original Anderson-Hsiao (1981;

1982) estimator does not have this nonzero center in its limiting distribution. It is of interest to

determine the benefits of adding the instruments implied by the Ahn and Schmidt (1995) nonlinear

moment conditions.

The paper is structured as follows: Section 2.1 introduces the model structure and the underlying

assumptions. Section 2.2 establishes consistency for the unit root case, discusses identification of

the consistent root when the absolute value of the lag parameter is smaller than one, and discusses

an asymptotically consistent selection rule. Section 2.3 derives the asymptotic distribution for

both cases and Section 3 concludes.

2 Main results

2.1 Modeling framework

Consider the linear panel data model with an error term ui,t that exhibits first order dynamics:

yi,t = αi + ui,t, ui,t = ρui,t−1 + εi,t, ρ ∈ (−1, 1] .

The equation gives rise to the following more familiar linear dynamic panel data model:

yi,t = (1− ρ)αi + ρyi,t−1 + εit.

The preceding formulation allows the limit theory to be continuous at ρ = 1. We make the following

assumptions:
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A1 The ui,−1 represent initial conditions that are independently drawn from some distribution

F , where for all i, E (ui,−1) = 0, and E
(
u2i,−1

)
<∞.

A2 εi,t is independent of αi and ui,−1, εi,t ∼ i.i.d.
(
0, σ2ε

)
, with E

(
ε3i,t

)
= E

(
ε3i,1

)
< ∞, and

E
(
ε4i,t

)
= E

(
ε4i,1

)
<∞ for all i = 1, . . . n and t = 0, . . . , T .

A3 The αi are unobservables that are independently drawn from some distribution G for all i,

and E
(
α2
i

)
<∞.

A4 For asymptotic considerations assume that n→∞ first, then T →∞.

Assumptions A1 to A3 effectively confine the analysis to a simple setting of cross sectional inde-

pendence. Although this may not be a realistic setting in practice, inclusion of time dummies and

interactive effects will complicate the analysis given Assumption A4. Some heterogeneity across

i or t may be possible but we need Lindeberg-Feller type conditions and some restrictions on the

rates of growth of heterogeneity. It is typically easier to derive sequential limits. We have yet

to write down the theory under joint limits or at least use the main result in Phillips and Moon

(1999) to convert sequential limiting distributions into joint limiting distributions.

We will extensively use second-moment information for the limit theory. According to Han and

Phillips (2010), the following holds for the second moments of the dependent variable:

E (yi,tyi,s) = E
(
α2
i

)
+
σ2ερ

|t−s|

1− ρ2
, |ρ| < 1,

E (yi,tyi,s) = E
(
α2
i

)
+ E

(
u2i,−1

)
+ σ2ε (s ∧ t+ 1) , ρ = 1.

Consider now the model in first differences, so as to eliminate the fixed effects:

∆yi,t = ρ∆yi,t−1 + ∆εi,t.

A possible estimator for ρ could be based on the following nonlinear moment condition that arises

from the lack of serial correlation in εi,t and the lack of correlation between εi,t and αi (see

Assumption A2):

E [(yi,T − ρyi,T−1) (∆yi,t−1 − ρ∆yi,t−2)] = 0, t = 3, . . . , T. (1)

Instead of using the GMM framework, we resort to using all the nT observations to approximate

Equation (1). The usual formulation combines either of the preceding nonlinear moment conditions

with other linear moment conditions, like those of Holtz-Eakin, Newey, and Rosen (1988), to

form a GMM estimator. In the case we consider here, we have a simple IV estimator where the
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instruments are of the form yi,t − ρyi,t−1. One thing to note about these instruments is that they

are unobservable. As a result, we solve the following equation for ρ to obtain parameter estimates:

1

n

n∑
i=1

T∑
t=3

(yi,T − ρyi,T−1) (∆yi,t−1 − ρ∆yi,t−2) = 0. (2)

Observe that Equation (2) is quadratic in ρ, as opposed to the usual linear moment conditions

which are linear in ρ. To facilitate the asymptotic analysis, we rewrite Equation (2) as:

1

n

n∑
i=1

(yi,T − ρyi,T−1)
T∑
t=3

(∆yi,t−1 − ρ∆yi,t−2) = 0

1

n

n∑
i=1

(yi,T − ρyi,T−1)

[
T∑
t=3

∆yi,t−1 − ρ
T∑
t=3

∆yi,t−2

]
= 0

1

n

n∑
i=1

(yi,T − ρyi,T−1) [(yi,T−1 − yi,1)− ρ (yi,T−2 − yi,0)] = 0.

As a result, Equation (2) can be expressed in the form

An,Tρ
2 +Bn,Tρ+ Cn,T = 0, (3)

where

An,T =
1

n

n∑
i=1

yi,T−1 (yi,T−2 − yi,0) ,

Bn,T = − 1

n

n∑
i=1

[yi,T−1 (yi,T−1 − yi,1) + yi,T (yi,T−2 − yi,0)] ,

Cn,T =
1

n

n∑
i=1

yi,T (yi,T−1 − yi,1) .

2.2 Consistency

2.2.1 The case when |ρ| < 1

First, we study the large-n limits when |ρ| < 1 but ρ 6= 0. Since we impose Assumptions A1 to

A3, we may apply a standard law of large numbers and conclude that

An,T
p→E [yi,T−1 (yi,T−2 − yi,0)] =

σ2ε
1− ρ2

(
ρ− ρT−1

)
=

ρσ2ε
1− ρ2

(
1− ρT−2

)
,

−Bn,T
p→E [yi,T−1 (yi,T−1 − yi,1) + yi,T (yi,T−2 − yi,0)] =

σ2ε
1− ρ2

(
ρ2 − ρT + 1− ρT−2

)
=

σ2ε
1− ρ2

(
1− ρT−2

) (
1 + ρ2

)
,

Cn,T
p→E [yi,T (yi,T−1 − yi,1)] =

σ2ε
1− ρ2

(
ρ− ρT−1

)
=

ρσ2ε
1− ρ2

(
1− ρT−2

)
.
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As a result, our proposed estimator based on Equation (1) is given by

ρ̂ =
−Bn,T

2An,T
±

√(
−Bn,T

2An,T

)2

−
Cn,T

An,T
(4)

p→ 1 + ρ2

2ρ
±

√(
1 + ρ2

2ρ

)2

− 1

=
1 + ρ2

2ρ
±

√
1 + 2ρ2 + ρ4

4ρ2
− 1

=
1 + ρ2

2ρ
±

√
1− 2ρ2 + ρ4

4ρ2

=
1 + ρ2

2ρ
±

∣∣∣∣∣1− ρ22ρ

∣∣∣∣∣. (5)

The preceding result shows that our proposed estimator converges to two distinct real roots: the

true value ρ and the reciprocal of the true value 1/ρ. This result also holds when T → ∞. As a

consequence, one of the roots is consistent but determining which root is consistent depends on

the sign of the true value of ρ.

2.2.2 The case when ρ = 1

A similar argument allows us to write the large-n limits of the coefficients of Equation (3) as

An,T
p→σ2ε (T − 2) ,

−Bn,T
p→2σ2ε (T − 2) ,

Cn,T
p→σ2ε (T − 2) .

As a consequence of these large-n limits, Equation (3) will have only one real root with multiplicity

2. A similar argument as in the case where |ρ| < 1 allows us to conclude that

ρ̂ = −
Bn,T

2An,T

is the unique consistent root for the unit root case. This result also holds when T →∞.

2.2.3 Choosing the consistent root in practice

Following our preceding discussion, observe that the two roots of the quadratic Equation (3) will

always have the same sign and will never be complex conjugates of each other. In addition, the

two roots will also have the same sign as the true value ρ. A feasible selection rule to determine

the consistent root is to choose the smaller of the two roots when both roots are positive and to

choose the larger of the two roots when both roots are negative.
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Unfortunately, this selection rule will not work all the time because the expression inside the square

root (i.e., the discriminant) in Equation (4) may be negative. This is more likely to happen in two

situations: (a) when the law of large numbers used to justify Equation (5) is a poor approximation

of the finite sample behavior and (b) when ρ→ 1.

To avoid the possibility of roots being complex conjugates of each other, we exploit the result in

Equation (5) along with the idempotence of the absolute value by calculating

ρ̂ =
−Bn,T

2An,T
±

√√√√∣∣∣∣∣
(
−Bn,T

2An,T

)2

−
Cn,T

An,T

∣∣∣∣∣
instead of Equation (4) and then choosing the larger or the smaller of the roots according to the

selection rule.

The possibility of roots being complex conjugates of each other need not be such a practical burden.

It can be used informally as a way to determine whether ρ = 1 or |ρ| < 1.

2.3 Asymptotic distribution of the consistent root

2.3.1 The case when ρ = 1

We start with the unit root case because we only have one consistent root given our preceding

discussion. We can rewrite −Bn,T as

−Bn,T =
2

n

n∑
i=1

yi,T−1 (yi,T−2 − yi,0) +
1

n

n∑
i=1

[yi,T−1 (εi,T−1 − εi,1) + εi,T (yi,T−2 − yi,0)] . (6)

This implies that

ρ̂− 1 =

1

n

n∑
i=1

[yi,T−1 (εi,T−1 − εi,1) + εi,T (yi,T−2 − yi,0)]

2

n

n∑
i=1

yi,T−1 (yi,T−2 − yi,0)
. (7)

The numerator has zero expectation and is an average of independent random variables with finite

variance because of Assumptions A1 to A3. As a consequence, a central limit theorem applies to

the numerator so that along with the Slutzky lemma, we have a fixed-T asymptotic result where

√
n(ρ̂− 1)

d→ N (0, V ) . (8)

The asymptotic variance can be estimated consistently from observables but it is instructive to

derive an expression for the asymptotic variance that depends on the characteristics of the data

generating process.
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To begin with, take note that in the unit root case, we have

yi,t = αi + ui,−1 +

t∑
s=0

εi,s.

We start by calculating the variance of the numerator in Equation (7). Note that

Var [yi,T−1 (εi,T−1 − εi,1) + εi,T (yi,T−2 − yi,0)] ,

which can alternatively be expressed as

Var [yi,T−1 (εi,T−1 − εi,1)] + Var [εi,T (yi,T−2 − yi,0)] + (9)

2 Cov [yi,T−1 (εi,T−1 − εi,1) , εi,T (yi,T−2 − yi,0)] .

For the first variance term in Equation (9), we have

Var [yi,T−1 (εi,T−1 − εi,1)]

= E
[
y2i,T−1 (εi,T−1 − εi,1)2

]
− (E [yi,T−1 (εi,T−1 − εi,1)])2

= E

(αi + ui,−1 +

T−1∑
s=0

εi,s

)2

(εi,T−1 − εi,1)2
− (σ2ε − σ2ε)2

= E
[
α2
i (εi,T−1 − εi,1)2

]
+ E

[
u2i,−1 (εi,T−1 − εi,1)2

]
+ E

(T−1∑
s=0

εi,s

)2 (
ε2i,T−1 − 2εi,T−1εi,1 + ε2i,1

)
+ 2 E

[
αiui,−1 (εi,T−1 − εi,1)2

]
+ 2 E

[
αi

(
T−1∑
s=0

εi,s

)
(εi,T−1 − εi,1)2

]

+ 2 E

[
ui,−1

(
T−1∑
s=0

εi,s

)
(εi,T−1 − εi,1)2

]
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= E
(
α2
i

)
E
[
(εi,T−1 − εi,1)2

]
+ E

(
u2i,−1

)
E
[
(εi,T−1 − εi,1)2

]
+

T−1∑
s=0

E
[
ε2i,s
(
ε2i,T−1 − 2εi,T−1εi,1 + ε2i,1

)]
+ 2

T−1∑
s=0,r 6=s

E
[
εi,sεi,r

(
ε2i,T−1 − 2εi,T−1εi,1 + ε2i,1

)]
+ 2 E (αi) E (ui,−1) E

[
(εi,T−1 − εi,1)2

]

+ 2 E (αi) E

[(
T−1∑
s=0

εi,s

)
(εi,T−1 − εi,1)2

]
+ 2 E (ui,−1) E

[(
T−1∑
s=0

εi,s

)
(εi,T−1 − εi,1)2

]

=
[
E
(
α2
i

)
+ E

(
u2i,−1

)] (
2σ2ε
)

+
T−1∑
s=0

E
(
ε2i,sε

2
i,T−1

)
+

T−1∑
s=0

E
(
ε2i,sε

2
i,1

)
− 2

T−1∑
s=0

E
[
ε2i,sεi,T−1εi,1

]
− 4 E

(
ε2i,T−1ε

2
i,1

)
+ 2 E (αi) E

(
ε3i,1 + ε3i,T−1

)
=
[
E
(
α2
i

)
+ E

(
u2i,−1

)] (
2σ2ε
)

+ (T − 1)σ4ε + E
(
ε4i,T−1

)
+ (T − 1)σ4ε + E

(
ε4i,1
)
− 4σ4ε

+ 2 E (αi) E
(
ε3i,1 + ε3i,T−1

)
=
[
E
(
α2
i

)
+ E

(
u2i,−1

)] (
2σ2ε
)

+ (2T − 6)σ4ε

+ 2 E (αi) E
(
ε3i,1 + ε3i,T−1

)
+ E

(
ε4i,1
)

+ E
(
ε4i,T−1

)
.

In the previous derivations, we simplify terms of the form E
(
ε2i,sεi,T−1εi,1

)
, E
(
ε2i,sε

2
i,p

)
, E
(
εi,sεi,rε

2
i,p

)
,

E (εi,sεi,rεi,T−1εi,1), E (εi,sεi,T−1εi,1), and E
(
εi,sε

2
i,p

)
where p ∈ {1, T − 1}, r 6= s, and s =

0, . . . , T − 1. Assumption A3 allows us to conclude that:

• E
(
ε2i,sεi,T−1εi,1

)
= E

(
ε3i,T−1εi,1

)
= E

(
ε3i,1εi,T−1

)
= 0

and E
(
ε2i,sεi,T−1εi,1

)
= E

(
ε2i,s

)
E (εi,T−1εi,1) = 0 for s /∈ {1, T − 1}.

• E
(
ε2i,sε

2
i,p

)
= E

(
ε4i,p

)
for p = s and E

(
ε2i,sε

2
i,p

)
= E

(
ε2i,s

)
E
(
ε2i,p

)
= σ4ε for p 6= s.

• E
(
εi,sεi,rε

2
i,p

)
= E (εi,r) E

(
εi,sε

2
i,p

)
= 0 for r 6= s and s = p.

Similarly, E
(
εi,sεi,rε

2
i,p

)
= E (εi,s) E

(
εi,rε

2
i,p

)
= 0 for r 6= s and r = p.

• E (εi,sεi,rεi,T−1εi,1) = 0 whenever s, r /∈ {1, T − 1}.

Otherwise, E (εi,sεi,rεi,T−1εi,1) = E
(
ε2i,T−1ε

2
i,1

)
= σ4ε .

• E (εi,sεi,T−1εi,1) = E (εi,s) E (εi,T−1εi,1) = 0 whenever s /∈ {1, T − 1}.

Otherwise, E (εi,sεi,T−1εi,1) = E (εi,1) E (εi,T−1εi,s) = 0.

• E
(
εi,sε

2
i,p

)
= E (εi,s) E

(
ε2i,p

)
= 0 whenever s 6= p.

Otherwise, E
(
εi,sε

2
i,p

)
= E

(
ε3i,p

)
.
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Note that if we assume that E (ui,−1) 6= 0, the first variance term in Equation (9) is

Var [yi,T−1 (εi,T−1 − εi,1)]

=
[
E
(
α2
i

)
+ 2 E (αi) E (ui,−1) + E

(
u2i,−1

)] (
2σ2ε
)

+ (2T − 6)σ4ε

+ 2 [E (αi) + E (ui,−1)] E
(
ε3i,1 + ε3i,T−1

)
+ E

(
ε4i,1
)

+ E
(
ε4i,T−1

)
.

For the second variance term in Equation (9), the following expression results

V ar [εi,T (yi,T−2 − yi,0)]

= E
[
ε2i,T (yi,T−2 − yi,0)2

]
− (E [εi,T (yi,T−2 − yi,0)])2

= E

ε2i,T
(

T−2∑
s=1

εi,s

)2
−(E

[
εi,T

(
T−2∑
s=1

εi,s

)])2

= E

[
ε2i,T

(
T−2∑
s=1

ε2i,s

)]
+ E

2ε2i,T

 T−2∑
s=1,r 6=s

εi,sεi,r

+ 0

=

T−2∑
s=1

σ2ε
(
σ2ε
)

= (T − 2)σ4ε .

Finally, the covariance term in Equation (9) reduces to zero as follows:

Cov [yi,T−1 (εi,T−1 − εi,1) , εi,T (yi,T−2 − yi,0)]

= E [yi,T−1 (εi,T−1 − εi,1) εi,T (yi,T−2 − yi,0)]

− E [yi,T−1 (εi,T−1 − εi,1)] E [εi,T (yi,T−2 − yi,0)]

= E

[(
αi + ui,−1 +

T−1∑
s=0

εi,s

)
(εi,T−1 − εi,1) εi,T

(
T−2∑
s=1

εi,s

)]

− E

[(
αi + ui,−1 +

T−1∑
s=0

εi,s

)
(εi,T−1 − εi,1)

]
E

[
εi,T

(
T−2∑
s=1

εi,s

)]

= E

[(
T−1∑
s=0

εi,s

)
(εi,T−1 − εi,1) εi,T

(
T−2∑
s=1

εi,s

)]
− 0

= E

[(
T−1∑
s=0

εi,s

)
εi,T−1εi,T

(
T−2∑
s=1

εi,s

)]
− E

[(
T−1∑
s=0

εi,s

)
εi,1εi,T

(
T−2∑
s=1

εi,s

)]

= E

[(
εi,T−1 +

T−2∑
s=0

εi,s

)
εi,T−1εi,T

(
T−2∑
s=1

εi,s

)]

− E

[(
εi,0 + εi,1 +

T−2∑
s=2

εi,s + εi,T−1

)
εi,1εi,T

(
εi,1 +

T−2∑
s=2

εi,s

)]

10



= E

[
ε2i,T−1εi,T

(
T−2∑
s=1

εi,s

)]
+ E

(T−2∑
s=0

εi,s

)2

εi,T−1εi,T

− E

[
εi,0εi,1εi,T

(
εi,1 +

T−2∑
s=2

εi,s

)]

− E

εi,1εi,T (εi,1 +

T−2∑
s=2

εi,s

)2
− E

[
εi,T−1εi,1εi,T

(
εi,1 +

T−2∑
s=2

εi,s

)]

= E
(
ε2i,T−1

)
E (εi,T ) E

[(
T−2∑
s=1

εi,s

)]
+ E

(T−2∑
s=0

εi,s

)2
E (εi,T−1εi,T )

− E

[
εi,0εi,1

(
εi,1 +

T−2∑
s=2

εi,s

)]
E (εi,T )− E

εi,1(εi,1 +
T−2∑
s=2

εi,s

)2
E (εi,T )

− E

[
εi,1

(
εi,1 +

T−2∑
s=2

εi,s

)]
E (εi,T−1εi,T )

=0.

Using Hn,T to represent the numerator of Equation (7) and collecting the three results on the

terms in Equation (9) gives

√
nHn,T

d→ N (0, VH) ,

where

VH = 2σ2ε
(
E
(
α2
i

)
+ E

(
u2i,−1

))
+ (3T − 8)σ4ε + 4 E (αi) E

(
ε3i,1
)

+ 2 E
(
ε4i,1
)
.

Since An,T
p→ σ2ε (T − 2), we have the result given in Equation (8) and the corresponding asymp-

totic variance V results from an application of Slutzky’s lemma:5

V =
E
(
α2
i

)
+ E

(
u2i,−1

)
2σ2ε (T − 2)2

+
3T − 8

4 (T − 2)2
+

E
(
ε4i,1

)
2σ4ε (T − 2)2

+
E (αi) E

(
ε3i,1

)
σ4ε (T − 2)2

. (10)

Under Assumption A4, we can now derive the large-n, large-T distribution of ρ̂ as

√
nT (ρ̂− 1)

d→ N

(
0,

3

4

)
. (11)

The practical relevance of these results stem from the ways in which the characteristics of the

idiosyncratic remainder component affects inferences based on the asymptotic approximation pro-

vided by the large-n distribution in Equation (8). In particular, the fourth moment of the id-

iosyncratic remainder component matters for inference but its influence disappears when T →∞.

Similarly, a nonzero mean for the individual-specific fixed effect αi interacts with the third moment

of the idiosyncratic remainder component. This latter result implies that assuming zero mean for

αi is with loss of generality. However, these nuisance parameters which are specific to the data

generating process will not matter when T →∞.

5Note that it is easy to modify the result to allow for the possibility that E (ui,−1) 6= 0.

11



2.3.2 The case when |ρ| < 1

We now consider the stationary case and assume that ρ > 0. By our analysis of consistency, we

know that the smaller root

ρ̂ =
−Bn,T

2An,T
−

√(
−Bn,T

2An,T

)2

−
Cn,T

An,T

is the consistent root. To derive the asymptotic distribution, we have to take care of the asymptotic

behavior of the term inside the square root. To facilitate the analysis, we write

−Bn,T

2An,T
= ρ+

1

2
H1 +

1

2
H2,

Cn,T

An,T
= ρ2 + ρH1 + ρH2 +H3,

where

H1 =

1

n

n∑
i=1

yi,T−1 (εi,T−1 − εi,1)

1

n

n∑
i=1

yi,T−1 (yi,T−2 − yi,0)
,

H2 =

1

n

n∑
i=1

((1− ρ)αi + εi,T ) (yi,T−2 − yi,0)

1

n

n∑
i=1

yi,T−1 (yi,T−2 − yi,0)
,

H3 =

1

n

n∑
i=1

((1− ρ)αi + εi,T ) (εi,T−1 − εi,1)

1

n

n∑
i=1

yi,T−1 (yi,T−2 − yi,0)
.

As a consequence, we have

ρ̂ = ρ+
1

2
H1 +

1

2
H2 −

√(
ρ+

1

2
H1 +

1

2
H2

)2

− (ρ2 + ρH1 + ρH2 +H3)

= ρ+
1

2
H1 +

1

2
H2 −

√(
1

2
H1 +

1

2
H2

)2

−H3.

If we let

H = H1 +H2 − E (H1 +H2) ,

12



then the representation for ρ̂ can now be expressed as

ρ̂ = ρ+
1

2
H +

1

2
E (H1 +H2)−

√(
1

2
H

)2

+
1

2
H +

1

4
[E (H1 +H2)]

2 −H3

= ρ+
1

2
H +

1

2
E (H1 +H2)−

√
Op (n−1) +Op

(
n−1/2

)
+Op (1)−Op

(
n−1/2

)
= ρ+

1

2
H +

1

2
E (H1 +H2)−

∣∣∣∣∣12 E (H1 +H2)

∣∣∣∣∣
= ρ+

1

2
H. (12)

The second step in the derivation makes use of the following observations: (a) a central limit

theorem applies to the zero-mean random variables H and H3 and (b) the mean E (H1 +H2) is a

bounded constant. The third step of the derivation indicates that the Op (1) term dominates the

other terms inside the square root. The final step arises because the mean E (H1 +H2) is positive

whenever |ρ| < 1. The result in Equation (12) implies that the asymptotic distribution of ρ̂ follows

the asymptotic distribution of H.

In order to derive the fixed-T and large-T distribution of ρ̂, we start by calculating the asymptotic

variance of the numerator of H1 +H2. Note that

Var [yi,T−1 (εi,T−1 − εi,1) + ((1− ρ)αi + εi,T ) (yi,T−2 − yi,0)] ,

which can alternatively be represented by the expression

Var [yi,T−1 (εi,T−1 − εi,1)] + Var [((1− ρ)αi + εi,T ) (yi,T−2 − yi,0)] (13)

+ 2 Cov [yi,T−1 (εi,T−1 − εi,1) , ((1− ρ)αi + εi,T ) (yi,T−2 − yi,0)] .

Furthermore, we have the following expression for ui,t:

ui,t = ρt+1ui,−1 +

t∑
s=0

ρt−sεi,s.

The first variance in Equation (13) can also be expressed as

Var [yi,T−1 (εi,T−1 − εi,1)]

= Var [(αi + ui,T−1) (εi,T−1 − εi,1)]

= E
[
(αi + ui,T−1)

2 (εi,T−1 − εi,1)2
]
− (E [(αi + ui,T−1) (εi,T−1 − εi,1)])2

13



= E
[
α2
i (εi,T−1 − εi,1)2

]
+ 2 E

[
αiui,T−1 (εi,T−1 − εi,1)2

]
+ E

[
u2i,T−1 (εi,T−1 − εi,1)2

]
− (E [αi (εi,T−1 − εi,1)] + E [ui,T−1 (εi,T−1 − εi,1)])2

=2σ2ε E
(
α2
i

)
+ 2 E (αi) E

[
ui,T−1 (εi,T−1 − εi,1)2

]
+ E

[
u2i,T−1 (εi,T−1 − εi,1)2

]
− (E [ui,T−1 (εi,T−1 − εi,1)])2

=2σ2ε E
(
α2
i

)
+ 2 E (αi) E

[(
ρTui,−1 +

T−1∑
s=0

ρT−1−sεi,s

)
(εi,T−1 − εi,1)2

]

+ E

(ρTui,−1 +
T−1∑
s=0

ρT−1−sεi,s

)2

(εi,T−1 − εi,1)2


−

(
E

[(
ρTui,−1 +

T−1∑
s=0

ρT−1−sεi,s

)
(εi,T−1 − εi,1)

])2

=2σ2ε E
(
α2
i

)
+ 2 E (αi) E

[
ε3i,T−1 + ρT−2ε3i,1

]
+ E

(
ρ2Tu2i,−1

)
E
[
(εi,T−1 − εi,1)2

]
+

T−1∑
s=0

ρ2(T−1−s) E
[
ε2i,s (εi,T−1 − εi,1)2

]
+ 2 E

[(
ρT−2εi,1εi,T−1

)
(εi,T−1 − εi,1)2

]
−
(
E
[(
ρT−2εi,1 + εi,T−1

)
(εi,T−1 − εi,1)

])2
=2σ2ε E

(
α2
i

)
+ 2

(
1 + ρT−2

)
E (αi) E

(
ε3i,1
)

+ 2σ2ερ
2T E

(
u2i,−1

)
+ E

[
ε2i,T−1 (εi,T−1 − εi1)2

]
+ ρ2(T−1) E

[
ε2i,0 (εi,T−1 − εi,1)2

]
+ ρ2(T−2) E

[
ε2i,1 (εi,T−1 − εi,1)2

]
+

T−2∑
s=2

ρ2(T−1−s) E
[
ε2i,s (εi,T−1 − εi,1)2

]
− 4ρT−2 E

(
ε2i,1ε

2
i,T−1

)
−
(
σ2ε
(
1− ρT−2

))2
=2σ2ε E

(
α2
i

)
+ 2

(
1 + ρT−2

)
E (αi) E

(
ε3i,1
)

+ 2σ2ερ
2T E

(
u2i,−1

)
+ E

(
ε4i,T−1

)
+ σ4ε + ρ2(T−1)

(
σ4ε + σ4ε

)
+ ρ2(T−2)

[
σ4ε + E

(
ε4i,1
)]

+

T−2∑
s=2

ρ2(T−1−s) E
(
ε2i,s
)

E
[
(εi,T−1 − εi,1)2

]
− 4ρT−2σ4ε −

(
σ2ε
(
1− ρT−2

))2
=2σ2ε E

(
α2
i

)
+ 2

(
1 + ρT−2

)
E (αi) E

(
ε3i,1
)

+ 2σ2ερ
2T E

(
u2i,−1

)
+ E

(
ε4i,T−1

)
+ σ4ε + ρ2(T−1)

(
σ4ε + σ4ε

)
+ ρ2(T−2)

[
σ4ε + E

(
ε4i,1
)]

+ 2σ4ε

T−2∑
s=2

ρ2(T−1−s) − 4ρT−2σ4ε

−
(
σ2ε
(
1− ρT−2

))2
=2σ2ε E

(
α2
i

)
+ 2

(
1 + ρT−2

)
E (αi) E

(
ε3i,1
)

+ 2σ2ερ
2T E

(
u2i,−1

)
+ E

(
ε4i,T−1

)
+ σ4ε + ρ2(T−1)

(
σ4ε + σ4ε

)
+ ρ2(T−2)

[
σ4ε + E

(
ε4i,1
)]

+ 2σ4ε
ρ4
(
1− ρ2(T−3)

)
1− ρ2

− 4ρT−2σ4ε

−
(
σ2ε
(
1− ρT−2

))2
.
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The second variance in Equation (13) can be expressed as

Var [((1− ρ)αi + εi,T ) (yi,T−2 − yi,0)]

= Var [((1− ρ)αi + εi,T ) (ui,T−2 − ui,0)]

= E
[
((1− ρ)αi + εi,T )2 (ui,T−2 − ui,0)2

]
− (E [((1− ρ)αi + εi,T ) (ui,T−2 − ui,0)])2

= E
[
((1− ρ)αi + εi,T )2

]
E
[
(ui,T−2 − ui,0)2

]
− (E ((1− ρ)αi + εi,T ) E (ui,T−2 − ui,0))2

=
[
(1− ρ)2 E

(
α2
i

)
+ σ2ε

]
E
[
ρ2 (ui,T−3 − ui,−1)2

+2ρ (ui,T−3 − ui,−1) (εi,T−2 − εi,0) + (εi,T−2 − εi,0)2
]
− 0

=
[
(1− ρ)2 E

(
α2
i

)
+ σ2ε

] [
E

[(
ρT−2 − 1

)2
u2i,−1 +

T−3∑
s=0

ρ2(T−3−s)ε2i,s

]
−

2ρE [ui,T−3εi,0] + 2σ2ε
]

=
[
(1− ρ)2 E

(
α2
i

)
+ σ2ε

] [(
1− ρT−2

)2
E
(
u2i,−1

)
+ σ2ε

(
1− ρ2(T−2)

)
1− ρ2

− 2ρT−2σ2ε + 2σ2ε

]
.

The covariance term in Equation (13) can be expressed as

Cov [yi,T−1 (εi,T−1 − εi,1) , ((1− ρ)αi + εi,T ) (yi,T−2 − yi,0)]

= Cov [(αi + ui,T−1) (εi,T−1 − εi,1) , ((1− ρ)αi + εi,T ) (ui,T−2 − ui,0)] .

= Cov [(αi + ui,T−1) εi,T−1, (1− ρ)αiui,T−2]− Cov [(αi + ui,T−1) εi,1, (1− ρ)αiui,T−2]

− Cov [(αi + ui,T−1) εi,T−1, (1− ρ)αiui,0] + Cov [(αi + ui,T−1) εi,1, (1− ρ)αiui,0]

+ Cov [(αi + ui,T−1) (εi,T−1 − εi,1) , εi,T (ui,T−2 − ui,0)]

=0− (1− ρ)
[
E
(
α2
i

)
E (εi,1ui,T−2) + E (αi) E (εi,1ui,T−2ui,T−1)

]
− 0 + 0 + 0

=− (1− ρ)
[
E
(
α2
i

)
ρT−3σ2ε + E (αi) ρ

2T−5 E
(
ε3i,1
)]
.

Note that the final step uses the following results:

• Cov [(αi + ui,T−1) εi,T−1, (1− ρ)αiui,T−2] =

(1− ρ)
[
E
(
α2
i εi,T−1ui,T−2

)
+ E (ui,T−1εi,T−1αiui,T−2)

]
= 0.

• Cov [(αi + ui,T−1) εi,1, (1− ρ)αiui,T−2] =

(1− ρ)
[
E
(
α2
i

)
E (εi,1ui,T−2) + E (αi) E (εi,1ui,T−2ui,T−1)

]
.

• Cov [(αi + ui,T−1) εi,T−1, (1− ρ)αiui,0] =

(1− ρ)
[
E
(
α2
i εi,T−1ui,0

)
+ E (ui,T−1εi,T−1αiui,0)

]
= 0.

• Cov [(αi + ui,T−1) εi,1, (1− ρ)αiui,0] =

(1− ρ)
[
E
(
α2
i εi,1ui,0

)
+ E (ui,T−1εi,1αiui,0)

]
= 0.
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• Cov [(αi + ui,T−1) (εi,T−1 − εi,1) , εi,T (ui,T−2 − ui,0)] = 0 because of the presence of εi,T .

Collecting all the preceding results on the terms in Equation (13) gives us

√
nH

d→ N (0, VH) ,

where the corresponding asymptotic variance is

VH = 2σ2ε E
(
α2
i

)
+ 2

(
1 + ρT−2

)
E (αi) E

(
ε3i,1
)

+ 2σ2ερ
2T E

(
u2i,−1

)
+ E

(
ε4i,T−1

)
+ σ4ε + 2ρ2(T−1)σ4ε

+ ρ2(T−2)
[
σ4ε + E

(
ε4i,1
)]

+ 2σ4ε
ρ4
(
1− ρ2(T−3)

)
1− ρ2

− 4ρT−2σ4ε −
(
σ2ε
(
1− ρT−2

))2
+
[
(1− ρ)2 E

(
α2
i

)
+ σ2ε

] [(
1− ρT−2

)2
E
(
u2i,−1

)
+ σ2ε

(
1− ρ2(T−2)

)
1− ρ2

− 2ρT−2σ2ε + 2σ2ε

]
− (1− ρ)

[
E
(
α2
i

)
ρT−3σ2ε + E (αi) ρ

2T−5 E
(
ε3i,1
)]
.

Recall that the following holds for An,T :

An,T
p→ ρσ2ε

1− ρ2
(
1− ρT−2

)
,

which means that

√
n(ρ̂− ρ)

d→ N (0, V ) ,

with corresponding asymptotic variance

V =
VH

4ρσ2ε
1− ρ2

(1− ρT−2)
.

If we now let ρ→ 1, then

VH →2σ2ε E
(
α2
i

)
+ 4 E (αi) E

(
ε3i,1
)

+ 2σ2ε E
(
u2i,−1

)
+ 2 E

(
ε4i,1
)

+ 4σ4ε + 2σ4ε (T − 3)− 4σ4ε + σ4ε (T − 2)

= 2σ2ε
(
E
(
α2
i

)
+ E

(
u2i,−1

))
+ (3T − 8)σ4ε + 4 E (αi) E

(
ε3i,1
)

+ 2 E
(
ε4i,1
)
,

and An,T
p→ σ2ε (T − 2). We obtain the asymptotic distribution for the unit root case as a result.

This shows that there is no discontinuity in the limit theory at ρ = 1.
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When we let T →∞,

VH → 2σ2ε E
(
α2
i

)
+ 2 E (αi) E

(
ε3i,1
)

+ E
(
ε4i,1
)

+ σ4ε + 2σ4ε
ρ4

1− ρ2
− σ4ε

+
[
(1− ρ)2 E

(
α2
i

)
+ σ2ε

] [
E
(
u2i,−1

)
+ σ2ε

1

1− ρ2
+ 2σ2ε

]
= 2σ2ε E

(
α2
i

)
+ 2 E (αi) E

(
ε3i,1
)

+ E
(
ε4i,1
)

+ 2σ4ε
ρ4

1− ρ2

+
[
(1− ρ)2 E

(
α2
i

)
+ σ2ε

] [
E
(
u2i,−1

)
+ σ2ε

1

1− ρ2
+ 2σ2ε

]
,

and

An,T
p→ ρσ2ε

1− ρ2
.

By the Slutzky Lemma, we have the following sequential limiting distribution

√
n(ρ̂− ρ)

d→ N (0, V ) ,

where the corresponding asymptotic variance is

V =
VH
ρσ2ε

1− ρ2

=
(
1− ρ2

) VH
ρσ2ε

.

We find that ρ̂ converges at rate
√
n whether or not T stays fixed or T →∞ (under Assumption

A4). When ρ = 1, we find that there is no discontinuity in the limit theory for fixed-T settings

but we have faster than
√
n-convergence for large-T settings.

3 Concluding remarks

We derive asymptotic results for an IV estimator based on the nonlinear Ahn-Schmidt moment

conditions in two settings – under large-n, fixed-T and large-n, large-T . Since the Ahn and Schmidt

moment conditions produce estimating equations that are nonlinear in parameters, the results shed

light on the nature of the roots and which root is the consistent one. We believe that the alternative

of looking into a GMM objective function is much less manageable. We have also found that the

asymptotic variance of the estimator in the large-T case is substantially lower than the estimator

proposed by Han and Phillips (2010) in the unit root case. It is unknown whether our proposed

estimator has the smallest asymptotic variance in the class of estimators that converge at rate
√
nT .
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