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On GMM estimation of linear dynamic panel data models1

Markus Fritsch2

September 20, 2019

Abstract. The linear dynamic panel data model provides a possible avenue to deal with unobservable

individual-specific heterogeneity and dynamic relationships in panel data. The model structure renders

standard estimation techniques inconsistent. Estimation and inference can, however, be carried out with

the generalized method of moments (GMM) by suitably aggregating population orthogonality conditions

directly deduced from the underlying modeling assumptions. Different variations of these assumptions

are proposed in the literature – often lacking a thorough discussion of the implications for estimation

and inference. This paper aims to enhance the understanding of the assumptions and their interplay by

connecting the assumptions and the conditions required to establish identification and consistency, derive

the asymptotic properties, and carry out inference for the GMM estimator.

Keywords. GMM, linear dynamic panel data model, identification, large sample properties, inference.
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1 Introduction

Linear dynamic panel data models contain lags of the dependent variable as explanatory variables and an

unobservable composite error term consisting of an individual-specific effect, a time-specific effect, and an

idiosyncratic remainder component. Due to the presence of lagged dependent variables besides the (un-

observable) individual-specific effects, conventional estimation techniques such as ordinary least squares

(OLS) or within estimation do not generally produce consistent estimates. An alternative to account for

individual-specific effects is to first difference the equation. However, this induces correlation between

the lagged dependent explanatory variables and the idiosyncratic remainder components which also leads

to inconsistent parameter estimates. An established way to account for unobservable individual-specific

heterogeneity in the presence of lagged dependent explanatory variables is deriving instruments and cor-

responding population orthogonality conditions (or moment conditions) from the modeling assumptions

(see, e.g., Anderson and Hsiao, 1981; Anderson and Hsiao, 1982; Holtz-Eakin, Newey, and Rosen, 1988;

Ahn and Schmidt, 1995; Arellano and Bover, 1995) and employing the sample analogues of the population

orthogonality conditions in estimation3. Typically, more population orthogonality conditions are available

than there are parameters to be estimated and there is no unique solution when minimizing the objective

function. Appropriately reducing the number of population orthogonality conditions provides a remedy.

This may be achieved by selecting as many population orthogonality conditions as there are parameters to

be estimated or by forming an equivalent number of linear combinations of the population orthogonality

conditions. Such linear combinations may be obtained by the generalized method of moments, where the

aggregation is governed by the so-called weighting matrix.

Several conditions are required to ensure identification, consistency, and asymptotic normality or carry out

inference for the GMM estimator. In practice, theoretical and applied work on GMM estimation of linear

dynamic panel data models commonly employs different versions of assumptions (or slight variations thereof)

– often lacking a thorough discussion of their implications, limitations, and consequences for estimation and

inference. The aim of the paper is to provide such a discussion and thereby enhance the understanding

of the assumptions frequently encountered in GMM estimation of linear dynamic panel data models and

their interplay. The assumptions are connected with and discussed in the context of the required conditions

stated in general theorems and propositions which establish identification, consistency, and the asymptotic

properties of the GMM estimator. Additionally, potential directions for future research are pointed out.

The structure of the paper is as follows: Section 2 briefly sketches the linear dynamic panel data model,

elaborates on the underlying assumptions, and introduces estimation by the generalized method of moments.

Section 3 discusses the assumptions in the context of the conditions required for identification, consistency,

and asymptotic normality of the model parameters by GMM. Section 4 considers the consistent estimation

of standard errors, specification testing, and testing of general hypotheses, while Section 5 concludes.

3Estimation here may be carried out by the method of moments. In the remainder of the paper, it will refer to

OLS when the type of estimation is not expressed more accurately.
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2 Modeling framework

2.1 Linear dynamic panel data model

The model structure underlying the linear dynamic panel data model can be represented by the two equations

Yt = Yt−1ρ1 + · · ·+ Yt−pρp +Xtβ0 + · · ·+Xt−qβq + Ut, t ∈ Z, (1)

Ut = A+ λt + εt. (2)

The variable Yt denotes the dependent variable and the right-hand side of the equation contains p lags

of the dependent variable, the J − 1 contemporaneous non-lagged dependent explanatory variables Xt =

{Xt,1, . . . , Xt,J−1}, and up to q lags of the Xt as explanatory variables. The scalars ρ1, . . . , ρp are the

lag parameters, β0, . . . ,βq are parameter vectors, Ut is an unobservable composite error term, A is an

unobservable individual-specific effect, λt is an unobservable time-specific effect, and εi,t is an idiosyncratic

remainder component. Dependence of a variable of the time period is expressed by a t in the index – where

t is an integer.

In the following a setup is considered where the variables Yt, . . . , Yt−p, Ut, A, λt, and εt denote random

variables and Xt = {Xt,1, . . . , Xt,J−1} and its lags represent vectors of random variables.4 The Equations

(1) and (2) are typically derived from the following assumptions about the individual model components

and their interplay:

(A.1.1 ) Existence of a reduced form: It is possible to solve the structural form

f(Yt, . . . , Yt−p,Xt, . . . ,Xt−q, Ut) = 0

for the endogenous variable Yt; this leads to the existence of the reduced form

Yt = g(Yt−1, . . . , Yt−p,Xt, . . . ,Xt−q, Ut).

(A.1.2 ) Additive separability: The reduced form may be decomposed into an observable model component

g1(Yt−1, . . . , Yt−p,Xt, . . . ,Xt−q) and an unobservable composite error term Ut, which captures all

unobservable influences on Yt, such that

Yt = g1(Yt−1, . . . , Yt−p,Xt, . . . ,Xt−q) + Ut.

The unobservable composite error term Ut may be expressed as a function g2(A, λt, εt), such that

Ut = g2(A, λt, εt).

4Put differently, Yt and Xt can be seen as resulting from time series processes with random starting values and

are, therefore, also random variables. The variable A is constant over time and can be thought of as randomly

assigned at the initial time period, while one common λt is drawn at each time period for all individuals. For a DGP

without time-specific effects specified in this spirit see, e.g., Blundell, Bond, and Windmeijer (2001).
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(A.1.3 ) Linearity and additivity: The functions g1(·) and g2(·) are additively separable as well. The

function g1(·) is additionally assumed to be linear in parameters, such that

g1(Yt−1, . . . , Yt−p,Xt, . . . ,Xt−q) = Yt−1ρ1 + · · ·+ Yt−pρp +Xtβ0 + · · ·+Xt−qβq

and g2(A, λt, εt) = A+ λt + εt.

Replacing the upper-case letters by lower-case letters for all model components and adding the index i

indicating the individual yields the conventional representation of the linear dynamic panel data model in

the literature.

yi,t = yi,t−1ρ1 + · · ·+ yi,t−pρp + x′i,tβ0 + · · ·+ x′i,t−qβq + ui,t, i = 1, . . . , N ; t ∈ Z, (3)

ui,t = ai + λt + εi,t. (4)

Plugging Equation (4) into Equation (3) yields the single equation form of the model

yi,t = yi,t−1ρ1 + · · ·+ yi,t−pρp + x′i,tβ0 + · · ·+ x′i,t−qβq + ai + λt + εi,t. (5)

This version of the linear dynamic panel data model is frequently employed in the empirical applications

in Arellano and Bond (1991), Blundell and Bond (1998), Blundell and Bond (2000), Blundell, Bond, and

Windmeijer (2001), and Bond (2002). Examples where adjusted variations of the model in (5) are employed

are Lemmon, Roberts, and Zender (2008), Michaud and Van Soest (2008), and Cavalcanti, Mohaddes, and

Raissi (2015): In the first paper the dependent variable is used in first differences and the right-hand side

variables are considered in levels. The second paper includes interactions of selected explanatory variables

with time and the latter paper employs the geometric average growth rate of real GDP as dependent variable

and the natural logarithm of real GDP constitutes the lagged explanatory variable.

Theoretical work, review articles and discussions of particular properties in the estimation of linear dynamic

panel data models often consider a simplified version of Equation (5) by incorporating only one lag of

the dependent variable, excluding non-lagged dependent explanatory variables, and dropping time-specific

effects λt

yi,t = yi,t−1ρ+ ai + εi,t, i = 1, . . . , N ; t = 2, . . . , T. (6)

The initial time period is denoted by t = 1. Examples are Ahn and Schmidt (1995), Arellano and Bover

(1995), Blundell and Bond (1998), Alvarez and Arellano (2003), Hayakawa (2009), Bun and Kleibergen

(2014), Gorgens, Han, and Xue (2016a), and Gorgens, Han, and Xue (2016b) – where Ahn and Schmidt

(1995), Arellano and Bover (1995), and Blundell and Bond (1998) discuss including non-lagged dependent

explanatory variables and Gorgens, Han, and Xue (2016b) discuss including time-specific effects.

A more flexible specification contains contemporaneous non-lagged dependent explanatory variables

yi,t = yi,t−1ρ+ x′i,tβ + ai + εi,t. (7)

Examples where this specification is considered are Blundell, Bond, and Windmeijer (2001) and Bun and

Sarafidis (2015). Hayakawa (2015) does not incorporate xi,t, but includes time-specific effects. All illustra-
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tions in the remainder of this paper are based on Equation (7) to simplify the notation and enhance the

clarity of exposition.

Different modeling techniques have been proposed to estimate the model parameters of Equation (7) while

accounting for unobservable individual-specific heterogeneity: Since the set of explanatory variables includes

a lagged dependent variable, the within transformation – which amounts to subtracting the mean over time

for all individuals from both sides of the equation – and subsequently estimating the parameters of the

transformed equation generally does not yield consistent estimates. The same applies when simply ignoring

the unobservable individual-specific effect ai (for an exposition on both estimators see, e.g., Hsiao, 2014,

p.82-86). Other approaches are based on first differencing (Anderson and Hsiao, 1982; Holtz-Eakin, Newey,

and Rosen, 1988; Arellano and Bond, 1991), as the unobservable composite error term in Equation (7) then

reduces to ∆ui,t = ∆εi,t, models involving factor structures (Bai, 2013), and clustering-based techniques

(Bonhomme and Manresa, 2015). The focus of the following exposition is on approaches based on first

differencing.

First differencing equals expressing Equation (7) in first differences:

∆yi,t = ∆yi,t−1ρ+ ∆x′i,tβ + ∆εi,t. (8)

The consequences of the first differencing, indicated by the ∆-operator, are twofold. First, it eliminates

the individual-specific effect ai. Second, first differencing induces correlation of the first differenced lagged

dependent variable ∆yi,t−1 = yi,t−1 − yi,t−2 with the first differenced unobservable composite error term

∆εi,t = εi,t − εi,t−1. Consequently, estimates of ρ and β based on Equation (8) are inconsistent. This can

be resolved by instrumenting the first differenced lagged dependent variable in Equation (8) or the lagged

dependent variable in Equation (7) in estimation. Natural instruments may be derived from population

orthogonality conditions which result from assumptions imposed on top of Assumptions (A.1.1 )-(A.1.3 ).

Different sets of assumptions for the estimation of linear dynamic panel data models are proposed in the

literature. Ahn and Schmidt (1997) provide an extensive discussion of several different sets of assumptions

and their implications for the type and number of available population orthogonality conditions. The guise

of the assumptions varies in the literature: Some authors use conditional moment restrictions (Arellano

and Bover, 1995; Bun and Sarafidis, 2015); others employ unconditional moment restrictions (e.g., Ahn

and Schmidt, 1995; Blundell and Bond, 1998; Blundell, Bond, and Windmeijer, 2001; Bun and Kleibergen,

2014; Kiviet, Pleus, and Poldermans, 2017). Ahn and Schmidt (1995) illustrate the assumptions in terms of

restrictions on the covariance matrix of observable model components. One particular set of assumptions for

the estimation of linear dynamic panel data models in Equation (7), which is often encountered in practice

and which is imposed here, is

(A.2.1 ) |ρ| ≤ 1,

(A.2.2 ) E[εi,t|yi,1, yi,2, . . . , yi,t−1,x
′
i,1,x

′
i,2, . . . ,x

′
i,r, ai] = 0, i = 1, . . . , N ; t = 2, . . . , T ;

r ≤ T,
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(A.2.3 ) E[∆yi,t|ai] = 0, i = 1, . . . , N ; t = 2, . . . , T,

(E[∆x′i,t|ai] = 0, i = 1, . . . , N ; t = 2, . . . , T ),

(A.2.4 ) yi,1 and x′i,1 are observable.

Assumption (A.2.1 ) restricts the range of possible values for the lag parameter ρ. The assumption prevents

the yi,t-process to exhibit explosive behaviour but includes the unit root case (for ρ = 1). Assumption

(A.2.2 ) requires that the idiosyncratic remainder component εi,t cannot be expressed as a function of any

of the explanatory variables and the unobservable individual-specific effects. Additionally, it rules out serial

correlation in εi,t and allows the individual, non-lagged dependent explanatory variables x1, . . . ,xJ−1 to

be strictly exogenous (r = T ), predetermined (r = t), or endogenous (r < t).5 In short, Assumption

(A.2.2 ) requires that the model is dynamically complete. Note that the assumption allows for arbitrary

correlation between ai and the explanatory variables. This correlation is restricted by Assumption (A.2.3 ),

which requires the dependent variable and the individual-specific effect ai to be constantly correlated over

time (Bun and Sarafidis, 2015). Other expressions commonly used in the literature for this assumption

are ‘mean stationarity’ (Arellano, 2003) and ‘effect stationarity’ (Bun and Kiviet, 2006). When the linear

dynamic panel data model in Equation (7) and the Assumptions (A.2.1 ) and (A.2.2 ) hold and the dependent

variable and the unobservable individual-specific effects fulfill the assumption of ‘constant correlated effects’,

the assumption also needs to hold for the non-lagged dependent explanatory variables.

For an illustration, consider the linear dynamic panel data model in Equation (7) and suppose that the

Assumptions (A.2.1 ) and (A.2.2 ) hold and that the yi,t-process fulfills the ‘constant correlated effects’

assumption. By considering the conditional expectation of the equation given the unobservable individual-

specific effects, the following can be shown:

E[yi,t|ai] = E[yi,t−1|ai]ρ+ E[x′i,t|ai]β + ai + E[εi,t|ai]

⇔ E[yi,t|ai]− E[yi,t−1|ai]ρ = E[x′i,t|ai]β + ai + E[εi,t|ai]

⇔ E[yi,t|ai]− E[yi,t−1|ai]ρ = E[x′i,t|ai]β + ai.

Rearranging the equation using that E[yi,t|ai] = E[yi,t−1|ai] when the dependent variable and the unob-

servable individual-specific effects are constantly correlated results in

E[yi,t|ai](1− ρ) = E[x′i,t|ai]β + ai

⇔ E[yi,t|ai] =
E[x′i,t|ai]β + ai

1− ρ
.

Equivalently stating the process for time period t−1 and deducting this expression from the equation yields

E[yi,t|ai]− E[yi,t−1|ai] =
E[x′i,t|ai]β + ai − E[x′i,t−1|ai]β − ai

1− ρ
.

As the left-hand side of the equation is zero, E[x′i,t|ai]− E[x′i,t−1|ai] = 0 needs to hold to ensure that the

right-hand side of the equation is zero as well. This requires that the xi,t-process is constantly correlated

5When the model includes lags of X, r needs to be shifted backwards appropriately in the predetermined and

endogenous case (by one period for each lag).

6



with the unobservable individual-specific effect. This derivation confirms Blundell, Bond, and Windmeijer

(2001, p.69-70) who consider it ‘very unlikely’ that this is not the case – though the statement made in the

previous sentence is somewhat stronger.6

Assumption (A.2.4 ) requires that the initial conditions of the yi,t-process and the x′i,t-processes are con-

tained in the data set employed for estimation (see, e.g., Gorgens, Han, and Xue, 2016b). In practice,

strengthening this assumption is a common way to ensure that the ‘constant correlated effects’ assumption

holds. Two different alternatives to strengthen Assumption (A.2.4 ) are: (1) explicitly assume that any

deviations of the yi,t- and the xi,t-processes from their long-term paths are not systematic over time or in-

dividuals (Blundell, Bond, and Windmeijer, 2001; Bun and Sarafidis, 2015); (2) assume a specific functional

form for the yi,t-process and the x′i,t-processes and further suppose that the processes run for a sufficiently

long period of time prior to sampling such that the impact of the initial conditions on the first period

contained in the sample disappears. The processes are then considered to be on their long-term paths (this

is illustrated in Section 6.1 of the Appendix).

The Assumptions (A.1.1 )-(A.1.3 ) and (A.2.2 ) allow deriving the following population orthogonality con-

ditions (Holtz-Eakin, Newey, and Rosen, 1988) for Equation (8),

E[yi,s ·∆ui,t] = 0, t = 3, . . . , T ; s = 1, . . . , t− 2 (9)

⇔ E[yis · (∆yi,t −∆yi,t−1ρ−∆x′i,tβ)] = 0,

where lags of the dependent variable – lagged at least two periods – can be used to instrument the endogenous

regressor ∆yi,t−1. When further lags of the first differenced dependent variable are contained in Equation

(8), the yi,t need to be lagged by the number of lags plus one period to be included as instruments.

Under the Assumptions (A.1.1 )-(A.1.3 ) and (A.2.2 ), Ahn and Schmidt (1995) derive additional population

orthogonality conditions for Equation (8), which are nonlinear in parameters,

E[ui,t ·∆ui,t−1] = 0, t = 4, . . . , T (10)

⇔ E[(yi,t − yi,t−1ρ− x′i,tβ) · (∆yi,t−1 −∆yi,t−2ρ−∆x′i,tβ)] = 0.

In contrast to the population orthogonality conditions in Equation (9), the population orthogonality con-

ditions in Equation (10) depend on unobservable model components, but can be rewritten and represented

in terms of observable model components. Rewriting the population orthogonality conditions reveals, that

they are quadratic in the lag parameter ρ and the parameter vector β. Note that, compared to Ahn and

Schmidt (1995), the reference period of Equation (10) is changed from T to t as in Pua, Fritsch, and Schnur-

bus (2019a) and Pua, Fritsch, and Schnurbus (2019b) to use the same reference period for all population

orthogonality conditions (see also Blundell, Bond, and Windmeijer, 2001; Bun and Kleibergen, 2014; Bun

and Sarafidis, 2015).

Imposing the Assumptions (A.1.1 )-(A.1.3 ) and (A.2.2 )-(A.2.3 ) yields the further linear population orthog-

6Gratitude is owed to Andrew A.Y. Pua for pointing this out.
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onality conditions (Arellano and Bover, 1995) for Equation (7)

E[∆yi,t−1 · ui,t] = 0, t = 3, . . . , T (11)

⇔ E[∆yi,t−1 · (yi,t − yi,t−1ρ− x′i,tβ)] = 0,

where instruments in differences ∆yi,t−1 are employed instead of the endogenous variable in levels. Two

comments on the Arellano and Bover (1995) population orthogonality conditions are in order: First, when in-

stead of the Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bover (1995) population orthogonality

conditions, only the Arellano and Bover (1995) population orthogonality conditions are used in estimation,

more population orthogonality conditions are available. Second, the linear population orthogonality con-

ditions given in Equation (11) render the nonlinear population orthogonality conditions in Equation (10)

redundant for estimation. The redundance of detailed in Section 6.2 of the Appendix.

Additional population orthogonality conditions for Equations (7) and (8) which are analogous to Equations

(9) and (11) may arise from the non-lagged dependent explanatory variables – depending on the assumptions

about the processes generating these variables one is willing to impose (see, e.g., Blundell, Bond, and

Windmeijer, 2001). Other population orthogonality conditions proposed in literature which are not discussed

here can be found in Ahn and Schmidt (1995), Hahn, Hausman, and Kuersteiner (2007), Han and Phillips

(2010), and Han, Phillips, and Sul (2014). In practice, any arbitrary assumption about population moments

can be imposed in order to derive suitable population orthogonality conditions.

2.2 Generalized method of moments

The brief discussion of the generalized method of moments and its properties in this section is tailored

towards the estimation of linear dynamic panel data models. More thorough treatments of extremum-

estimators in general and GMM estimation in particular are provided in a number of textbooks such as

Davidson and MacKinnon (1993, chapter 17), Hayashi (2000, chapters 3, 4, and 7), Arellano (2003, Ap-

pendix A), and Wooldridge (2010, chapters 8, 11, and 14). A detailed summary of the historic and recent

developments of the GMM methodology is provided by Hall (2015). Applications of GMM estimation of

linear dynamic panel data models can be found in a number of different fields such as finance (Lemmon,

Roberts, and Zender, 2008; Faulkender et al., 2012; Flannery and Watson Hankins, 2013), health eco-

nomics (Michaud and Van Soest, 2008), industrial organization (Nickell, 1996), labor economics (Arellano

and Bond, 1991), microeconomics (Banks, Blundell, and Lewbel, 1997; Blundell and Bond, 2000; Brown-

ing and Collado, 2007), and macroeconomics (Nason and Smith, 2008; Cavalcanti, Mohaddes, and Raissi,

2015). Software implementations are readily available in a number of different programming languages (see,

e.g., Arellano and Bond, 1988 for Gauss, Doornik, Arellano, and Bond, 2012 for Ox, Roodman, 2009a and

Kripfganz, 2018 for Stata, and Croissant and Millo, 2008 and Fritsch, Pua, and Schnurbus, 2019 for R).

GMM estimation uses the sample analogues of population orthogonality conditions derived from the model

assumptions to obtain parameter estimates. In particular, GMM estimation utilizes that the expectation of

the function δ(·) of some random variables and the parameter θ is zero (Hayashi, 2000, p.204). Generalizing
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this statement to the estimation of a vector of parameters θ and stacking multiple functions in δ(·) leads

to the expression

E [δ((Y,Z,V ),θ)] = 0, with θ ∈ Θ. (12)

In Equation (12), δ(·) denotes K functions of the J-dimensional parameter vector θ taken from the set of

admissible values Θ, the random variable Y , and the vectors containing multiple random variables Z and

V . The K × 1 vector 0 is the zero vector. In the context of Section 2.1, E [δ(·)] = 0 are the population

orthogonality conditions derived from the model assumptions given in Equations (9)-(11). The sample

analogue of Equation (12) can then be used to estimate the parameters ρ and β of the linear dynamic panel

data model in Equation (7). For a given sample, the uppercase letters are replaced by lowercase letters. The

K instruments (which encompass the exogenous and the predetermined explanatory variables from x) are

collected in the vector z and the endogenous explanatory variables from x are assigned to the vector v. The

parameter vector θ contains ρ and β. Typically, more equations are available than there are parameters to

be estimated and an aggregation and minimization scheme is required. The generalized method of moments

provides such a scheme7, where the aggregated Euclidean distance of the individual population orthogonality

conditions from zero is minimized. The GMM estimator θ̂N maximizes the objective function

Q̂N (θ) = − hN (θ)′ŴNhN (θ), (13)

where the K × K matrix ŴN governs the aggregation of the individual sample orthogonality conditions

and assigns a weight to each of the K conditions hN (θ). The hat on ŴN indicates that the weighting

matrix needs to be estimated beforehand, while the N index at the estimator θ̂N , the objective function

Q̂N (θ), the sample orthogonality conditions hN (θ), and the weighting matrix denote that these quantities

depend on the individual observations contained in the sample (see, e.g., Arellano, 2003, p.180). The sample

orthogonality conditions are defined as

hN (θ) =
1

N

N∑
i=1

δi((yi, z
′
i,v
′
i),θ). (14)

Under suitable assumptions, minimization of the GMM objective function in Equation (13) is equivalent

to other well-known estimators: When using only population orthogonality conditions which are linear in

parameters and simplifying the weighting matrix to an identity matrix, the GMM estimator is equivalent to

the generalized instrumental variables (GIV) estimator. When additionally restricting the instrument set

to one instrument per regressor to be instrumented, the GMM estimator is equivalent to the instrumental

variables (IV) estimator. The OLS estimator results, when restricting the weighting matrix to an identity

and when using the explanatory variables as instruments. Section 6.3 of the Appendix illustrates the

connection of the estimators starting from the minimization of the objective functions.

7Alternative approaches are based on correcting the bias of the LSDV estimator or maximizing a pseudo log-

likelihood function; analytic bias corrections are derived by Kiviet (1995) and Bun and Carree (2005); for approaches

maximizing the log-likelihood function of the first differenced model, see Hsiao, Pesaran, and Tahmiscioglu (2002)

and Hayakawa and Pesaran (2015); for a method based on setting up reduced form equations for the first and second

moments of the observed parameters and imposing covariance restrictions in estimation, see Moral-Benito (2013).
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3 Asymptotic properties

3.1 Identification

In GMM estimation of linear dynamic panel data models, point identification (or global identification)

is sometimes assumed to establish consistency of the estimator (see, e.g., Newey and McFadden, 1994,

Theorem 2.1). Point identification means that the objective function possesses a unique maximum at the

true population parameter θ0, while set identification refers to the case where maximizing the objective

function leads to multiple solutions (for an excellent summary of identification concepts see, e.g., Lewbel,

2019). In the context of the GMM sample objective function denoted by Equation (13), overidentification

is present when more population orthogonality conditions K are available than there are parameters to be

estimated J . In the exactly identified setting, as many population orthogonality conditions are available

as there are parameters (K = J) (see Arellano, 2003, p.180). In the underidentified case (K < J), the J

model parameters cannot be recovered without imposing additional restrictions on the parameter vector.

Therefore, a necessary (but not sufficient) condition for identification is that the number of population

orthogonality conditions is at least as large as the number of model parameters (K ≥ J). This condition

is referred to as the ‘order condition for identification’ (see Hayashi, 2000, p. 202). Depending on the type

of population orthogonality conditions available for estimation, sufficient conditions for identification can

be stated based on the objective function (13) maximized in GMM estimation. This concept is utilized by

Newey and McFadden (1994) and labelled ‘extremum based identification’ by Lewbel (2019).

For point identification of the parameters ρ and β in Equation (7), consider the Assumptions (A.1.1 )-

(A.1.3 ) on the model structure of the linear dynamic panel data model; further impose the Assumptions

(A.2.1 )-(A.2.4 ). All population orthogonality conditions available for estimation from these assumptions

are linear in parameters. Additionally impose the further technical conditions.

(A.3.1 ) rank(E[Z ′X]) = J .

(A.3.2 ) plimN→∞ ŴN = W , with the K ×K matrix W being symmetric and positive definite8.

(A.3.3 ) The second moments σ2
y1 , σ

2
x1
, σ2
a, σ

2
ε are assumed to be positive and finite; σy1a and σx1a are

assumed to be finite.

(A.3.4 ) T fixed and N →∞, such that T/N → 0.

(A.3.5 ) The data (yi, zi,vi) are independently distributed across individuals.

Assumption (A.3.1 ) is the ‘rank condition for identification’ (see Hayashi, 2000, p.200-202). Since the

largest rank a matrix can take is defined to be the minimum of its column and row rank, the assumption

can only hold, when the ‘order condition for identification’ is fulfilled and there are at least as many

8When l′ŴN l > 0 holds for any arbitrary (real) non-zero column vector l, all eigenvalues of ŴN are strictly

positive and the matrix is said to be positive definite (see Golub and Van Loan, 2012, p.159). Note that all vectors

and matrices considered in this text are assumed to have real entries only.
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population orthogonality conditions as there are parameters to be estimated. By Assumption (A.3.2 ), the

weighting matrix ŴN is assumed to converge to a nonstochastic symmetric positive definite matrix W .

Assumption (A.3.3 ) ensures that the second moments of the initial conditions of the yi,t- and the xi,t-

process, the unobservable individual-specific effects, the idiosyncratic remainder component, and the cross

moments of the initial conditions and the unobservable individual-specific effects are finite. The assumption

is imposed, as identification failures may be attributable to these second moments (see, e.g., Bun and

Sarafidis, 2015; Gorgens, Han, and Xue, 2016b). Limiting the time series dimension T to be finite while the

cross section dimension tends to infinity by Assumption (A.3.4 ) provides the setting originally proposed for

GMM estimation of linear dynamic panel data models by Arellano and Bond (1991) and Ahn and Schmidt

(1995). The Assumption (A.3.5 ) that the data are independently distributed across individuals allows for

dependence of the model components across time and (e.g.,) for the presence of unobservable time-specific

effects when considering a more general setting than the one in Equation (7).

The implications of the Assumptions (A.3.1 )-(A.3.5 ) can be illustrated in the context of GMM estimation:

Assume that the Assumptions (A.1.1 )-(A.1.3 ) and (A.2.1 )-(A.2.4 ) hold and that the parameters ρ and β of

the linear dynamic panel data model in Equation (7) are estimated by GMM. When using the Assumptions

(A.3.4 ) and (A.3.5 ) and employing the law of large numbers, it can be shown that the sample orthogonality

conditions stated in Equation (14) converge in probability to the true population orthogonality conditions

(see Newey and McFadden, 1994, p.2126):

plim
N→∞

hN (θ) = h0(θ) = E[δ((Y,Z,V ),θ)],

Under Assumption (A.3.2 ), the sample objective function in Equation (13) converges in probability to the

true objective function (see Newey and McFadden, 1994, p.2126):

plim
N→∞

−hN (θ)′ŴNhN (θ) = −h0(θ)′Wh0(θ).

As illustrated in Section 6.3 of the appendix, computing the first derivative of the objective function and

solving for θ yields the closed form solution for the GMM estimator when only linear population orthogo-

nality conditions are used in estimation

θ̂ = N(X ′ZWZ ′X)−1 1

N
X ′ZWZ ′y. (15)

A unique solution to this expression exists, when the matrix product X ′ZWZ ′X is invertible. In Equation

(15), the vector y contains the dependent variables, the matrix X collects the lagged dependent and

non-lagged dependent explanatory variables, and the matrix Z contains the instruments. Depending on

the population orthogonality conditions employed in estimation, all of these variables may be included in

levels and/or first differences. Point identification of the parameters in Equation (7) by the GMM estimator

employing only linear population orthogonality conditions can then be established with the following lemma.

Lemma 1 (Point Identification of the GMM estimator)

Assume the Assumptions (A.1.1)-(A.1.3), (A.2.1)-(A.2.4), and (A.3.1)-(A.3.5) hold: Maximization of the
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GMM objective function in Equation (13) for the GMM estimator employing only linear population orthog-

onality conditions then yields a unique solution at the true population parameter.

Proof. By Assumption (A.3.2 ), the K ×K weighting matrix ŴN converges in probability to a symmetric

positive definite matrix W . Due to Assumption (A.3.1 ), the K × J matrix product Z ′X converges in

probability to a matrix of full column rank. When utilizing the Slutzky theorem together with Theorem

4.2.1 of Golub and Van Loan (2012), it follows that the matrix productX ′ZWZ ′X converges in probability

to a positive definite K × K matrix of full column rank. As a result, the probability limit of the matrix

product X ′ZWZ ′X is invertible and the closed form of the GMM estimator given in Equation (15)

possesses a unique solution (in probability).

Using the Assumptions (A.1.1 )-(A.1.3 ), y can be substituted by Xθ0 + u in Equation (15), where θ0 is

the vector of true population parameters and u may contain unobservable composite error terms in levels

and/or first differences. Then

θ̂ = N(X ′ZWZ ′X)−1 1

N
X ′ZWZ ′(Xθ0 + u)

⇔ = θ0 +N(X ′ZWZ ′X)−1 1

N
X ′ZWZ ′u.

Under the Assumptions (A.2.2 )-(A.2.4 ), it holds that

plim
N→∞

1

N
·Z ′u = 0.

From this result, it follows that

plim
N→∞

θ̂ = θ0.

Non-orthogonality between the instruments in Z and the explanatory variables in X and orthogonality of

the instruments and the composite error terms u holds due to Assumptions (A.1.1 )-(A.1.3 ) and (A.2.1 )-

(A.2.4 ). Note that Lemma 1 departs from Lemma 2.3 of Newey and McFadden (1994) as it avoids the

assumption that h0(θ0) = 0 and Wh0(θ) 6= 0 for θ 6= θ0. Instead, similar to Hayashi (2000, p.206)

and Windmeijer (2005), a more restrictive assumption is imposed on the weighting matrix: Assumption

(A.3.2 ) requires that the weighting matrix is positive definite, while Newey and McFadden (1994) only

impose positive semi-definiteness. The latter generality seems to have no immediate relevance for empirical

applications.

Results on identification when linear and nonlinear population orthogonality conditions such as those stated

in Equations (9)-(11) are employed in GMM estimation of linear dynamic panel data models are derived

in two recent papers. Both papers consider a simplified version of the linear dynamic panel data model

in Equation (7) and omit the non-lagged dependent explanatory variables. Bun and Kleibergen (2014)

investigate a number of particular (mean stationary) worst-case DGPs and show that identification may fail

under the population orthogonality conditions given in Equation (11). Corollary 1 of their paper illustrates

that under additional assumptions, the population orthogonality conditions stated in Equations (9) and (10)
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or the population orthogonality conditions stated in Equations (9) and (11) identify the model parameter

– even when the individual population orthogonality conditions fail to provide point identification. The

additional assumptions are that the variance of the initial unobservable composite error term tends to zero

as the true lag parameter tends to one and that the variance of the product of the initial yi,t and the

unobservable composite error component ui,t is the variance of the product of the terms. Gorgens, Han,

and Xue (2016b) utilize a set of assumptions which is similar to the assumptions considered in this paper. In

particular, they impose the Assumptions (A.1.1 )-(A.1.3 ), (A.2.1 )-(A.2.2 ), (A.2.4 ), and (A.3.4 )-(A.3.5 ).

They also impose the Newey and McFadden (1994) version of Assumption (A.3.2 ) of a positive semi-

definite weighting matrix W , while no rank condition similar to Assumption (A.3.1 ) is stated. The authors

investigate identification of the GMM estimator when the linear population orthogonality conditions given

in Equation (9) and the nonlinear population orthogonality conditions from Equation (10) are employed in

estimation. In their Theorem 1, they show that the linear population orthogonality conditions in Equation

(9) fail to identify the lag parameter for some DGPs; they further show in their Theorem 2, that adding

the nonlinear population orthogonality conditions in Equation (10) provides at least partial identification of

the lag parameter – as long as the dependent variable exhibits variation over time. In their Theorem 3 they

characterize particular settings (DGPs) in which the lag parameter is unidentified and partially identified.

A potential avenue for future research is to generalize the results of Gorgens, Han, and Xue (2016b) to a

setting which includes non-lagged dependent explanatory variables.

3.2 Consistency

Consistency of the GMM estimator requires that θ̂ converges in probability to θ0. Note that consistency of

the GMM estimator is already established in the proof of Lemma 1. Nevertheless, since several consistency

theorems of varying generality are available in the literature, a version is given here. Theorem 4.1.1 in

Amemiya (1985) and Theorem 2.1 in Newey and McFadden (1994) treat extremum estimators, Theorem

2.6 in Newey and McFadden (1994) covers GMM estimators employing i.i.d. data, while Propositions 3.1

and 7.7 in Hayashi (2000) consider linear and nonlinear GMM estimators based on data which are jointly

stationary and ergodic. Consistent estimation of the model parameters in Equation (7) by the GMM

estimator can be established by the following theorem, which is similar to Theorem 2.6 in Newey and

McFadden (1994).

Theorem 2 (Consistency of the GMM estimator)

Suppose the Assumptions (A.1.1)-(A.1.3), (A.2.1)-(A.2.4), and (A.3.1)-(A.3.5) hold. Further suppose:

(i) The population orthogonality conditions h0(θ) = E[δ((Y,Z,V ),θ)] = 0, for θ = θ0; for all θ 6= θ0,

E[δ((Y,Z,V ),θ)] 6= 0.

(ii) The set of admissible values Θ is a compact subset of RJ , where θ,θ0 ∈ Θ.

(iii) The functions δ((Y,Z,V ),θ) are continuous and measurable functions in the parameter vector θ for

the data (yi, zi,vi).
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(iv) It holds that E[supθ∈Θ ||δ((Y,Z,V ),θ)||] <∞.

Under these conditions, plimN→∞ θ̂N = θ0.

Proof. Condition (i) requires point identification of the parameter vector in Equation (7) by the GMM

estimator, which holds under the given set of assumptions (see Lemma 1 and the corresponding proof).

Employing the compactness condition for Θ in (ii), the continuity and measurability condition in (iii), and

the ‘dominance’ condition (see Hayashi, 2000, p.468) in (iv), the sample orthogonality conditions hN (θ) are

bounded by h0(θ) and it can be shown that:

plim
N→∞

(
sup
θ∈Θ
||hN (θ)− h0(θ)||

)
= 0.

As a consequence, hN (θ) converge uniformly in probability to h0(θ) over Θ. Continuity of h0(θ) over Θ

follows immediately and the sample objective function Q̂N (θ) in Equation (13) and the population objective

function Q0(θ) are also continuous and measurable functions in θ for the data (see Lemma 2.4 in Newey

and McFadden, 1994 and Lemma 7.2 in Hayashi, 2000).

It can then be shown by the Triangle and Cauchy-Schwarz Inequalities (see Newey and McFadden, 1994,

p.2132) that the sample objective function converges uniformly in probability to the true objective function

plim
N→∞

(
sup
θ∈Θ
|Q̂N (θ)−Q0(θ)|

)
= 0.

When point identification holds, the true population parameter θ0 uniquely maximizes the population

objective function and consistency of the GMM estimator follows immediately.

Condition (i) requires that the population orthogonality conditions hold exactly at θ0 only. Condition

(ii) requires that bounds for the vector θ0 are known. This assumption is not uncommon in theoretical

work (see, e.g., Arellano and Bond, 1991; Ahn and Schmidt, 1995; Alvarez and Arellano, 2003; Gorgens,

Han, and Xue, 2016a) – in practice, though, knowledge about the bounds of the parameter vector is

typically not available. Alternatively, consistency can be established without condition (ii) by using Theorem

2.7 in Newey and McFadden (1994): If the objective function is concave, the conditions (ii)-(iv) can be

replaced by the condition that E[δ(·)] exists and is finite. This is satisfied when all population orthogonality

conditions employed in GMM estimation are linear in parameters. To provide an example, consider the

second derivative of the objective function in Equation (13) with respect to θ: Under the Assumptions

(A.1.1 )-(A.1.3 ), (A.2.1 )-(A.2.4 ), and (A.3.1 )-(A.3.5 ), all entries of the matrix resulting from the matrix

product −2 · X ′ZWZ ′X are negative, rendering the objective function strictly concave with a unique

maximum at θ0.

For GMM estimators employing nonlinear population orthogonality conditions dropping the compactness

condition (ii) complicates matters since the objective function may not be strictly concave (Hayashi, 2000,

p.468). In practice, this can be resolved by simply assuming identification (see, e.g., Gorgens, Han, and

Xue, 2016a) or by relying on local identification arguments. A sufficient condition for identification in a

‘small enough’ neighborhood around the true population parameter requires: First, the population orthog-

onality conditions are continuously differentiable in θ; second, the first derivative of the expectation of the

14



population orthogonality conditions equals the expectation of the derivative of the population orthogonality

conditions (i.e., ∂/∂θ E[δ((Y,Z,V ),θ)] = E[∂/∂θ δ((Y,Z,V ),θ)]); third, the rank of the matrix of popu-

lation orthogonality conditions aggregated by a suitable weighting matrix W , rank(W ·E[δ((Y,Z,V ),θ)]),

is equal to the number of parameters that are estimated (see Rothenberg, 1971 and the summary by Newey

and McFadden, 1994, p.2127).

Results on consistency of the GMM estimator without the Assumption (A.3.4 ) that the time series dimension

is held fixed are derived by Alvarez and Arellano (2003), who consider a GMM estimator based on the linear

population orthogonality conditions in Equation (9) and impose the additional assumption of finite moments

up to order four for the unobservable idiosyncratic remainder component and the individual-specific effects.

Under the rate condition (log T )2/N → ∞ for the time series dimension and the cross section dimension,

they establish consistency of the GMM estimator based on linear population orthogonality conditions.

Hayakawa (2015) investigates the GMM estimator based on the linear population orthogonality conditions

in Equations (9) and (11) and establishes consistency of the GMM estimator when N and T are large under

the additional assumption of finite moments of the unobservable idiosyncratic remainder components and

the individual-specific effects up to order eight. Gorgens, Han, and Xue (2016a) do not impose the ‘constant

correlated effects’ assumption and derive the asymptotic distribution for a GMM estimator based on the

linear and nonlinear population orthogonality conditions in Equations (9) and (10).

3.3 Asymptotic normality

When estimating θ by GMM, asymptotic normality can be established based on a theorem, which is similar

to Theorems 3.2 and 3.4 in Newey and McFadden (1994) and Proposition 7.10 in Hayashi (2000).

Theorem 3 (Asymptotic normality of the GMM estimator)

Suppose the Assumptions (A.1.1)-(A.1.3), (A.2.1)-(A.2.4), and (A.3.1)-(A.3.5) hold and the GMM estima-

tor θ̂ is identified and consistent. Further assume:

(i) The vector of true population parameters θ0 is in the interior of Θ.

(ii) The functions δ((Y,Z,V ),θ) are continuously differentiable in a neighborhood N of θ0, with proba-

bility approaching one.

(iii) It holds that E[δ((Y,Z,V ),θ0)] = 0 and E[||δ((Y,Z,V ),θ0)||2] <∞.

(iv) It holds in a neighborhood N of θ0 that E[supθ∈N ||∂/∂θ δ((Y,Z,V ),θ)||] <∞.

(v) The Jacobian matrix of the population orthogonality conditions

G = E[∂/∂θ δ((Y,Z,V ),θ0)] is of full column rank.

Then, the GMM estimator θ̂ is asymptotically normal, with

√
N(θ̂ − θ0)

d−→N (0, (G′WG)−1G′WΩWG(G′WG)−1), where (16)

Ω = E[δ((Y,Z,V ),θ0) · δ((Y,Z,V ),θ0)′]. (17)
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Proof. Calculating the first derivative of the GMM sample objective function in Equation (13) with respect

to the parameter vector and dividing by 2 yields the first order conditions

∂Q̂N (θ)

∂θ

∣∣∣∣
θ=θ̂

= −GN (θ̂)′WhN (θ̂)
!
= 0, (18)

where GN (θ̂) is the Jacobian matrix containing the first derivatives of the sample orthogonality conditions

with respect to θ evaluated at θ̂. By conditions (i)-(iii), the first order conditions hold with probability

approaching one. The sample orthogonality conditions hN (θ̂) can be expanded around the vector of true

population parameters θ0 with the Mean Value Theorem:

hN (θ̂) = hN (θ0) +GN (θ̄)(θ̂ − θ0), (19)

where the vector θ̄ contains the element-wise means of the vectors θ̂ and θ0 (see Hayashi, 2000, p.470-

471 and p.479). Plugging the expansion in Equation (19) into the first order condition in Equation (18),

multiplying both sides of the equation with
√
N , and solving for (θ̂ − θ0) yields

√
N(θ̂ − θ0) = −(GN (θ̂)′WGN (θ̄))−1 ·GN (θ̂)′W · 1√

N

N∑
i=1

δi((yi, zi,vi),θ0). (20)

Based on condition (iv), the first derivatives of the sample orthogonality conditions evaluated at θ̂ and θ̄

converge in probability to the first derivative of the population orthogonality conditions evaluated at the

vector of true population parameters, G (see Newey and McFadden, 1994, p.2148). Using the Slutzky

theorem on the matrix product of all but the last term on the right-hand side of Equation (20) reveals that

plim
N→∞

−(GN (θ̂)′WGN (θ̄))−1 ·GN (θ̂)′W = −(G′WG)−1G′W ,

while the last term converges in probability to the true objective function (see Section 3.1 and Newey and

McFadden, 1994, p.2126). Taking expectations of the probability limit of Equation (20) yields the zero

vector by the Assumptions (A.1.1 )-(A.1.3 ), (A.2.1 )-(A.2.4 ), and (A.3.1 )-(A.3.5 ). Under these assump-

tions, identification, and consistency of the GMM estimator, a Central Limit theorem can be employed to

establish the result in Equation (16), when the true variance covariance matrix of the population orthogo-

nality conditions is defined as Ω. The matrix governs the variance covariance properties of the individual

population orthogonality conditions employed in estimation – within and across the types.

The proof of this Theorem is similar to the one sketched below Theorems 3.2 and 3.4 in Newey and McFadden

(1994) and the text preceding Proposition 7.10 in Hayashi (2000). Condition (i) requires that the vector

of true population parameters θ0 ∈ Θ is not located at the boundary of the set of admissible values Θ.

Condition (ii) ensures that the first derivative of the population orthogonality conditions is defined in the

neighborhood of the vector of true population parameters. Condition (iii) requires that the population

orthogonality conditions hold at the vector of true population parameters and that the squared Euclidean

distance of the population orthogonality conditions from zero is finite. Condition (iv) requires that the

Euclidean distance of the first derivative of the population orthogonality conditions can be bounded in

expectation in a neighborhood N . Condition (v) establishes that the first derivative of the population
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orthogonality conditions possesses full column rank and ensures invertibility of (G′WG) (see Theorem

4.2.1 in Golub and Van Loan, 2012). When identification and consistency of the GMM estimator can be

established, asymptotic normality follows when the conditions (i)-(v) are fulfilled (Newey and McFadden,

1994, p.2148).

A lower bound for the asymptotic variance covariance matrix of the GMM estimator can be derived based

on the ‘efficiency condition’ ŴN
p−→ Ω−1 (see Hayashi, 2000, p.481). This condition requires that the

estimated weighting matrix is a consistent estimator for the true variance covariance matrix of the population

orthogonality conditions. In this case the formula for the asymptotic variance covariance matrix of the GMM

estimator θ̂ reduces to (G′WG)−1. Alternatively, the formula can also be expressed as (G′Ω−1G)−1.

Calculating either expression for the asymptotic variance covariance matrix involves replacing G and W or

Ω−1 by suitable estimates.

Employing population orthogonality conditions in GMM estimation which are nonlinear in parameters

may provide partial identification, where the linear moment conditions do not identify the lag parameter

(Gorgens, Han, and Xue, 2016b). However, partial identification means that there are multiple possible

solutions and resolving partial identification requires selecting among the different possible solutions. This

selection may cause the GMM estimators to have nonstandard asymptotic distributions (Gorgens, Han,

and Xue, 2016a). A selection rule to resolve partial identification that does not require using nonstandard

asymptotics is provided by Pua, Fritsch, and Schnurbus (2019a) and Pua, Fritsch, and Schnurbus (2019b)

for an IV estimator which employs only nonlinear moment conditions. Note that as Gorgens, Han, and

Xue (2016a) and Pua, Fritsch, and Schnurbus (2019a) and Pua, Fritsch, and Schnurbus (2019b) investigate

versions of Equation (7) without non-lagged dependent explanatory variables, generalizing their results to

the functional form given in Equation (7) is a potential topic for future research.

4 Specification testing and inference

4.1 Standard errors

Closely related to establishing identification, consistency, and asymptotic normality for the linear dynamic

panel data model are assessing the validity of the model specification and carrying out inference for the vector

of population parameters. Both aspects require the computation of standard errors, which are available by

taking the square root of the main diagonal of an estimate of the asymptotic variance covariance matrix in

Equation (16), where the matrices G and W are replaced by suitable estimates. A readily available estimate

for G is the corresponding sample analogue evaluated at the GMM estimate of the parameter vector GN (θ̂).

Different propositions exist in the literature for estimating the weighting matrix W which are directed

towards reflecting the ‘efficiency condition’ mentioned in the preceding section. The suggestions for ŴN

are typically derived from the model assumptions and the population orthogonality conditions employed in

GMM estimation (see, e.g., Arellano and Bond, 1991; Blundell, Bond, and Windmeijer, 2001; Kiviet, 2007)

and the number of estimation steps. In one-step GMM estimation, the propositions aim at obtaining an
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initial consistent estimate of the inverse of the variance covariance matrix of the population orthogonality

conditions Ω̂
−1

, while the goal in two-step and multiple-step GMM estimation is to obtain more efficient

estimates. Selected suggestions for estimating the weighting matrix ŴN are sketched in Fritsch, Pua, and

Schnurbus (2019).

Under the conditions stated in Theorem 4.5 in Newey and McFadden (1994), the asymptotic variance

covariance matrix given in Equation (16) can be estimated consistently. A similar theorem is given here.

Theorem 4 Suppose the conditions stated in Theorem 3 are fulfilled and the GMM estimator is identified,

consistent, and asymptotically normal. This already implies the following conditions:

(i) The functions δ((Y,Z,V ),θ) are continuous at θ0 with probability one.

(ii) In a neighborhood N of θ0 it holds that E[supθ∈N ||δ((Y,Z,V ),θ)||2] <∞.

Then the asymptotic variance covariance matrix of the GMM estimator θ̂ can be estimated consistently by

̂Avar(θ̂) = (Ĝ
′
ŴNĜ)−1Ĝ

′
ŴN Ω̂ŴNĜ(Ĝ

′
ŴNĜ)−1. (21)

Proof. By applying Lemma 4.3 in Newey and McFadden (1994) to δ(·) · δ(·)′, it can be established that

plimN→∞ Ω̂ = Ω. Employing the result that GN (θ̂) converges in probability to G as the sample size tends

to infinity from Theorem 3 and the corresponding proof, Assumption (A.3.2 ) that plimN→∞ ŴN = W ,

and the Slutzky theorem it follows that

plim
N→∞

(Ĝ
′
ŴNĜ)−1Ĝ

′
ŴN Ω̂ŴNĜ(Ĝ

′
ŴNĜ)−1 = (G′WG)−1G′WΩWG(G′WG)−1.

In finite samples, there may be pronounced differences between the asymptotic standard errors and the

standard errors obtained by two- or multiple-step GMM estimation of the model parameters (Arellano

and Bond, 1991). The reason for this is that the estimated variance covariance matrix of the population

orthogonality conditions depends on estimated parameters which may lead to a substantial down-ward bias

in the standard errors. An indication of a down-ward bias of the standard errors is when the standard

errors obtained from one-step GMM estimation are substantially higher than standard errors obtained from

two- or multiple-step GMM estimation. Finite sample corrections are available to adjust the standard

errors of the parameter estimates when only linear moment conditions are employed in two-step estimation

(Windmeijer, 2005) and multiple-step estimation (Windmeijer, 2000). An alternative to reporting corrected

standard errors proposed by Arellano and Bond (1991) is to report the one-step standard errors instead of

the two- or multiple-step standard errors.

The derivation of the correction of the standard errors by Windmeijer (2005) considers GMM estimation of

linear dynamic panel data models employing only linear population orthogonality conditions. Nevertheless,

the implementation of GMM estimation of linear dynamic panel data models based on nonlinear population

orthogonality conditions available in standard software (Kripfganz, 2018) also utilizes the correction to

adjust the standard errors. According to Windmeijer (2005), it is not clear wether the correction improves
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the estimation of the standard errors in this setting. Comparing the corrected two-step standard errors with

one-step and bootstrapped alternatives for selected DGPs may be of practical relevance and is a possible

topic for future research.

4.2 Specification testing

Different specification tests are available to assess the validity of the model specification after GMM esti-

mation of the linear dynamic panel data model in Equation (7). The idea behind specification tests is to

empirically check the assumptions imposed in estimation or their implications and derive a test statistic for

a pre-specified confidence level under a distinct null hypothesis. Test results may then cast doubt on some

of the assumptions used in estimation. The specification tests outlined in this section are based on a GMM

estimator which is asymptotically normal.

Serial correlation tests A specification test which is often employed in practice are the m2−statistics

proposed by Arellano and Bond (1991) and generalized to higher orders j in Arellano (2003). The underlying

idea is to check the implication of Assumption (A.2.2 ) that there should be no serial correlation above

order one in the first differences of the unobservable idiosyncratic remainder components. First order serial

correlation is introduced by first differencing Equation (7) to eliminate the unobservable individual-specific

effects (for a derivation see Section 6.4 of the Appendix). The mj−statistics are based on considering the

suitably scaled average j-th order autocovariance of the unobservable idiosyncratic remainder components.

Tmj
=

r̂j
σ̂r̂j

, with Tmj

a∼ N (0, 1), (22)

where r̂j is the estimated average j-th order autocovariance of the residuals and σ̂r̂j is the corresponding

standard error. For the linear dynamic panel data model in Equation (7), the former term can be obtained

from

rj =
1

T − 3− j
·

T∑
t=4+j

rt,j , with rt,j = E(∆si,t∆si,t−j),

where r̂t,j =
1√
N
· ŝ′t ŝt−j .

The r̂t,j are a scaled version of the estimated average j-th order autocovariance of the residuals (see Arellano

and Bond, 1991; Arellano, 2003; Doornik, Arellano, and Bond, 2012) and the column vectors ŝt and ŝt−j

contain the residuals obtained from GMM estimation. Note that the dependence on the estimation step

is suppressed in this paragraph to keep the exposition general. Plugging in one-, two-, or multiple-step

estimation results is straightforward. The standard error of the estimated j-th order autocovariance of the

residuals is available by taking the square root of

σ̂2
r̂j =

1

N
·ŝ′t−j Ω̂(ŝ)ŝt−j − 2 · ŝ′t−j X(X ′ZŴNZ

′X)−1X ′ZŴNZ
′Ω̂(ŝ)ŝt−j +

ŝ′t−j XΩ̂(θ̂)X ′ŝt−j ,

19



where Ω̂(ŝ) is the estimated variance covariance matrix of the residuals and Ω̂(θ̂) is the corresponding matrix

for the estimated parameters. The test statistic is distributed asymptotically standard normal under the

null hypothesis that there is no serial correlation of a pre-specified order in the first differenced unobservable

idiosyncratic remainder component (see Arellano and Bond, 1991, and Arellano, 2003, p.121-123). A large

value of the test statistic leads to a rejection of the null hypothesis which may be interpreted as an indication

that the model is misspecified.

An alternative test which allows to test for serial correlation in the first differenced idiosyncratic remainder

component of order 2 up to a particular order jointly is mentioned in Arellano (2003, p.122) and proposed

by Yamagata (2008).

Overidentifying restrictions tests A further specification test for GMM estimation of linear dy-

namic panel data models are the overidentifying restrictions tests proposed by Sargan (1958) and Hansen

(1982), where the former Sargan test employs the one-step weighting matrix and residuals and the latter J-

test uses their two-step counterparts. The tests originate from the fact, that there are typically substantially

more population orthogonality conditions K than there are parameters to be estimated J , which allows to

assess the validity of these K−J overidentifying conditions. The null hypothesis is that the overidentifying

restrictions are valid.

TS = n · ŝ′1ZŴ 1Z
′ŝ1 · σ̂−2

1 (23)

represents the test statistic of the Sargan test (see Sargan, 1958; Arellano and Bond, 1991; Doornik, Arellano,

and Bond, 2012). When the GMM estimator θ̂ is distributed asymptotically normal, when the idiosyncratic

remainder components exhibit conditional homoscedasticity, and under the null, the test statistic is asymp-

totically χ2-distributed with K − J degrees of freedom (see Hayashi, 2000, p.227-228).

The test statistic corresponding to the J−test (see Hansen, 1982; Arellano and Bond, 1991; Doornik,

Arellano, and Bond, 2012) is

TH = n · ŝ′2ZŴ 2Z
′ŝ2. (24)

Under the null, the test statistic is asymptotically χ2-distributed with K − J degrees of freedom when the

GMM estimator θ̂ exhibits asymptotic normality and when the conditions (i) and (ii) of Theorem 4 hold.

A rejection of the null hypothesis in the two overidentifying restriction tests casts doubt on the instru-

ment set employed in estimation and/or the model assumptions. Two comments on the overidentifying

restrictions tests are in order: First, both tests may have low power when the number of overidentifying

restrictions is large (Bowsher, 2002; Windmeijer, 2005); Second, the Sargan test statistic is inconsistent

when heteroscedasticity is present (see Roodman, 2009a).

Alternatively, certain subsets of overidentifying restrictions can be tested by computing the test statistic

for each set of population orthogonality conditions K1 and K2 (K1 > K2 and K2 > J) and differencing the

test statistics. The difference is then asymptotically χ2-distributed with K1 −K2 degrees of freedom. This

latter version of the tests is also referred to as ‘difference-in-Hansen’/‘difference-in-Sargan’ test (Roodman,

2009), ‘incremental Hansen’/‘incremental Sargan’ test (Arellano, 2003), or C-statistic (Hayashi, 2000).

20



Underidentification tests A related type of specification test are tests for underidentification. In the

underidentification test proposed by Arellano, Hansen, and Sentana (2012), the structural form is augmented

and the restrictions obtained from augmenting the model are then tested with conventional overidentifying

restrictions tests. When these overidentifying restrictions are not rejected, this is interpreted as an indication

that the model parameters are not identified. Arellano, Hansen, and Sentana (2012) sketch two approaches

to carry out the test. The first is based on evaluating parameters over a discrete grid of points, while the

second involves fitting a spline. The details and the implementation of both approaches are not discussed in

greater detail here, as Windmeijer (2017) proposes an alternative testing procedure for linear instrumental

variable models which is straightforward to implement and simple to compute with the methodology already

outlined in this paper. For GMM estimation of linear dynamic panel data models, the underidentification

test of Windmeijer (2017) basically involves two GMM estimations. First, Equation (7) is estimated by

GMM. Subsequently, a model is estimated by GMM in which one of the instruments employed in the first

estimation is used as the dependent variable and all other instruments are used as explanatory variables.

The J-test statistic for the second estimation represents the test statistic of the underidentification test.

The null hypothesis of the test is that the model is underidentified and a rejection of the null hypothesis is

interpreted as an indication that underidentification of the model parameters may not be an issue.

Tests for structural breaks Another type of specification test are tests for structural breaks. In

linear dynamic panel data models as stated in Equation (7) the assumption is imposed that the unobservable

individual-specific effects and the coefficients attributable to the explanatory variables remain constant over

time (and individuals). When the slope coefficient and/or the individual-specific effect varies over time,

this may be referred to as a structural break. The presence of a structural break is an indication that the

linear dynamic panel data model is misspecified. A test to detect a single structural breakpoint is proposed

by De Wachter and Tzavalis (2012), where the null hypothesis is that there is no breakpoint. Depending

on if the breakpoint is known or unknown, two different versions of the test exist with different asymptotic

distributions of the test statistic. Compared to the assumptions imposed in this paper, De Wachter and

Tzavalis (2012) do not explicitly impose the ‘constant correlated effects’ assumption and exclude the unit

root case (i.e., |ρ| < 1) in their derivation of the test statistic.

Further specification tests Other conditions besides the ones addressed by the previously mentioned

tests also deserve attention in GMM estimation of the linear dynamic panel data model in Equation (7)

and may be checked by specification tests. Among these are: (i) checking the positive definiteness of the

weighting matrix (an empirical check may involve a singular value decomposition of ŴN ); (ii) test for the

presence of unobserved heterogeneity (see, e.g., Arellano, 2003, p.124-125 and Harris, Mátyás, and Sevestre,

2008); (iii) assessing the validity of the ‘constant correlated effects’ assumption (and deviations thereof), as

the assumption ensures that all population orthogonality conditions employed in GMM estimation are linear

in parameters (Blundell, Bond, and Windmeijer, 2001). The assumption of ‘constant correlated effects’ may

be tested by a ‘difference-in-Hansen’ or a ‘difference-in-Sargan’ test (see, e.g., Arellano, 2003, p.123-124 and
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Bun and Sarafidis, 2015), where the unrestricted model is based on the population orthogonality conditions

in Equations (9) and (11) and the restricted model is based on those in Equation (9) only. Extending the

specification tests available for linear dynamic panel data models and investigating tests in either of these

directions which are straightforward to implement and easy to compute may constitute other worthwhile

future research endeavours.

4.3 General hypothesis testing

The discussion on hypothesis testing in this section is kept brief and treats the Wald test only. Comple-

mentary overviews which also treat Likelihood Ratio and Lagrange Multiplier tests are provided in Newey

and McFadden (1994, p.2217-2226), Hayashi (2000, p.211-214 and 487-495), and Davidson and MacKinnon

(1993, p.617-619). Testing general and potentially nonlinear hypotheses about the population parameter

vector after GMM estimation of the linear dynamic panel data model denoted by Equation (7) employs

that the GMM estimator is distributed asymptotically normal and that the variance covariance matrix of

θ̂ can be estimated consistently. These properties can be established by the Assumptions (A.1.1 )-(A.1.3 ),

(A.2.1 )-(A.2.4 ), (A.3.1 )-(A.3.5 ), and the conditions stated in Theorem 3. A general null hypothesis and a

corresponding alternative are

H0 : R(θ0) = 0, (25)

H1 : R(θ0) 6= 0,

whereR(θ0) are functions expressing the C restrictions imposed on the vector of true population parameters

and 0 is a C × 1 zero vector. The first derivative of the functions R(θ0) with respect to θ is required to

possess a rank of C, which means that the hypotheses contain no redundant restrictions (see Newey and

McFadden, 1994, p.2217-2218 and Hayashi, 2000, p.487-488).

The null hypothesis can be tested against the alternative with the Wald test. Hayashi (2000) derives the

corresponding test statistic based on rewriting the mean value expansion of NR(θ̂) around θ0 as a first-

order Taylor series expansion and combines this expression with the first order Taylor series expansion of
√
N(θ̂ − θ0). Additionally utilizing the requirement of asymptotic normality of the GMM estimator θ̂ and

replacing all terms referring to the population with their sample analogues yields the following expression

for the Wald statistic

TW = NR(θ̂)′

(
∂R(θ̂)

∂θ
(Ĝ
′
ŴNĜ)−1Ĝ

′
ŴN Ω̂ŴNĜ(Ĝ

′
ŴNĜ)−1 ∂R(θ̂)

∂θ

′)−1

R(θ̂), (26)

which – under the ‘efficiency condition’ – may be simplified to

NR(θ̂)′

(
∂R(θ̂)

∂θ
Ĝ
′
Ω̂
−1
Ĝ

∂R(θ̂)

∂θ

)−1

R(θ̂). (27)

Under the null hypothesis stated in Equation (25), the test statistic in Equations (26) and the simplified

version in Equation (27) can be shown to be asymptotically χ2-distributed with C degrees of freedom under

22



the null when the GMM estimator θ̂ exhibits asymptotic normality and when a consistent estimator for Ω̂

is available (see Hayashi, 2000, p.481 and 489-491).

Note that the derivation of the asymptotic distribution of the Wald test statistic depends on the assumption

of asymptotic normality of the GMM estimator. When nonlinear population orthogonality conditions are

employed in GMM estimation, the asymptotic distribution of the estimator may be affected. Gorgens, Han,

and Xue (2016a) characterize the conditions under which standard and non-standard asymptotic results

are available for a GMM estimator employing nonlinear moment conditions when the only explanatory

variable is one lag of the dependent variable. It may be an interesting topic for future research to revisit

the derivations and investigate if the conditions require adjustments or can be weakened in the presence of

additional non-lagged dependent explanatory variables.

5 Concluding remarks

This paper illustrates the assumptions involved in GMM estimation of the model parameters of linear

dynamic panel data models. The standard assumptions frequently used in the literature are outlined and

their practical implications are discussed in the context of existing Lemmas and Theorems which establish

identification, consistency, and asymptotic normality of the GMM estimator. Some particularities when

linear and nonlinear moment conditions are employed in estimation are highlighted. Furthermore, the

discussion is connected to different propositions for testing the modeling assumptions and testing of general

(potentially nonlinear) hypothesis.

Areas for future research may involve reconsidering the identifying conditions stated in Gorgens, Han, and

Xue (2016b) and the asymptotic distributions characterized in Gorgens, Han, and Xue (2016a) for the GMM

estimator when linear dynamic panel data models are estimated based on linear and nonlinear population

orthogonality conditions. One interesting question is if additional assumptions need to be imposed and/or

if assumptions can be weakened when explanatory variables besides the lagged dependent variables are

included in the model. Assessing the validity and the empirical performance of the finite sample correction

proposed by Windmeijer (2005) in the presence of nonlinear moment conditions and work on specification

tests to assess (e.g.,) the ‘constant correlated effects’ assumption are further potential topics for future

research.

Other areas, besides the ones mentioned in this paper, could involve investigating the small sample properties

of GMM estimators by Monte Carlo simulation to assess the impact of key modeling decisions such as the

choice of weighting matrix, the power of selected specification tests to detect deviations from the model

assumptions, and the performance of estimators which carry out a selection of instruments. Revisiting

existing areas of application to assess the robustness of the conclusions derived from the modeling task may

be another potential topic. Attempting to connect the literature on the linear dynamic panel data model

with nonseparable models could also be a worthwhile endeavour.
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Harris, MN, L Mátyás, and P Sevestre (2008). “Chapter 8 – Dynamic Models For Short Panels”.

In: The Econometrics of Panel Data. Ed. by L Mátyás and P Sevestre. Springer, pp. 249–278.
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6 Appendix

6.1 Initial conditions restrictions to ensure ‘constant correlated effects’

The ‘constant correlated effects’ assumption can be assured in two different, but related ways. The first

approach amounts to specifying the processes of the dependent variable and the regressors, imposing random

starting values and assuming that both processes run for a sufficiently long period of time prior to sampling.

This results in the impact of the initial conditions to disappear. The second approach involves making

an explicit assumption about the initial conditions. The following exposition is similar to Blundell, Bond,

and Windmeijer (2001) and Bun and Sarafidis (2015) and illustrates the two alternatives. To begin with,

consider the yi,t-process with one further explanatory variable x.

yi,t = yi,t−1ρ+ xi,tβ + ai + εi,t, i = 1, . . . , N ; t = 2, . . . , T, where

xi,t = γxi,t−1 + τai + ei,t

ei,t = ζ1εi,t + ζ2εi,t−1 + εi,t, with εi,t ∼ (0, σ2
ε ).

The term εi,t is an unobservable idiosyncratic remainder component, while the parameter τ governs the

correlation between the individual-specific effect ai and xi,t. The parameters ζ1 and ζ2 determine the

covariance between the unobservable idiosyncratic remainder component εi,t and the unobservable composite

error term ei,t of the xi,t-process; this causes the regressor xi,t to be strictly exogenous (ζ1 = ζ2 = 0; i.e.,

past, present, and future xi,t are orthogonal to εi,t), predetermined (ζ1 = 0 and ζ2 6= 0; i.e., past and present

xi,t are orthogonal to εi,t) or endogenous (ζ1 6= 0 and ζ2 = 0; i.e., past xi,t are orthogonal to εi,t).

Considering a strictly exogenous regressor to simplify the notation and enhance the clarity of exposition

and writing down the xi,t-process starting at the initial period contained in the sample xi,1 to p periods in

the past yields

xi,1 = γxi,0 + τai + ei,1,

xi,0 = γxi,−1 + τai + ei,0,

...

xi,−p+1 = γxi,−p + τai + ei,−p+1.

Rewriting the xi,t-process by repeatedly plugging the equations for earlier time periods into the equations

for later time periods (i.e., replacing xi,−p+2 by the corresponding equation in the equation for xi,−p+1,
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xi,−p+3 by the equation for xi,−p+2, etc.) results in

xi,1 = γp+1xi,−p + τai(1 + γ + · · ·+ γp) + ei,1 + γei,0 + · · ·+ γpei,−p+1

⇔ xi,1 = γp+1xi,−p +

p∑
s=0

γs(τai + ei,1−s)

⇔ xi,1 = γp+1xi,−p + τai ·
1− γp+1

1− γ
+

p∑
s=0

γsei,1−s

⇔ xi,1 = γp+1

(
xi,−p − τai ·

1

1− γ

)
+ τai ·

1

1− γ
+

p∑
s=0

γsei,1−s.

Assuming |xi,−p| <∞, |γ| < 1, and letting p→∞, the expression reduces to

xi,1 =
τai

1− γ
+

p∑
s=0

γsei,1−s︸ ︷︷ ︸
νi,1

, with E[νi,1] = 0.

This implies that the process does not depend on its starting value xi,−p. The ‘constant correlated effects’

assumption is fulfilled for the xi,t-process under the initial condition:

E

[(
xi,1 −

τai
1− γ

)
· τai

1− γ

]
= 0 ⇔ E[νi,1 ·

τai
1− γ

] = 0.

As noted by Bun and Sarafidis (2015), this requires that the xi,t-process is on its long term path from the

first period contained in the sample on (i.e., E[xi,t] = E[xi,t−1] = · · · = E[xi,1] holds) and that any deviations

of the process from its long term path are not systematic over time or individuals. For the xi,t-process, the

initial conditions restriction is fulfilled, when νi and the individual-specific effect ai are orthogonal.

A similar restriction can be derived for the initial conditions of the yi,t-process starting from the represen-

tation

yi,1 = yi,0ρ+ xi,1β + ai + εi,1,

yi,0 = yi,−1ρ+ xi,0β + ai + εi,0,

...

yi,−p+1 = yi,−pρ+ xi,−p+1β + ai + εi,−p+1.

Again, plugging the process for earlier time periods into the process for later time periods yields

yi,1 = yi,−pρ
p+1 + xi,1β + · · ·+ ρpxi,−p+1β + ai(1 + · · ·+ ρp)+

εi,1 + εi,0ρ+ · · ·+ εi,−p+1ρ
p

⇔yi,1 =

(
yi,−pρ

p+1 − ai ·
ρp+1

1− ρ

)
+ β ·

p∑
s=0

xi,1−sρ
s + ai ·

1

1− ρ
+

p∑
s=0

εi,1−sρ
s.
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By utilizing the recursion of the xi,t-process, the expression for yi,1 can be rewritten as

yi,1 = ρp+1

(
yi,−p −

ai
1− ρ

)
+ β ·

p∑
s=0

ρs
(
γp−s+1

(
xi,−p −

τai
1− γ

)
+

τai
1− γ

+

p−s∑
j=0

γp−jei,−p−s+j+1

+
ai

1− ρ
+

p∑
s=0

ρsεi,1−s

⇔ yi,1 = ρp+1

(
yi,−p −

1− γ + τβ

(1− ρ)(1− γ)
· ai
)

+ β ·
p∑
s=0

ρsγp−s+1

(
xi,−p −

τai
1− γ

)
+

1− γ + τβ

(1− ρ)(1− γ)
· ai + β ·

p∑
s=0

ρs ·
p−s∑
j=0

γp−jei,−p−s+j+1 +

p∑
s=0

ρsεi,1−s

Assuming |yi,−p| < ∞ and |xi,t| < ∞, imposing |ρ| < 1 and |γ| < 1, and letting p → ∞, the equation for

yi,1 reduces to

yi,1 =
1− γ + βτ

(1− ρ)(1− γ)
· ai + ωi,1, with

ωi,1 = β ·
p∑
s=0

ρs

p−s∑
j=0

γp−jei,−p−s+j+1

+

p∑
s=0

ρsεi,1−s, where E[ωi,1] = 0.

Similar to the xi,t-process, the yi,t-process does not depend on its starting value. From the equation, it is

obvious that the ‘constant correlated effects’ assumption hinges on the following initial conditions restriction

for the yi,t-process:

E

[(
yi,1 −

1− γ + βτ

(1− ρ)(1− γ)
· ai
)
· 1− γ + βτ

(1− ρ)(1− γ)
· ai
]

= 0

⇔E

[
ωi,1 ·

1− γ + βτ

(1− ρ)(1− γ)
· ai
]

= 0.

This requires that the yi,t-process is also on its long term path from the initial observation contained in the

sample on and, hence, that E[yi,t] = E[yi,t−1] = · · · = E[yi,1] holds. The initial conditions restriction holds,

when ωi,1 and the individual-specific effect ai are orthogonal.

In practice, the processes generating yi,t and xi,t are typically unknown and investigating the properties

of the processes is not feasible. An alternative is to explicitly impose the ‘constant correlated effects’

assumption and assess its plausibility based on economic considerations (examples for the implications are

given in Blundell, Bond, and Windmeijer, 2001; Arellano, 2003; Bun and Sarafidis, 2015).

6.2 Redundance of population orthogonality conditions

In principle, more Arellano and Bover (1995)-type linear population orthogonality conditions are available

than stated in Equation (11) when imposing ‘constant correlated effects’ on top of the Assumptions (A.1.1 )-

(A.1.3 ) and (A.2.1 )-(A.2.2 ):

E[∆yi,v · ui,t] = 0, t = 3, . . . , T ; v = 2, . . . , t− 1.

For the time periods t = 3, 4, 5, the set of available Arellano and Bover (1995) population orthogonality

conditions can be represented by:
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t = 3 t = 4 t = 5

E[∆yi,2 · ui,3] = 0 E[∆yi,3 · ui,4] = 0 E[∆yi,4 · ui,5] = 0

E[∆yi,2 · ui,4] = 0 E[∆yi,3 · ui,5] = 0

(E[∆yi,2 · ui,3] = 0) (E[∆yi,3 · ui,4] = 0)

E[∆yi,2 · ui,5] = 0

(E[∆yi,2 · ui,4] = 0)

All redundant population orthogonality conditions for the different time periods are stated in parentheses.

Employing the Holtz-Eakin, Newey, and Rosen (1988) population orthogonality conditions

E[yi,s ·∆ui,t] = 0, i = 1, . . . , N ; t = 3, . . . , T ; s = 1, . . . , t− 2,

which are available from the assumptions stated above anyway, the following population orthogonality

conditions for the time periods t = 3, 4, 5 result:

t = 3 t = 4 t=5

E[yi,1 ·∆ui,3] = 0 E[yi,1 ·∆ui,4] = 0 E[yi,1 ·∆ui,5] = 0

E[yi,2 ·∆ui,4] = 0 E[yi,2 ·∆ui,5] = 0

E[yi,3 ·∆ui,5] = 0

By forming linear combinations of the (zero expectation) Holtz-Eakin, Newey, and Rosen (1988) population

orthogonality conditions, it can be shown that further Arellano and Bover (1995) population orthogonality

conditions are redundant in estimation. For example, it can be shown for t = 4 that

E[yi,2 · (ui,4 − ui,3)]− E[yi,1 · (ui,4 − ui,3)] = E[∆yi,2 · (ui,4 − ui,3)]

= E[∆yi,2 · ui,4]− E[∆yi,2 · ui,3],

and for t = 5 that

E[yi,3 · (ui,5 − ui,4)]− E[yi,2 · (ui,5 − ui,4)] = E[∆yi,3 · (ui,5 − ui,4)]

= E[∆yi,3 · ui,5]− E[∆yi,3 · ui,4];

E[yi,2 · (ui,5 − ui,4)]− E[yi,1 · (ui,5 − ui,4)] = E[∆yi,2 · (ui,5 − ui,4)]

= E[∆yi,2 · ui,5]− E[∆yi,2 · ui,4].

Consequently, all but the most recent Arellano and Bover (1995)-type population orthogonality condition

for each time period are redundant in estimation, when using both types of linear population orthogonality

conditions.

Under the same set of assumptions, more redundancies arise and it can be shown that all of the Ahn and

Schmidt (1995) nonlinear population orthogonality conditions become redundant in estimation. To illustrate

this, consider the Arellano and Bover (1995) population orthogonality conditions

E[∆yi,t−1 · (yi,t − yi,t−1ρ− x′i,tβ)] = 0, t = 3, . . . , T
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which result from the ‘constant correlated effects’ assumption (i.e., from E[∆yi,t · ai] = 0) and use the

assumption to rewrite the above equation:

E[∆yi,t−1 · (yi,t − yi,t−1ρ− x′i,tβ)] + E
[
(−ρ(yi,t−2 − yi,t−3)− (x′i,t−1 − x′i,t−2)β)

·(ai + ui,t)] = 0

⇔ E[(yi,t − yi,t−1ρ− x′i,tβ) · (∆yi,t−1 −∆yi,t−2ρ−∆x′i,t−1β)] = 0.

The expression reveals that the Arellano and Bover (1995) population orthogonality conditions render the

nonlinear Ahn and Schmidt (1995) population orthogonality conditions redundant for estimation.

6.3 Minimization problem and connection to (G)IV and OLS

When only linear (in parameters) population orthogonality conditions are employed in GMM estimation,

minimization of the objective function given in Equation (13) can be represented as

arg max
θ̂

−ŝ′Z · ŴN ·Z ′ŝ,

where ŝ denotes the vector of residuals. Note that the use of population orthogonality conditions from

equations in differences and levels in estimation could be reflected in the notation by stacking residuals in

differences and levels in the vector ŝ. The same comment applies to the matrix of instruments Z and the

vector of dependent variables y (for details on the structure of the individual matrices and vectors see, e.g.,

Fritsch, Pua, and Schnurbus, 2019). Since this only renders the notation more cumbersome and does not

change the essential results, it is not reflected in the following derivations.

Using only linear population orthogonality conditions in GMM estimation prevents the instruments in Z

from depending on the estimated parameters θ̂. Rewriting the minimization problem above results in

−y′ZŴNZ
′y + 2 · y′ZŴNZ

′Xθ̂ − θ̂
′
X ′ZŴNZ

′Xθ̂.

Taking the first derivative and simplifying yields the following closed form expression of the GMM estimator:

∂Q(θ̂)

∂θ̂
= + 2 ·X ′ZŴNZ

′y − 2 ·X ′ZŴNZ
′Xθ̂

!
= 0

⇔X ′ZŴNZ
′Xθ̂ = X ′ZŴNZ

′y

⇔θ̂ = (X ′ZŴNZ
′X)−1X ′ZŴNZ

′y.

Under additional assumptions, the closed form can be related to the (G)IV and the OLS estimator for

specific choices of the instrument matrix Z and the weighting matrix, for which the general structure

ŴN = (Z ′HZ)−1 is assumed. Note that the following discussion solely concentrates on aligning the

formulas for the estimators by suitable choosing the individual components of the closed form formula for

the GMM estimator using only linear population orthogonality conditions.

When making the assumption that the variance of the idiosyncratic remainder components is conditionally

homoscedastic, H in the general structure of ŴN can be set to an identity. The weighting matrix then
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reduces to ŴN = (Z ′Z)−1 and the closed form for the GMM estimator given in Appendix 6.3 can be

rewritten as

θ̃ = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y.

This is essentially the formula to calculate the generalized instrumental variables estimator, where the

regressors are projected into the column space spanned by the instruments (when the number of instruments

exceeds the number of regressors). In case the number of instruments and the number of regressors are

identical, the weighting matrix ŴN reduces to an identity. In this case, the following expression results

θ̂ = (X ′ZZ ′X)−1X ′ZZ ′y

= (Z ′X)−1(X ′Z)−1X ′ZZ ′y

= (Z ′X)−1Z ′y,

which is equivalent to the formula for the instrumental variables estimator.

Assuming conditional homoscedasticity of the unobservable idiosyncratic remainder components, exact iden-

tification, and imposing the mean independence assumption for the regressors X yields the formula for the

OLS estimator:

θ̂ = (X ′XX ′X)−1X ′XX ′y

= (X ′X)−1X ′y.

6.4 Serial correlation introduced by first differencing

Assume the idiosyncratic remainder components εi,t are independently and identically distributed with

E[εi,t] = 0 and Var[εi,t] = σ2
ε , for all i = 1, . . . , N ; t = 2, . . . , T . First differencing Equation (7) to eliminate

the unobservable individual-specific effects affects the covariance of adjacent first differenced idiosyncratic

remainder components as follows:

Cov[∆εi,t,∆εi,t−1] = E[(∆εi,t − E[∆εi,t])(∆εi,t−1 − E[∆εi,t−1])]

= E[(εi,t − εi,t−1)(εi,t−1 − εi,t−2)]

= E[εi,tεi,t−1]− E[εi,tεi,t−2]− E[ε2
i,t−1] + E[εi,t−1εi,t−2]

= −E[ε2
i,t−1] = −E[(εi,t−1 − E[εi,t−1])2] = −σ2

ε .

This leads to the following correlation of adjacent first differenced idiosyncratic remainder components:

Cor[∆εi,t,∆εi,t−1] =
Cov[∆εi,t,∆εi,t−1]√

Var[∆εi,t] ·Var[∆εi,t−1]
=
−σ2

ε

2σ2
ε

= −1

2
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