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Abstract 

The Conditional Contribution Mechanism for Repeated Public  
Goods – The General Case 

by Joerg Oechssler, Andreas Reischmann and Andis Sofianos* 

We present a new and simple mechanism for repeated public good environments. In the 
Conditional Contribution Mechanism (CCM), agents send two message of the form, “I am 
willing to contribute x units to the public good if in total y units are contributed.” This 
mechanism offers agents risk-free strategies, which we call unexploitable. We prove that if 
agents choose unexploitable messages in a Better Response Dynamics model, all stable 
outcomes of the CCM are Pareto efficient. We conduct a laboratory experiment to 
investigate whether observed behavior is consistent with this prediction. In the complete 
information case we find that indeed almost 80% of outcomes are Pareto optimal. 
Furthermore, comparison treatments with the Voluntary Contribution Mechanism show 
that the CCM leads to significantly higher contribution rates. Even under incomplete 
information, contributions are fairly high and do not deteriorate over time. 
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1 Introduction

Many public goods have to be provided repeatedly. Currently probably the most prominent

example would be climate policy where countries meet repeatedly at climate conferences

and try to agree on limiting emissions of greenhouse gases. Another example would be

contributions to international organizations like UNICEF or the fund-raising for global

public goods like Wikipedia. But there are also numerous examples on a much smaller and

local level like contributions to clubs, schools, universities etc.

While many mechanisms have been proposed in order to deal with the free-rider prob-

lem, most are aimed at static public good problems. When public good problems are

repeated, this poses new challenges but also new opportunities. Thus, we desire a mecha-

nism that takes account of the repeated nature of the problem. Furthermore, we desire that

a suitable mechanisms satisfies voluntary participation of all agents (i.e. individual ratio-

nality), even of those who may not benefit (enough) of the public good. For many practical

applications a very important further requirement is that neither the mechanism designer

nor the other agents are assumed to know the preferences of (other) agents. Finally we

require that the mechanism is budget-balanced.

In this paper, we suggest a new and very simple mechanism for such repeated public

good environments that satisfies all these criteria. In the Conditional Contribution Mech-

anism (CCM), agents send two messages of the form, “I am willing to contribute  units

to the public good if in total  units are contributed.” The mechanism then simply selects

the unique contribution profile that maximizes total contributions from all agents. The

static game induced by the mechanisms has many Nash equilibria some of which are Pareto

optimal and some are not. Zero-contribution is always a Nash equilibrium. However, if

we take advantage of the dynamic nature of the game and assume that agents myopically

choose better (or best) responses to the previous period’s message profile, we may be able

to select some Nash equilibria. Indeed, the CCM allows agents to use risk-free strategies

that make sure that they are not taken advantage-off. We call messages that make sure an

agent is not worse off than in the previous period when he is a contributor “unexploitable”

strategies. Our main theorem shows that if agents play unexploitable better responses,

all dynamically stable outcomes of the CCM are Pareto optimal. Furthermore, for all

agents who have any positive valuation for the public goods, this represents a strict Pareto

improvements over zero-contribution.

The intuition why the CCM works well in theory and why it requires two messages
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from each agent is that one message is required to protect the status quo. By conditioning

their contributions on the status quo, agents can prevent other agents from deviating.

The second message is used to send a signal to other agents that one would contribute

more if they did as well. This allows the mechanism to escape from getting stuck in a

low-contribution state.

We conduct a laboratory experiment to investigate whether observed behavior is consis-

tent with this prediction. In the complete information case we find that indeed almost 80%

of outcomes are Pareto optimal. Furthermore, comparison treatments with the Voluntary

Contribution Mechanism (VCM) show that the CCM leads to significantly higher contribu-

tion rates. Under incomplete information, contributions are also fairly high and increasing

over time. Surprisingly, the VCM works better than under complete information.

The remainder of the paper is structured as follows. Section 2 provides a short survey of

previously proposed public good mechanisms, with a focus on environments to which they

may be applicable. Section 3 introduces the CCM and provides the equilibrium analysis.

Section 4 describes the setting that is used in the laboratory experiment. In Section 5,

we present and discuss the experimental results. Section 6 gives a short summary and

discussion. Most proofs can be found in Appendix A. Finally, translations of written

instructions and test questions can be found in Appendices B and C.

2 Related Literature

The review of the whole literature on public good provision is far too extensive and beyond

the scope of this paper. Thus we shall concentrate on mechanisms that are closely related.

We can classify public good mechanisms by the environment for which they are suitable.

As explained above, we require a mechanism that is suitable when the public good provi-

sion is repeated and when the mechanism designer does not know the agents’ preferences.

Furthermore, even the agents themselves need not know other agents’ preferences. Finally,

the complexity of the mechanism is a concern.

A mechanism that is applicable in all environments is the Voluntary Contribution Mech-

anism (VCM). As it is by far the most studied mechanism in the experimental literature, we

shall also consider it as a benchmark. The VCM has the mayor disadvantage that it does

not lead to Pareto efficient outcomes in equilibrium. In experiments, contribution rates

decrease over time when the VCM is played repeatedly. See Ledyard (1994) for a survey

on this literature. Therefore, when efficiency is important, the VCM may be more suitable
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for one-shot environments. Furthermore, the VCM may also be suitable for environments

in which simplicity is more important than Pareto efficiency, which should apply e.g. to

most cases of charitable fund-raising.

Communication, in particular face-to-face communication, has been shown to substan-

tially increase efficiency of the VCM in public good games (see e.g. Dawes et al., 1977 and

Isaac and Walker, 1988). However, communication is less successful when it is anonymous

and structured, e.g. when subjects can send only a number which indicates their suggested

contribution (see Bochet et al., 2006).

Another example of a simple mechanism is the Provision Point Mechanism (PPM),

which shares with the CCM that the messages also have a conditional characteristic. Under

the PPM the contributions to a public good are only provided if total contributions exceed a

predefined threshold. While the PPM is also applicable in all environments, the mechanism

designer has to choose an optimal threshold. When the public good is binary, as e.g. in the

“one streetlight problem” Bagnoli and Lipman (1989), the optimal threshold is obvious.

However, in other cases, like the “multiple streetlight problem” Bagnoli and Lipman (1989)

or continuous public goods, finding the optimal threshold may not be trivial.1 The PPM

may therefore be suited for environments in which there is an obvious optimal threshold.

Instead, the CCMmakes it possible for agents to find an optimal threshold via endogenously

adjusting their individual conditions.

Probably the first paper to explicitly model conditional contributions was Guttman

(1978).2 Contributions to a public good are modeled as a two-stage game in which agents

announce in the first stage a “matching rate”, which commits them to match the uncon-

ditional contributions of all other agents with a chosen rate. In the second stage, agents

select the unconditional contributions. Under some assumptions the unique subgame per-

fect equilibrium implies Pareto efficient investments into the public good. However, two

of the needed assumption make it unsuitable for the current case. First, agents need to

know the marginal per capita return of all other agents. Second, utilities must be strictly

concave in the public good ruling out the linear public good case.

MacKay et al. (2015) and Schmidt and Ockenfels (2019) study mechanisms that are

particularly geared towards reducing CO2 emissions through carbon pricing. Giving the

difficulty of international agreements Schmidt and Ockenfels (2019) suggest a clever mech-

1Suppose a community wants to build a playground. The size (and costs) of the playground may vary

widely and the city government would not know the optimal size without knowing the citizens’ preferences.
2See also Guttman (1986).
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anism that would implement for all participating countries the smallest commitment made

by a country. This way, the pivotal country has an incentive to increase its commitment as

this would mandate an increase from all participating countries. The whole game has multi-

ple equilibria but in an experiment Schmidt and Ockenfels (2019) show that the mechanism

performs quite well.

The approach most closely related to our work are the contractive mechanisms by Healy

and Mathevet (2012). They design mechanisms that implement Pareto efficient outcomes,

are budget-balanced, and individually rational. Furthermore, they are designed with a

dynamic adjustment process in mind. The main challenge for these mechanisms might

be their complexity. Especially when budget-balance is guaranteed off equilibrium, the

outcome functions of the mechanisms become very complex and may be hard to comprehend

for agents. Whether this complexity is a problem will be clearer once there is experimental

evidence for these mechanisms.

One of the most well-known public good mechanisms is the Vickrey-Clarke-Groves

(VCG) mechanism (Vickrey, 1961, Clarke, 1971, Groves and Ledyard, 1977). In general,

the VCG mechanism requires that agents state their benefit of the public good, and then

public good only provided if it is socially desirable. An agent’s payment or contribution to

the public good is determined by the externality he imposes on the other agents by choosing

his message. The major drawbacks of the VCG mechanisms are twofold. They are not

budget balanced and they do not satisfy individual rationality. However, in cases where

a central authority is present, participation can be seen as enforceable and an unbalanced

budget, while not desirable, might at least be possible. That is, the VCG mechanism may

be suitable for environments with a central authority.

3 Theoretical Analysis

We consider a set of agents  := {1     } who interact over a given number of periods.
There is one public and one private good. Each agent  ∈  has an endowment of one

monetary unit in each period and decides how much of the endowment he wants to invest

into the public good. We denote the investment of agent  into the public good by  ∈
[0 1] Here  = 1 is interpreted as agent  investing all of his endowment in period  into

the public good and  = 0 represents agent  investing his monetary unit into the private

good. An outcome in a period  is defined as  = (1  

), ∀ ∈ . Let  := [0 1]

be the outcome space. For notational convenience define  := (0     0) as the outcome in
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which no agent invests anything into the public good.

We assume utility to be linear in both the private good and the public good. Agent ’s

valuation for the public good is given by  ∈ [0 1).3 The utility of agent  in period  is

given by

(
) = 1−  + 

X
=1

  (1)

Our setting allows for agents who have no use at all for the public good ( = 0).

To talk meaningfully about strict Pareto improvements in this environment it is useful to

define the following.

Definition 1 An outcome 0 is a ∗ Pareto improvement over  if 0 is a Pareto
improvement over  that is strict for all agents with   0.

4

To make the problem interesting, we assume that preferences are such that there is

scope for Pareto improvements by contributing to the public good

Assumption 1 There exists a ∗ Pareto improvement over  := (0 0  0)

Lemma 1 Assumption 1 is satisfied if and only if

X
=1

  1

Of course, the mechanism proposed below can also be applied in situations in whichP
=1   1. However, then in any profile with positive contribution levels there would be

some agent who is worse off than in the no contribution outcome . Thus any mechanism

that is based on voluntary participation can only implement .

Next we can characterize Pareto efficient outcomes.

3Values   0 are excluded, since then the public good would be a bad for those agents. If this were

the case, a mechanism that does not use transfers can never guarantee Pareto improvements. Thus, the

mechanism proposed in this paper should only be applied if valuations for the public good are weakly

positive. Values  ≥ 1 are excluded for simplicity of notation. Any agent with  ≥ 1 has a (weakly)

dominant strategy to contribute to the public good. Thus, there is no need to provide additional incentives

to these kind of agents. Therefore, including the possibility of  ≥ 1 would not lead to a significant change
in any results of the paper, but would complicate notation at several points.

4Agents who do not benefit from the public good ( = 0) are indifferent between all outcomes in which

they do not contribute. If these agents were excluded by assumption, this special definition of strict would

not be necessary.
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Lemma 2 An outcome profile  ∈  is Pareto optimal if and only if
P

∈  ≤ 1, where
 := { :   1}

Corollary 1 If  is Pareto optimal, then so is any 0 ≥ .

Proof. This follows directly from Lemma 2 by noting that  0 := { : 0  1} ⊂ . ¤

3.1 The Conditional Contribution Mechanism

We define the Conditional Contribution Mechanism (CCM) as  := (  ),

where describes the mechanism’s message space and  : 7→  describes

the mechanism’s outcome function. The CCM will allow agents to send two messages  =

( ) of the form “I am willing to contribute  to the public good if total contributions

are at least .” As a special case, this allows agents to unconditionally contribute nothing

{(0 0) (0 0)} or to unconditionally contribute fully {(1 0) (1 0)}5 We assume for technical
reasons that messages come from a finite message space, i.e. ( ) ∈ {0  2  1− 1}×
{0  2  −  } =:

6

Since agents are allowed to send two messages, the message space in the CCM is given

by  :=
Q
=1


 , where 

 := ×

The outcome () of the CCM is then defined as the outcome with the highest

level of contribution consistent with the messages chosen. Let () ⊂  be the set

of feasible outcomes for a message profile  ∈ :

 ∈ ()⇔  = 0 or

⎧⎨⎩∃ ∈ {1 2} :  =  and

X
=1

 ≥ 

⎫⎬⎭  ∀  ∈  (2)

It is easy to see that  ∈ () and 0 ∈ () imply together

00 = (max{1 01}    max{ 0}) ∈ (). Thus, the outcome of the mechanism

can be uniquely defined as

5 In case the two messages are such that 1 ≥ 2 but 
2
  1 , we consider the second message as

redundant.
6However,  can be arbitrarily small. Henceforth, we will assume that the continuous message space

is sufficiently well approximated by the discrete one and ignore cumbersome case distinctions due to the

discreteness.
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() = argmax
∈ ()

X
=1

 (3)

Let  () := max
∈ ()

P
=1  denote the corresponding total contribution level.

Note that agents’ messages can be translated into a step-function, assuming WLOG

that 1 ≤ 2 

() :=

⎧⎪⎨⎪⎩
0 if   1

1 if 1 ≤   2

max{1  2 } if 2 ≤ 



Total contributions  () induced by the CCM mechanism can then easily be computed by

adding up all step functions and taking the highest fixed point  =
P

(). This makes

sure that there is no computational problem in applications when  is large.

The definition of the outcome function requires that conditional contribution offers can

be enforced by the institution that implements the outcome. In some cases, e.g. whenever

contributions are monetary, this can be arranged without much difficulty. In other cases

this is nearly impossible, without the use of additional commitment devices. The CCM

is probably only suited for environments in which it is easy to make the conditional con-

tribution offers binding. An important feature of the CCM mechanism is that it does not

depend on complete information. In particular, neither the mechanism designer nor other

agents need to be informed about other agents’ preferences.

3.2 Nash equilibria of the CCM

We will mainly be concerned with dynamic solution concepts to predict the outcomes of

the CCM in a repeated setting. However, looking at the static Nash equilibria of the

stage game provides some intuition on the incentive structure of the game.7 The following

example demonstrates what properties an outcome must have to be a Nash equilibrium

outcome.

Example 1 Consider 5 identical agents with valuation  = 06 ∀  ∈ . The trivial Nash

equilibrium is given by  = {(0 0) (0 0)} ∀  ∈ . Here no agent contributes to the pub-

lic good. However, there are more equilibria as e.g. when agents 1 and 2 choose message

7Formally, the static game is a Bayesian game with independent private values. As no confusion should

arise, we drop the “Bayesian” when talking about Nash equilibria.
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0
 = {(0 0) (1 2)} and agents 3 through 5 choose 0

 = {(0 0) (0 0)}. In this case the
first two agents will contribute to the public good and the outcome is  = (1 1 0 0 0). The

structure of the mechanism makes this an equilibrium. Agents 3 through 5 can only change

the outcome to (1 1 3 0 0) (1 1 0 4 0) or (1 1 0 0 5) respectively, by unilateral de-

viation. Neither deviation is profitable for the respective agent. The first two agents can

only change the outcome to , which is not profitable for them either. Thus, no agent has

any (strict) incentive do deviate and the above message profile is a Nash equilibrium. Yet

the outcome is not Pareto optimal as it is dominated e.g. by 0 = (1 1 1 1 1).

In the second message profile in the example, 0 all agents, who end up contributing to
the public good, condition their contribution exactly on the aggregate level of contributions.

All other agents choose to free-ride in any case. The latter agents can alter the outcome

only by unilaterally contributing themselves. Since   1, this is not profitable. Agents

that currently do contribute can either unilaterally increase their contribution (if   1),

which is not profitable, or they can lower their contribution and change the outcome to .

The latter will be a strict best reply if and only if  Â . This reasoning demonstrates

that a certain outcome  can be implemented as a Nash equilibrium if and only if there is

no agent for which the deviation from  to  is profitable.

Lemma 3  is the outcome of a Nash-equilibrium of the CCM if and only if  º  ∀  ∈ .

Lemma 3 predicts equilibria which are Pareto efficient as well as equilibria which may

not be Pareto efficient. In the next subsection, we will present arguments why only the

Pareto efficient Nash equilibria will prevail as stable outcomes of a reasonable dynamic

adjustment process.

3.3 Dynamic Behavior in the CCM

In this subsection, we analyze the properties of the CCM under dynamic considerations.

In our dynamic model, agents play the same game repeatedly over several periods in fixed

groups. We follow the literature (in particular, Cabrales and Serrano, 2011) and assume

that all agents can adjust their message from one period to the next with independent and

fixed probability. We further assume that agents are myopic and take the behavior of the

other agents from the previous period as given. There is evidence (see e.g. Healy, 2006)

that agents’ behavior in repeated public good mechanisms can be well described using best
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response dynamics. Whether one should assume that agents respond to behavior from

the previous period, to the entire history, or, as done by Healy (2006), to an average over

the last few periods, may depend on the application. In our case, given that the CCM

mechanism reacts in a very discontinuous fashion,8 we find it most plausible if agents react

only to the most recent information from the previous period.

Accordingly, a message +1
 is a best response if

((
+1
 

−)) ≥ ((
0



−)) for all 

0
 ∈

  (4)

where  represents a general outcome function and 
− is the message profile of all agents

other than agent  in period . If there are several best responses, we assume that all

of them are chosen with strictly positive probability. However, given that there is ample

evidence in public good games (see e.g. Ledyard (1994)) that agents do not fully exploit

their strategic advantages, e.g. by contributing in a voluntary contribution mechanism, we

would also allow agents to simply choose a better response, although we do not require

that all better responses are chosen with strictly positive probability.9

Formally, a message +1
 is a better response (better than the current message 

) if

((
+1
 

−)) ≥ ((




−)) (5)

Definition 2 In Better Response Dynamics (BRD) all agents can adjust their message in

every period with independent and fixed probability  ∈ (0 1). If they have the opportunity,
agent  switches in period + 1 to a message +1

 that is a better response. All messages

that are best responses are chosen with strictly positive probability.

As shown by Reischmann and Oechssler (2018) for the binary case, BRD by themselves

do not guarantee that seemingly reasonable messages are actually stable. The following

example illustrates this problem.

Example 2 Assume there are 5 identical agents all with type  = 04. Assume that all 5

agents contribute to the public good under the current message profile
 = {(1 5)(1 5)}∀.

Thus, all agents condition their contribution on all other agents contributing as well. This

8Since the message space is finite, the word “discontinuous” is not meant literally here. Instead it

describes the fact that a small change in one agent’s message can change the outcome from full contribution

to zero contribution or the other way round.
9 In this sense our dynamics impose strictly weaker restrictions than best response dynamics.
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might seem to be a good candidate for a stable outcome. However, for any agent  any

deviation to a message +1
 with   5 keeps the outcome constant if all other agents

repeat their message +1
− = 

−. Therefore, these messages are all best (and therefore
better) responses and the message profile under BRD in the next period might be, e.g. 

 =

{(1 0)(1 0)}∀. In this transition the outcome did not change. However, now the best
response to +1 is to not contribute and the next profile could be +2

 = {(0 0) (0 0)},
an outcome in which no agent contributes to the public good.

With the motivation of the example in mind, we follow Reischmann and Oechssler

(2018) and extend the myopic better response model using a second property, which is

called unexploitability. Unexploitability captures non-myopic strategic incentives in the

CCM and, therefore, complements the myopic better response condition with forward

looking aspects. The formal definition of unexploitability is the following.

Definition 3 Given an outcome  = (



−), a message 

+1
 is called exploitable if

there is any +1
− ∈ − such that (+1

 +1
− ) = +1 ≺  and +1  0. A message

+1
 is called unexploitable if it is not exploitable.

In words, a message of agent  is unexploitable if there is no chance that after any

deviation of all other agents agent  has to contribute in the next period and is worse off.

Definition 3 has two particular details that deserve discussion. Note first that all possible

message profiles − of other agents are considered. One could argue, since we assume a
BRD model, that we should only consider profiles of better responses of other agents at

this point. However, this dynamic model is designed with the most general case in mind,

in which agents have no information on the preferences of other agents. In this case agents

can not tell whether a certain message of another agent is a better response. Therefore,

from a player’s perspective it seems rational to account for all possible choices. Note second

that we only consider outcomes 0 in which agent  contributes to the public good. This
has to be the case since the choice of conditions in the CCM only allows agents to exclude

some outcomes in which they have to contribute. Agents never have any influence over

outcomes in which they do not contribute. Furthermore, the term exploitable suggests that

agent  is exploited by another agent. If  does not contribute, there is nothing to exploit.

The existence of cooperative but unexploitable messages is a special property of the

CCM. As one comparison, in the VCM only contributing nothing is unexploitable. In

11



other mechanisms there might be situations where the set of unexploitable best responses

is empty. As the following case shows, this is not the case for the CCM.

Lemma 4 Unexploitable best responses always exist in a CCM .

When we combine the BRD with the requirement that messages be unexploitable, we

get the following.

Definition 4 An unexploitable better response dynamic (UBRD) is a BRD dynamic with

the restriction that agents can only choose unexploitable messages.

Definition 5 A recurrent class of UBRD is a set of message profiles, which, if ever reached

by the dynamics, is never left and which contains no smaller set with the same property.

We will also call such outcomes the long run stable outcomes of the dynamic model.

Our main theorem characterizes the long run stable outcomes of our mechanism.

Theorem 1 An outcome  ∈  is an outcome of a recurrent class of the CCM under

UBRD if and only if it is a Pareto optimal outcome and a strict∗ Pareto improvement over
.

Note that the assumed environment does not include the possibility for transfer pay-

ments. Thus, a Pareto optimal outcome need not necessarily maximize the sum of utilities.

Example 3 Consider the example with 5 agents. Each agent has type  = 04. It follows

from Lemma 2 and Theorem 1 that in all outcomes of recurrent classes 3 agents con-

tribute their entire endowment. The two other agents can contribute any amount. Take

for example the outcome  = (1 1 1 05 05). This outcome is supported by the messages

 = {(1 4) (1 4)} for  = 1 2 3 and  = {(05 4) (05 4)} for  = 4 5. The combina-
tion of unexploitability and better responding behavior makes sure that the outcome cannot

be left to another outcome with lower contributions and the unexploitability condition im-

plies further that the outcome cannot be left to any outcome with higher contributions

since either agent 4 or 5 would be worse off than in . Consider for example the message

0
4 = {(05 4) (1 5)}. This deviation in itself does not change the outcome, thus it is a

better response. However, if agent 5 also switches to 0
5 = {(05 4) (1 5)}, the outcome

would change to 0 = (1 1 1 1 1). Since 45() = 21  20 = 45(
0) the messages 0

4

and 0
5 are exploitable.
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3.4 Why two messages?

An obvious question to ask is why we need two messages for each agent in the CCM. To

show that one message is not sufficient to achieve Pareto optimal outcomes, we shall define

the Simple Conditional Contribution Mechanism (SCCM), which is similar to the CCM

except that the message space is just given by In the following we show that the SCCM

can get stuck at very inefficient outcomes even if we use the same dynamic process.

Example 4 Assume again five agents with type  = 04∀. Assume further that in

period  all agents sent message 
 = (01 05). Obviously, the resulting outcome  =

(01 01 01 01 01) is not Pareto optimal. Let us find all unexploitable better responses

in period  + 1. Consider w.l.o.g agent 1. Any message 0
1 = (1 1) with 1  01 and

1  1 will lead to  and is thus not a better response. Any message 0
1 = (1 1) with

1  01 and 1 ≤ 1 will lead to  = (1 0 0 0 0) and is thus not a better response,

either. Any message 0
1 = (1 1) with 1  01 and 1  04 + 1 will lead to  and is

thus not a better response. Any message 0
1 = (1 1) with 1  01 and 1 ≤ 04+1 will

lead to  = (1 01 01 01 01) and is thus not a better response, either. This leaves only

messages with 1 = 01. However of those messages the ones with 1  05 lead to  and

are not a better response and the ones with 1  05 are exploitable. For example. 1 = 03

could lead after deviations of the other agents to 0
 = (005 03) ∀ ∈ {2 3 4 5} to 0 =

(01 005 005 005 005). In this outcome agent 1 is worse off than in  but contributes a

strictly positive amount. Thus, his message was exploitable. The only unexploitable better

response is thus 0
1 = (01 05). This implies that message profile 

 is an absorbing state

of UBRD.

Agents can in this way get stuck on Pareto improvements over  which are far from Pareto

optimal. Any deviation aiming to make further Pareto improvements possible would make

the deviating agent worse off in the next period.

This problem can be solved by letting agents announce more than one tuple of the

form ( ). This grants agents a higher flexibility in their strategy giving them the

opportunity to explore Pareto improvements with some tuples, while securing the current

level of cooperation with one other tuple.
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4 Experimental design

The stage game is a standard linear public good game with five participants, which is

repeated for 60 periods with fixed matchings. In every period each subject is endowed with

10 units. Contributions to the public good are possible only in integer values, participants

can contribute anything from nothing to their whole endowment. Participants knew that

the public good for them has a value of  ∈ {0 04} in all periods. This implies that in
each period, subjects are faced with the following payoff function

() = 10−  + 

5X
=1

  (6)

Table 1: Summary of treatments

Complete info Incomplete info

Conditional contribution mechanism CCM (40) CCMII (55)

Voluntary contribution mechanism VCM (35) VCMII (55)

VCM with communication VCMC (40)
Note: Number of subjects in parentheses.

We consider five treatments, which vary depending on the mechanism used and the

information subjects have about the  of other group members (see Table 1 for a summary).

In the complete information treatments, all subjects know that everyone in their group has

a  of 0.4. In the incomplete information treatments, all subjects know that each group

member can independently have a  of 0 with a probability of 20% and a  of 0.4 with

a probability of 80%. Each participant knows their own  which is kept constant for the

entire experiment but never finds out the realized  of the other group members.

In the VCM treatments, participants are simply asked how much they would like to

contribute and consequently those contributions are implemented. In the CCM treat-

ments, each participant has to send two messages of the form “I will contribute  if total

contributions are at least .” The computer would then determine which is the highest

contribution level possible given the combination of conditional contributions within each

group and implement it. For the incomplete information treatments the decisions and pro-

cedures were identical with the only difference being that participants had a note on their

screen informing them of their own , while they did not know the  of others in their
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group.

Finally, the VCM with communication (VCMC) is just like the VCM treatment except

that in each round subjects can send two conditional messages just as in treatment CCM.

However, these messages are non-binding cheap-talk.

After each round, the outcomes from the last round are listed in the bottom of the

screen. In the VCM treatment, participants can see how much themselves and every other

member of their group contributed to the public good. In the CCM and the VCMC

treatments, they additionally see their own and all other group members’ two messages.

To help participants understand how their payoff depends on their own as well as

others’ decisions, a calculator is provided on the decision screen. In the VCM and the

VCMC treatments, the calculator requires subjects to enter a (hypothetical) contribution

level for each member of their group. In the CCM treatment, participants have to input

two conditional contributions for each group member. The calculator would then inform

them how much they would contribute and what their payoff would be for the values they

had entered.

From the second round onwards, the screens of are filled in as a default with the numbers

each participant had submitted in the previous round. This means that the outcomes of the

previous round are also loaded in the calculator boxes. We chose this ‘default’ norm to assist

participants in utilizing the calculator for best responding to their group members actions.

Specifically for the CCM treatments, utilizing the calculator would be quite cumbersome

as participants would need to input 10 values before they could obtain a calculated possible

profit (two conditional contributions for each of the five members of the group).

After the completion of the public good game, the participants are asked to complete

a short demographic questionnaire.

Implementation

We implemented 12 sessions with a total of 225 participants, of which 40 participants were

in the CCM treatment (8 groups of five), 35 participants were in the VCM treatment

(7 groups of five), and 40 were in the VCMC treatment (8 groups of five).10 For the

incomplete information treatments we were aiming for 12 groups since some groups without

10We have one group less in the VCM treatment due to a high number of ‘no-shows’ in one of our sessions.

Since the VCM treatment consists of a common mechanism that has been studied in numerous experiments

where qualitatively similar results are found we felt it was not appropriate to administer one session with

only 1 group.
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any type-0 subjects were to be expected. Due to no-shows we ended up with 11 groups

in 3 sessions for both treatments (55 participants, each). All sessions were conducted at

the AWI experimental lab at the University of Heidelberg using z-Tree (Fischbacher, 2007)

and hroot Bock et al. (2014) for recruitment from a student subject pool. At the beginning

of each session, subjects were randomly placed in different cubicles the lab where they

were asked to read the instructions. Once they were done with the instructions, a short

comprehension quiz was administered. Once all subjects solved the quiz correctly and there

were no more questions the experiment started. The sessions were conducted in German.

English translations of the instructions and test questions can be found in the appendix.

The participants were informed that one randomly chosen round out of the 60 played

would be chosen to determine their monetary payoff. The paying round was determined

by rolling 10-sided die and a regular die by one of the participants in each session. The

experimental units each corresponded to  1. The experiments lasted around 75 minutes

and subjects earned on average  17.32. [update!]

5 Experimental results

We start by considering the complete information treatments, then look at the incomplete

information treatments, and finally consider the strategic behavior in all treatments.

5.1 Complete information

Of prime importance are the average contributions across treatments. Figure 1 shows the

time path of average contributions for the three complete information treatments. For

the VCM we confirm the standard result of average contributions starting roughly at 50%

but declining over time to less than 20% (compare e.g. to Herrmann et al. (2008)). The

CCM, however, shows an increasing path with very high contribution rates after the first

few periods. Table 2 lists the average contributions for all periods, the second half of the

experiment and for periods 10-55 (excluding the end game effect). In all cases, contributions

in the CCM are almost twice as high as in the VCM. According to MWU-tests (taking

each group as one independent observation), we find significant differences for all periods

( = 0011), the second half ( = 0015) and periods 10-55 ( = 0018).11

Average contributions in treatment VCMC are between those in VCM and in CCM.

11All tests in this paper are two—sided tests.
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Figure 1: Time path of average contributions over all 60 periods, complete information

treatments.
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Table 2: Average Contributions in complete information treatments

CCM VCM VCMC

average contributions all periods 861 466 735

average contributions periods 30-60 877 440 723

average contributions periods 10-55 890 461 763

They are not significantly different to either one according to MWU-tests, although they

are close to significance with respect to VCM ( = 11). Thus it seems that part of the

success of CCM may be due to communication that is inherent in the mechanism. But

this is not the whole story. Looking at individual groups (see Figure 2) one can see that

3 of the 8 groups in treatment VCMC completely collapse to no contribution whereas the

remaining group cooperate almost perfectly. This is different for the CCM. In no group

cooperation completely collapses but there are some volatile groups where contributions

drop to zero in one round only to rebound back to full contribution in the next round.

This is typical for a situation when subjects condition on the current level of contribution

and yet some subjects try to deviate. They quickly learn that such deviations are not

profitable.

A similar picture emerges when we look at the end—game. In the CCM treatment

half the groups stay at the maximal contribution of 10 for each subject. This seems quite

remarkable but it, in fact, not surprising since it is not rational to deviate if enough subjects

condition their contribution on the current contribution level, in other words if they play

an unexploitable best response. What actually is remarkable is that there are 3 groups in

which at least one subject did not understand this causing total contributions to drop to

zero. We would expect that such mistakes become rarer if subjects have more experience

e.g. by playing the repeated game repeatedly. On the other hand, in treatments VCM and

VCMC there is an end—game effect in every group (if contributions did not crash already

before).

Next, we can check the prediction of Theorem 1. Accordingly, the CCM should converge

to Pareto optimal outcomes. Table 3 lists the percentage of Pareto optimal outcomes for

the three treatments. As predicted, the share of Pareto optimal outcomes is fairly high in

CCM at almost 78%. A MWU-test (at the group level) shows that corresponding share is

significantly lower at 24.3% for VCM ( = 0012). Again, VCMC is intermediate between

the other two treatments and is weakly significantly higher that VCM ( = 0080) and not
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Figure 2: Mean contributions of individual groups over 60 periods, complete information

treatments.
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significantly different from CCM ( = 0293).

Table 3: Percentage of Pareto optimal outcomes

% of Pareto optimal outcomes

CCM 779%

∗∗

VCM 243%

∗

VCMC 590%
** sign. at 5%, MWU-test, * sign. at 10%.

5.2 Incomplete information

Figure 3 shows the time path of average contributions of the beneficiaries of the public

good (i.e. subjects with  = 04) for the two incomplete information treatments. We

exclude the  = 0 types since they have a dominant strategy to contribute zero and do so

in 94% of cases. The CCMII again shows an increasing path with fairly high contribution

rates after the first few periods. Table 4 lists the average contributions for all periods, the

second half of the experiment and for periods 10-55. As was to be expected, contributions

in CCMII are lower than under complete information but they are not very much lower

and there is no downward trend and no endgame effect.

What is surprising, though, is that the VCM seems to do just as well as the CCM under

incomplete information. According to MWU-tests (taking each group as one independent

observation), we find no significant difference for all periods ( = 087), the second half

( = 082) and periods 10-55 ( = 097). In contrast to treatment CCMII, there is a

strong endgame effect in VCMII. We are currently not aware of any prior experimental

evidence that VCM games with incomplete information yield higher contributions from

the beneficiaries (although the difference between VCM and VCMII is not significant for

any of the considered time periods,   030). So this is an interesting finding by itself and

deserves more attention in future research.

The share of Pareto optimal outcomes is also fairly similar in the two incomplete in-

formation treatments at 49.9% for CCMII and 47.1% in VCMII, which is not significant

different (MWU-test,  = 082).
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Table 4: Average Contributions in the incomplete information treatments

CCMII VCMII

average contributions all periods 6.29 6.39

average contributions periods 30-60 6.73 6.37

average contributions periods 10-55 6.69 6.62

Looking again at individual groups we can see some interesting patterns. Figure 4 shows

the mean contribution at the group level including the type-0 subjects. Some groups almost

perfectly coordinate, e.g. groups 101, 103, and 104 in CCMII. The average contribution is

8, which comes about because all beneficiaries contribute fully and the one type-0 subject

not at all. Surprisingly, some of these cases exist even for the VCM, e.g. groups 131 and

152.

There are also two interesting groups that point out potential weaknesses of the CCM

which might have to be addressed in future work. Group CCMII,111 is a group with 2

type-0 subjects and group contributions quickly converge to 0. The corresponding group

in the VCM, group 141, share almost the same fate. Yet, the reason why the CCM fails in

this group is more interesting: Both type-0 subjects start by offering to contribute positive

amounts and actually have to contribute 7 and 5, respectively, in the first period. Very

likely this made the other subjects in their group believe that there are no type-0 subjects

in the group and can account for the failure to coordinate.

Group CCMII,121 is also interesting but for a different reason. This group managed to

coordinate on a Pareto efficient mean contribution of 6, which comes about when 3 subjects

contribute fully and 2 not at all. However, this group had only one type-0 subject. It turns

out that one subject perfectly mimicked a type-0 guy by never offering any contributions

from period 1 to 60. This can happen even if the CCM works perfectly since the outcome

is Pareto optimal as predicted. Yet there exist outcomes with higher total contributions.

5.3 Strategic Behavior

To better understand the performance of the CCM it is useful to check which parts of the

mechanisms and the dynamic process are supported by the data and which not. Table

5 lists a number of measures related to the strategic behavior of subjects in the CCM

treatments. First, the assumption in the theory section that subjects play myopic better
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cluded), incomplete information treatments
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responses seems to be strongly supported by the data. In fact, more than 93% of choices are

better responses to the message profile of the previous period in both CCM treatments. As

discussed above, subjects no not always fully exploit their strategic position as only slightly

more than 2/3 of decisions in CCM and 57% of decisions in CCMII are best responses.

Table 5: Strategic Behavior of subjects in the CCM

complete info incomplete info

% of better responses 95.5% 93.4%

% of best responses 67.0% 57.0%

% of unexploitable messages 13.8% 44.8%

% high message unexploitable 63.8% 72.5%

% high message chosen by CCM 83.1% 61.7%

% of weakly unexploitable messages 97.9% 87.1%

The share of unexploitable messages is surprisingly low at 13.8% in CCM. Note however,

that for a message to be counted as unexploitable both parts of the message must satisfy

the condition for unexploitability. In many cases subjects will (correctly) assume that only

one part of their message is relevant in the current situation and in 83.1% the high message

(i.e. the message that promises the higher contribution) is the one chosen by the CCM

mechanisms. As Table 5 shows, 63.8% of high messages are unexploitable. It seems that

subjects make sure their — more likely relevant — high message is unexploitable and possibly

give less attention to the low message. In CCMII the share of unexploitable messages is

higher, which however, might be due to the higher share of no contribution messages (which

are always unexploitable).

Finally, we find that subjects overwhelmingly make sure that their messages do not

make them worse off than not contributing at all. This condition is satisfied if  ≤ 

for both messages. We call such messages weakly unexploitable because the condition is

implied by our unexploitability condition for period 2 through 60 once it is satisfied in the

first period. As Table 5 shows, 97.9% of all messages are weakly unexploitable in CCM and

87.1% in CCMII. This shows that most subjects understand that they can use the CCM

to make sure that they are not the suckers in their group: by using (weakly) unexploitable

messages they would never contribute and be the victim of free-riders, which certainly is

one of the dangers in the VCM.

Table 6 lists the share of outcomes where subjects receive a profit of less than 10, which
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is the no contribution profit. Under the CCM this almost never happens as only 0.13% of

profits are below 10 (and only slightly higher in CCMII). In the VCM treatment, almost

7% of profits are below 10 (and more than 8% in VCMII). Even though this is not a very

high share, it may discourage contributions. Communication alleviates the sucker problem

somewhat but can not solve it entirely as 3.92% of profits are below 10.

Table 6: The risk of becoming a sucker

share of outcomes with profits  10

CCM 0.13%

VCM 6.95%

VCMC 3.92%

CCMII 1.15%

VCMII 8.10%

6 Summary and discussion

In this paper we propose a new and simple mechanism that helps achieve stable Pareto

efficient outcomes in a repeated public good environment. With many of the existing

mechanisms that have been proposed in the literature a common limitation is typically that

they are focusing on non-repeated cases of public good games. Situations that apply to the

repeated case are widespread which thus makes it clearly necessary to study mechanisms

that can achieve efficient outcomes with repetition.

We require that our mechanism satisfies three criteria: individual rationality, balanced

budget and that the mechanism designer and agents need not know the preferences of

(other) agents. The Conditional Contribution Mechanism (CCM) asks agents to send two

messages about their own level of contribution with a condition on total contributions. The

mechanism then selects the contribution profile that maximizes the total contributions from

all agents. Our main theorem says that if agents play unexploitable better responses all

dynamically stable outcomes of the CCM are Pareto optimal.

We experimentally test the mechanism and find that under complete information almost

80% of outcomes are Pareto optimal. By comparing the CCM to a VCM treatment we

find clear evidence that our mechanism outperforms the VCM with significantly higher
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contribution rates. Of course, given the existing literature on how communication helps

foster high contribution rates, a potential concern might be that the CCM does better than

the VCM simply due to the ‘communication’ aspect of it. We investigate this possibility in

a cheap talk VCM treatment where participants offer non-binding messages of how much

they would contribute for a given level of total contribution. We find that the VCMC

treatment does better than the VCM in terms of contribution rates, but importantly it

does not manage to do as good as the CCM. The CCM contribution rates are still slightly

higher than the VCMC treatment as is the proportion of Pareto efficient outcomes.

One of the important characteristics of the CCM is that neither the mechanism de-

signer nor other agents need to know the preferences of an agent. We also test how the

CCM performs in an incomplete information situation experimentally and find that high

contribution rates are sustained on average, but not as high as in the complete information

treatments. Surprisingly we find that the VCM treatment with incomplete information

also performs quite well in terms of contribution rates. This is an interesting finding by

itself and deserves more attention in future research.

Overall, our theoretical predictions for the CCM appear to be corroborated in our

experimental analysis. This is promising as the CCM is a very simple mechanism to

implement and can be applied to various situations to help sustain long-term contributions.

Of course, one caveat to the mechanism is that it assumes that the messages are binding and

that this is enforceable. This assumption may not always be appropriate depending on the

situation one is interested in. For example, when looking at international treaties it would

be heroic to assume that any commitments involved in such treaties are enforceable even if

under ‘binding’ agreements. Given this limitation it would seem reasonable to argue that

the CCM is not exactly appropriate for such cases, but instead more appropriate for smaller

scale situations. In cases where sports clubs or schools are trying to collect contributions

for specific projects potentially the CCM could act as a helpful mechanism to assist socially

optimal levels of contributions. Furthermore, in situations like with Wikipedia fund-raising,

one could imagine a possibility where contributions come with conditions attached and are

then triggered automatically thus making messages both binding and enforceable.

Computationally it should be easy to use the CCM even in very large populations.

However, the feedback given to participants needs to be adjusted in this case since it is

clearly impractical to provide participants with a list of all messages. To solve this problem

one could provide participants with an app that is programmed similarly as the calculator

used in the experiment except that it already takes the messages of other participants as
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given. Future research should test the CCM in the field.

Appendix A

Proof of Lemma 1. Suppose
P

   1. Consider a contribution vector  such that

 = , ∀. Then
() = 1−  + 

X


 ≥ 1

with the inequality being strict for all   0. Hence,  is a ∗ Pareto improvement
over .

Conversely, suppose there exists a  which is a ∗ Pareto improvement over .
Hence

1−  + 
X


 ≥ 1⇔  ≥ P
 

with the inequality being strict for all   0. Summing over all  yieldsX


 

P
 P
 

= 1

as desired. ¤

Proof of Lemma 2. (“only if”) Suppose that
P

∈   1. We will show that  is

not Pareto optimal by constructing some 0 which is a Pareto improvement over . Let
∆ := 0 −  ≥ 0∀ ∈  and ∆ = 0∀ ∈ . We now specify that

∆ =  + ∀ ∈ 

for some   0 and   0. We choose an arbitrary  and  small enough such that

+∆  1∀ ∈ . Next we show that the 0 thus constructed is strictly better than  for
all agents with   0 and weakly better for all  = 0.

(
0) = 1−  −∆ + 

⎛⎝X
∈

 +
X
∈
∆

⎞⎠
= 1−  −  − + 

X
∈

 + 
X
∈

( + )  1−  + 
X
∈

 = ()
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⇔
− − + 

X
∈

 + ||  0 (7)

where || is the cardinality of . Rearranging (7) yields



⎛⎝X
∈

 − 1
⎞⎠+ (||− 1)  0

which is satisfied by assumption for all   0 and  small enough.

(“if”) Suppose  is not Pareto optimal. We will show that
P

∈   1. If  is not

Pareto optimal, then some 0 exists s.t.

∆ ≤ 
X
∈
∆ ∀ ∈ ,

with strict inequality for at least one . Thus,X
∈
∆ 

X
∈


X
∈
∆

and hence
P

∈   1. ¤

Proof of Lemma 3. Let  := (1     ) ∈  be an outcome, such that  º  ∀  ∈ ,

and define ̄ :=
P

=1 . Then  = (( ̄) (0 0))∀, is a Nash-equilibrium of the

mechanism with outcome . Note first that it is immaterial whether an agent deviates by

changing his first or his second message since given the message profiles of the other, only

one message is relevant. There are four ways in which any agent  can deviate from his

(relevant) message. He can increase or decrease his proposed contribution. And he can

increase or decrease his condition.

Any decrease in the offered contribution will fail to satisfy all other agents conditions

and can thus only lead to outcomes, which are worse for agent , no matter what condition

he chooses.

Any (weak) increase in the offered contribution will not lead to an increase of other

agents’ contributions. Thus, such an increase combined with a condition that can be

satisfied will only lead to a (weakly) higher contribution by agent . If the increase in the

offered condition is combined with a condition that can not be satisfied the outcome will
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be . In both cases agent  is (weakly) worse off. Thus, no agent has any incentive to

deviate and  is a Nash equilibrium.

Let now  ∈  be an outcome such that some agent  strictly prefers  to . Given

any message profile 0 leading to the outcome  agent  can profitably deviate to 00
 =

((0 0)(0 0)). This gives him an outcome which is at least as good as  and thus strictly

better than . Therefore, there is no message profile that makes  a Nash equilibrium

outcome. ¤

Proof of Lemma 4. Let (
−1
− ) denote a contribution level that is part of some best

response of  to the previous period’s message profile −1
− , which always exists since the

set of contributions is finite. Let  (−1
− ) denote the total contribution that would be

induced by the CCM given −1
− and given agent  chooses to contribute (

−1
− ) If this

total contribution is zero, let  (−1
− ) be any condition  that makes ((

−1
− ) )

unexploitable, i.e.

1− (
−1
− ) +  ≥ 1− −1 + 

X
∈

−1 = (
−1)

Thus, message
¡
(

−1
− ) 

(−1
− )

¢
(0 0) is an unexploitable best response to −1

− 
Note that (0 0) is always unexploitable and given that the first part of the message is a

best response, the whole message is too. ¤

Proof of Theorem 1. We prove this theorem in two steps. In step 1 we prove that

outcomes that are Pareto optimal and ∗ Pareto improvements over  are indeed

outcomes of recurrent classes of UBRD. And in step 2 we prove that from any other outcome

the dynamics reach one of those recurrent classes with strictly positive probability.

Step1: Let  ∈  be a Pareto optimal outcome, which is a ∗ Pareto improvement
over . Define ̄ :=

P
=1 . Then 1 = 2 =  and 1 = 2 = ̄ is part of a recurrent

class of UBRD with outcome . Assume to the contrary that after deviations of some

agents consistent with UBRD the outcome changes from  to some 0 6= . Note that

0 6=  implies in this environment that not all agents are equally well off in 0 as in .

Then at least one agent is worse off in 0 than in  (otherwise this would be a Pareto

improvement over ). If one of the agents who is worse off contributes in 0 a strictly
positive amount, then his message that led to the outcome 0 was either exploitable or no
better response and he would not have chosen it in UBRD. Thus, all agents, who are worse
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off in 0 than in , need to contribute zero in 0. Assume to the contrary that in the group
of the other agents who are equally well or better off in 0 than in  there are some agents

who contribute more in 0 than in . Then it would be a Pareto improvement over  if those
agents made the contributions as in 0, while all other agents made contributions as in .

This cannot be the case since  was Pareto optimal. Thus, all agents contribute weakly less

in 0 than in . This implies that total contributions are lower in 0 than in . Then there

is one agent in this group whose contribution sank relatively to the contributions in  by

the lowest percentage. If this agent is better off in 0 than in  he would still be better off
in  since the valuation of the public good is linear. This contradicts that  was a ∗

Pareto improvement over . This yields a contradiction and thus it is not possible that the

outcome changes under UBRD once the described message profile is reached.

Step 2: Assume now that the current message profile yields an outcome that is not

Pareto optimal. We need to show that from there the dynamics eventually reach one of

the recurrent classes. We shall do so by constructing a path that has strictly positive

probability (although many other paths would work as well).

Step 2A: Let (
−1
− ) and  (−1

− ) be defined as in the proof of Lemma 4. Fur-
thermore, as in the proof of Lemma 4 assume that agents in step 2A always choose (0 0)

as their second message.

Suppose in period  only one agent can adjust his strategy and for this agent there

exists (
−1
− )  −1 . Agent  then switches to message

¡
(

−1
− ) 

(−1
− )

¢
(0 0)

with positive probability. If there is no such agent, move to Step 2B. In period +1, another

agent  with (

−)   is selected and switches to

³
(


−) 

(
−)
´
(0 0). Step

2A is repeated until there is no further agent who wants to decrease his contribution. Since

the state space is finite, this happens in a finite number of steps. If the new message profile

yields a Pareto optimal outcome, move to Step 2C. If not move to Step 2B.

Step 2B: The current message profile yields an outcome  that is not Pareto optimal

and (

−) ≥  for all agents and all best replies. With positive probability all agents

 for whom (

−) =  can adjust their message in the next period. Let them all switch

to ((

−)

P
 


)(0 0). Note that in the new profile 

+1  ≤
P

 

 , for all , because

if there were an agent with  
P

 

  he would not have contributed and would therefore

have had an alternative best response of (0 0) contradicting the fact that (

−) ≥ ∀.

We claim that +1 must be a Nash equilibrium. By construction, no agent wants to lower

his contribution. But also no agent has a best response that would entail increasing his

contribution since he would not trigger anyone else’s condition to be satisfied.
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If the outcome +1 is Pareto optimal, move to Step 2C. If not, then there exist Pareto

improvements over +1, some of which are Pareto optimal. Let 0 denote some such Pareto
optimal outcome with 0 ≥ +1 ∀.

Then for any agent  the message


+2

 =

⎧⎨⎩
⎛⎝+1 

X


+1

⎞⎠ 

⎛⎝0
X


0

⎞⎠⎫⎬⎭
is an unexploitable best response to 

−.³
+1 

P
 

+1


´
is a best response because +1 is a Nash equilibrium.

³
0
P

 
0


´
is

always a best response since for unchanged +1
− this message cannot be satisfied sinceP

 
0
 

P
 

+1
 

Message +2
 is unexploitable because if  contributes with message +2

 , he is weakly

better off than in +1. If the CCM implements the second part of the message, we know

that (
0
 

0
−) ≥ (

+1) by the fact that 0 is a Pareto improvement over +1. If all
agents choose message +2

 , the new outcome will be 0.
Step 2C: If 0 is a strict∗ Pareto improvement over ,

+3
 =

⎧⎨⎩
⎛⎝0

X


0

⎞⎠ 

⎛⎝0
X


0

⎞⎠⎫⎬⎭
is an unexploitable best response for all agents. Thus from any not Pareto optimal outcome

a Pareto optimal outcome is reached with strictly positive probability.

If 0 is not a strict∗ Pareto improvement over , then there exists some agent  who is at
least as well off in  as in 0. For this agent the message {(0 0) (0 0)} in an unexploitable
best response, while all other agents can choose +3

 . In the next period, {(0 0) (0 0)} is
an unexploitable best response for all agents. And from there any Pareto optimal  that is

a strict∗ Pareto improvement over  can be reached by letting all agents choose messagen
(0 0) 

³

P

 

´o
. ¤

Appendix B: Instructions CCM

[These are translations of the original German instructions]

Welcome to our experiment! Please read these instructions carefully. Do not talk to
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your neighbor from now on. Please turn off your mobile phone and leave it turned off until

the end of the experiment. If you have any questions, raise your hand. We will come to

you. All participants have the same instructions.

In the experiment you will be divided in groups of 5. The experiment will last for

60 periods. In each period you will interact with the same 4 other participants. The

experiment runs completely anonymously. No participant will be informed about who he

has interacted with or which payoff another participant received.

The currency for the experiment will be Taler. In each period you will start with 10

Taler and you can decide which fraction of those 10 Taler you want to invest into a common

project. For each Taler one participant of your group invested into the common project,

each member of the group will be paid 0.4 Taler. You will keep the rest of the 10 Taler

that you chose not to invest into the common project.

Example 1 You invest 4 Taler into the project and additionally 2 other participants each

invested 8 Taler, thus in total 20 (=4+8+8) Taler are invested. You will receive for your

investment and the investments of the two other participants in total 20 x 0.4 = 8 Taler.

You keep the 6 Taler you did not invest. So you earn in total 8 +6 = 14 Taler in this

period

Example 2 All participants invest their 10 Taler into the common project. So you earn

50 x 0.4 = 20 Taler in this period.

Example 3 All participants invest 0 Taler into the common project. So you simply keep

the 10 Taler you received in the beginning.

Example 4 All the other participants invest 10 Taler into the common project, you invest

nothing. So you earn 40 x 0.4+10 = 26 Taler in this period.

Example 5 All the other participants invest nothing into the common project, you invest

10 Taler. So you earn 10 x 0.4 = 4 Taler in this period.

Each participant can condition his contribution to the common project on how much

all other participants contribute. All conditions have the following form:

“I will contribute X Taler, if in total at least Y Taler are contributed (by

all members of the group including yourself)”
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Example 6 Suppose you choose the “I will contribute 5 Taler, if in total at least 20 Taler

are contributed (by all members of the group including yourself)” Suppose the other par-

ticipants contribute 18 Taler in total. Together with your 5 Taler it would make 18 + 5 =

23 Taler. Your condition would be fulfilled and you would contribute 5 Taler.

In fact, you should formulate two different conditions of this kind. For example,

you could signal the other participants that you would be willing to contribute more, if

all the others do so too. E.g. we could append the condition from example 6 by a higher

condition:

First condition: “I will contribute 5 Taler, if in total at least 20 Taler are

contributed (by all members of the group including yourself)”

Second condition: “I will contribute 10 Taler, if in total at least 50 Taler are

contributed (by all members of the group including yourself)”

The computer then chooses the condition for each participant, such that the highest

total amount for the project is reached. But the conditions make sure that you never

pay more than you indicated.

For example, if you choose the two conditions from above, you will contribute 10 Taler

if also all other participants contribute the maximal amount of 10 Taler, such that in total

50 Taler are contributed. If the group contributes in total an amount between 20 and 49

Taler you will contribute 5 Taler. And if the others in the group contribute less than 15

Taler such that even with your 5 Taler the condition of 20 Taler will not be reached, you

will contribute nothing.

Payoff

The experiment lasts for 60 periods. A questionnaire will follow after the 60 periods.

At the end of the experiment one of the 60 periods will be randomly chosen and

the earnings of the chosen period will be paid with an exchange factor of 1 Taler = 1 .

The payment will be private and in cash. For example, if your earnings from the payment

relevant round are 15 Taler, you will receive 15 .

Structure of the screen

You have a printed example of the structure of the screen of the program you will make

your decisions in each period. The screen is divided into three blocks.
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The upper left block contains a calculator. Here you can test contributions and con-

ditions for yourself and the other four participants (by default, the computer enters the

numbers group members chose in the previous period. You can change them, of course).

As soon as you have chosen contributions and conditions for all participants you can press

the button “Calculate payoff”. Then the computer calculates the payoff you will receive in

this case and the amount you would invest.

In the upper right block you enter your contributions and conditions that will be relevant

for your later payoff. Again, by default, the computer enters the numbers group members

chose in the previous period. If you want to change them, do it now. Beneath that, there

is a red button. If you press it you submit your decision and leave the screen. Only when

all participants have pressed the red button the experiment will continue. A time display

on the right gives you a hint until when you should have made a decision. If the time runs

out this has no consequences.

In the bottom block you will see from the second period onwards which contributions

and conditions all participants chose in the previous round. In the first period this block

will be empty in the program.

Appendix C: Instructions VCM and VCMC

Welcome to our experiment! Please read the instructions carefully. Do not talk to your

neighbor from now on. Please turn off your mobile phone and leave it turned off until the

end of the experiment. If you have any questions, raise your hands. We will come to you.

All participants have the same instructions.

In the experiment you will be divided in groups of 5. The experiment will last for

60 periods. You will be grouped with the same four participants in all periods. In

each period you will interact with the same 4 other participants. The experiment runs

completely anonymously. No participant will be informed about who he has interacted

with or which payoff another participant received.

The currency for the experiment will be Taler. In each period you will start with 10

Taler and you can decide which fraction of those 10 Taler you want to invest into a common

project. For each Taler one participant of your group invested into the common project,

each member of the group will be paid 0.4 Taler. You will keep the rest of the 10 Taler

that you chose not to invest into the common project.

[This part only in the incomplete information treatments:
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Here you can try out the effect of
different conditions and let the
computer calculate hypothetical
payoffs for you.

Here you will enter your two
conditions that will determine your
payoff for this period.

From the second period onwards, you will see here the
conditions of all participants in the previous period (the
number of the participants 2,3,4,5 will be the same during
all periods).

Figure 5: Screenshot CCM
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With a 20 % chance, you are type 1 and do not benefit from the collaborative project.

In that case, you will only be paid the Talers you keep. All Talers that a participant in

your group invests in the joint project will not affect your payout in this case.

With a 80 % chance, you are type 2 and benefit from the joint project. For every Taler

that a participant in your group invests in the joint project, you (and every other type 2

member of the group) will receive 0.4 Talers

Example 1 You invest 4 Taler into the project and additionally 2 other participants each

invested 8 Taler, thus in total 20 (=4+8+8) Taler are invested. You will receive for your

investment and the investments of the two other participants in total 20 x 0.4 = 8 Taler.

You keep the 6 Taler you did not invest. So you earn in total 8 +6 = 14 Taler in this

period

Example 2 All participants invest their 10 Taler into the common project. So you earn

50 x 0.64= 20 Taler in this period.

Example 3 All participants invest 0 Taler into the common project. So you simply keep

the 10 Taler you received in the beginning.

Example 4 All the other participants invest 10 Taler into the common project, you invest

nothing. So you earn 40 x 0.4 + 10 = 26 Taler in this period.

Example 5 All the other participants invest nothing into the common project, you invest

10 Taler. So you earn 10 x 0.4 = 4 Taler in this period.

[This part only in treatment VCMC:

Each participant can send messages to the other participants. All conditions have the

following form and will be shown to the other participants at the beginning of the next

round:

“I will contribute X Taler, if in total at least Y Taler are contributed (by

all members of the group including yourself)”

In fact, you can formulate two different conditions of this kind. For example, you

could signal the other participants that you would be willing to contribute more, if all the

others do so too. For example, you could send the following two messages:

First condition: “I will contribute 5 Taler, if in total at least 20 Taler are

contributed (by all members of the group including yourself)”
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Second condition: “I will contribute 10 Taler, if in total at least 50 Taler are

contributed (by all members of the group including yourself)”

However, the messages are non-binding. That is, you can still choose your contributions

freely. Also, you do not have to send messages if you do not want to.]

Payoff

The experiment lasts for 60 periods. A questionnaire will follow after the 60 Periods.

At the end of the experiment one of the 60 Periods will be randomly chosen and the

earnings of the chosen period will be paid with an exchange factor of 1 Taler = 1 .The

payment will be private and in cash. For example, if your earnings from the payment

relevant round is 15 Taler, you will receive 15  .

Structure of the Screen

You have a printed example for the structure of the screen of the program you will

make your decisions with in each period. The screen is divided into three blocks.

The upper left block contains a calculator. Here you can test actions for you and the

four other players (by default the computer will show here the decisions of the last period.

Of course you can change them). Once you selected an action for every player you can

press the button “Calculate payoff!” and the computer will calculate the payoff you would

obtain in this case.

In the upper right block [only in VCMC: you enter the two messages which the other

participants will see at the beginning of the next round. Furthermore...] you enter the

action that will be relevant for your payoff (here the computer will show as a default your

contribution of the last period as well. If you want to change it, you have to do so now).

Below there is a red button. When you press this button you submit your decision and leave

the screen. Only when all players have pressed the red button the experiment continues.

A clock on the upper right gives you a hint until when you should have made a decision.

If the time runs out this has no consequences.

In the bottom block you will see from the second period onwards the actions of all

players in the previous round. [only in VCMC: Furthermore you see the messages sent by

all participants (if they sent any).] In the first period this block will be empty.
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Here you can try out the effect of
different contributions and let the
computer calculate hypothetical
payoffs for you.

Here you will enter your
contribution that will determine
your payoff for this period.

From the second period onwards, you will see here the
contributions of all participants in the previous period (the
number of the participants 2,3,4,5 will be the same during
all periods).

Figure 6: Screenshot VCM
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6.1 Test questions

CCM Quiz

1) Suppose you contribute 5 Talers to the joint project. The other participants con-

tribute 15 Talers. What is your payout for this round?

2) Suppose you choose as a first condition: I contribute 10 if a total of 30 is con-

tributed." As a second condition: "I contribute 9 if a total of 25 is contributed." If the

others contribute 18 in total, how much will you contribute in this round ?

VCM Quiz

1) Suppose you contribute 5 Talers to the joint project. The other participants con-

tribute 15 Talers. What is your payout for this round?

2) Suppose you contribute 2 Talers to the joint project. The other participants con-

tribute 38 Talers. What is your payout for this round?

VCM II Quiz

1) Suppose you contribute 5 Talers to the joint project and you are type 2. The other

participants contribute 15 Talers. What is your payout for this round?

2) Suppose you contribute 2 Talers to the joint project and you are type 2. The other

participants contribute 38 Talers. How much is your payout for this round?

CCM II Quiz

1) Suppose you contribute 5 Talers to the joint project and you are type 2. The other

participants contribute 15 Talers. What is your payout for this round?

2) Suppose you choose as a first condition: "I’ll contribute 10 if a total of 30 is con-

tributed." As a second condition: "I contribute 9 if a total of 25 is contributed." If the

others contribute 18 in total, how much will you contribute in this round?
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