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: Getting started with DynareOBC 

DynareOBC is a MATLAB toolbox designed to simulate and analyse models with 

occasionally binding constraints. It relies on Dynare (Adjemian et al. 2011) internally. 

To get started with DynareOBC, first download the latest release 

(dynareOBCRelease.zip) from: 

https://github.com/tholden/dynareOBC/releases 

Extract the zip archive into a sub-folder. You should also install the latest stable version 

of Dynare from: 

http://www.dynare.org/download/dynare-stable 

While DynareOBC contains a MILP solver, for best results, at this point, you 

should install a commercial MILP solver. Many of these are free for academics. We 

have had good results with Gurobi, which is available for academics by following the 

steps here: 

http://www.gurobi.com/academia/for-universities 

Other MILP solvers which are available for free to academics are documented in 

DynareOBC’s ReadMe.pdf. 

If you do not have administrative rights on your machine, you will also need to get 

your administrator to install a few minor dependencies for you, which otherwise 

DynareOBC would install itself. Full instructions for this are given in DynareOBC’s 

ReadMe.pdf. 

Next, open MATLAB, reset the MATLAB path (to be on the safe side) and then 

add only the following folders to your path. In each case, you should not click “add 

with subfolders”. Only the folders specified need adding: 

1) The “matlab” folder within Dynare. 

2) The root folder of DynareOBC, i.e. the folder containing “dynareOBC.m”. 

3) The “matlab” folder within whichever MILP solver you installed (if any). 

You can now test your set-up of DynareOBC by typing: 

dynareOBC TestSolvers 

at the MATLAB command prompt. The first time you run DynareOBC it will install 

various dependencies, and it may restart MATLAB several times. Note that if you have 

not installed a commercial MILP solver, you should say “yes” when offered the choice 

to install “SCIP”, otherwise DynareOBC’s performance will be severely compromised. 
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When DynareOBC has installed everything necessary, it will run the solver tests. 

Double check in particular that the LP and MILP tests are passing. (Results for the 

other tests, e.g. semi-definite programming are not relevant.) 

If everything has worked up to this point, then you now have a fully functioning 

install of DynareOBC. To see it in action, you could start by running DynareOBC’s 

included examples. Most of these examples can be run by changing to DynareOBC’s 

“Examples” directory in MATLAB, and then executing the script 

“RunAllExamples”. This iterates over the various sub-directories of the 

“Examples” directory, running the script “RunExample” within each. 

Developing your own models for use with DynareOBC is easy. You can include 

one or more occasionally binding constraints directly within your MOD file. For 

example, to include a zero lower bound on nominal interest rates, your MOD file might 

contain the line: 

i = max( 0, 1.5 * pi + 0.25 * y ); 

DynareOBC supports both max and min (with two arbitrary arguments) and abs 

(with one arbitrary argument). There are no restrictions on what is contained within 

the brackets. You do not have to have a 0 term, and it does not matter which of the 

arguments of max or min is bigger or smaller in steady state. The only limitation is 

that the two arguments of max or min cannot be identical in steady state (likewise, the 

argument of abs cannot be zero in steady state). For a work-around of this limitation 

in a financial frictions context, see the approach of Swarbrick, Holden & Levine (2016). 

Once you have included an OBC in you MOD file, you can run it with DynareOBC 

by typing: 

dynareOBC ModFileName.mod 

where “ModFileName.mod” is the name of your MOD file. Just as with standard 

Dynare, if you have specified e.g. “irf=40” within your stoch_simul command, 

then DynareOBC will produce impulse responses. Likewise, if you have specified e.g. 

“periods=1000” within your stoch_simul command, then DynareOBC will 

produce a stochastic simulation. 

As an example, the file “bbw2016.mod” in the 

“Examples/BonevaBraunWaki2016” directory of DynareOBC contains the line: 
r = max( 0, re + phi_pi * (pi - pi_STEADY) + phi_y * (gdp - gdp_STEADY) ); 

in its model block, and has the following stoch_simul command: 
stoch_simul( order = 1, periods = 0, irf = 40 ); 
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We can run the MOD file (implementing the model of Boneva, Braun & Waki (2016)) by 

typing: 

dynareOBC bbw2016.mod 

from within the “Examples/BonevaBraunWaki2016” directory. Doing this 

produces two sets of impulse responses, however none of them hit the zero lower 

bound, as the shock is too small. (This uses the solution algorithm of Holden (2016).) 

To produce impulse responses to a larger shock, we can run DynareOBC with the 

ShockScale command line option. This increases the size of the initial impulse in 

IRF generation, without altering the standard deviations of the model’s shocks, or 

otherwise changing the behaviour of stochastic simulation. For example, if we run: 

dynareOBC bbw2016.mod ShockScale=5 

then DynareOBC produces IRFs to a 5 standard deviation shock to each of the model’s 

exogenous variables. This produces the two plots shown in Figure 1. In all DynareOBC 

plots, the solid line shows the economy’s path imposing the bound(s), and the dotted 

line shows the path the economy would have taken were it not for the bound(s). 
 
 

 

 

Figure 1: Sample output from running “dynareOBC bbw2016.mod ShockScale=5”. 
The left 4 panels show the response to a 5 standard deviation demand shock. 

The right 4 panels show the response to a 5 standard deviation productivity shock. 
All variables are in logarithms. 

In all cases, the dotted lines show the path the economy would have followed were it not for the ZLB.  

 

DynareOBC always also outputs diagnostic information about the model. For 

example, for this model, DynareOBC outputs the following, after it has made its final 

internal call to Dynare. Here we have made the most important lines bold to highlight 

them, and we have removed some additional white space: 
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Beginning to solve the model. 

Solving the model for specific parameters. 

Saving NLMA parameters. 

Retrieving IRFs to shadow shocks. 

Preparing normalized sub-matrices. 

Largest P-matrix found with a simple criterion included elements 

up to horizon 32 periods. 

The search for solutions will start from this point. 

Pre-calculating the augmented state transition matrices and 

possibly conditional covariances. 

Performing initial checks on the model. 

M is an S matrix, so the LCP is always feasible. This is a 

necessary condition for there to always be a solution. 

varsigma bounds (positive means M is an S matrix): 

           6.7600451299659          6.76004512996604 

sum of y from the alternative problem (zero means M is an S 

matrix): 

     0 

Skipping tests of feasibility with infinite T 

(TimeToEscapeBounds). 

To run them, set FeasibilityTestGridSize=INTEGER where 

INTEGER>0. 

Skipping further P tests, since we have already established that 

M is a P-matrix. 

The M matrix with T (TimeToEscapeBounds) equal to 32 is a P-

matrix. There is a unique solution to the model, conditional on 

the bound binding for at most 32 periods. 

This is a necessary condition for M to be a P-matrix with 

arbitrarily large T (TimeToEscapeBounds). 

A weak necessary condition for M to be a P-matrix with 

arbitrarily large T (TimeToEscapeBounds) is satisfied. 

Discovering and testing the installed MILP solver. 

Found working solver: GUROBI 
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Forming optimizer. 

Preparing to simulate the model. 

Simulating IRFs. 

Cleaning up. 
 

We see that DynareOBC’s fast default diagnostics already identified that the 𝑀𝑀 matrix 

for this model was a P-matrix and an S-matrix, as well as providing some weak 

evidence that 𝑀𝑀 is a P-matrix for arbitrarily high 𝑇𝑇. (Discussion of this uniqueness in 

light of the results of Boneva, Braun & Waki (2016) is contained in Section 5.2.1 of the 

main paper.) 

Note that DynareOBC refers to 𝑇𝑇 as “TimeToEscapeBounds”. This is the name 

DynareOBC gives to the command line option to control the size of the linear 

complementarity problems DynareOBC solves internally. To see why this may be 

necessary, try running the command: 

dynareOBC bbw2016.mod ShockScale=10 
Now DynareOBC does not complete successfully. Instead it reports: 

 

Error using SolveBoundsProblem (line 241) 

Impossible problem encountered. Try increasing 

TimeToEscapeBounds, or reducing the magnitude of shocks. 
 

To avoid this problem, we just need to follow the advice of the error message and run 

with a higher value for “TimeToEscapeBounds”. For example, if we run: 

dynareOBC bbw2016.mod ShockScale=10 TimeToEscapeBounds=64 
then DynareOBC completes successfully. In this case the response to the productivity 

shock stays at the ZLB for more than 32 periods, which is significant as 32 is the default 

number of periods for “TimeToEscapeBounds”. 

“TimeToEscapeBounds” and “ShockScale” are two of DynareOBC’s 

command line options. There is a full list of these options in the “ReadMe.pdf” 

contained in DynareOBC’s root directory, along with details on what each option does. 

Since the full list of options may be somewhat bewildering though, we conclude this 

getting started guide with details of those options most relevant to the analysis of a 

model’s properties and those which impact perfect foresight simulation. Note that all 
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options accepting a number must be entered without a space between the name of the 

option, the equals sign and the number. 

• TimeToEscapeBounds=INTEGER (default: 32) 

The number of periods after which the model is expected to be away from any 

occasionally binding constraints. If there is no solution which finally escapes 

within this time, DynareOBC will produce an error. 

• TimeToReturnToSteadyState=INTEGER (default: 64) 

The number of periods in which to verify that the constraints are not being 

violated. 

• ReverseSearch 
By default, DynareOBC finds a solution in which the last period at the bound is as 

soon as possible. This option makes DynareOBC find a solution in which the last 

period at the bound is as remote as possible, subject to being less than the longest 

horizon (i.e. TimeToEscapeBounds). 

• FullHorizon 
By default, DynareOBC finds a solution in which the last period at the bound is as 

soon as possible. This option makes DynareOBC just solve the bounds problem at 

the longest horizon. 

• Omega=FLOAT (default: 1000) 

The tightness of the constraint on the news shocks. If this is large, solutions with 

news shocks close to zero will be returned when there are multiple solutions. It is 

often helpful to combine this option with FullHorizon so that DynareOBC does 

not just choose the solution which escapes the bound first. 

• SkipFirstSolutions=INTEGER (default: 0) 

If this is greater than 0, then DynareOBC ignores the first INTEGER solutions it 

finds, unless no other solutions are found, in which case it takes the last found one. 

Thus, without ReverseSearch, this tends to find solutions at the bound for 

longer. With ReverseSearch, this tends to find solutions at the bound for less 

time. 
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• FeasibilityTestGridSize=INTEGER (default: 0) 

Specifies the number of points in each of the two axes of the grid on which a test 

of a sufficient condition for feasibility with 𝑇𝑇 = ∞ is performed. Setting a larger 

number increases the chance of finding feasibility, but may be slow. 

If FeasibilityTestGridSize=0 then the test is disabled. 

• SkipQuickPCheck 

Disables the “quick” check to see if the M matrix has any contiguous principal sub-

matrices with non-positive determinants. 

• PTest=INTEGER (default: 0) 

Runs a fast as possible test to see if the top INTEGERxINTEGER submatrix of 𝑀𝑀 is 

a P-matrix. Set this to 0 to disable these tests. 

• AltPTest=INTEGER (default: 0) 

Uses a slower, more verbose procedure to test if the top INTEGERxINTEGER 

submatrix of 𝑀𝑀 is a P-matrix. Set this to 0 to disable these tests. 

• FullTest=INTEGER (default: 0) 

Runs very slow tests to see if the top INTEGERxINTEGER submatrix of 𝑀𝑀 is a P(0) 

and/or (strictly) semi-monotone matrix. 

• UseVPA 

Enables more accurate evaluation of determinants using the symbolic toolbox. 

• ShockScale=FLOAT (default: 1) 

Scale of shocks for IRFs. This allows the calculation of IRFs to shocks larger or 

smaller than one standard deviation. 

• IRFsAroundZero 

By default at first order, IRFs are centred around the steady state. This option 

instead centres IRFs around 0. 
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: Additional matrix properties and their relationships 

The following definitions help us state our additional results:1 

Definition 6 (Principal sub-matrix, Principal minor) For a matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 , the 
principal sub-matrices of 𝑀𝑀  are the matrices �𝑀𝑀𝜕𝜕,𝑗𝑗�𝜕𝜕,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

 , where 𝑆𝑆, 𝑘𝑘1, … , 𝑘𝑘𝑆𝑆 ∈

{1, … , 𝑇𝑇}, 𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑆𝑆 , i.e. the principal sub-matrices of 𝑀𝑀  are formed by 

deleting the same rows and columns. The principal minors of 𝑀𝑀 are the determinants 

of 𝑀𝑀’s principal sub-matrices. 

Definition 7 (P(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called a P-matrix (P0-matrix) if the 

principal minors of 𝑀𝑀 are all strictly (weakly) positive.2 

Definition 8 (General positive (semi-)definite) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called general 

positive (semi-)definite if 𝑀𝑀 + 𝑀𝑀′ is positive (semi-)definite (p.(s.)d.). 

Definition 9 ((Non-)Degenerate matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called a non-

degenerate matrix if the principal minors of 𝑀𝑀  are all non-zero. 𝑀𝑀  is called a 

degenerate matrix if it is not a non-degenerate matrix. 

Definition 10 (Sufficient matrices) 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called column sufficient if 𝑀𝑀 is a P0-
matrix, and for each principal sub-matrix 𝑊𝑊 ≔ �𝑀𝑀𝜕𝜕,𝑗𝑗�𝜕𝜕,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

  of 𝑀𝑀  with zero 

determinant, and for each proper principal sub-matrix �𝑊𝑊𝜕𝜕,𝑗𝑗�𝜕𝜕,𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅
  of 𝑊𝑊  (𝑅𝑅 < 𝑆𝑆 ) 

with zero determinant, the columns of �𝑊𝑊𝜕𝜕,𝑗𝑗� 𝜕𝜕=1,…,𝑆𝑆
𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅

  are not a basis for the column 

space of 𝑊𝑊.3 𝑀𝑀 is called row sufficient if 𝑀𝑀′ is column sufficient. 𝑀𝑀 is called sufficient 

if it is column and row sufficient.  

Definition 11 ((Strictly) Copositive) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called (strictly) copositive 

if 𝑀𝑀 + 𝑀𝑀′ is (strictly) semi-monotone.4 

Definition 12 (Adequate matrices) 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called column adequate if 𝑀𝑀 is a P0-
matrix, and for each principal sub-matrix 𝑊𝑊 ≔ �𝑀𝑀𝜕𝜕,𝑗𝑗�𝜕𝜕,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

  of 𝑀𝑀  with zero 

determinant, the columns of �𝑀𝑀𝜕𝜕,𝑗𝑗� 𝜕𝜕=1,…,𝑇𝑇
𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

  are linearly dependent. 𝑀𝑀  is called row 

 
1 In each case, we give the definitions in a constructive form which makes clear both how the property might be 
verified computationally, and the links between definitions. For the original definitions, and the proofs of 
equivalence between the ones below and the originals, see Cottle, Pang & Stone (2009a) and Xu (1993). 
2 This is equivalent to our original definition of a P-matrix in Definition 3 (P-matrix). (Cottle, Pang & Stone 2009a) 
3 This may be checked via the singular value decomposition. 
4 Väliaho (1986) contains an alternative characterisation which avoids solving any linear programming problems. 
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adequate if 𝑀𝑀′ is column adequate. 𝑀𝑀 is called adequate if it is column adequate and 

row adequate. 

Definition 13 (S(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called an S-matrix (S0-matrix) if 

there exists 𝑦𝑦 ∈ ℝ𝑇𝑇 such that 𝑦𝑦 > 0 and 𝑀𝑀𝑦𝑦 ≫ 0 (𝑀𝑀𝑦𝑦 ≥ 0).5 

Definition 14 ((Strictly) Semi-monotone) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called (strictly) semi-

monotone if each of its principal sub-matrices is an S0-matrix (S-matrix). 

For example, consider the 𝑇𝑇 = 3  case with 𝑀𝑀 =
⎣
⎢
⎡

𝑀𝑀11 𝑀𝑀12 𝑀𝑀13
𝑀𝑀21 𝑀𝑀22 𝑀𝑀23
𝑀𝑀31 𝑀𝑀32 𝑀𝑀33⎦

⎥
⎤ . Then 𝑀𝑀  is a P-

matrix if and only if 𝑀𝑀11 > 0 , 𝑀𝑀22 > 0 , 𝑀𝑀33 > 0 , det �𝑀𝑀11 𝑀𝑀12
𝑀𝑀21 𝑀𝑀22

� > 0 , 

det �𝑀𝑀11 𝑀𝑀13
𝑀𝑀31 𝑀𝑀33

� > 0, det �𝑀𝑀22 𝑀𝑀23
𝑀𝑀32 𝑀𝑀33

� > 0 and det 𝑀𝑀 > 0. 

Cottle, Pang & Stone (2009a) note the following relationships between these classes 

(amongst others): 

Lemma 1 The following hold: 

1) All general positive semi-definite matrices are copositive, sufficient and P0. 

2) All general positive definite matrices are P matrices. 

3) P0 includes skew-symmetric, general positive semi-definite, sufficient and P 

matrices. 

4) All P0-matrices, and all copositive matrices are semi-monotone, and all P-matrices, 

and all strictly copositive matrices are strictly semi-monotone. 

5) All column (row) adequate matrices are column (row) sufficient. 

A common intuition is that in models without state variables, 𝑀𝑀 must be both a P 

matrix, and an S matrix. This is not true. there are even purely static models for which 

𝑀𝑀 is in neither of these classes, as we prove the following result in Appendix L.2. 

Proposition 3 There is a purely static model for which 𝑀𝑀1:∞,1:∞ = −𝐼𝐼∞×∞, which is 

neither a P-matrix, nor an S-matrix, for any 𝑇𝑇. 

 
5  These conditions may be rewritten as sup�𝜍𝜍 ∈ ℝ�∃𝑦𝑦 ≥ 0 s.t. ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, �𝑀𝑀𝑦𝑦�𝑡𝑡 ≥ 𝜍𝜍 ∧ 𝑦𝑦𝑡𝑡 ≤ 1� > 0 , and 
sup�∑ 𝑦𝑦𝑡𝑡

𝑇𝑇
𝑡𝑡=1 �𝑦𝑦 ≥ 0, 𝑀𝑀𝑦𝑦 ≥ 0 ∧ ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, 𝑦𝑦𝑡𝑡 ≤ 1� > 0, respectively. As linear programming problems, these may 

be solved in time polynomial in 𝑇𝑇 using the methods of e.g. Roos, Terlaky, and Vial (2006). Alternatively, by Ville’s 
Theorem of the Alternative (Cottle, Pang & Stone 2009b), 𝑀𝑀 is not an S0-matrix if and only if −𝑀𝑀′ is an S-matrix. 
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: Supplemental results 

Appendix C.1: Uniqueness 
The following corollary of Theorem 2 gives more easily verified necessary conditions 

for uniqueness. 

Corollary 4 If for all 𝑞𝑞 ∈ ℝ𝑇𝑇, the LCP �𝑞𝑞, 𝑀𝑀� has a unique solution, then: 

1. All of the principal sub-matrices of 𝑀𝑀 are P-matrices, S-matrices and strictly semi-

monotone. (Cottle, Pang & Stone 2009a) 

2. 𝑀𝑀 has a strictly positive diagonal. (Immediate from definition.)  
3. All of the eigenvalues of 𝑀𝑀 have complex arguments in the interval �−𝜋𝜋 + 𝜋𝜋

𝑇𝑇 , 𝜋𝜋 −
𝜋𝜋
𝑇𝑇�. (Fang 1989) 

The following corollary of Theorem 2 gives more easily verified sufficient conditions 

for uniqueness. 

Corollary 5 For an arbitrary matrix 𝐴𝐴, denote the spectral radius of 𝐴𝐴 by 𝜌𝜌(𝐴𝐴), and its 

largest and smallest singular values by 𝜎𝜎max(𝐴𝐴) and 𝜎𝜎min(𝐴𝐴), respectively. Let |𝐴𝐴| be 
the matrix with |𝐴𝐴|𝜕𝜕𝑗𝑗 = �𝐴𝐴𝜕𝜕𝑗𝑗�  for all 𝑖𝑖, 𝑗𝑗 . Then, for any matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 , if there exist 

diagonal matrices 𝐷𝐷1, 𝐷𝐷2 ∈ ℝ𝑇𝑇×𝑇𝑇  with positive diagonals, such that 𝑊𝑊 ≔ 𝐷𝐷1𝑀𝑀𝐷𝐷2 

satisfies one of the following conditions, then for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , the LCP �𝑞𝑞, 𝑀𝑀�  has a 

unique solution: 

1. 𝑊𝑊 is general positive definite. (Cottle, Pang & Stone 2009a) 

2. 𝑊𝑊 has a positive diagonal, and 〈𝑊𝑊〉−1 is a nonnegative matrix, where 〈𝑊𝑊〉 is the 
matrix with 〈𝑊𝑊〉𝜕𝜕𝑗𝑗 = −�𝑊𝑊𝜕𝜕𝑗𝑗� for 𝑖𝑖 ≠ 𝑗𝑗 and 〈𝑊𝑊〉𝜕𝜕𝜕𝜕 = |𝑊𝑊𝜕𝜕𝜕𝜕|. (Bai & Evans 1997) 

3. 𝜌𝜌(|𝐼𝐼 − 𝑊𝑊|) < 1. (Li & Wu 2016) 

4. (𝐼𝐼 + 𝑊𝑊)′(𝐼𝐼 + 𝑊𝑊) − 𝜎𝜎max(|𝐼𝐼 − 𝑊𝑊|)2𝐼𝐼 is positive definite. (Li & Wu 2016) 

5. 𝜎𝜎max(|𝐼𝐼 − 𝑊𝑊|) < 𝜎𝜎min(𝐼𝐼 + 𝑊𝑊). (Li & Wu 2016) 
6. 𝜎𝜎min�(𝐼𝐼 − 𝑊𝑊)−1(𝐼𝐼 + 𝑊𝑊)� > 1. (Li & Wu 2016) 

7. 𝜎𝜎max�(𝐼𝐼 + 𝑊𝑊)−1(𝐼𝐼 − 𝑊𝑊)� < 1. (Li & Wu 2016) 

8. 𝜌𝜌��(𝐼𝐼 + 𝑊𝑊)−1(𝐼𝐼 − 𝑊𝑊)�� < 1. (Li & Wu 2016) 

In our experience, whenever 𝑀𝑀  is a P-matrix, it will usually satisfy one of these 

conditions when 𝐷𝐷1  and 𝐷𝐷2  are chosen so that all rows and columns of |𝑊𝑊|  have 

maximum equal to 1, using the algorithm of Ruiz (2001). 
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We also have necessary conditions for uniqueness with arbitrary 𝑇𝑇. In particular: 

Proposition 4 Given an otherwise linear model with an OBC, the limit, 𝑑𝑑𝑘𝑘 of the 𝑘𝑘th 

diagonal6 of 𝑀𝑀 with 𝑇𝑇 = ∞ exists, is finite, and is computable in time polynomial in 𝑘𝑘 

and the number of state variables of the model. If for all finite 𝑇𝑇, 𝑀𝑀 is a P-matrix, then 

for all 𝑆𝑆 > 0, the 𝑆𝑆 × 𝑆𝑆 Toeplitz matrix with 𝑘𝑘th diagonal 𝑑𝑑𝑘𝑘 is a P0-matrix. 

The properties of the limits of the diagonals of 𝑀𝑀 are established in Appendix L.1 as 

part of the proof of Proposition 2. The rest of the claim follows from the continuity of 

determinants. 

Since some classes of models almost never possess a unique solution when at the 

zero lower bound, we might reasonably require a lesser condition, namely that at least 

when the solution to the model without a bound is a solution to the model with the 

bound, then it ought to be the unique solution. This is equivalent to requiring that 

when 𝑞𝑞 is non-negative, the LCP �𝑞𝑞, 𝑀𝑀� has a unique solution. Conditions for this are 

given in the following proposition: 

Proposition 5 The LCP �𝑞𝑞, 𝑀𝑀� has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇 with 𝑞𝑞 ≫ 0 (𝑞𝑞 ≥ 0) 

if and only if 𝑀𝑀 is (strictly) semi-monotone. (Cottle, Pang & Stone 2009a) 

Hence, by verifying that 𝑀𝑀  is semi-monotone, we can reassure ourselves that 

introducing the bound will not change the solution away from the bound. When this 

condition is violated, even when the economy is a long way from the bound, there 

may be solutions which jump to the bound. Since principal sub-matrices of (strictly) 

semi-monotone are (strictly) semi-monotone, a failure of (strict) semi-monotonicity for 

some 𝑇𝑇 implies a failure for all larger 𝑇𝑇. 

Where there are multiple solutions, we might like to select one via some objective 

function. This is tractable when either the number of solutions is finite, or the solution 

set is convex:  

Proposition 6 The LCP �𝑞𝑞, 𝑀𝑀� has a finite (possibly zero) number of solutions for all 

𝑞𝑞 ∈ ℝ𝑇𝑇 if and only if 𝑀𝑀 is non-degenerate. (Cottle, Pang & Stone 2009a) 

Proposition 7 The LCP �𝑞𝑞, 𝑀𝑀� has a convex (possibly empty) set of solutions for all 𝑞𝑞 ∈

ℝ𝑇𝑇 if and only if 𝑀𝑀 is column sufficient. (Cottle, Pang & Stone 2009a) 

 
6 We take diagonal indices to be increasing as one moves up and right in 𝑀𝑀. 
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Finally, conditions for uniqueness of the path of the bounded variable is given in the 

following proposition: 

Proposition 8 There exists 𝑤𝑤 such that for any solution 𝑦𝑦 of the LCP �𝑞𝑞, 𝑀𝑀�, 𝑞𝑞 + 𝑀𝑀𝑦𝑦 =

𝑤𝑤 if and only if 𝑀𝑀 is column adequate. (Cottle, Pang & Stone 2009a) 

Appendix C.2: Existence 
We now turn to sufficient conditions for existence of a solution for finite 𝑇𝑇. 

Proposition 9 The LCP �𝑞𝑞, 𝑀𝑀� is solvable if it is feasible and, either: 

1. 𝑀𝑀 is row-sufficient, or, 

2. 𝑀𝑀 is copositive and for all non-singular principal sub-matrices 𝑊𝑊 of 𝑀𝑀, all non-

negative columns of 𝑊𝑊−1 possess a non-zero diagonal element. 

(Cottle, Pang & Stone 2009a; Väliaho 1986) 

If either condition 1 or condition 2 of Proposition 9 is satisfied, then to check existence 

for any particular 𝑞𝑞, we only need to solve a linear programming problem. As this will 

be faster than solving the particular LCP, this may be helpful in practice. Moreover: 

Proposition 10 The LCP �𝑞𝑞, 𝑀𝑀� is solvable for all 𝑞𝑞 ∈ ℝ𝑇𝑇, if at least one of the following 

conditions holds: (Cottle, Pang & Stone 2009a) 

1. 𝑀𝑀 is an S-matrix, and either condition 1 or 2 of Proposition 9 is satisfied. 

2. 𝑀𝑀 is copositive and non-degenerate. 

3. 𝑀𝑀 is a P-, a strictly copositive or strictly semi-monotone matrix. 

If condition 1, 2 or 3 of Proposition 10 is satisfied, then the LCP will always have a 

solution. Therefore, for any path of the bounded variable in the absence of the bound, 

we will also be able to solve the model when the bound is imposed. Finally, in the 

special case of nonnegative 𝑀𝑀 matrices we can derive conditions for existence that are 

both necessary and sufficient: 

Proposition 11 If 𝑀𝑀 is a nonnegative matrix, then the LCP �𝑞𝑞, 𝑀𝑀� is solvable for all 𝑞𝑞 ∈

ℝ𝑇𝑇 if and only if 𝑀𝑀 has a positive diagonal. (Cottle, Pang & Stone 2009a) 
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: Additional discussion 

Appendix D.1: Discussion of Brendon, Paustian & Yates (2013; 2019) 
One of the most relevant pieces of prior work for ours is that of Brendon, Paustian 

& Yates (2013; 2019), henceforth abbreviated to BPY. Like us, these authors examined 

perfect foresight equilibria of NK models with terminal conditions. In BPY (2013), the 

authors show analytically that in a very simple NK model, featuring a response to the 

growth rate in the Taylor rule, there are multiple perfect-foresight equilibria when all 

agents believe that with probability one, in one period’s time, they will escape the 

bound and return to the neighbourhood of the “good” steady state. Furthermore, the 

authors show numerically that in some select other models, there are multiple perfect-

foresight equilibria when the economy begins at the steady state, and all agents believe 

that the economy will jump to the bound, remain there for some number of periods, 

before leaving it endogenously, after which they believe they will never hit the bound 

again. BPY (2019) extends these results to fully non-linear rational expectations 

equilibria in certain simple NK models. 

Relative to these authors, we focus more on providing general theoretical results, 

which permit numerical analysis (for the otherwise linear, perfect foresight case) that 

is both more robust and less restrictive. This robustness and generality is crucial in 

showing multiplicity even in simple NK models, with entirely standard Taylor rules. 

For example, whereas in an intermediary working paper BPY (2016) write that price-

dispersion “does not have a strong enough impact on equilibrium allocations for the 

sort of propagation that we need”, we show that the presence of price dispersion is 

sufficient for multiplicity. Our general results are also crucial for allowing us to show 

uniqueness under a price level target. 

We examine the properties of the BPY (2013) model (and variants) in Appendix F. 

Appendix D.2: Checking the existence and uniqueness conditions in practice 
The paper has presented many results, but the practical details of what one should 

test and in what order may still be unclear. Luckily, a lot of the decisions are automated 

by the author’s DynareOBC toolkit, but we present a suggested testing procedure here 

in any case. This also serves to give an overview of our results and their limitations. 

For checking feasibility and existence, the most powerful result is Proposition 2 

and Corollary 3. If the lower bound from Proposition 2 is positive, for all sufficiently 

high 𝑇𝑇, the LCP is always feasible. If further conditions are satisfied for a given 𝑇𝑇, (see 
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Proposition 9 and Proposition 10) then this guarantees existence for that particular 𝑇𝑇. 

However, since the additional conditions are sufficient and not necessary, in practice 

it may not be worth checking them, as we have never encountered a problem without 

a solution that was nonetheless feasible. Finding a 𝑇𝑇 for which Proposition 2 produces 

a positive lower bound on 𝜍𝜍  requires a bit of trial and error. 𝑇𝑇  will need to be big 

enough that the asymptotic approximation is accurate, which usually requires 𝑇𝑇 to be 

bigger than the time it takes for the model’s dynamics to die out. However, if 𝑇𝑇 is too 

large, then DynareOBC’s conservative approach to handling numerical error means 
that it can be difficult to reject 𝜍𝜍 = 0. Usually though, an intermediary value for 𝑇𝑇 can 

be found at which we can establish 𝜍𝜍 > 0 , even with a conservative approach to 

numerical error.  

For checking non-existence, Proposition 2 and Corollary 3 can still be useful, 

though in this case, it does not provide definitive proof of non-feasibility, due to 

inescapable numerical inaccuracies. For a particular 𝑇𝑇, we may test if 𝑀𝑀 is not an S-

matrix in time polynomial in 𝑇𝑇 by solving a simple linear programming problem. If 𝑀𝑀 

is not an S-matrix, then by Proposition 1 and Corollary 2, there are some 𝑞𝑞 for which 

there is no path which does not violate the bound in the first 𝑇𝑇 periods. With 𝑇𝑇 larger 

than the time it takes for the model’s dynamics to die out, this provides further 

evidence of non-existence for arbitrarily large 𝑇𝑇. In any case, given that only having a 

solution that stays at the bound for 250 years is arguably as bad as having no solution 

at all, for medium scale models, we suggest to just check if 𝑀𝑀 is an S-matrix with 𝑇𝑇 =
1000. 

For checking uniqueness vs multiplicity, it is important to remember that while we 

can prove uniqueness for a given finite 𝑇𝑇 by proving that the 𝑀𝑀 matrix is a P-matrix, 

once we have found one 𝑇𝑇  for which 𝑀𝑀  is not a P-matrix (so there are multiple 

solutions, by Theorem 2 and Corollary 1), we know the same is true for all higher 𝑇𝑇. If 

we wish to prove that there is a unique solution up to some horizon 𝑇𝑇, then the best 

approach is to begin by testing the sufficient conditions from Corollary 5, with our 

suggested 𝐷𝐷1 and 𝐷𝐷2. If none of these conditions pass, then it is probable that 𝑀𝑀 is not 

a P-matrix. In any case, checking that an 𝑀𝑀 which fails the conditions of Corollary 5 is 

a P-matrix for very large 𝑇𝑇  may not be computationally feasible, though finding a 

counter-example usually is. 
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If we wish to establish multiplicity, then Corollary 4 provides a guide. It is trivial 

to check if 𝑀𝑀 has any nonpositive elements on its diagonal, in which case it cannot be 

a P-matrix. We can also check whether the expression derived in Appendix L.1 for the 

limit of the diagonal of 𝑀𝑀 is non-negative, which is a necessary condition for 𝑀𝑀 to be 

a P-matrix for all large 𝑇𝑇 (this is a special case of Proposition 4). It is also trivial to 

check the eigenvalue condition given in Corollary 4, and that 𝑀𝑀 is an S-matrix. If none 

of these checks established that 𝑀𝑀 is not a P-matrix, then a search for a principal sub-

matrix with negative determinant is the obvious next step. It is sensible to begin by 

checking the contiguous principal sub-matrices.7 These correspond to a single spell at 

the ZLB which is natural given that impulse responses in DSGE models tend to be 

single peaked. This is so reliable a diagnostic (and so fast) that DynareOBC reports it 

automatically for all models. Continuing, one could then check all the 2 × 2 principal 

sub-matrices, then the 3 × 3 ones, and so on. With 𝑇𝑇 around the half-life of the model’s 

dynamics, usually one of these tests will quickly produce the required counter-

example. A similar search strategy can be used to rule out semi-monotonicity, 

implying multiplicity when away from the bound, by Proposition 5. 

Given the computational challenge of verifying whether 𝑀𝑀 is a P-matrix, without 

Corollary 5, it may be tempting to wonder if our results really enable one to accomplish 

anything that could not have been accomplished by a naïve brute force approach. For 

example, it has been suggested that given 𝑇𝑇 and an initial state, one could check for 

multiple equilibria by considering all of the 2𝑇𝑇  possible combinations of periods at 

which the model could be at the bound and testing if each guess is consistent with the 

model, following, for example, the solution algorithms of Fair and Taylor (1983) or 

Guerrieri & Iacoviello (2015). Since there are 2𝑇𝑇 principal sub-matrices of 𝑀𝑀, it might 

seem likely that this will be computationally very similar to checking if 𝑀𝑀  is a P-

matrix. However, our uniqueness results are not conditional on 𝑞𝑞 or the initial state, 

rather they give conditions under which there is a unique solution for any possible 

path that the economy would take in the absence of the bound. Thus, while the brute 

force approach may eventually tell you about uniqueness given an initial state, using 

our results, in a comparable amount of time you will learn whether there are multiple 

solutions for any possible 𝑞𝑞. A brute force approach to checking for all possible initial 

 
7 Some care must be taken though as checking the signs of determinants of large matrices is numerically unreliable. 
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conditions would require one to solve a linear programming problem for each pair of 

possible sets of periods at the bound, of which there are 22𝑇𝑇−1 − 2𝑇𝑇−1.8 This is far more 

computationally demanding than our approach, and becomes intractable for even 

very small 𝑇𝑇. Additionally, our approach is numerically more robust, allows the easy 

management of the effects of numerical error to avoid false positives and false 

negatives, and requires less work in each step. Finally, we stress that in most cases, 

thanks to Corollary 4 and Corollary 5, no such search of the sub-matrices of 𝑀𝑀  is 

required under our approach, and a proof or counter-example may be produced in 

time polynomial in 𝑇𝑇, just as it may be when checking for existence with our results. 

 
8 Given the periods in the constrained regime, the economy’s path is linear in the initial state. Excepting knife edge 
cases of rank deficiency, any multiplicity must involve two paths each at the bound in a different set of periods.  
Consequently, a brute force approach to finding multiplicity unconditional on the initial state is to guess two 
different sets of periods at which the economy is at the bound, then solve a linear programming problem to find 
out if there is a value of the initial state for which the regimes on each path agree with their respective guesses. 
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: Formal treatment of our equivalence result 

Appendix E.1: Problem set-ups 
In the absence of occasionally binding constraints, calculating an impulse response 

or performing a perfect foresight simulation exercise in a linear DSGE model is 

equivalent to solving the following problem:9 

Problem 1 (Linear) Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 for 𝑡𝑡 ∈ ℕ+ such that: 

1) 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞, 

2) for all 𝑡𝑡 ∈ ℕ+: 

0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�, (3) 

We make the following assumption throughout the paper and these appendices: 

Assumption 1 For any given 𝑥𝑥0 ∈ ℝ𝑛𝑛, Problem 1 (Linear) has a unique solution, which 

(without loss of generality) takes the form 𝑥𝑥𝑡𝑡 = (𝐼𝐼 − 𝐹𝐹)𝜇𝜇 + 𝐹𝐹𝑥𝑥𝑡𝑡−1 , for 𝑡𝑡 ∈ ℕ+ , where 

0 = 𝐴𝐴 + 𝐵𝐵𝐹𝐹 + 𝐶𝐶𝐹𝐹𝐹𝐹 (so 𝐹𝐹 = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐴𝐴), and where the eigenvalues of 𝐹𝐹 are strictly 

inside the unit circle. 

Conditions (A’) and (B) from Sims’s (2002) generalisation of the standard Blanchard-

Kahn (1980) conditions are necessary and sufficient for Assumption 1 to hold. Further, 

to avoid dealing specially with the knife-edge case of exact unit eigenvalues in the part 

of the model that is solved forward, here we rule it out with the subsequent 

assumption, which is, in any case, a necessary condition for perturbation to produce a 

consistent approximation to a non-linear model, and which is also necessary for the 

linear model to have a unique steady state: 

Assumption 2 det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) ≠ 0. 

We are interested in models featuring occasionally binding constraints. We will 

concentrate on models featuring a single ZLB type constraint in their first equation, 

which does not bind in steady state, and which we treat as defining the first element 

of 𝑥𝑥𝑡𝑡. Generalising from this special case to models with one or more fully general 

 
9 The absence of shocks and expectations here is without loss of generality. For suppose �𝐴𝐴̂ + �̂�𝐵 + 𝐶𝐶�̂�̂�𝜇 = 𝐴𝐴�̂�𝑥�̂�𝑡−1 +
�̂�𝐵𝑥𝑥�̂�𝑡 + 𝐶𝐶�̂�𝔼𝑡𝑡𝑥𝑥�̂�𝑡+1 + 𝐷𝐷� 𝜀𝜀𝑡𝑡, with 𝑥𝑥�̂�𝑡 → �̂�𝜇 as 𝑡𝑡 → ∞, and that 𝜀𝜀𝑡𝑡 = 0 for 𝑡𝑡 > 1, as in an impulse response or perfect foresight 

simulation exercise. Then, if we define 𝑥𝑥𝑡𝑡 ≔ � 𝑥𝑥�̂�𝑡
𝜀𝜀𝑡𝑡+1

�, 𝜇𝜇 ≔ ��̂�𝜇
0

�, 𝐴𝐴 ≔ �𝐴𝐴̂ 𝐷𝐷�
0 0

�, 𝐵𝐵 ≔ ��̂�𝐵 0
0 𝐼𝐼

�, 𝐶𝐶 ≔ �𝐶𝐶̂ 0
0 0

�, then we are 

left with a problem in the form of Problem 1 (Linear), with the extended initial condition 𝑥𝑥0 = �𝑥𝑥0̂
𝜀𝜀1

� , and the 

extended terminal condition 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. Expectations disappear as there is no uncertainty after period 0. 
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bounds is straightforward and is discussed in Appendix H. First, let us write 𝑥𝑥1,𝑡𝑡, 𝐼𝐼1,⋅, 

𝐴𝐴1,⋅, 𝐵𝐵1,⋅, 𝐶𝐶1,⋅ for the first row of 𝑥𝑥𝑡𝑡, 𝐼𝐼, 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 (respectively) and 𝑥𝑥−1,𝑡𝑡, 𝐼𝐼−1,⋅, 𝐴𝐴−1,⋅, 𝐵𝐵−1,⋅, 

𝐶𝐶−1,⋅ for the remainders. Likewise, we write 𝐼𝐼⋅,1 for the first column of the identity, 𝐼𝐼, 

and so on. Then, from adding 𝑥𝑥1,𝑡𝑡 to both sides of the first equation within the system 

(3), then incorporating a max, we produce the system of interest: 

Problem 2 (OBC) Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given. Find 𝑇𝑇 ∈ ℕ and 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 for 𝑡𝑡 ∈ ℕ+ 

such that: 

1) 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞, 

2) for all 𝑡𝑡 ∈ ℕ+: 
𝑥𝑥1,𝑡𝑡 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇��, 

0 = 𝐴𝐴−1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵−1,⋅�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶−1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�, 
3) 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇. 

given: 

Assumption 3 𝜇𝜇1 > 0, where 𝜇𝜇1 is the first element of 𝜇𝜇. 

Were it not for the max , this problem would be identical to Problem 1 (Linear), 
providing that Assumption 3 holds, as the existence of a 𝑇𝑇 ∈ ℕ such that 𝑥𝑥1,𝑡𝑡 > 0 for 

𝑡𝑡 > 𝑇𝑇 is guaranteed by the fact that 𝑥𝑥1,𝑡𝑡 → 𝜇𝜇1 as 𝑡𝑡 → ∞. 

We will analyse Problem 2 (OBC) with the help of solutions to the auxiliary 

problem: 

Problem 3 (News) Suppose that 𝑇𝑇 ∈ ℕ , 𝑥𝑥0 ∈ ℝ𝑛𝑛  and 𝑦𝑦0 ∈ ℝ𝑇𝑇  is given. Find 𝑥𝑥𝑡𝑡 ∈
ℝ𝑛𝑛, 𝑦𝑦𝑡𝑡 ∈ ℝ𝑇𝑇 for 𝑡𝑡 ∈ ℕ+ such that: 

1) 𝑥𝑥𝑡𝑡 → 𝜇𝜇, 𝑦𝑦𝑡𝑡 → 0, as 𝑡𝑡 → ∞, 

2) for all 𝑡𝑡 ∈ ℕ+: 
(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦1,𝑡𝑡−1, 

𝑦𝑦𝑇𝑇,𝑡𝑡 = 0, 
∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1},  𝑦𝑦𝜕𝜕,𝑡𝑡 = 𝑦𝑦𝜕𝜕+1,𝑡𝑡−1. 

This is a version of Problem 1 (Linear) with a forcing process (“news”) up to horizon 

𝑇𝑇 added to the first equation. We use this representation in which the forcing process 

enters via an augmented state to make clear that this is also a special case of Problem 
1 (Linear). By construction, the value of 𝑦𝑦𝜕𝜕,𝑡𝑡 gives the shock that in period 𝑡𝑡 is expected 

to arrive in 𝑖𝑖 periods. (To be clear: the first index of 𝑦𝑦𝜕𝜕,𝑡𝑡 indexes over the elements of the 
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vector 𝑦𝑦𝑡𝑡 ∈ ℝ𝑇𝑇; the second index of 𝑦𝑦𝜕𝜕,𝑡𝑡 indexes over periods.) Hence, as there is no 

uncertainty, 𝑦𝑦𝑡𝑡,0 gives the shock that will hit in period 𝑡𝑡, i.e. 𝑦𝑦1,𝑡𝑡−1 = 𝑦𝑦2,𝑡𝑡−2 = ⋯ = 𝑦𝑦𝑡𝑡,0 

for 𝑡𝑡 ≤ 𝑇𝑇, and 𝑦𝑦1,𝑡𝑡−1 = 0 for 𝑡𝑡 > 𝑇𝑇. Thus, the first equation of the first block could be 

rewritten: 
𝑥𝑥1,𝑡𝑡 = 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + 𝑦𝑦𝑡𝑡,0, 

which is in the form of equation (2) from the main paper. 

Appendix E.2: Relationships between the problems 
Since 𝑦𝑦1,𝑡𝑡−1 = 0 for 𝑡𝑡 > 𝑇𝑇, by Assumption 1, �𝑥𝑥𝑇𝑇+1 − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑇𝑇 − 𝜇𝜇�. Now define 

𝑠𝑠𝑇𝑇+1 ≔ 0 . Then with 𝑡𝑡 = 𝑇𝑇 , we have that �𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� = 𝑠𝑠𝑡𝑡+1 + 𝐹𝐹�𝑥𝑥𝑡𝑡 − 𝜇𝜇� . Proceeding 

now by backwards induction on 𝑡𝑡, note that: 
0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶𝐹𝐹�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0, 

so: 
�𝑥𝑥𝑡𝑡 − 𝜇𝜇� = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐴𝐴�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0� 

= 𝐹𝐹�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� − (𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0�, 
i.e., if we define: 𝑠𝑠𝑡𝑡 ≔ −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0� , then �𝑥𝑥𝑡𝑡 − 𝜇𝜇� = 𝑠𝑠𝑡𝑡 + 𝐹𝐹�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� . 

By induction then, this holds for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}, establishing:10 

Lemma 2 There is a unique solution to Problem 3 (News) that is linear in 𝑥𝑥0 and 𝑦𝑦0. 

For future reference, let 𝑥𝑥𝑡𝑡
(3,𝑘𝑘) be the solution to Problem 3 (News) when 𝑥𝑥0 = 𝜇𝜇, 𝑦𝑦0 =

𝐼𝐼⋅,𝑘𝑘 (i.e. a vector which is all zeros apart from a 1 in position 𝑘𝑘). Then, by linearity, for 

arbitrary 𝑦𝑦0 the solution to Problem 3 (News) when 𝑥𝑥0 = 𝜇𝜇 is given by: 

𝑥𝑥𝑡𝑡 − 𝜇𝜇 = � 𝑦𝑦𝑘𝑘,0�𝑥𝑥𝑡𝑡
(3,𝑘𝑘) − 𝜇𝜇�

𝑇𝑇

𝑘𝑘=1
. 

Now, let 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 satisfy: 
𝑀𝑀𝑡𝑡,𝑘𝑘 = 𝑥𝑥1,𝑡𝑡

(3,𝑘𝑘) − 𝜇𝜇1, ∀𝑡𝑡, 𝑘𝑘 ∈ {1, . . , 𝑇𝑇}, (4) 

i.e. 𝑀𝑀 horizontally stacks the (column-vector) relative impulse responses of the first 

variable to the news shocks, with the first column giving the response to a 

contemporaneous shock, the second column giving the response to a shock 

anticipated by one period, and so on. Then, this result implies that for arbitrary 𝑥𝑥0 and 

𝑦𝑦0, the path of the first variable in the solution to Problem 3 (News) is given by: 
�𝑥𝑥1,1:𝑇𝑇�′ = 𝑞𝑞 + 𝑀𝑀𝑦𝑦0, (5) 

 
10 This representation of the solution to Problem 3 (News) was inspired by that of Anderson (2015). 
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where 𝑞𝑞 ≔ �𝑥𝑥1,1:𝑇𝑇
(1) �

′
 and where 𝑥𝑥𝑡𝑡

(1) is the unique solution to Problem 1 (Linear), for the 

given 𝑥𝑥0, i.e. 𝑞𝑞 is the path of the first variable in the absence of news shocks or bounds.11 

Since 𝑀𝑀  is not a function of either 𝑥𝑥0  or 𝑦𝑦0 , equation (5)  gives a highly convenient 

representation of the solution to Problem 3 (News).  
Now let 𝑥𝑥𝑡𝑡

(2) be a solution to Problem 2 (OBC) given some 𝑥𝑥0. Since 𝑥𝑥𝑡𝑡
(2) → 𝜇𝜇 as 𝑡𝑡 →

∞ , there exists 𝑇𝑇′ ∈ ℕ  such that for all 𝑡𝑡 > 𝑇𝑇′ , 𝑥𝑥1,𝑡𝑡
(2) > 0 . We assume without loss of 

generality that 𝑇𝑇′ ≤ 𝑇𝑇. We seek to relate the solution to Problem 2 (OBC) with the one 

to Problem 3 (News) for an appropriate choice of 𝑦𝑦0. First, for all 𝑡𝑡 ∈ ℕ+, let: 
𝑒𝑒�̂�𝑡 ≔ −�𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(2) − 𝜇𝜇��, 

𝑒𝑒𝑡𝑡 ≔
⎩�
⎨
�⎧𝑒𝑒�̂�𝑡 if 𝑥𝑥1,𝑡𝑡

(2) = 0
0 if 𝑥𝑥1,𝑡𝑡

(2) > 0
, (6) 

i.e. 𝑒𝑒𝑡𝑡 is the shock that would need to hit the first equation for the positivity constraint 
on 𝑥𝑥1,𝑡𝑡

(2)  to be enforced. Note that by the definition of Problem 2 (OBC), 𝑒𝑒𝑡𝑡 ≥ 0  and 

𝑥𝑥1,𝑡𝑡
(2)𝑒𝑒𝑡𝑡 = 0, for all 𝑡𝑡 ∈ ℕ+.  

Now, from the definition of Problem 2 (OBC), we also have that for all 𝑡𝑡 ∈ ℕ+, 
0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶�𝑥𝑥𝑡𝑡+1

(2) − 𝜇𝜇� + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡. 

Furthermore, if 𝑡𝑡 > 𝑇𝑇 , then 𝑡𝑡 > 𝑇𝑇′ , and hence 𝑒𝑒𝑡𝑡 = 0 . Hence, by Assumption 1, 
�𝑥𝑥𝑇𝑇+1

(2) − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑇𝑇
(2) − 𝜇𝜇�. Thus, much as before, if we define 𝑠𝑠�̃�𝑇+1 ≔ 0, then with 𝑡𝑡 =

𝑇𝑇, �𝑥𝑥𝑡𝑡+1
(2) − 𝜇𝜇� = 𝑠𝑠�̃�𝑡+1 + 𝐹𝐹�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇�. Consequently, 

0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� + 𝐶𝐶𝐹𝐹�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡, 

so: 
�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� − (𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡�, 

i.e., if we define: 𝑠𝑠�̃�𝑡 ≔ −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡�, then �𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� = 𝑠𝑠�̃�𝑡 + 𝐹𝐹�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇�. 

As before, by induction this must hold for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇} . By comparing the 

definitions of 𝑠𝑠𝑡𝑡  and 𝑠𝑠�̃�𝑡 , and the laws of motion of 𝑥𝑥𝑡𝑡  under both problems, we then 
immediately have that if Problem 3 (News) is started with 𝑥𝑥0 = 𝑥𝑥0

(2) and 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ , then 

𝑥𝑥𝑡𝑡
(2) solves Problem 3 (News). Conversely, if 𝑥𝑥𝑡𝑡

(2) solves Problem 3 (News) for some 𝑦𝑦0, 

then from the laws of motion of 𝑥𝑥𝑡𝑡 under both problems it must be the case that 𝑠𝑠�̃�𝑡 = 𝑠𝑠𝑡𝑡 

for all 𝑡𝑡 ∈ ℕ, and hence from the definitions of 𝑠𝑠𝑡𝑡 and 𝑠𝑠�̃�𝑡, we have that 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

 
11 This representation was also exploited by Holden (2010) and Holden and Paetz (2012). 
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This establishes the following result: 

Lemma 3 For any solution, �𝑇𝑇, 𝑥𝑥𝑡𝑡
(2)� to Problem 2 (OBC): 

1) With 𝑒𝑒1:𝑇𝑇 as defined in equation (6), 𝑒𝑒1:𝑇𝑇 ≥ 0, 𝑥𝑥1,1:𝑇𝑇
(2) ≥ 0 and 𝑥𝑥1,1:𝑇𝑇

(2) ∘ 𝑒𝑒1:𝑇𝑇 = 0, where 

∘ denotes the Hadamard (entry-wise) product. 
2) 𝑥𝑥𝑡𝑡

(2) is also the unique solution to Problem 3 (News) with 𝑥𝑥0 = 𝑥𝑥0
(2) and 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇

′ . 

3) If 𝑥𝑥𝑡𝑡
(2) solves Problem 3 (News) with 𝑥𝑥0 = 𝑥𝑥0

(2) and with some 𝑦𝑦0, then 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

To use the easy solution to Problem 3 (News) to assist us in solving Problem 2 

(OBC) just requires one more result. In particular, we need to show that if 𝑦𝑦0 ∈ ℝ𝑇𝑇 is 
such that 𝑦𝑦0 ≥ 0 , 𝑥𝑥1,1:𝑇𝑇

(3) ∘ 𝑦𝑦0
′ = 0  and 𝑥𝑥1,𝑡𝑡

(3) ≥ 0  for all 𝑡𝑡 ∈ ℕ , where 𝑥𝑥𝑡𝑡
(3)  is the unique 

solution to Problem 3 (News) when started at 𝑥𝑥0, 𝑦𝑦0, then 𝑥𝑥𝑡𝑡
(3) must also be a solution 

to Problem 2 (OBC). 
So, suppose that 𝑦𝑦0 ∈ ℝ𝑇𝑇  is such that 𝑦𝑦0 ≥ 0, 𝑥𝑥1,1:𝑇𝑇

(3) ∘ 𝑦𝑦0
′ = 0 and 𝑥𝑥1,𝑡𝑡

(3) ≥ 0 for all 𝑡𝑡 ∈

ℕ, where 𝑥𝑥𝑡𝑡
(3) is the unique solution to Problem 3 (News) when started at 𝑥𝑥0, 𝑦𝑦0. We 

would like to prove that in this case 𝑥𝑥𝑡𝑡
(3) must also be a solution to Problem 2 (OBC). 

I.e., we must prove that for all 𝑡𝑡 ∈ ℕ+: 
𝑥𝑥1,𝑡𝑡

(3) = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1
(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡

(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1
(3) − 𝜇𝜇�� , (7) 

0 = 𝐴𝐴−1,⋅�𝑥𝑥𝑡𝑡−1
(3) − 𝜇𝜇� + 𝐵𝐵−1,⋅�𝑥𝑥𝑡𝑡

(3) − 𝜇𝜇� + 𝐶𝐶−1,⋅�𝑥𝑥𝑡𝑡+1
(3) − 𝜇𝜇�. 

By the definition of Problem 3 (News), the latter equation must hold with equality. 

Hence, we just need to prove that equation (7)  holds for all 𝑡𝑡 ∈ ℕ+ . So, let 𝑡𝑡 ∈ ℕ+ . 
Now, if 𝑥𝑥1,𝑡𝑡

(3) > 0, then 𝑦𝑦𝑡𝑡,0 = 0, by the complementary slackness type condition (𝑥𝑥1,1:𝑇𝑇
(3) ∘

𝑦𝑦0
′ = 0). Thus, from the definition of Problem 3 (News): 

𝑥𝑥1,𝑡𝑡
(3) = 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇� 

= max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1
(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡

(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1
(3) − 𝜇𝜇��, 

as required. The only remaining case is that 𝑥𝑥1,𝑡𝑡
(3) = 0 (since 𝑥𝑥1,𝑡𝑡

(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ, by 

assumption), which implies that: 
𝑥𝑥1,𝑡𝑡

(3) = 0 = 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵1,⋅�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + 𝑦𝑦𝑡𝑡,0 

= 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + 𝑦𝑦𝑡𝑡,0, 

by the definition of Problem 3 (News). Thus: 
𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� = −𝑦𝑦𝑡𝑡,0 ≤ 0. 

Consequently, equation (7) holds in this case too, completing the proof. 
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Together with Lemma 2, Lemma 3, and our representation of the solution of 

Problem 3 (News) from equation (5), this completes the proof of the following key 

theorem: 

Theorem 1 (Restated)  The following hold: 
1) Let 𝑥𝑥𝑡𝑡

(3) be the unique solution to Problem 3 (News) given 𝑇𝑇 ∈ ℕ+, 𝑥𝑥0 ∈ ℝ𝑛𝑛 and 
𝑦𝑦0 ∈ ℝ𝑇𝑇  . Then �𝑇𝑇, 𝑥𝑥𝑡𝑡

(3)�  is a solution to Problem 2 (OBC) given 𝑥𝑥0  if and only if 
𝑦𝑦0 ≥ 0, 𝑦𝑦0 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦0� = 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 and 𝑥𝑥1,𝑡𝑡

(3) ≥ 0 for all 𝑡𝑡 > 𝑇𝑇. 

2) Let �𝑇𝑇, 𝑥𝑥𝑡𝑡
(2)�  be any solution to Problem 2 (OBC) given 𝑥𝑥0 . Then there exists a 

unique 𝑦𝑦0 ∈ ℝ𝑇𝑇  such that 𝑦𝑦0 ≥ 0 , 𝑦𝑦0 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦0� = 0 , 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 , and such that 
𝑥𝑥𝑡𝑡

(2) is the unique solution to Problem 3 (News) given 𝑇𝑇, 𝑥𝑥0 and 𝑦𝑦0. 
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: Example applications to New Keynesian models 

In the first subsections here, we examine the simple Brendon, Paustian & Yates 

(BPY) (2013) model, before going on to consider a variant of it with price targeting, 

which we show to produce determinacy. In the BPY (2013) model, multiplicity and 

non-existence stem from a response to growth rates in the Taylor rule. However, we 

do not want to give the impression that multiplicity and non-existence are only caused 

by such a response, or that they are only a problem in carefully constructed theoretical 

examples. Thus, in Appendix F.4, we show that a standard NK model with positive 

steady state inflation and a ZLB possesses multiple equilibria in some states, and no 

solutions in others, even with an entirely standard Taylor rule. We also show that here 

too price level targeting is sufficient to restore determinacy. Finally, we show that these 

conclusions also carry through to the posterior-modes of the Smets & Wouters (2003; 

2007) models. 

Appendix F.1: The simple Brendon, Paustian & Yates (BPY) (2013) model 
Brendon, Paustian & Yates (2013), henceforth BPY, provide a simple New 

Keynesian model that we can use to illustrate and better understand these cases. Its 

equations follow:12 
𝑥𝑥𝜕𝜕,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 −
1
𝜎𝜎 �𝑥𝑥𝜕𝜕,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1�, 

 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 

where 𝑥𝑥𝜕𝜕,𝑡𝑡 is the nominal interest rate, 𝑥𝑥𝑦𝑦,𝑡𝑡 is the deviation of output from steady state, 

𝑥𝑥𝜋𝜋,𝑡𝑡  is the deviation of inflation from steady state, and 𝛽𝛽 ∈ (0,1) , 𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞) , 

𝛼𝛼𝜋𝜋 ∈ (1, ∞)  are parameters. The model’s only departure from the textbook three 

equation NK model is the presence of an output growth rate term in the Taylor rule. 

This introduces an endogenous state variable in a tractable manner. In Appendix L.3, 

below, we prove the following: 

Proposition 12 The BPY model is in the form of Problem 2 (OBC), and satisfies 
Assumptions 1, 2 and 3. With 𝑇𝑇 = 1, 𝑀𝑀 < 0 (𝑀𝑀 = 0) if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋  (𝛼𝛼∆𝑦𝑦 =

𝜎𝜎𝛼𝛼𝜋𝜋). 

 
12  An implementation of this model is contained within DynareOBC in the file 
“Examples/BrendonPaustianYates2013/BPYModel.mod”. 
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Hence, by Theorem 1 (Restated) , when all agents believe the bound will be escaped 
after at most one period, if 𝛼𝛼∆𝑦𝑦 < 𝜎𝜎𝛼𝛼𝜋𝜋, the model has a unique solution for all 𝑞𝑞, i.e. no 

matter what the nominal interest rate would be that period were no ZLB. If 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋, 

then the model has a unique solution whenever 𝑞𝑞 > 0, infinitely many solutions when 
𝑞𝑞 = 0, and no solutions leaving the ZLB after one period when 𝑞𝑞 < 0. Finally, if 𝛼𝛼∆𝑦𝑦 >

𝜎𝜎𝛼𝛼𝜋𝜋  then the model has two solutions when 𝑞𝑞 > 0, one solution when 𝑞𝑞 = 0 and no 

solution escaping the ZLB next period when 𝑞𝑞 < 0. 

The mechanism here is as follows. The stronger the response to the growth rate, 

the more persistent is output, as the monetary rule implies additional stimulus if 

output was high last period. Suppose then that there was an unexpected positive 

shock to nominal interest rates. Then, due to the persistence, this would lower not just 

output and inflation today, but also output and inflation next period. With low 

expected inflation, real interest rates are high, giving consumers an additional reason 

to save, and thus further lowering output and inflation this period and next. With 
sufficiently high 𝛼𝛼∆𝑦𝑦, this additional amplification is so strong that nominal interest 

rates fall this period, despite the positive shock, explaining why 𝑀𝑀 may be negative.13 

Now, consider varying the magnitude of the original shock. For a sufficiently large 

shock, interest rates would hit zero. At this point, there is no observable evidence that 

a shock has arrived at all, since the ZLB implies that given the values of output and 

inflation, nominal interest rates should be zero even without a shock. Such a jump to 

the ZLB must then be a self-fulfilling prophecy. Agents expect low inflation, so they 

save, which, thanks to the monetary rule, implies low output tomorrow, rationalising 

the expectations of low inflation. 

We finish this section with an example of multiplicity in the BPY (2013) model. 

This serves to illustrate the potential economic consequences of multiplicity in NK 

models. We present impulse responses to a shock to the Euler equation under two 

different solutions. With the shock added to the Euler equation, it now takes the form: 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 −
1
𝜎𝜎 �𝑥𝑥𝜕𝜕,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 − (0.01)𝜀𝜀𝑡𝑡�. 

 
13 Note that this cannot happen in the canonical 3 equation NK model in which the central bank responds to the 
output gap, not output growth. For, without state variables, in the period after the shock’s arrival, inflation will be 
at steady state. Thus, in the period of the shock, real interest rates move one for one with nominal interest rates. 
Were the positive shock to the nominal interest rate to produce a fall in its level, then the Euler equation would 
imply high consumption today, also implying high inflation today via the Phillips curve. But, with consumption, 
inflation, and the shock all positive, the nominal interest rate must be above steady state, contradicting our 
assumption that it had fallen. 



Online Appendix: Page 25 of 70 

The other two equations of the BPY model equations remain as they were given above. 
We take the parameterisation 𝜎𝜎 = 1, 𝛽𝛽 = 0.99, 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�

0.85 (2 + 𝜎𝜎), following 
BPY, and we additionally set 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.6, to ensure we are in the region 

with multiple solutions. In Figure 2, we show two alternative solutions to the impulse 

response to a magnitude 1 shock to 𝜀𝜀𝑡𝑡. The solid line in the left plot gives the solution 

which minimises �𝑦𝑦�∞ . This solution never hits the bound, and is moderately 

expansionary. The solid line in the right plot gives the solution which minimises 

�𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞. (The dashed line there repeats the left plot, for comparison.) This solution 

stays at the bound for two periods, and is strongly contractionary, with a magnitude 

around 100 times larger than the other solution.14 
 

  

 
Minimum �𝒚𝒚�∞ solution 

 
Minimum �𝒒𝒒 + 𝑴𝑴𝒚𝒚�∞ solution 

  

Figure 2: Alternative solutions following a magnitude 𝟏𝟏 impulse to 𝜺𝜺𝒕𝒕  in the BPY model. 
The dashed line in the right plot repeats the left plot, for comparison. 

 

Appendix F.2: The BPY model with shadow interest rate persistence 
We showed that if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋   in the BPY (2013) model, then with 𝑇𝑇 = 1 , 𝑀𝑀 < 0 .  

When 𝑇𝑇 > 1 , this implies that 𝑀𝑀  is neither P0, general positive semi-definite, semi-

monotone, co-positive, nor sufficient, since the top-left 1 × 1 principal sub-matrix of 𝑀𝑀 

is the same as when 𝑇𝑇 = 1. Thus, if anything, when 𝑇𝑇 > 1, the parameter region in 

which there are multiple solutions (when away from the bound or at it) is larger. 

However, numerical experiments suggest that this parameter region in fact remains 

 
14  The plots in Figure 2 may be generated by navigating to the “Examples/BrendonPaustianYates2013” 
folder within DynareOBC, and then running “GeneratePlots”. 
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the same as 𝑇𝑇  increases, which is unsurprising given the weak persistence of this 

model. Thus, if we want more interesting results with higher 𝑇𝑇, we need to consider a 

model with a stronger persistence mechanism. 

One obvious possibility is to consider models with either persistence in the interest 

rate, or persistence in the “shadow” rate that would hold were it not for the ZLB. 

Following BPY (2013), we introduce persistence in the shadow interest rate by 
replacing the previous Taylor rule with 𝑥𝑥𝜕𝜕,𝑡𝑡 = max�0, 𝑥𝑥𝑑𝑑,𝑡𝑡� , where 𝑥𝑥𝑑𝑑,𝑡𝑡 , the shadow 

nominal interest rate is given by:15 
𝑥𝑥𝑑𝑑,𝑡𝑡 = �1 − 𝜌𝜌��1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1. 

It is easy to verify that this may be put in the form of Problem 2 (OBC), and that with 
𝛽𝛽 ∈ (0,1) , 𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞) , 𝛼𝛼𝜋𝜋 ∈ (1, ∞) , 𝜌𝜌 ∈ (−1,1) , Assumption 2 is satisfied. For 

our numerical exercise, we again set 𝜎𝜎 = 1, 𝛽𝛽 = 0.99, 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎), 𝜌𝜌 =

0.5, following BPY. In Figure 3, we plot the regions in �𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋� space in which 𝑀𝑀 is a 

P-matrix (P0-matrix) when 𝑇𝑇 = 2 or 𝑇𝑇 = 4. In the smaller 𝑇𝑇 case, the P-matrix region is 

much larger. This relationship appears to continue to hold for both larger and smaller 

𝑇𝑇, with the equivalent 𝑇𝑇 = 1 plot being almost entirely shaded, and the large 𝑇𝑇 plot 

tending to the equivalent plot from the model without monetary policy persistence. 

Intuitively, the persistence in the shadow nominal interest rate dampens the 

immediate response of nominal interest rates to inflation and output growth, making 

it harder to induce a ZLB episode over short-horizons. 

Further evidence that the long-horizon behaviour is the same as in the model 
without persistence is provided by the fact that with 𝑇𝑇 = 20, 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.05, 

16  𝑀𝑀  is a P-matrix. Moreover, from Proposition 2 with 𝑇𝑇 = 50 , we have that 𝜍𝜍 >
6.385 × 10−8 , so the model always has a feasible path, in the sense of Definition 5 

(Feasibility), by Corollary 3.17 
On the other hand, with 𝑇𝑇 = 200 , 𝛼𝛼𝜋𝜋 = 1.5  and 𝛼𝛼∆𝑦𝑦 = 1.51 , then 𝑀𝑀  is not an S-

matrix,18  meaning that for all sufficiently large 𝑇𝑇 , 𝑀𝑀  is not a P-matrix, so there are 

sometimes multiple solutions. Additionally, from Proposition 2 with 𝑇𝑇 = 200, 𝜍𝜍 ≤ 0 +

 
15 An implementation of this model is contained within DynareOBC in the file: 
“Examples/BrendonPaustianYates2013/BPYModelPersistent.mod”. 
16 Results for larger 𝛼𝛼∆𝑦𝑦 were impossible due to numerical errors. 
17  This result is one of those produced by the “GenerateDeterminacyResults” script within the 
“Examples/BrendonPaustianYates2013” folder of DynareOBC. 
18 This was verified a second way by checking that −𝑀𝑀′ was an S0-matrix, as discussed in Footnote 5. 
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numerical error, meaning that it is likely that the model does not have a solution for 
all possible paths of 𝑥𝑥𝜕𝜕,𝑡𝑡.19 

 

 
 

𝑻𝑻 = 𝟐𝟐 

 
 

𝑻𝑻 = 𝟒𝟒 
  

Figure 3: Regions in which 𝑴𝑴 is a P-matrix (shaded grey) or a P0-matrix (shaded grey, plus the black line), 
when 𝑻𝑻 = 𝟐𝟐 (left) or 𝑻𝑻 = 𝟒𝟒 (right).20 

 

Appendix F.3: The BPY model with price level targeting 
We may also introduce persistence in shadow interest rates by setting:  

𝑥𝑥𝑑𝑑,𝑡𝑡 = �1 − 𝜌𝜌��1 − 𝛽𝛽� + �𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1, 

where 𝑥𝑥𝜕𝜕,𝑡𝑡 = max�0, 𝑥𝑥𝑑𝑑,𝑡𝑡�. If the second bracketed term was multiplied by �1 − 𝜌𝜌�, then 

this would be entirely standard, however as written here, in the limit as 𝜌𝜌 → 1, this 

tends to: 
𝑥𝑥𝑑𝑑,𝑡𝑡 = 1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡 

where 𝑥𝑥𝑝𝑝,𝑡𝑡 is the price level, so 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1. This is a level targeting rule, with 

nominal GDP targeting as a special case with 𝛼𝛼∆𝑦𝑦 = 𝛼𝛼𝜋𝜋 . Note that the omission of the 

�1 − 𝜌𝜌� coefficient on 𝛼𝛼∆𝑦𝑦 and 𝛼𝛼𝜋𝜋  is akin to having a “true” response to output growth 
of 

𝛼𝛼∆𝑦𝑦
1−𝜌𝜌 and a “true” response to inflation of 𝛼𝛼𝜋𝜋

1−𝜌𝜌, so in the limit as 𝜌𝜌 → 1, we effectively 

 
19  These results are also among those produced by the “GenerateDeterminacyResults” script within the 
“Examples/BrendonPaustianYates2013” folder of DynareOBC. 
20 Code to generate this plot is contained within the Maple worksheet: 
“Examples/BrendonPaustianYates2013/AnalyticResults.mw”. 
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have an infinitely strong response to these quantities. It turns out that this is sufficient 
to produce determinacy for all 𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋 ∈ (0, ∞). 

In particular, given the model: 21 
𝑥𝑥𝜕𝜕,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 −
1
𝜎𝜎 �𝑥𝑥𝜕𝜕,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 + 𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 − 𝛽𝛽𝑥𝑥𝑝𝑝,𝑡𝑡 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 

we prove in Appendix L.4, below, that the following proposition holds: 

Proposition 13 The BPY model with price targeting is in the form of Problem 2 (OBC), 
and satisfies Assumptions 1, 2 and 3. With 𝑇𝑇 = 1 , 𝑀𝑀 > 0  for all 𝛼𝛼𝜋𝜋 ∈ (0, ∞) , 𝛼𝛼∆𝑦𝑦 ∈

[0, ∞). 

Furthermore, with 𝜎𝜎 = 1 , 𝛽𝛽 = 0.99 , 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎) , as before, and 

𝛼𝛼∆𝑦𝑦 = 1, 𝛼𝛼𝜋𝜋 = 1, if we check our lower bound on 𝜍𝜍 with 𝑇𝑇 = 20, we find that 𝜍𝜍 > 0.042. 

Hence, this model always has a feasible path, in the sense of Definition 5 (Feasibility). 

Given that 𝑑𝑑0 > 0  for this model, and that for 𝑇𝑇 = 1000 , 𝑀𝑀  is a P-matrix by our 

sufficient conditions from Corollary 5, this is strongly suggestive of the existence of a 

unique solution for any 𝑞𝑞 and for arbitrarily large 𝑇𝑇.22 

Appendix F.4: The linearized Fernández-Villaverde et al. (2015) model 
The discussion of the BPY (2013) model might lead one to believe that multiplicity 

and non-existence is solely a consequence of overly aggressive monetary responses to 

output growth, and overly weak monetary responses to inflation. However, it turns 

out that basic NK models without indexation to a positive steady-state inflation rate 

by non-optimising firms (and hence price dispersion in the steady state), still imply 

multiple equilibria in some states of the world (i.e. for some 𝑞𝑞) and no solutions in 

others, even with extremely aggressive monetary responses to inflation and without 

any monetary response to output growth. Price level targeting again fixes these 

problems though. 

We show these results in the Fernández-Villaverde et al. (2015) model, which is a 

basic non-linear New Keynesian model without capital or price indexation of non-

 
21  An implementation of this model is contained within DynareOBC in the file 
“Examples/BrendonPaustianYates2013/BPYModelPriceLevelTargeting.mod”. 
22  These results are also among those produced by the “GenerateDeterminacyResults” script within the 
“Examples/BrendonPaustianYates2013” folder of DynareOBC. 
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resetting firms, but featuring (non-valued) government spending and steady-state 

inflation (and hence price-dispersion).23 The model’s equilibrium conditions follow: 
1
𝐶𝐶𝑡𝑡

= 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡 �
𝛽𝛽𝑡𝑡+1

Π𝑡𝑡+1𝐶𝐶𝑡𝑡+1
� (∗) 

𝜓𝜓𝐿𝐿𝑡𝑡
𝜗𝜗𝐶𝐶𝑡𝑡 = 𝑊𝑊𝑡𝑡 

𝜀𝜀𝑋𝑋1,𝑡𝑡 = (𝜀𝜀 − 1)𝑋𝑋2,𝑡𝑡 

𝑋𝑋1,𝑡𝑡 =
𝑌𝑌𝑡𝑡
𝐶𝐶𝑡𝑡

𝑊𝑊𝑡𝑡
𝐴𝐴𝑡𝑡

+ 𝜃𝜃𝔼𝔼𝑡𝑡𝛽𝛽𝑡𝑡+1Π𝑡𝑡+1
𝜀𝜀 𝑋𝑋1,𝑡𝑡+1 (∗) 

𝑋𝑋2,𝑡𝑡 = Π𝑡𝑡
∗ �

𝑌𝑌𝑡𝑡
𝐶𝐶𝑡𝑡

+ 𝜃𝜃𝔼𝔼𝑡𝑡𝛽𝛽𝑡𝑡+1
Π𝑡𝑡+1

𝜀𝜀−1

Π𝑡𝑡+1
∗ 𝑋𝑋2,𝑡𝑡+1� (∗) 

log 𝑅𝑅𝑡𝑡 = max �0, log 𝑅𝑅 + 𝜙𝜙𝜋𝜋 log �
Π𝑡𝑡
Π � + 𝜙𝜙𝑦𝑦 log �

𝑌𝑌𝑡𝑡
𝑌𝑌 � + 𝜎𝜎𝑚𝑚𝜀𝜀𝑚𝑚,𝑡𝑡� 

𝐺𝐺𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑌𝑌𝑡𝑡 

1 = 𝜃𝜃Π𝑡𝑡
𝜀𝜀−1 + (1 − 𝜃𝜃)Π𝑡𝑡

∗1−𝜀𝜀 

𝜈𝜈𝑡𝑡 = 𝜃𝜃Π𝑡𝑡
𝜀𝜀𝜈𝜈𝑡𝑡−1 + (1 − 𝜃𝜃)Π𝑡𝑡

∗−𝜀𝜀 (∗) 

𝐶𝐶𝑡𝑡 + 𝐺𝐺𝑡𝑡 = 𝑌𝑌𝑡𝑡 =
𝐴𝐴𝑡𝑡
𝜈𝜈𝑡𝑡

𝐿𝐿𝑡𝑡 

log 𝛽𝛽𝑡𝑡 = �1 − 𝜌𝜌𝛽𝛽� log 𝛽𝛽 + 𝜌𝜌𝛽𝛽 log 𝛽𝛽𝑡𝑡−1 + 𝜎𝜎𝛽𝛽𝜀𝜀𝛽𝛽,𝑡𝑡 

log 𝐴𝐴𝑡𝑡 = �1 − 𝜌𝜌𝐴𝐴� log 𝐴𝐴 + 𝜌𝜌𝐴𝐴 log 𝐴𝐴𝑡𝑡−1 + 𝜎𝜎𝐴𝐴𝜀𝜀𝐴𝐴,𝑡𝑡 

log 𝑆𝑆𝑡𝑡 = �1 − 𝜌𝜌𝑆𝑆� log 𝑆𝑆 + 𝜌𝜌𝑆𝑆 log 𝑆𝑆𝑡𝑡−1 + 𝜎𝜎𝑆𝑆𝜀𝜀𝑆𝑆,𝑡𝑡 

Welfare in the model in period 𝑡𝑡 is given by: 

𝔼𝔼𝑡𝑡 � �� 𝛽𝛽𝑡𝑡+𝑠𝑠

𝑠𝑠

𝑘𝑘=0
� �log 𝐶𝐶𝑡𝑡+𝑠𝑠 −

𝜓𝜓
1 + 𝜗𝜗 𝐿𝐿𝑡𝑡

1+𝜗𝜗�
∞

𝑠𝑠=0
. 

After substitutions, the model can be reduced to just the four non-linear equations 

marked with (∗) above (plus the three shock laws of motion) which are functions of 

gross inflation, Π𝑡𝑡 , labour supply, 𝐿𝐿𝑡𝑡 , price dispersion, 𝜈𝜈𝑡𝑡 , and an auxiliary variable 
introduced from the firms’ price-setting first order condition, 𝑋𝑋1,𝑡𝑡, (plus the shocks). 

Of these variables, only price dispersion enters with a lag. We linearize the model 

around its steady state, and then reintroduce the “max” operator which linearization 

removed from the Taylor rule. 24  All parameters are set to the values given in 

Fernández-Villaverde et al. (2015). There is no response to output growth in the Taylor 

 
23  An implementation of this model is contained within DynareOBC in the file 
“Examples/FernandezVillaverdeEtAl2015/NK.mod”. 
24 Before linearization, we transform the model’s variables so that the transformed variables take values on the 
entire real line. I.e. we work with the logarithms of labour supply, price dispersion and the auxiliary variable. For 
inflation, we note that inflation is always less than 𝜃𝜃

1
1−𝜀𝜀. Thus, we work with a logit transformation of inflation over 

𝜃𝜃
1

1−𝜀𝜀. 
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rule, so any multiplicity cannot be a consequence of the mechanism highlighted by 

BPY (2013). 

For this model, numerical calculations reveal that with 𝑇𝑇 ≤ 14, 𝑀𝑀 is a P-matrix. 

However, with 𝑇𝑇 ≥ 15, 𝑀𝑀 is not a P matrix, and thus there are certainly some states of 

the world (some 𝑞𝑞) in which the model has multiple solutions. Furthermore, with 𝑇𝑇 =
1000, our upper bound on 𝜍𝜍 from Proposition 2 implies that 𝜍𝜍 ≤ 0 + numerical error, 

suggesting that the model does not have a solution for all possible paths of interest 

rates.25 

To make the mechanism behind these results clear, we will compare the 

Fernández-Villaverde et al. (2015) model to an altered version of it with full indexation 

to steady-state inflation of prices that are not set optimally. To a first order 

approximation, the model with full indexation never has any price dispersion, and 

thus has no endogenous state variables. It is thus a purely forwards looking model, 

and so it is perhaps unsurprising that it should have a unique equilibrium given a 

terminal condition, even in the presence of the ZLB. 
  

  

  
Figure 4: Impulse responses to a shock announced in period 𝟏𝟏, but hitting in period 𝟑𝟑𝟑𝟑, in basic New 

Keynesian models with (left 4 panels) and without (right 4 panels) indexation to steady-state inflation. 
All variables are in logarithms. In both cases, the model and parameters are taken from Fernández-Villaverde et 

al. (2015), the only change being the addition of complete price indexation to steady-state inflation for non-
updating firms in the left hand plots. 

 
25 These results are among those that may be generated by running “GenerateDeterminacyResults” within 
the “Examples/FernandezVillaverdeEtAl2015” directory of DynareOBC. 
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Figure 5: Difference between the IRFs of nominal interest rates from the two models shown in Figure 5. 
Negative values imply that nominal interest rates are lower in the model without indexation. 

In Figure 4 we plot the impulse responses of first order approximations to both 

models to a shock to nominal interest rates that is announced in period one but that 

does not hit until period thirty.26 For both models, the shape is similar, however, in the 

model without indexation, the presence of price dispersion reduces inflation both 

before and after the shock hits. This is because the predicted fall in inflation 

compresses the price distribution, reducing dispersion, and thus reducing the number 

of firms making large adjustments. The fall in price dispersion also increases output, 

due to lower efficiency losses from miss-pricing. However, the effect on interest rates 

is dominated by the negative inflation effect, as the Taylor-rule coefficient on output 

cannot be too high if there is to be determinacy.27 For reference, the difference between 

the IRFs of nominal interest rates in each model is plotted in Figure 5, making clear 

that interest rates are on average lower following the shock in the model without 

indexation. 

Remarkably, this small difference in the impulse responses between models is 

enough that the linearized model without indexation has multiple equilibria given a 

ZLB, but the linearized model with full indexation is determinate. This illustrates just 

how fragile is the uniqueness in the linearized purely forward-looking model. 

Informally, what is needed for multiplicity is that the impulse responses to positive 

news shocks to interest rates are sufficiently negative for a sufficiently high amount of 

time that a linear combination of them could be negative in every period in which a 

 
26 This figure and the following ones in this section may be generated by running “GeneratePlots” within the 
“Examples/FernandezVillaverdeEtAl2015” directory of DynareOBC. 
27 One might think the situation would be different if the response to output was high enough that the rise in output 
after the shock produced a rise in interest rates. However, as observed by Ascari and Ropele (2009), the determinacy 
region is smaller in the presence of price dispersion than would be suggested by the Taylor criterion. Numerical 
experiments suggest that in all the determinate region, interest rates are below steady state following the shock. 
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shock arrives. Here, price dispersion is providing the required additional reduction to 

nominal interest rates following a news shock. 
 

 

 
  

Figure 6: Construction of multiple equilibria in the Fernández-Villaverde et al. (2015) model. 
The left plot shows the IRFs to news shocks arriving zero to sixteen quarters after becoming known. 

The middle plot shows the same IRFs scaled appropriately. 
The right plot shows the sum of the scaled IRFs shown in the central figure, where the red line gives the ZLB’s 

location, relative to steady state. 

  

We illustrate how multiplicity emerges in the model without indexation by 

showing, in Figure 6, the construction of an additional equilibrium which jumps to the 

ZLB for seventeen quarters.28  If the economy is to be at the bound for seventeen 

quarters, then for those seventeen quarters, the nominal interest rate must be higher 

than it would be according to the Taylor rule, meaning that we need to consider 

seventeen endogenous news shocks, at horizons from zero to sixteen quarters into the 

future. The impulse responses to unit shocks of this kind are shown in the leftmost 

plot. Each impulse response has broadly the same shape as the one shown for nominal 

interest rates in the right of Figure 4. The central figure plots the same impulse 

responses again, but now each line is scaled by a constant so that their sum gives the 

line shown in black in the rightmost plot. In this rightmost plot, the red line gives the 

ZLB’s location, relative to steady state, thus the combined impulse response spends 

seventeen quarters at the ZLB before returning to steady state. Since there are only 

“news shocks” in the periods in which the economy is at the ZLB, this gives a perfect 

foresight rational expectations equilibrium which makes a self-fulfilling jump to the 

ZLB. 

  

 
28 Seventeen quarters was the minimum span for which an equilibrium of this form could be found. 
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Figure 7: A “good” solution (left 6 panels) and a “bad” solution (right 6 panels), following a 10 standard 
deviation demand shock in the Fernández-Villaverde et al. (2015) model. 

All variables are in levels. The calculation of the welfare consumption equivalent is detailed in the text. 

 

Figure 7 illustrates the potential consequences of this multiplicity.29 It shows two 

solutions following a 10 standard deviation demand shock (i.e. a positive shock to 𝛽𝛽𝑡𝑡). 

For purely illustrative purposes, we also include a consumption equivalent measure 

of welfare. This is the quantity 𝑍𝑍𝑡𝑡 which solves: 

𝔼𝔼𝑡𝑡 � �� 𝛽𝛽𝑡𝑡+𝑠𝑠

𝑠𝑠

𝑘𝑘=0
� �log 𝐶𝐶𝑡𝑡+𝑠𝑠 −

𝜓𝜓
1 + 𝜗𝜗 𝐿𝐿𝑡𝑡

1+𝜗𝜗�
∞

𝑠𝑠=0

= 𝔼𝔼𝑡𝑡 � �� 𝛽𝛽𝑡𝑡+𝑠𝑠

𝑠𝑠

𝑘𝑘=0
� �log�𝐶𝐶�̃�𝑡+𝑠𝑠𝑍𝑍𝑡𝑡� −

𝜓𝜓
1 + 𝜗𝜗 �̃�𝐿𝑡𝑡

1+𝜗𝜗�
∞

𝑠𝑠=0
, 

where 𝐶𝐶�̃�𝑡  and �̃�𝐿𝑡𝑡  are the values consumption and labour supply would take were 

prices flexible. 𝑍𝑍𝑡𝑡 will be less than one in steady-state due to the distortion of price-

dispersion. However, these welfare calculations come with two caveats. Firstly, all our 

calculations here are under perfect foresight, so our welfare measure is not capturing 

any of the effects of uncertainty. Secondly, our welfare measure is based on an 

underlying first order approximation, which is likely to be unreliable given such big 

shocks. To mitigate this, we calculate welfare and other variables in a way which 

 
29 This figure, like the previous ones in this section, may be generated by running “GeneratePlots” within the 
“Examples/FernandezVillaverdeEtAl2015” directory of DynareOBC. 
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introduces no further error beyond the approximation error coming from the four 

endogenous variables, inflation, labour supply, price dispersion and the firms’ 

auxiliary variable. Thus, all equations except the four marked with (∗)  will hold 
exactly, e.g. it will always be true that 𝐶𝐶𝑡𝑡 + 𝐺𝐺𝑡𝑡 = 𝑌𝑌𝑡𝑡 = 𝐴𝐴𝑡𝑡

𝜈𝜈𝑡𝑡
𝐿𝐿𝑡𝑡 ensuring that consumption 

levels are feasible given labour supply and price dispersion. Despite this, 

approximation error is likely to be substantial. With these caveats in mind, we see that 

while welfare actually improves in the “fundamental” solution (due to the reduction 

in price dispersion), in the second solution consumption equivalent welfare falls by 

about 12%. 

The situation is quite different under price level targeting. In particular, if we 

replace inflation in the monetary rule with the price level relative to its linear trend, 

which evolves according to: 

log 𝑃𝑃𝑡𝑡 = log 𝑃𝑃𝑡𝑡−1 + log �
Π𝑡𝑡
Π � , (8) 

then with 𝑇𝑇 = 200 , the lower bound from Proposition 2 implies that 𝜍𝜍 > 0.003 , and 

hence that the model is always feasible, in the sense of Definition 5 (Feasibility). 

Furthermore, even with 𝑇𝑇 = 1000, 𝑀𝑀 is a P-matrix by our sufficient conditions from 

Corollary 5. 30 This is strongly suggestive of uniqueness even for arbitrarily large 𝑇𝑇, 

given the reasonably short-lived dynamics of the model. 

Appendix F.5: The Smets & Wouters (2003; 2007) models, and the Adjemian, 
Darracq Pariès & Moyen (2007) model 

Section 4.2 of the main paper discusses the Smets & Wouters (2003)31 and Smets & 

Wouters (2007) 32  models. The plots in the paper may be generated by running 

“GeneratePlots” within both the “Examples/SmetsWouters2003” and 

“Examples/SmetsWouters2007” directories of DynareOBC. The paper’s 

determinacy results may be generated by running: 

“GenerateDeterminacyResults” 

within both the: 
 

30 These results are among those that may be generated by running “GenerateDeterminacyResults” within 
the “Examples/FernandezVillaverdeEtAl2015” directory of DynareOBC. 
31  An implementation of this model is contained within DynareOBC in the file 
“Examples/SmetsWouters2003/SW03.mod”. This MOD file was derived from the Macro Model Database 
(Wieland et al. 2012). 
32  An implementation of this model is contained within DynareOBC in the file 
“Examples/SmetsWouters2007/SW07.mod”. This MOD file was derived from files provided by Johannes 
Pfeifer here: http://goo.gl/CP53x5. 
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“Examples/SmetsWouters2003” and “Examples/SmetsWouters2007” 

directories of DynareOBC. The paper finds that a price level target produces 

determinacy in both models. 

We can get a sense of the potential welfare benefits of a switch to price level 

targeting by comparing equilibria with and without a response to the price level in a 

closely related model, that of Adjemian, Darracq Pariès & Moyen (2007).33  This is 

essentially a re-estimated version of the Smets & Wouters (2003) model. 34  It is 

convenient for our purposes though because whereas the original Smets & Wouters 

(2003) model was hand-linearized, with some ad hoc changes made only to the 

linearized equations, the Adjemian, Darracq Pariès & Moyen (2007) model is 

presented in its fully non-linear form, and welfare measures are derived. The measure 

of consumption equivalent welfare we use here is much as in the previous section. It 

is the amount of extra consumption services flow you would have to give to an 

inhabitant of the flexible price version of the model to make them indifferent between 

their economy and that of the model.35 Unlike in the Fernández-Villaverde et al. (2015) 

model though, here it is assumed that non-updating prices are indexed to a 

combination of lagged inflation, and the steady-state level of inflation. Thus, there is 

no price-dispersion in steady-state, so steady-state welfare equals that of the flexible 

price economy. Our impulse response exercise in Figure 8 follows that of Figure 3 from 

the main paper,36  and without a response to the price level, the responses of other 

variables are very similar to those in that figure. 37  However, suppose we add a 

response to the price level to the monetary rule, so it becomes: 

𝑖𝑖𝑡𝑡 = max�0, 𝜌𝜌𝜕𝜕𝑖𝑖𝑡𝑡−1 + �1 − 𝜌𝜌𝜕𝜕� log(𝑃𝑃𝑡𝑡) + other terms from the original model� ,  

where 𝜌𝜌𝜕𝜕 is as in the original model, and where the price level 𝑃𝑃𝑡𝑡 again evolves per 

equation (8) . Then the second solution no longer exists, so the welfare outcome is 

 
33  An implementation of this model is contained within DynareOBC in the file 
“Examples/AdjemianDarracqPariesMoyen2007/SWNLWCD.mod”. 
34 The only significant difference is that habits are internal, not external. 
35 Habits slightly complicate this. Following Adjemian, Darracq Pariès & Moyen (2007), we assume that it is the 
habit adjusted consumption flow that is adjusted in the flexible price economy to derive the consumption 
equivalent welfare. I.e. �𝐶𝐶𝑡𝑡+𝑠𝑠 − ℎ𝐶𝐶𝑡𝑡+𝑠𝑠−1�  in the utility function is replaced with �𝐶𝐶𝑡𝑡+𝑠𝑠 − ℎ𝐶𝐶𝑡𝑡+𝑠𝑠−1�𝑍𝑍𝑡𝑡 , where 𝑍𝑍𝑡𝑡 
captures the consumption equivalent welfare. 
36  This figure may be generated by running “RunExample” within the 
“Examples/AdjemianDarracqPariesMoyen2007” directory of DynareOBC. 
37 In this case, we need a slightly larger shock for a comparable exercise. It is now 24.5 standard deviations rather 
than 22.5 standard deviations in Figure 3 of the main paper. 
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much improved (a 0.6%  drop rather than a 5%  drop). As in the previous section 

though, this is again subject to the same caveats on accuracy.38 
 
 

  
Figure 8: Two solutions following a preference shock in the Adjemian, Darracq Pariès & Moyen (2007) model, 

without (left 6 panels) and with (right 6 panels) a response to the price level. 
All variables are in logarithms. The calculation of the welfare consumption equivalent is detailed in the text. 

The dashed line is a solution which does not hit the bound. 
The solid line is an alternative solution which does hit the bound in the absence of price level targeting. 

The two solutions are identical with a response to the price level.  

 

 
38 While the economy is moving less far from its steady-state following this shock than in the example from the 
previous section, here all variables, including welfare, are in first order approximations. 
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: Small LCPs 

Appendix G.1: LCPs of size 1 
When 𝑇𝑇 = 1 , it is particularly easy to characterise the properties of LCPs. This 

amounts to considering the behaviour of an economy in which everyone believes there 

will be at most one period at the bound. In this case, 𝑦𝑦  gives the “shock” to the 

bounded equation necessary to impose the bound, and 𝑀𝑀 gives the contemporaneous 

response of the bounded variable to an unanticipated shock: i.e. in a ZLB context, 𝑀𝑀 

gives the initial jump in nominal interest rates following a standard monetary policy 

shock. 

First, suppose that 𝑀𝑀 (a scalar as 𝑇𝑇 = 1 for now) is positive. Then, if 𝑞𝑞 > 0, for any 

𝑦𝑦 ≥ 0 , 𝑞𝑞 + 𝑀𝑀𝑦𝑦 > 0 , so by the complementary slackness condition, in fact 𝑦𝑦 = 0 . 

Conversely, if 𝑞𝑞 ≤ 0, then there is a unique 𝑦𝑦 satisfying the complementary slackness 
condition given by 𝑦𝑦 = − 𝑞𝑞

𝑀𝑀 ≥ 0. Thus, with 𝑀𝑀 > 0, there is always a unique solution 

to the 𝑇𝑇 = 1 LCP. With 𝑀𝑀 = 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦 = 𝑞𝑞, so a solution to the LCP exists if and only 

if 𝑞𝑞 ≥ 0. It will be unique providing 𝑞𝑞 > 0 (by the complementary slackness condition), 

but when 𝑞𝑞 = 0, any 𝑦𝑦 ≥ 0 gives a solution. Finally, suppose that 𝑀𝑀 < 0. Then, if 𝑞𝑞 > 0, 

there are precisely two solutions. The “standard” solution has 𝑦𝑦 = 0, but there is an 
additional solution featuring a jump to the bound in which 𝑦𝑦 = − 𝑞𝑞

𝑀𝑀 > 0. If 𝑞𝑞 = 0, then 

there is a unique solution (𝑦𝑦 = 0) and if 𝑞𝑞 < 0, then with 𝑦𝑦 ≥ 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦 < 0, so there is 

no solution at all. Hence, the 𝑇𝑇 = 1  LCP already provides examples of cases of 

uniqueness, non-existence and multiplicity. 

Appendix G.2: LCPs of size 2 
We now consider the 𝑇𝑇 = 2 special case, where we can again easily derive results 

from first principles. Recall that a solution �
𝑦𝑦1
𝑦𝑦2

�  to the LCP ��
𝑞𝑞1
𝑞𝑞2

� , �𝑀𝑀11 𝑀𝑀12
𝑀𝑀21 𝑀𝑀22

�� 

satisfies 𝑦𝑦1 ≥ 0 , 𝑦𝑦2 ≥ 0 , 𝑞𝑞1 + 𝑀𝑀11𝑦𝑦1 + 𝑀𝑀12𝑦𝑦2 ≥ 0 , 𝑞𝑞2 + 𝑀𝑀21𝑦𝑦1 + 𝑀𝑀22𝑦𝑦2 ≥ 0 , 𝑦𝑦1�𝑞𝑞1 +
𝑀𝑀11𝑦𝑦1 + 𝑀𝑀12𝑦𝑦2� = 0, and 𝑦𝑦2�𝑞𝑞2 + 𝑀𝑀21𝑦𝑦1 + 𝑀𝑀22𝑦𝑦2� = 0. With two quadratics, there are 

up to four generic solutions, given by: 

1) 𝑦𝑦1 = 𝑦𝑦2 = 0. Exists if 𝑞𝑞1 ≥ 0 and 𝑞𝑞2 ≥ 0. 
2) 𝑦𝑦1 = − 𝑞𝑞1

𝑀𝑀11
, 𝑦𝑦2 = 0. Exists if 𝑞𝑞1

𝑀𝑀11
≤ 0 and 𝑀𝑀11𝑞𝑞2 ≥ 𝑀𝑀21𝑞𝑞1. 

3) 𝑦𝑦1 = 0, 𝑦𝑦2 = − 𝑞𝑞2
𝑀𝑀22

. Exists if 𝑞𝑞2
𝑀𝑀22

≤ 0 and 𝑀𝑀22𝑞𝑞1 ≥ 𝑀𝑀12𝑞𝑞2. 

4) 𝑦𝑦1 = 𝑀𝑀12𝑞𝑞2−𝑀𝑀22𝑞𝑞1
𝑀𝑀11𝑀𝑀22−𝑀𝑀12𝑀𝑀21

, 𝑦𝑦2 = 𝑀𝑀21𝑞𝑞1−𝑀𝑀11𝑞𝑞2
𝑀𝑀11𝑀𝑀22−𝑀𝑀12𝑀𝑀21

. Exists if 𝑦𝑦1 ≥ 0 and 𝑦𝑦2 ≥ 0. 

Additionally, there are extra solutions in knife-edge cases: 
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5) If 𝑞𝑞1 = 0, 𝑀𝑀11 = 0 and 𝑞𝑞2 ≥ 0 then any 𝑦𝑦1 ≥ 0 is a solution with 𝑦𝑦2 = 0. 

6) If 𝑞𝑞2 = 0, 𝑀𝑀22 = 0 and 𝑞𝑞1 ≥ 0 then any 𝑦𝑦2 ≥ 0 is a solution with 𝑦𝑦1 = 0. 

7) If 𝑞𝑞1 = 0 , 𝑞𝑞2 = 0 , 𝑀𝑀11𝑀𝑀22 = 𝑀𝑀12𝑀𝑀21 , then any 𝑦𝑦1 ≥ 0  and 𝑦𝑦2 ≥ 0  with 𝑀𝑀21𝑦𝑦1 =
−𝑀𝑀22𝑦𝑦2 is a solution. 

8) If 𝑞𝑞1 = 0 , 𝑞𝑞2 = 0 , 𝑀𝑀11 = 𝑀𝑀12 = 𝑀𝑀21 = 𝑀𝑀22 , then any 𝑦𝑦1 ≥ 0  and 𝑦𝑦2 ≥ 0  are a 

solution. 
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: Generalizations 

It is straightforward to generalise the results of this paper to less restrictive 

otherwise linear models with occasionally binding constraints. 
Firstly, if the constraint is on a variable other than 𝑥𝑥1,𝑡𝑡, or in another equation than 

the first, then all of the results go through as before, just by relabelling and 
rearranging. Furthermore, if the constraint takes the form of 𝑧𝑧1,𝑡𝑡 = max�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡� , 

where 𝑧𝑧1,𝑡𝑡, 𝑧𝑧2,𝑡𝑡 and 𝑧𝑧3,𝑡𝑡 are linear expressions in the contemporaneous values, lags and 

leads of 𝑥𝑥𝑡𝑡, then, assuming without loss of generality that 𝑧𝑧3,⋅ > 𝑧𝑧2,⋅ in steady state, we 

have that 𝑧𝑧1,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡�. Hence, adding a new auxiliary variable 𝑥𝑥𝑛𝑛+1,𝑡𝑡, 

with the associated equation 𝑥𝑥𝑛𝑛+1,𝑡𝑡 = 𝑧𝑧1,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡 , and replacing the constrained 

equation with 𝑥𝑥𝑛𝑛+1,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡�, we have a new equation in the form covered 

by our results. Moreover, if rather than a max we have a min, we just use the fact that 
if 𝑧𝑧1,𝑡𝑡 = min�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡� , then −𝑧𝑧1,𝑡𝑡 = max�−𝑧𝑧2,𝑡𝑡, −𝑧𝑧3,𝑡𝑡� , which is covered by the 

generalisation just established. The easiest encoding of the complementary slackness 

conditions, 𝑧𝑧𝑡𝑡 ≥ 0, 𝜆𝜆𝑡𝑡 ≥ 0 and 𝑧𝑧𝑡𝑡𝜆𝜆𝑡𝑡 = 0, is 0 = min{𝑧𝑧𝑡𝑡, 𝜆𝜆𝑡𝑡}, which is of this form. 

To deal with multiple occasionally binding constraints, we use the representation 

from Holden and Paetz (2012). Suppose there are 𝑐𝑐 constrained variables in the model. 

For 𝑎𝑎 ∈ {1, … , 𝑐𝑐}, let 𝑞𝑞(𝑎𝑎) be the path of the 𝑎𝑎th constrained variable in the absence of all 

constraints. For 𝑎𝑎, 𝑏𝑏 ∈ {1, … , 𝑐𝑐} , let 𝑀𝑀(𝑎𝑎,𝑏𝑏)  be the matrix whose 𝑘𝑘 th column is the 

impulse response of the 𝑎𝑎 th constrained variable to magnitude 1  news shocks at 

horizon 𝑘𝑘 − 1 to the equation defining the 𝑏𝑏th constrained variable. For example, if 𝑐𝑐 =
1  so there is a single constraint, then we would have that 𝑀𝑀(1,1) = 𝑀𝑀  as defined in 

equation (4). Finally, let: 

𝑞𝑞 ≔
⎣
⎢⎢
⎡𝑞𝑞(1)

⋮
𝑞𝑞(𝑐𝑐)⎦

⎥⎥
⎤ , 𝑀𝑀 ≔

⎣
⎢⎡

𝑀𝑀(1,1) ⋯ 𝑀𝑀(1,𝑐𝑐)

⋮ ⋱ ⋮
𝑀𝑀(𝑐𝑐,1) ⋯ 𝑀𝑀(𝑐𝑐,𝑐𝑐)⎦

⎥⎤, 

and let 𝑦𝑦  be a solution to the LCP �𝑞𝑞, 𝑀𝑀� . Then the vertically stacked paths of the 

constrained variables in a solution which satisfies these constraints is given by 𝑞𝑞 + 𝑀𝑀𝑦𝑦, 

and Theorem 1 (Restated)  goes through as before. 
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: Relationship between multiplicity under perfect-foresight, 
and multiplicity under rational expectations 

By augmenting the state-space appropriately, the first order conditions of a 

general, non-linear, rational expectations, DSGE model may always be placed in the 

form: 

0 = 𝔼𝔼𝑡𝑡 𝑓𝑓 �̂𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝜎𝜎𝜀𝜀𝑡𝑡�, 
for all 𝑡𝑡 ∈ ℤ, where 𝜎𝜎 ∈ [0,1], 𝑓𝑓 :̂ �ℝ�̂�𝑛�3 × ℝ𝑚𝑚 → ℝ�̂�𝑛, and where for all 𝑡𝑡 ∈ ℤ, 𝑥𝑥�̂�𝑡 ∈ ℝ�̂�𝑛, 

𝜀𝜀𝑡𝑡 ∈ ℝ𝑚𝑚, 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑡𝑡 = 0, and 𝔼𝔼𝑡𝑡𝑥𝑥�̂�𝑡 = 𝑥𝑥�̂�𝑡. Since 𝑓𝑓  ̂is arbitrary, without loss of generality we 

may further assume that 𝜀𝜀𝑡𝑡 ∼ NIID(0, 𝐼𝐼). We further assume: 

Assumption 4 𝑓𝑓  ̂is everywhere continuous. 

The continuity of 𝑓𝑓  ̂does rule out some models, but all models in which the only source 

of non-differentiability is a max or min operator will have a continuous 𝑓𝑓 .̂ 

Now, by further augmenting the state space, we can then find a continuous 

function 𝑓𝑓 : (ℝ𝑛𝑛)3 × ℝ𝑚𝑚 → ℝ𝑛𝑛 such that for all 𝑡𝑡 ∈ ℤ: 

0 =  𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1, 𝜎𝜎𝜀𝜀𝑡𝑡�, 
where for all 𝑡𝑡 ∈ ℤ, 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 and 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡.39 (Note that this 𝑓𝑓  is not intended to be the 

𝑓𝑓  from Section 2 of the paper.) A solution to this model is given by a policy function. 

Given 𝑓𝑓  is continuous, it is natural to restrict attention to continuous policy functions.40 

Furthermore, given the model’s transversality conditions, we are usually only 

interested in stationary, Markov solutions, so the policy function will not be a function 

of 𝑡𝑡 or of lags of the state. Additionally, in this paper we are only interested in solutions 

in which the deterministic model converges to some particular steady state 𝜇𝜇. Thus, 

we make the following assumption: 

Assumption 5 The policy function is given by a continuous function: 𝑔𝑔: [0,1] × ℝ𝑛𝑛 ×
ℝ𝑚𝑚 → ℝ𝑛𝑛, such that for all (𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ∈ [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚: 

0 =  𝑓𝑓 �𝑥𝑥, 𝑔𝑔(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝔼𝔼𝜀𝜀𝑔𝑔�𝜎𝜎, 𝑔𝑔(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝜎𝜎𝜀𝜀�, 𝑒𝑒�, 
where 𝜀𝜀 ∼ N(0, 𝐼𝐼) and 𝔼𝔼𝜀𝜀 denotes an expectation with respect to 𝜀𝜀. Furthermore, for 

all 𝑥𝑥0 ∈ ℝ𝑛𝑛, the recurrence 𝑥𝑥𝑡𝑡 = 𝑔𝑔(0, 𝑥𝑥𝑡𝑡−1, 0) satisfies 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. 

 
39  For example, we may use the equations: 𝑥𝑥�̂�𝑡

∘ = 𝑥𝑥�̂�𝑡−1 , 𝜀𝜀�̂�𝑡 = 𝜀𝜀𝑡𝑡 , 𝑧𝑧𝑡𝑡 = 𝑓𝑓 �̂𝑥𝑥�̂�𝑡−1
∘ , 𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝜎𝜎𝜀𝜀�̂�𝑡−1� , 0 = 𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 , with 𝑥𝑥𝑡𝑡 ≔

�𝑥𝑥�̂�𝑡
′ 𝑥𝑥�̂�𝑡

∘′ 𝜀𝜀�̂�𝑡
′ 𝑧𝑧𝑡𝑡

′�′. 
40 Note also that in standard dynamic programming applications, the policy function will be continuous. See e.g. 
Theorem 9.8 of Stokey, Lucas, and Prescott (1989). 
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To produce a lower bound on the number of policy functions satisfying 

Assumption 5, we need two further assumptions. The first assumption just gives the 

existence of the “time iteration” (a.k.a. “policy function iteration”) operator 𝒯𝒯 , and 

ensures that it has a fixed point. 

Assumption 6 Let 𝒢𝒢  denote the space of all continuous functions [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚 →
ℝ𝑛𝑛 . We assume there exists a function 𝒯𝒯 : 𝒢𝒢 → 𝒢𝒢   such that for all �ℊ, 𝜎𝜎, 𝑥𝑥, 𝑒𝑒� ∈
𝒢𝒢 × [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚: 

0 =  𝑓𝑓 �𝑥𝑥, 𝒯𝒯 �ℊ�(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝔼𝔼𝜀𝜀ℊ�𝜎𝜎, 𝒯𝒯 �ℊ�(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝜎𝜎𝜀𝜀�, 𝑒𝑒�. 
We further assume that if there exists some �ℊ, 𝜎𝜎� ∈ 𝒢𝒢 × [0,1] such that for all (𝑥𝑥, 𝑒𝑒) ∈

ℝ𝑛𝑛 × ℝ𝑚𝑚: 
0 =  𝑓𝑓 �𝑥𝑥, ℊ(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝔼𝔼𝜀𝜀ℊ�𝜎𝜎, ℊ(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝜎𝜎𝜀𝜀�, 𝑒𝑒�, 

then for all (𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚, 𝒯𝒯 �ℊ�(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) = ℊ(𝜎𝜎, 𝑥𝑥, 𝑒𝑒). 

The second assumption ensures that time iteration always converges when started 

from a solution to the model with no uncertainty after the current period. This is a 

weak assumption since the policy functions under uncertainty are invariably close to 

the policy function in the absence of uncertainty. 

Assumption 7 Let ℎ: ℝ𝑛𝑛 × ℝ𝑚𝑚 → ℝ𝑛𝑛 be a continuous function giving a solution to the 

model in which there is no future uncertainty, i.e. for all (𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚: 

0 =  𝑓𝑓 (𝑥𝑥, ℎ(𝑥𝑥, 𝑒𝑒), ℎ(ℎ(𝑥𝑥, 𝑒𝑒), 0), 𝑒𝑒). 
Further, define 𝑔𝑔ℎ,0 ∈ 𝒢𝒢  by 𝑔𝑔ℎ,0(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) = ℎ(𝑥𝑥, 𝑒𝑒) for all (𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ∈ [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚, and 

define 𝑔𝑔ℎ,𝑘𝑘 ∈ 𝒢𝒢  inductively by 𝑔𝑔ℎ,𝑘𝑘+1 = 𝒯𝒯 �𝑔𝑔ℎ,𝑘𝑘� for all 𝑘𝑘 ∈ ℕ. Then there exists some 

𝑔𝑔ℎ,∞ ∈ 𝒢𝒢   such that 𝑔𝑔ℎ,∞ = 𝒯𝒯 �𝑔𝑔ℎ,∞�  and for all (𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ∈ [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚 , 

𝑔𝑔ℎ,𝑘𝑘(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) → 𝑔𝑔ℎ,∞(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) as 𝑘𝑘 → ∞. 

Note, by construction, if ℎ is as in Assumption 7, then for all (𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚: 
0 =  𝑓𝑓 �𝑥𝑥, 𝑔𝑔ℎ,0(0, 𝑥𝑥, 𝑒𝑒), 𝔼𝔼𝜀𝜀𝑔𝑔ℎ,0�0, 𝑔𝑔ℎ,0(0, 𝑥𝑥, 𝑒𝑒), 0𝜀𝜀�, 𝑒𝑒�. 

Hence, by Assumption 6, for all 𝑘𝑘 ∈ ℕ, all (𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚, 𝑔𝑔ℎ,𝑘𝑘(0, 𝑥𝑥, 𝑒𝑒) = 𝑔𝑔ℎ,0(0, 𝑥𝑥, 𝑒𝑒). 

Consequently, for all (𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚, 𝑔𝑔ℎ,∞(0, 𝑥𝑥, 𝑒𝑒) = 𝑔𝑔ℎ,0(0, 𝑥𝑥, 𝑒𝑒) = ℎ(𝑥𝑥, 𝑒𝑒). 

Now suppose that ℎ1 and ℎ2 were as in Assumption 7, and that there exists (𝑥𝑥, 𝑒𝑒) ∈
ℝ𝑛𝑛 × ℝ𝑚𝑚, such that ℎ1(𝑥𝑥, 𝑒𝑒) ≠ ℎ2(𝑥𝑥, 𝑒𝑒). Then, by the continuity of 𝑔𝑔ℎ1,∞ and 𝑔𝑔ℎ2,∞, there 

is some 𝒮𝒮 ⊆ [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚 of positive measure, with (0, 𝑥𝑥, 𝑒𝑒) ∈ 𝒮𝒮 , such that for all 
(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ∈ 𝒮𝒮  , 𝑔𝑔ℎ1,∞(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ≠ 𝑔𝑔ℎ2,∞(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) . Hence, the rational expectations policy 

functions differ, at least for small 𝜎𝜎  . Thus, if Assumption 6 and Assumption 7 are 
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satisfied, there are at least as many policy functions satisfying Assumption 5 as there 

are solutions to the model in which there is no future uncertainty. 
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: Results from and for dynamic programming 

Appendix J.1: The linear-quadratic case 
Alternative existence and uniqueness results for the infinite 𝑇𝑇  problem can be 

established via dynamic programming methods, under the assumption that Problem 

2 (OBC) comes from the first order conditions solution of a social planner problem. 

These have the advantage that their conditions are potentially much easier to evaluate, 

though they also have somewhat limited applicability. We focus here on uniqueness 

results, since these are of greater interest. 

Suppose that the social planner in some economy solves the following problem: 

Problem 4 (Linear-Quadratic) Suppose 𝜇𝜇 ∈ ℝ𝑛𝑛 , Ψ(0) ∈ ℝ𝑐𝑐×1  and Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛  are 

given, where 𝑐𝑐 ∈ ℕ. Define Γ̃: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛) (where ℙ denotes the power-set operator) 

by: 
Γ̃(𝑥𝑥) = �𝑧𝑧 ∈ ℝ𝑛𝑛�0 ≤ Ψ(0) + Ψ(1) �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�� , (9) 

for all 𝑥𝑥 ∈ ℝ𝑛𝑛 . (Note: 𝛤𝛤̃(𝑥𝑥)  will give the set of feasible values for next period’s state if the 

current state is 𝑥𝑥. Equality constraints may be included by including an identical lower bound 

and upper bound.) Define: 
𝑋𝑋� ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ̃(𝑥𝑥) ≠ ∅�, (10) 

and suppose without loss of generality that for all 𝑥𝑥 ∈ ℝ𝑛𝑛, Γ̃(𝑥𝑥) ∩ 𝑋𝑋� = Γ̃(𝑥𝑥). (Note: this 

means that the linear inequalities bounding 𝑋𝑋� are already included in those in the definition of 

𝛤𝛤̃(𝑥𝑥). It is without loss of generality as the planner will never choose an 𝑥𝑥̃ ∈ 𝛤𝛤̃(𝑥𝑥) such that 

𝛤𝛤̃(𝑥𝑥)̃ = ∅.) Further define ℱ̃ : 𝑋𝑋� × 𝑋𝑋� → ℝ by: 

ℱ̃(𝑥𝑥, 𝑧𝑧) = 𝑢𝑢(0) + 𝑢𝑢(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� +

1
2 �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
𝑢𝑢(̃2) �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� , (11) 

for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋� , where 𝑢𝑢(0) ∈ ℝ , 𝑢𝑢(1) ∈ ℝ1×2𝑛𝑛  and 𝑢𝑢(̃2) = 𝑢𝑢(̃2)′ ∈ ℝ2𝑛𝑛×2𝑛𝑛  are given. 

Finally, suppose 𝑥𝑥0 ∈ 𝑋𝑋� is given and 𝛽𝛽 ∈ (0,1), and choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
(12) 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ̃(𝑥𝑥𝑡𝑡−1). 

To ensure the problem is well behaved, we make the following assumption: 

Assumption 8 𝑢𝑢(̃2) is negative-definite. 
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In Appendix L.5, below, we establish the following (unsurprising) result: 

Proposition 14 If either 𝑋𝑋� is compact, or, Γ̃(𝑥𝑥) is compact valued and 𝑥𝑥 ∈ Γ̃(𝑥𝑥) for all 

𝑥𝑥 ∈ 𝑋𝑋� , then for all 𝑥𝑥0 ∈ 𝑋𝑋� , there is a unique path (𝑥𝑥𝑡𝑡)𝑡𝑡=0
∞   which solves Problem 4 

(Linear-Quadratic). 

We wish to use this result to establish the uniqueness of the solution to the first 

order conditions. The Lagrangian for our problem is given by: 

� 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆Ψ,𝑡𝑡

′ �Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ��

⎦
⎥⎤

∞

𝑡𝑡=1
, (13) 

for some KKT-multipliers 𝜆𝜆𝑡𝑡 ∈ ℝ𝑐𝑐  for all 𝑡𝑡 ∈ ℕ+ . Taking the first order conditions 

leads to the following necessary KKT conditions, for all 𝑡𝑡 ∈ ℕ+: 

0 = 𝑢𝑢⋅,2
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1) + 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)� , (14) 

0 ≤ Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � , 0 ≤ 𝜆𝜆𝑡𝑡, 0 = 𝜆𝜆𝑡𝑡 ∘ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� , (15) 

where subscripts 1 and 2 refer to blocks of rows or columns of length 𝑛𝑛. Additionally, 

for 𝜇𝜇 to be the steady state of 𝑥𝑥𝑡𝑡 and 𝜆𝜆���� to be the steady state of 𝜆𝜆𝑡𝑡, we require:  
0 = 𝑢𝑢⋅,2

(1) + 𝜆𝜆���� ′Ψ⋅,2
(1) + 𝛽𝛽�𝑢𝑢⋅,1

(1) + 𝜆𝜆���� ′Ψ⋅,1
(1)�, (16) 

0 ≤ Ψ(0), 0 ≤ 𝜆𝜆���� , 0 = 𝜆𝜆���� ∘ Ψ(0). (17) 

In Appendix L.6, below, we prove the following result: 

Proposition 15 Suppose that for all 𝑡𝑡 ∈ ℕ , (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞   and (𝜆𝜆𝑡𝑡)𝑡𝑡=1

∞   satisfy the KKT 

conditions given in equations (14)  and (15) , and that as 𝑡𝑡 → ∞ , 𝑥𝑥𝑡𝑡 → 𝜇𝜇  and 𝜆𝜆𝑡𝑡 → 𝜆𝜆���� , 
where 𝜇𝜇  and 𝜆𝜆  satisfy the steady state KKT conditions given in equations (16)  and 

(17). Then (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  solves Problem 4 (Linear-Quadratic). If, further, either condition of 

Proposition 14 is satisfied, then (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  is the unique solution to Problem 4 (Linear-

Quadratic), and there can be no other solutions to the KKT conditions given in 

equations (14) and (15) satisfying 𝑥𝑥𝑡𝑡 → 𝜇𝜇 and 𝜆𝜆𝑡𝑡 → 𝜆𝜆���� as 𝑡𝑡 → ∞. 

Now, it is possible to convert the KKT conditions given in equations (14) and (15) into 

a problem in the form of the multiple-bound generalisation of Problem 2 (OBC) quite 

generally. To see this, first note that we may rewrite equation (14) as: 
0 = 𝑢𝑢⋅,2

(1)′
+ 𝑢𝑢2̃,1

(2)�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝑢𝑢2̃,2
(2)�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + Ψ⋅,2

(1)′
𝜆𝜆𝑡𝑡

+ 𝛽𝛽�𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,1
(2)�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝑢𝑢1̃,2

(2)�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + Ψ⋅,1
(1)′

𝜆𝜆𝑡𝑡+1�. 
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Now, 𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1,1

(2) is negative definite, hence we may define 𝒱𝒱 ≔ Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
, 

so: 
Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

= Ψ(0) + �Ψ⋅,1
(1) − 𝒱𝒱𝑢𝑢2̃,1

(2)��𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� − 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽�𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

−Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
𝜆𝜆𝑡𝑡.

(18) 

Moreover, equation (15)  implies that if the 𝑘𝑘 th element of Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �  is 

positive, then the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is zero, so: 
Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � = max{0, 𝑧𝑧𝑡𝑡} , (19) 

where: 
𝑧𝑧𝑡𝑡 ≔ Ψ(0) + �Ψ⋅,1

(1) − 𝒱𝒱𝑢𝑢2̃,1
(2)��𝑥𝑥𝑡𝑡−1 − 𝜇𝜇�

− 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽�𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

− �Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
+ 𝒲𝒲� 𝜆𝜆𝑡𝑡, 

and 𝒲𝒲 ∈ ℝ𝑐𝑐×𝑐𝑐 is an arbitrary, positive diagonal matrix. A natural choice is: 
𝒲𝒲 ≔ − diag−1 diag �Ψ⋅,2

(1)�𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1̃,1

(2)�
−1

Ψ⋅,2
(1)′

�, 

providing this is positive (it is nonnegative at least as 𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1̃,1

(2) is negative definite), 

where the diag  operator maps matrices to a vector containing their diagonal, and 

diag−1  maps vectors to a matrix with the given vector on the diagonal, and zeros 

elsewhere. 

We claim that we may replace equation (15) with equation (19) without changing 

the model. We have already shown that equation (15) implies equation (19), so we just 

have to prove the converse. We continue to suppose equation (14) holds, and thus, so 

too does equation (18). Then, from subtracting equation (18) from equation (19), we 

have that: 

𝒲𝒲𝜆𝜆𝑡𝑡 = max{−𝑧𝑧𝑡𝑡, 0}. 
Hence, as 𝒲𝒲  is a positive diagonal matrix, and the right-hand side is nonnegative, 𝜆𝜆𝑡𝑡 ≥
0. Furthermore, the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is non-negative if and only if the 𝑘𝑘th element of 

𝑧𝑧𝑡𝑡 is non-positive (as 𝒲𝒲  is a positive diagonal matrix), which in turn holds if and only 
if the 𝑘𝑘 th element of Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �  is equal to zero, by equation (19) . Thus 

equation (15) is satisfied.  
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Combined with our previous results, this gives the following proposition: 

Proposition 16 Suppose we are given a problem in the form of Problem 4 (Linear-

Quadratic). Then, the KKT conditions of that problem may be placed into the form of 
the multiple-bound generalisation of Problem 2 (OBC). Let �𝑞𝑞𝑥𝑥0

, 𝑀𝑀�  be the infinite 

LCP corresponding to this representation, given initial state 𝑥𝑥0 ∈ 𝑋𝑋� . Then, if 𝑦𝑦  is a 
solution to the LCP, 𝑞𝑞𝑥𝑥0

+ 𝑀𝑀𝑦𝑦 gives the stacked paths of the bounded variables in a 

solution to Problem 4 (Linear-Quadratic). If, further, either condition of Proposition 14 

is satisfied, then this LCP has a unique solution for all 𝑥𝑥0 ∈ 𝑋𝑋�, which gives the unique 

solution to Problem 4 (Linear-Quadratic), and, for sufficiently large 𝑇𝑇∗, the finite LCP 
�𝑞𝑞𝑥𝑥0

(𝑇𝑇∗), 𝑀𝑀(𝑇𝑇∗)� has a unique solution 𝑦𝑦(𝑇𝑇∗) for all 𝑥𝑥0 ∈ 𝑋𝑋�, where 𝑞𝑞𝑥𝑥0
(𝑇𝑇∗) + 𝑀𝑀(𝑇𝑇∗)𝑦𝑦(𝑇𝑇∗) gives 

the first 𝑇𝑇∗  periods of the stacked paths of the bounded variables in a solution to 

Problem 4 (Linear-Quadratic). 

This proposition provides some evidence that the LCP will have a unique solution 

when it is generated from a dynamic programming problem with a unique solution. 

In the next subsection, we derive similar results for models with more general 

constraints and objective functions. The proof of this proposition also showed an 

alternative method for converting KKT conditions into equations of the form handled 

by our methods. 

Appendix J.2: The general case 
Here we consider non-linear dynamic programming problems with general 

objective functions. Consider then the following generalisation of Problem 4 (Linear-

Quadratic): 

Problem 5 (Non-linear) Suppose Γ: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛) is a given compact, convex valued 

continuous function. Define 𝑋𝑋 ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ(𝑥𝑥) ≠ ∅�,  and suppose without loss of 

generality that for all 𝑥𝑥 ∈ ℝ𝑛𝑛, Γ(𝑥𝑥) ∩ 𝑋𝑋 = Γ(𝑥𝑥). Further suppose that ℱ: 𝑋𝑋 × 𝑋𝑋 → ℝ is 

a given twice continuously differentiable, concave function, and that 𝑥𝑥0 ∈ 𝑋𝑋 and 𝛽𝛽 ∈
(0,1) are given. 

Choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
, 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1). 
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For tractability, we make the following additional assumption, which enables us to 

uniformly approximate Γ by a finite number of inequalities: 

Assumption 9 𝑋𝑋 is compact. 

Then, by Theorem 4.8 of Stokey, Lucas, and Prescott (1989), there is a unique solution 

to Problem 5 (Non-linear) for any 𝑥𝑥0. We further assume the following to ensure that 

there is a natural point to approximate around:41 

Assumption 10 There exists 𝜇𝜇 ∈ 𝑋𝑋 such that for any given 𝑥𝑥0 ∈ 𝑋𝑋, in the solution to 

Problem 5 (Non-linear) with that 𝑥𝑥0, as 𝑡𝑡 → ∞, 𝑥𝑥𝑡𝑡 → 𝜇𝜇. 

Having defined 𝜇𝜇 , we can let ℱ̃   be a second order Taylor approximation to ℱ  

around 𝜇𝜇, which will take the form of equation (11). Assumption 8 will be satisfied for 

this approximation thanks to the concavity of ℱ . To apply the previous results, we also 

then need to approximate the constraints. 

Suppose first that the graph of Γ  is convex, i.e. the set {(𝑥𝑥, z)|𝑥𝑥 ∈ 𝑋𝑋, 𝑧𝑧 ∈ Γ(𝑥𝑥)}  is 

convex. Since it is also compact, by Assumption 9, for any 𝜖𝜖 > 0, there exists 𝑐𝑐 ∈ ℕ, 

Ψ(0) ∈ ℝ𝑐𝑐×1  and Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛  such that with Γ̃  defined as in equation (9)  and 𝑋𝑋� 

defined as in equation (10): 

1) 𝜇𝜇 ∈ 𝑋𝑋� ⊆ 𝑋𝑋, 

2) for all 𝑥𝑥 ∈ 𝑋𝑋, there exists 𝑥𝑥̃ ∈ 𝑋𝑋� such that ‖𝑥𝑥 − 𝑥𝑥‖̃2 < 𝜖𝜖, 

3) for all 𝑥𝑥 ∈ 𝑋𝑋�, Γ̃(𝑥𝑥) ⊆ Γ(𝑥𝑥), 

4) for all 𝑥𝑥 ∈ 𝑋𝑋�, and for all 𝑧𝑧 ∈ Γ(𝑥𝑥), there exists 𝑧𝑧̃ ∈ Γ̃(𝑥𝑥) such that ‖𝑧𝑧 − 𝑧𝑧‖̃2 < 𝜖𝜖. 

(This follows from standard properties of convex sets.) Then, by our previous results, 

the following proposition is immediate: 

 
41 If 𝑋𝑋 is convex, then the existence of a fixed point of the policy function is a consequence of Brouwer’s Fixed Point 
Theorem, but there is no reason the fixed point guaranteed by Brouwer’s Theorem should be even locally attractive. 
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Proposition 17 Suppose we are given a problem in the form of Problem 5 (Non-linear) 

(and which satisfies Assumption 9 and Assumption 10). If the graph of Γ is convex, 

then we can construct a problem in the form of the multiple-bound generalisation of 

Problem 2 (OBC) which encodes a local approximation to the original dynamic 

programming problem around 𝑥𝑥𝑡𝑡 = 𝜇𝜇 . Furthermore, the LCP corresponding to this 

approximation will have a unique solution for all 𝑥𝑥0 ∈ 𝑋𝑋� . Moreover, the 

approximation is consistent for quadratic objectives in the sense that as the number of 

inequalities used to approximate Γ  goes to infinity, the approximate value function 

converges uniformly to the true value function. 

Unfortunately, if the graph of Γ is non-convex, then we will not be able to derive 

similar results. To see the best we could do along similar proof lines, here we merely 

sketch the construction of an approximation to the graph of Γ in this case. We will 

need to assume that there exists 𝑧𝑧 ∈ int Γ(𝑥𝑥)  for all 𝑥𝑥 ∈ 𝑋𝑋 , which precludes the 

existence of equality constraints.42 We first approximate the graph of Γ by a polytope 

(i.e. 𝑛𝑛  dimensional polygon) contained in the graph of Γ  such that all points in the 
graph of Γ  are within 𝜖𝜖

2  of a point in the polytope. Then, providing 𝜖𝜖  is sufficiently 

small, for each simplicial surface element of the polytope, indexed by 𝑘𝑘 ∈ {1, … , 𝑐𝑐}, we 

can find a quadratic function 𝑞𝑞𝑘𝑘: 𝑋𝑋 × 𝑋𝑋 → ℝ with: 

𝑞𝑞𝑘𝑘 = Ψ𝑘𝑘
(0) + Ψ𝑘𝑘,⋅

(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� + �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
Ψ𝑘𝑘

(2) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� 

for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋 and such that 𝑞𝑞𝑘𝑘 is zero at the corners of the simplicial surface element, 
such that 𝑞𝑞𝑘𝑘 is nonpositive on its surface, such that Ψ𝑘𝑘

(2) is symmetric positive definite, 
and such that all points in the polytope are within 𝜖𝜖2 of a point in the set: 

�(𝑥𝑥, 𝑧𝑧) ∈ 𝑋𝑋 × 𝑋𝑋�∀𝑘𝑘 ∈ {1, … , 𝑆𝑆}, 0 ≤ 𝑞𝑞𝑘𝑘(𝑥𝑥, 𝑧𝑧)�. 
This gives a set of quadratic constraints that approximate Γ. If we then define: 

𝑢𝑢(̃2) ≔ 𝑢𝑢(2) + � 𝜆𝜆����Ψ,𝑘𝑘
′ Ψ𝑘𝑘

(2)
𝑐𝑐

𝑘𝑘=1
, 

where 𝑢𝑢(2) is the Hessian of ℱ , then the Lagrangian in equation (13) is the same as 

what would be obtained from taking a second order Taylor approximation to the 

Lagrangian of the problem of maximising our non-linear objective subject to the 

approximate quadratic constraints, suggesting it may perform acceptably well for 𝑥𝑥 

near 𝜇𝜇, along similar lines to the results of Levine, Pearlman, and Pierse (2008) and 

Benigno & Woodford (2012). However, existence of a unique solution to the original 
 

42 This is often not too much of a restriction, since equality constraints may be substituted out. 
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problem cannot be used to establish even the existence of a solution of the 

approximated problem, since only linear approximations to the quadratic constraints 

would be imposed by our algorithm, giving a reduced choice set (as the quadratic 

terms are positive definite). 
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: Price level targeting example calculations 

To recap, the model with “news” shocks is: 

𝑟𝑟 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1� + 𝜒𝜒𝑝𝑝𝑡𝑡 + 𝜈𝜈𝑡𝑡, 
with 𝜒𝜒 > 0 and 𝜙𝜙 > 1, so: 

𝑝𝑝𝑡𝑡+1 = �1 + 𝜙𝜙 + 𝜒𝜒�𝑝𝑝𝑡𝑡 − 𝜙𝜙𝑝𝑝𝑡𝑡−1 + 𝜈𝜈𝑡𝑡. 
We fix 𝑝𝑝0 = 0. 

We look for a solution in the form 𝑝𝑝𝑡𝑡 = ∑ 𝐺𝐺𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗
∞
𝑗𝑗=−∞  , where 𝜈𝜈𝑡𝑡 = 0  for all 𝑡𝑡 ≤ 0 . 

Substituting in, we have: 

� 𝐺𝐺𝑗𝑗−1𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=−∞
= �1 + 𝜙𝜙 + 𝜒𝜒� � 𝐺𝐺𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=−∞
− 𝜙𝜙 � 𝐺𝐺𝑗𝑗+1𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=−∞
+ 𝜈𝜈𝑡𝑡, 

so from matching coefficients, we have: 

𝐺𝐺−1 = �1 + 𝜙𝜙 + 𝜒𝜒�𝐺𝐺0 − 𝜙𝜙𝐺𝐺1 + 1, 
∀𝑗𝑗 ≠ 0, 𝐺𝐺𝑗𝑗−1 = �1 + 𝜙𝜙 + 𝜒𝜒�𝐺𝐺𝑗𝑗 − 𝜙𝜙𝐺𝐺𝑗𝑗+1. 

We conjecture that 𝐺𝐺𝑗𝑗 = 𝐺𝐺0𝜁𝜁 𝑗𝑗 for 𝑗𝑗 ≥ 0 and 𝐺𝐺𝑗𝑗 = 𝐺𝐺0𝜂𝜂−𝑗𝑗 for 𝑗𝑗 ≤ 0, for some 𝐺𝐺0 ∈ ℝ 

and 𝜁𝜁 , 𝜂𝜂 ∈ (−1,1). Then: 

𝜂𝜂 = �1 + 𝜙𝜙 + 𝜒𝜒� − 𝜙𝜙𝜁𝜁 +
1

𝐺𝐺0
, 

1 = �1 + 𝜙𝜙 + 𝜒𝜒�𝜁𝜁 − 𝜙𝜙𝜁𝜁 2, 
𝜂𝜂2 = �1 + 𝜙𝜙 + 𝜒𝜒�𝜂𝜂 − 𝜙𝜙. 

Thus: 

𝜂𝜂 =
1 + 𝜙𝜙 + 𝜒𝜒 − ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2 = 1 −
𝜒𝜒

𝜙𝜙 − 1 + Ο�𝜒𝜒2�, 

𝜁𝜁 =
𝜂𝜂
𝜙𝜙 =

1 + 𝜙𝜙 + 𝜒𝜒 − ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙
2𝜙𝜙 =

1
𝜙𝜙 �1 −

𝜒𝜒
𝜙𝜙 − 1� + Ο�𝜒𝜒2�, 

𝐺𝐺0 = −
1

��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙
= −

1
𝜙𝜙 − 1 +

𝜙𝜙 + 1
�𝜙𝜙 − 1�3 𝜒𝜒 + Ο�𝜒𝜒2�, 

where, here and in the following, the Ο�𝜒𝜒2� terms are taken as 𝜒𝜒 → 0. Note that: 

�1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙 = �𝜙𝜙 − 1�2 + 2𝜒𝜒�1 + 𝜙𝜙� + 𝜒𝜒2 > 0 

providing that 𝜒𝜒 ≥ 0, so this solution is real as required. 
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Additionally: 

𝜂𝜂 =
1 + 𝜙𝜙 + 𝜒𝜒 − ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2 >
1 + 𝜙𝜙 + 𝜒𝜒 − ��1 + 𝜙𝜙 + 𝜒𝜒�2

2 = 0, 

and for 𝜒𝜒 > 0: 

𝜂𝜂 =
1 + 𝜙𝜙 + 𝜒𝜒 − ��𝜙𝜙 − 1�2 + 2𝜒𝜒�1 + 𝜙𝜙� + 𝜒𝜒2

2  

<
1 + 𝜙𝜙 + 𝜒𝜒 − ��𝜙𝜙 − 1�2 + 2𝜒𝜒�𝜙𝜙 − 1� + 𝜒𝜒2

2 =
1 + 𝜙𝜙 + 𝜒𝜒 − ��𝜙𝜙 − 1 + 𝜒𝜒�2

2 = 1, 

again as required. 

Substituting back in, we have: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 

= 𝑟𝑟 + 𝐺𝐺0
⎣
⎢⎡ � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+1+𝑗𝑗

−1

𝑗𝑗=−∞
+ � 𝜁𝜁 𝑗𝑗𝜈𝜈𝑡𝑡+1+𝑗𝑗

∞

𝑗𝑗=0
− � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞
− � 𝜁𝜁 𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1 ⎦
⎥⎤ 

= 𝑟𝑟 + 𝐺𝐺0
⎣
⎢⎡ � 𝜂𝜂−𝑗𝑗+1𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞
+ � 𝜁𝜁 𝑗𝑗−1𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
− � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞
− � 𝜁𝜁 𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1 ⎦
⎥⎤ 

= 𝑟𝑟 + 𝐺𝐺0
⎣
⎢⎡(1 − 𝜁𝜁) � 𝜁𝜁 𝑗𝑗−1𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
− �1 − 𝜂𝜂� � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞ ⎦
⎥⎤ 

= 𝑟𝑟 − �
𝜈𝜈𝑡𝑡+𝑗𝑗

𝜙𝜙𝑗𝑗

∞

𝑗𝑗=1
+ 𝐺𝐺0

⎣
⎢⎡�

⎝
⎜⎜⎛(1 − 𝜁𝜁)𝜁𝜁 𝑗𝑗−1 +

1
𝐺𝐺0𝜙𝜙𝑗𝑗

⎠
⎟⎟⎞ 𝜈𝜈𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
− �1 − 𝜂𝜂� � 𝜂𝜂−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞ ⎦
⎥⎤ 

= 𝑟𝑟 − �
𝜈𝜈𝑡𝑡+𝑗𝑗

𝜙𝜙𝑗𝑗

∞

𝑗𝑗=1
+

⎣
⎢⎡

1
�𝜙𝜙 − 1�2 ⎝

⎜⎛ � 𝜈𝜈𝑡𝑡+𝑗𝑗

0

𝑗𝑗=−∞
+ �

𝜈𝜈𝑡𝑡+𝑗𝑗

𝜙𝜙𝑗𝑗−1

∞

𝑗𝑗=1 ⎠
⎟⎞ +

1
𝜙𝜙 − 1 �

�𝑗𝑗 − 1�𝜈𝜈𝑡𝑡+𝑗𝑗

𝜙𝜙𝑗𝑗

∞

𝑗𝑗=1 ⎦
⎥⎤ 𝜒𝜒 + Ο�𝜒𝜒2�. 

Since the partial derivative of the term in square brackets here with respect to 𝜈𝜈𝑠𝑠 

is strictly positive for all 𝑠𝑠 ∈ ℕ+, at least for small 𝜒𝜒, all of the elements of 𝑀𝑀 must be 

strictly monotonically increasing in 𝜒𝜒. In particular, at least for small 𝜒𝜒, the elements 

of 𝑀𝑀 with 𝜒𝜒 > 0 are strictly greater than the elements of 𝑀𝑀 with 𝜒𝜒 = 0. 

In fact, this holds for all 𝜒𝜒 . Given that 𝐺𝐺0 < 0  and 𝜂𝜂 < 1 , from examining the 

square bracketed term of the penultimate equation above, we just need that 
(1 − 𝜁𝜁)𝜁𝜁 𝑗𝑗−1 + 1

𝐺𝐺0𝜙𝜙𝑗𝑗 < 0 for 𝑗𝑗 ≥ 1. With 𝑗𝑗 = 1 this holds as: 

(1 − 𝜁𝜁)𝜁𝜁 1−1 +
1

𝐺𝐺0𝜙𝜙1 =
2𝜙𝜙 − 1 − 𝜙𝜙 − 𝜒𝜒 + ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2𝜙𝜙 −
2��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2𝜙𝜙  

=
−𝜒𝜒 + �𝜙𝜙 − 1� − ��1 + 𝜙𝜙 + 𝜒𝜒�2 − 4𝜙𝜙

2𝜙𝜙  

=
−𝜒𝜒 + �𝜙𝜙 − 1� − ��𝜙𝜙 − 1�2 + 2𝜒𝜒�1 + 𝜙𝜙� + 𝜒𝜒2

2𝜙𝜙 < 0. 
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So, using the fact that 𝜁𝜁 = 𝜂𝜂
𝜙𝜙 < 𝜂𝜂 < 1: 

0 < 1 − 𝜁𝜁 < −
1

𝐺𝐺0𝜙𝜙. 

Thus as 0 < 𝜂𝜂
𝜙𝜙 = 𝜁𝜁 = 𝜂𝜂

𝜙𝜙 < 1
𝜙𝜙, in fact for all 𝑗𝑗 ≥ 1: 

(1 − 𝜁𝜁)𝜁𝜁 𝑗𝑗−1 < −
1

𝐺𝐺0𝜙𝜙𝑗𝑗, 

as required. Thus, for all 𝜒𝜒 > 0, the elements of 𝑀𝑀 with 𝜒𝜒 > 0 are strictly greater than 

the elements of 𝑀𝑀 with 𝜒𝜒 = 0. Although our proof in the text is “for sufficiently small 

𝜒𝜒”, this is at least suggestive that 𝑀𝑀 will still be a P-matrix even for large 𝜒𝜒. 
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: Further proofs 

Appendix L.1: Proof of Proposition 2 
We first establish the following Lemma: 

Lemma 4 The (time-reversed) difference equation 𝐴𝐴𝑑𝑑�̂�𝑘+1 + 𝐵𝐵𝑑𝑑�̂�𝑘 + 𝐶𝐶𝑑𝑑�̂�𝑘−1 = 0 for all 𝑘𝑘 ∈
ℕ+ has a unique solution satisfying the terminal condition 𝑑𝑑�̂�𝑘 → 0 as 𝑘𝑘 → ∞, given by 

𝑑𝑑�̂�𝑘 = 𝐻𝐻𝑑𝑑�̂�𝑘−1, for all 𝑘𝑘 ∈ ℕ+, for some 𝐻𝐻 with eigenvalues in the unit circle. 

First, define 𝐺𝐺 ≔ −𝐶𝐶(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1, and note that if 𝐿𝐿 is the lag (right-shift) operator, 

the model from Problem 1 (Linear) can be written as: 

𝐿𝐿−1(𝐴𝐴𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐿𝐿 + 𝐶𝐶)�𝑥𝑥 − 𝜇𝜇� = 0. 
Furthermore, by the definitions of 𝐹𝐹 and 𝐺𝐺: 

(𝐿𝐿 − 𝐺𝐺)(𝐵𝐵 + 𝐶𝐶𝐹𝐹)(𝐼𝐼 − 𝐹𝐹𝐿𝐿) = 𝐴𝐴𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐿𝐿 + 𝐶𝐶, 
so, the stability of the model from Problem 1 (Linear) is determined by the solutions 

for 𝑧𝑧 ∈ ℂ of the polynomial: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶� = det(𝐼𝐼𝑧𝑧 − 𝐺𝐺) det(𝐵𝐵 + 𝐶𝐶𝐹𝐹) det(𝐼𝐼 − 𝐹𝐹𝑧𝑧). 
Now by Assumption 1, all of the roots of det(𝐼𝐼 − 𝐹𝐹𝑧𝑧) are strictly outside of the unit 

circle, and all of the other roots of det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶� are weakly inside the unit circle 

(else there would be indeterminacy), thus, all of the roots of det(𝐼𝐼𝑧𝑧 − 𝐺𝐺) are weakly 

inside the unit circle. Therefore, if we write 𝜌𝜌ℳ  for the spectral radius of some matrix 

ℳ , then, by this discussion and Assumption 2, 𝜌𝜌𝐺𝐺 < 1. 

Now consider the time reversed model: 

𝐿𝐿�𝐴𝐴𝐿𝐿−1𝐿𝐿−1 + 𝐵𝐵𝐿𝐿−1 + 𝐶𝐶�𝑑𝑑 = 0, 
subject to the terminal condition that 𝑑𝑑𝑘𝑘 → 0  as 𝑘𝑘 → ∞ . Now, let 𝑧𝑧 ∈ ℂ , 𝑧𝑧 ≠ 0  be a 

solution to: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶�, 
and define 𝑧𝑧̃ = 𝑧𝑧−1, so: 

0 = det�𝐴𝐴 + 𝐵𝐵𝑧𝑧̃ + 𝐶𝐶𝑧𝑧2̃� = 𝑧𝑧−2 det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶�
= det(𝐼𝐼 − 𝐺𝐺𝑧𝑧)̃ det(𝐵𝐵 + 𝐶𝐶𝐹𝐹) det(𝐼𝐼𝑧𝑧̃ − 𝐹𝐹). 

By Assumption 1, all the roots of det(𝐼𝐼𝑧𝑧̃ − 𝐹𝐹) are inside the unit circle, thus they cannot 

contribute to the dynamics of the time reversed process, else the terminal condition 

would be violated. Thus, the time reversed model has a unique solution satisfying the 

terminal condition with a transition matrix with the same eigenvalues as 𝐺𝐺 . 

Consequently, this solution can be calculated via standard methods for solving linear 



Online Appendix: Page 54 of 70 

DSGE models, and it will be given by 𝑑𝑑𝑘𝑘 = 𝐻𝐻𝑑𝑑𝑘𝑘−1 , for all 𝑘𝑘 > 0 , where 𝐻𝐻 =
−(𝐵𝐵 + 𝐴𝐴𝐻𝐻)−1𝐶𝐶 , and 𝜙𝜙𝐻𝐻 = 𝜙𝜙𝐺𝐺 < 1 , by Assumption 2. This completes the proof of 

Lemma 4. 

Now let 𝑠𝑠𝑡𝑡
∗, 𝑥𝑥𝑡𝑡

∗ ∈ ℝ𝑛𝑛×ℕ+ be such that for any 𝑦𝑦 ∈ ℝℕ+, the 𝑘𝑘th columns of 𝑠𝑠𝑡𝑡
∗𝑦𝑦 and 

𝑥𝑥𝑡𝑡
∗𝑦𝑦 give the value of 𝑠𝑠𝑡𝑡 and 𝑥𝑥𝑡𝑡 following a magnitude 1 news shock at horizon 𝑘𝑘, i.e. 

when 𝑥𝑥0 = 𝜇𝜇 and 𝑦𝑦0 is the 𝑘𝑘th row of 𝐼𝐼ℕ+×ℕ+. Then: 
𝑠𝑠𝑡𝑡

∗ = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ + 𝐺𝐺𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+1,1:∞ + 𝐺𝐺2𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+2,1:∞ + ⋯ � 

= −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1 �(𝐺𝐺𝐿𝐿)𝑘𝑘
∞

𝑘𝑘=0
𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ 

= −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1(𝐼𝐼 − 𝐺𝐺𝐿𝐿)−1𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞, 
where the infinite sums are well defined as 𝜌𝜌𝐺𝐺 < 1, and where 𝐼𝐼𝑡𝑡,1:∞ ∈ ℝ1×ℕ+ is a row 

vector with zeros everywhere except position 𝑡𝑡 where there is a 1. Thus: 

𝑠𝑠𝑡𝑡
∗ = �0𝑛𝑛×(𝑡𝑡−1) 𝑠𝑠1

∗� = 𝐿𝐿𝑡𝑡−1𝑠𝑠1
∗. 

Furthermore,  

�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗� = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠𝑘𝑘

∗
𝑡𝑡

𝑗𝑗=1
= � 𝐹𝐹𝑡𝑡−𝑗𝑗𝐿𝐿𝑗𝑗−1𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
, 

i.e.: 

�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗�⋅,𝑘𝑘 = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠1,⋅,𝑘𝑘+1−𝑗𝑗

∗
𝑡𝑡

𝑗𝑗=1
= − � 𝐹𝐹𝑡𝑡−𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐺𝐺𝑘𝑘−𝑗𝑗𝐼𝐼⋅,1

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
, 

and so, the 𝑘𝑘th offset diagonal of 𝑀𝑀 (𝑘𝑘 ∈ ℤ) is given by the first row of the 𝑘𝑘th column 

of: 

𝐿𝐿−𝑡𝑡�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗� = 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑡𝑡−𝑗𝑗𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
= 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
, 

where we abuse notation slightly by allowing 𝐿𝐿−1 to give a result with indices in ℤ 
rather than ℕ+, with padding by zeros. Consequently, for all 𝑘𝑘 ∈ ℕ+, 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛𝜌𝜌𝐹𝐹

𝑡𝑡 �, 

as 𝑡𝑡 → ∞ , for all 𝑡𝑡 ∈ ℕ+ , 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑘𝑘𝑛𝑛𝜌𝜌𝐺𝐺
𝑘𝑘 � , as 𝑘𝑘 → ∞ , and for all 𝑘𝑘 ∈ ℤ , 𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 −

lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛−1�𝜌𝜌𝐹𝐹𝜌𝜌𝐺𝐺�𝑡𝑡�, as 𝑡𝑡 → ∞. 
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Hence, 
sup

𝑦𝑦∈[0,1]ℕ+
inf

𝑡𝑡∈ℕ+
𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 

exists and is well defined. We need to provide conditions under which 
sup

𝑦𝑦∈[0,1]ℕ+
inf

𝑡𝑡∈ℕ+
𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 > 0.43 

To produce such conditions, we need constructive bounds on 𝑀𝑀, even if they have 

slightly worse convergence rates. For any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 𝜙𝜙 ∈
�𝜌𝜌ℳ , 1�, let: 

𝒞𝒞ℳ ,𝜙𝜙 ≔ sup
𝑘𝑘∈ℕ

��ℳ𝜙𝜙−1�𝑘𝑘�2. 

Furthermore, for any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 𝜖𝜖 > 0, let: 
𝜌𝜌ℳ ,𝜖𝜖 ≔ max�|𝑧𝑧|�𝑧𝑧 ∈ ℂ, 𝜎𝜎min�ℳ − 𝑧𝑧𝐼𝐼� = 𝜖𝜖�, 

where 𝜎𝜎min�ℳ − 𝑧𝑧𝐼𝐼� is the minimum singular value of ℳ − 𝑧𝑧𝐼𝐼, and let 𝜖𝜖∗�ℳ� ∈ (0, ∞] 

solve: 
𝜌𝜌ℳ ,𝜖𝜖∗�ℳ� = 1. 

(This has a solution in (0, ∞]  by continuity as 𝜌𝜌ℳ < 1 .) Then, by Theorem 16.2 of 

Trefethen and Embree (2005), for any 𝐾𝐾 ∈ ℕ and 𝑘𝑘 > 𝐾𝐾: 

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≤ ��ℳ𝜙𝜙−1�𝐾𝐾�2��ℳ𝜙𝜙−1�𝑘𝑘−𝐾𝐾�2 ≤
��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

Now, ��ℳ𝜙𝜙−1�𝐾𝐾�2 → 0 as 𝐾𝐾 → ∞, hence, there exists some 𝐾𝐾 ∈ ℕ such that: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥
��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

≥ sup
𝑘𝑘>𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2, 

meaning 𝒞𝒞ℳ ,𝜙𝜙 = sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 . The quantity 𝜌𝜌ℳ ,𝜖𝜖  (and hence 𝜖𝜖∗�ℳ� ) may be 

efficiently computed using the methods described by Wright and Trefethen (2001), and 
implemented in their EigTool toolkit44. Thus, given ℳ  and 𝜙𝜙, 𝒞𝒞ℳ ,𝜙𝜙 may be calculated 

in finitely many operations by iterating over 𝐾𝐾 ∈ ℕ until a 𝐾𝐾 is found which satisfies: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥
��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

From the definition of 𝒞𝒞ℳ ,𝜙𝜙, we have that for any 𝑘𝑘 ∈ ℕ and any 𝜙𝜙 ∈ �𝜌𝜌ℳ , 1�: 

�ℳ𝑘𝑘�2 ≤ 𝒞𝒞ℳ ,𝜙𝜙𝜙𝜙𝑘𝑘. 

 
43 We might ideally have liked a lower bound on sup

𝑦𝑦∈ℓ1∩[0,1]ℕ+
inf

𝑡𝑡∈ℕ+
𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 since by the Moore-Osgood theorem, these 

would imply a lower bound on lim
𝑇𝑇→∞

max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡∈{1,…,𝑇𝑇}

𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦  and thus imply that 𝑀𝑀  was an S-matrix for all 

sufficiently large 𝑇𝑇. However, we have not managed to obtain a non-trivial lower bound on sup
𝑦𝑦∈ℓ1∩[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦. 

44 This toolkit is available from https://github.com/eigtool/eigtool, and is included in DynareOBC.  
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Now, fix 𝜙𝜙𝐹𝐹 ∈ �𝜌𝜌𝐹𝐹, 1� and 𝜙𝜙𝐺𝐺 ∈ �𝜌𝜌𝐺𝐺, 1�,45 and define: 
𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

≔ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝒞𝒞𝐺𝐺,𝜙𝜙𝐹𝐹

�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2, 

then, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘� = ��𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗�1,𝑘𝑘� ≤ ��𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗�⋅,𝑘𝑘�2 ≤ � �𝐹𝐹𝑡𝑡−𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2�𝐺𝐺𝑘𝑘−𝑗𝑗�2

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑡𝑡−𝑗𝑗𝜙𝜙𝐺𝐺
𝑘𝑘−𝑗𝑗

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘 �𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺�− min{𝑡𝑡,𝑘𝑘} − 1
1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

. 

Additionally, for all 𝑡𝑡 ∈ ℕ+, 𝑘𝑘 ∈ ℤ: 
�𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘� = ��𝐿𝐿−𝑡𝑡�𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗��
1,𝑘𝑘

− � lim𝜏𝜏→∞ 𝐿𝐿−𝑡𝑡�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗��

1,𝑘𝑘
� 

≤
�
�
�
�

⎝
⎜⎛𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
− 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
∞

𝑗𝑗=0 ⎠
⎟⎞

⋅,𝑘𝑘�
�
�
�

2

 

=
�
��
�
�

⎝
⎜⎛ � 𝐹𝐹𝑗𝑗𝑠𝑠1,⋅,𝑗𝑗+𝑘𝑘+1

∗
∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} ⎠
⎟⎞

⋅,0�
��
�
�

2

 

=
�
��
�

� 𝐹𝐹𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐺𝐺𝑗𝑗+𝑘𝑘𝐼𝐼⋅,1

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} �
��
�

2

 

≤ � �𝐹𝐹𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2�𝐺𝐺𝑗𝑗+𝑘𝑘�2

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑗𝑗 𝜙𝜙𝐺𝐺
𝑗𝑗+𝑘𝑘

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
max{𝑡𝑡,−𝑘𝑘}𝜙𝜙𝐺𝐺

max{0,𝑡𝑡+𝑘𝑘}

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, 

so, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡� ≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. 

To evaluate lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡, note that this limit is the top element from the (𝑘𝑘 − 𝑡𝑡)th 

column of: 
𝑑𝑑 ≔ lim𝜏𝜏→∞ 𝐿𝐿−𝜏𝜏�𝑥𝑥𝜏𝜏

∗ − 𝜇𝜇∗� = 𝐿𝐿−1�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1𝑠𝑠1
∗ 

= −�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1(𝐼𝐼 − 𝐺𝐺𝐿𝐿)−1𝐼𝐼⋅,1𝐼𝐼0,−∞:∞, 
where 𝐼𝐼0,−∞:∞ ∈ ℝ1×ℤ  is zero everywhere apart from index 0  where it equals 1 . 

Hence, by the definitions of 𝐹𝐹 and 𝐺𝐺: 
𝐴𝐴𝐿𝐿−1𝑑𝑑 + 𝐵𝐵𝑑𝑑 + 𝐶𝐶𝐿𝐿𝑑𝑑 = −𝐼𝐼⋅,1𝐼𝐼0,−∞:∞. 

In other words, if we write 𝑑𝑑𝑘𝑘 in place of 𝑑𝑑⋅,𝑘𝑘 for convenience, then, for all 𝑘𝑘 ∈ ℤ: 

𝐴𝐴𝑑𝑑𝑘𝑘+1 + 𝐵𝐵𝑑𝑑𝑘𝑘 + 𝐶𝐶𝑑𝑑𝑘𝑘−1 = − �𝐼𝐼⋅,1 if 𝑘𝑘 = 0
0 otherwise

 

 
45 In practice, we try a grid of values, as it is problem dependent whether high 𝜙𝜙𝐹𝐹 and low 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

 is preferable to low 
𝜙𝜙𝐹𝐹 and high 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

. 
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I.e. the homogeneous part of the difference equation for 𝑑𝑑−𝑡𝑡 is identical to that of 𝑥𝑥𝑡𝑡 −
𝜇𝜇. The time reversal here is intuitive since we are indexing diagonals such that indices 

increase as we move up and to the right in 𝑀𝑀, but time is increasing as we move down 

in 𝑀𝑀. 

Exploiting the possibility of reversing time is the key to easy evaluating 𝑑𝑑𝑘𝑘. First, 

note that for 𝑘𝑘 < 0, it must be the case that 𝑑𝑑𝑘𝑘 = 𝐹𝐹𝑑𝑑𝑘𝑘+1, since the shock has already 

“occurred” (remember, that we are going forwards in “time” when we reduce 𝑘𝑘 ). 

Likewise, since 𝑑𝑑𝑘𝑘 → 0 as 𝑘𝑘 → ∞, as we have already proved that the first row of 𝑀𝑀 

converges to zero, by Lemma 4,  

it must be the case that 𝑑𝑑𝑘𝑘 = 𝐻𝐻𝑑𝑑𝑘𝑘−1, for all 𝑘𝑘 > 0, where 𝐻𝐻 = −(𝐵𝐵 + 𝐴𝐴𝐻𝐻)−1𝐶𝐶, and 𝜙𝜙𝐻𝐻 <
1. 

It just remains to determine the value of 𝑑𝑑0 . By the previous results, this must 

satisfy: 
−𝐼𝐼⋅,1 = 𝐴𝐴𝑑𝑑1 + 𝐵𝐵𝑑𝑑0 + 𝐶𝐶𝑑𝑑−1 = (𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)𝑑𝑑0. 

Hence: 
𝑑𝑑0 = −(𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐼𝐼⋅,1. 

This gives a readily computed solution for the limits of the diagonals of 𝑀𝑀. Lastly, note 

that: 
�𝑑𝑑−𝑡𝑡,1� ≤ ‖𝑑𝑑−𝑡𝑡‖2 = �𝐹𝐹𝑡𝑡𝑑𝑑0�2 ≤ �𝐹𝐹𝑡𝑡�2�𝑑𝑑0�2 ≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡 �𝑑𝑑0�2, 

and: 
�𝑑𝑑𝑡𝑡,1� ≤ ‖𝑑𝑑𝑡𝑡‖2 = �𝐻𝐻𝑡𝑡𝑑𝑑0�2 ≤ �𝐻𝐻𝑡𝑡�2�𝑑𝑑0�2 ≤ 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻

𝜙𝜙𝐻𝐻
𝑡𝑡 �𝑑𝑑0�2. 

We will use these results in producing our bounds on 𝜍𝜍. 
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First, fix 𝑇𝑇 ∈ ℕ+, and define a new matrix 𝑀𝑀(𝑇𝑇) ∈ ℝℕ+×ℕ+ by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇
(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇, 

and for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇, 𝑀𝑀𝑡𝑡,𝑘𝑘
(𝑇𝑇) = 𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, then: 

𝜍𝜍 ≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞ �
𝑦𝑦

𝑦𝑦∞1∞×1
� ≥ max

𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞
(𝑇𝑇) �

𝑦𝑦
𝑦𝑦∞1∞×1

� 

= max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
⎨
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
� ,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>𝑇𝑇

�� �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
�

⎭�
��
⎬
��
�⎫

 

≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
��
⎨
��
��
��
��
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢
⎢
⎢
⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞ ⎦
⎥
⎥
⎥
⎥
⎤

,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>2𝑇𝑇

⎣
⎢⎢
⎢⎢
⎡ � 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺�⎦
⎥⎥
⎥⎥
⎤

⎭�
��
��
��
��
��
⎬
��
��
��
��
��
�⎫

. 

Now, for 𝑡𝑡 ≥ 𝑇𝑇: 
��(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1� ≤ �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2 ≤ �(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2

≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2, 

so: 

� 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
− �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1𝑦𝑦∞

≥ − � 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑘𝑘�𝑑𝑑0�2

𝑇𝑇

𝑘𝑘=1
− 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡−𝑇𝑇�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2𝑦𝑦∞

= −𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡 �𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

�𝑑𝑑0�2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2𝑦𝑦∞. 

Thus 𝜍𝜍 ≥ 𝜍𝜍𝑇𝑇, where: 

𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
��
⎨
��
��
��
��
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢
⎢
⎢
⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞ ⎦
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢⎢
⎢⎢
⎡−𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
2𝑇𝑇+1�𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

�𝑑𝑑0�2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑇𝑇+1�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2𝑦𝑦∞ + �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� ⎦
⎥⎥
⎥⎥
⎤

⎭�
��
��
��
��
��
⎬
��
��
��
��
��
�⎫

. 
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The final minimand in this expression is less than (but converges to): 

�(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞ + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞, 
i.e. a weakly positive multiple of the doubly infinite sum of 𝑑𝑑1,𝑘𝑘 over all 𝑘𝑘 ∈ ℤ. If this 

expression is negative, then the optimum will have 𝑦𝑦∞ = 0 giving (uninformatively) 
𝜍𝜍𝑇𝑇 ≤ 0. 

To construct an upper bound on 𝜍𝜍, fix 𝑇𝑇 ∈ ℕ+, and define a new matrix 𝑀𝑀(𝑇𝑇) ∈
ℝℕ+×ℕ+  by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇

(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 , and for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+ , with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇 , 𝑀𝑀𝑡𝑡,𝑘𝑘
(𝑇𝑇) =

�𝑑𝑑𝑘𝑘−𝑡𝑡,1� + 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. Then: 

𝜍𝜍 = sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 ≤ sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞
(𝑇𝑇) 𝑦𝑦 ≤ sup

𝑦𝑦∈[0,1]ℕ+
min

𝑡𝑡=1,…,𝑇𝑇
𝑀𝑀𝑡𝑡,1:∞

(𝑇𝑇) 𝑦𝑦 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

𝑀𝑀𝑡𝑡,1:∞
(𝑇𝑇) �

𝑦𝑦
1∞×1

� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1�
∞

𝑘𝑘=𝑇𝑇+1
+ � 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

∞

𝑘𝑘=𝑇𝑇+1
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + � �𝑑𝑑𝑘𝑘,1�
∞

𝑘𝑘=𝑇𝑇+1−𝑡𝑡
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐺𝐺

𝑘𝑘
∞

𝑘𝑘=0
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻
�𝑑𝑑0�2𝜙𝜙𝐻𝐻

𝑇𝑇+1−𝑡𝑡 � 𝜙𝜙𝐻𝐻
𝑘𝑘

∞

𝑘𝑘=0
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺�� 

= 𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇 ⎣

⎢⎡𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 +
𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻

�𝑑𝑑0�2𝜙𝜙𝐻𝐻
𝑇𝑇+1−𝑡𝑡

1 − 𝜙𝜙𝐻𝐻
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺�⎦
⎥⎤. 

Note that if 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 is an S-matrix, 𝜍𝜍𝑇𝑇 > 0. 

Appendix L.2: Proof of Proposition 3 
Consider the model: 

𝒶𝒶𝑡𝑡 = max�0, 𝒷𝒷𝑡𝑡� , 𝒶𝒶𝑡𝑡 = 1 − 𝒸𝒸𝑡𝑡, 𝒸𝒸𝑡𝑡 = 𝒶𝒶𝑡𝑡 − 𝒷𝒷𝑡𝑡. 
The model has steady state 𝒶𝒶 = 𝒷𝒷 = 1, 𝒸𝒸 = 0. Furthermore, in the model’s Problem 3 

(News) type equivalent, in which for 𝑡𝑡 ∈ ℕ+: 

𝒶𝒶𝑡𝑡 = �
𝒷𝒷𝑡𝑡 + 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇

𝒷𝒷𝑡𝑡 if 𝑡𝑡 > 𝑇𝑇
, 

where 𝑦𝑦⋅,⋅ is defined as in Problem 3 (News), we have that: 

𝒸𝒸𝑡𝑡 = �𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
0 if 𝑡𝑡 > 𝑇𝑇

, 

so: 

𝒷𝒷𝑡𝑡 = �1 − 2𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
1 if 𝑡𝑡 > 𝑇𝑇

, 

implying: 

𝒶𝒶𝑡𝑡 = �1 − 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
1 if 𝑡𝑡 > 𝑇𝑇

. 

thus, 𝑀𝑀 = −𝐼𝐼 for this model. 
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Appendix L.3: Proof of Proposition 12 
Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝜕𝜕,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝜋𝜋,𝑡𝑡]′, the BPY model is in the form of Problem 2 (OBC), 

with: 

𝐴𝐴 ≔
⎣
⎢⎡

0 −𝛼𝛼∆𝑦𝑦 0
0 0 0
0 0 0⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 −1 0

0 𝛾𝛾 −1⎦
⎥⎥
⎥
⎤

, 𝐶𝐶 ≔

⎣
⎢⎢
⎢
⎡

0 0 0

0 1
1
𝜎𝜎

0 0 𝛽𝛽⎦
⎥⎥
⎥
⎤

. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det

⎣
⎢⎢
⎢
⎡

−1 0 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 0

1
𝜎𝜎

0 𝛾𝛾 −1⎦
⎥⎥
⎥
⎤

≠ 0 

as 𝛼𝛼𝜋𝜋 ≠ 1 and 𝛾𝛾 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹2,2, where 𝐹𝐹 is as in Assumption 1. Then: 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡0 𝛼𝛼∆𝑦𝑦�𝑓𝑓 − 1� + 𝛼𝛼𝜋𝜋

𝛾𝛾𝑓𝑓
1 − 𝛽𝛽𝑓𝑓 0

0 𝑓𝑓 0

0
𝛾𝛾𝑓𝑓

1 − 𝛽𝛽𝑓𝑓 0
⎦
⎥
⎥
⎥
⎥
⎥
⎤

. 

Hence: 

𝑓𝑓 = 𝑓𝑓 2 −
1
𝜎𝜎 �𝛼𝛼∆𝑦𝑦�𝑓𝑓 − 1� + 𝛼𝛼𝜋𝜋

𝛾𝛾𝑓𝑓
1 − 𝛽𝛽𝑓𝑓 −

𝛾𝛾𝑓𝑓 2

1 − 𝛽𝛽𝑓𝑓 �, 

i.e.: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. (20) 

When 𝑓𝑓 ≤ 0, the left-hand side is negative, and when 𝑓𝑓 = 1, the left-hand side equals 

(𝛼𝛼𝜋𝜋 − 1)𝛾𝛾 > 0  (by assumption on 𝛼𝛼𝜋𝜋  ), hence equation (20)  has either one or three 

solutions in (0,1) , and no solutions in (−∞, 0] . We wish to prove there is a unique 

solution in (−1,1). First note that when 𝛼𝛼𝜋𝜋 = 1, the discriminant of the polynomial is: 

��1 − 𝛽𝛽��𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� − 𝛾𝛾�
2
��𝛽𝛽𝛼𝛼∆𝑦𝑦�2 + 2𝛽𝛽(𝛾𝛾 − 𝜎𝜎)𝛼𝛼∆𝑦𝑦 + (𝛾𝛾 + 𝜎𝜎)2�. 

The first multiplicand is positive. The second is minimised when 𝜎𝜎 = 𝛽𝛽𝛼𝛼∆𝑦𝑦 − 𝛾𝛾, at the 

value 4𝛽𝛽𝛾𝛾𝛼𝛼∆𝑦𝑦 > 0, hence this multiplicand is positive too. Consequently, at least for 

small 𝛼𝛼𝜋𝜋  , there are three real solutions for 𝑓𝑓  , so there may be multiple solutions in 

(0,1). 
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Suppose for a contradiction that there were at least three solutions to equation (20) 

in (0,1)  (double counting repeated roots), even for arbitrary large 𝛽𝛽 ∈ (0,1) . Let 

𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3 ∈ (0,1) be the three roots. Then, by Vieta’s formulas: 

3 > 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 =
�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎

𝛽𝛽𝜎𝜎 , 

3 > 𝑓𝑓1𝑓𝑓2 + 𝑓𝑓1𝑓𝑓3 + 𝑓𝑓2𝑓𝑓3 =
�1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎

𝛽𝛽𝜎𝜎 , 

1 > 𝑓𝑓1𝑓𝑓2𝑓𝑓3 =
𝛼𝛼∆𝑦𝑦

𝛽𝛽𝜎𝜎 , 

so: 
�2𝛽𝛽 − 1�𝜎𝜎 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 > 𝛾𝛾 > 0 

𝛽𝛽 >
1
2 , �2𝛽𝛽 − 1�𝜎𝜎 > 𝛾𝛾, 

𝛽𝛽𝜎𝜎 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 + 𝜎𝜎�1 − 𝛽𝛽�, 
2𝛽𝛽𝜎𝜎 > �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�1 − 𝛽𝛽�, 

𝛽𝛽𝜎𝜎 > 𝛼𝛼∆𝑦𝑦. 

Also, the first derivative of equation (20) must be positive at 𝑓𝑓 = 1, so: 
�1 − 𝛽𝛽��𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� + (𝛼𝛼𝜋𝜋 − 2)𝛾𝛾 > 0. 

Combining these inequalities gives the bounds: 
0 < 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 −

𝛾𝛾 + 𝜎𝜎
𝛽𝛽 , 

2 +
�1 − 𝛽𝛽��𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 <
�3𝛽𝛽 − 1�𝜎𝜎 − �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦

𝛾𝛾 . 

Furthermore, if there are multiple solutions to equation (20), then the discriminant of 

its first derivative must be nonnegative, i.e.: 

��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�
2

− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� ≥ 0. 

Therefore, we have the following bounds on 𝛼𝛼𝜋𝜋 : 

2 +
�1 − 𝛽𝛽��𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 ≤
��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾  

since, 

�3𝛽𝛽 − 1�𝜎𝜎 − �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦

𝛾𝛾 −
��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾

=
��2𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�𝛽𝛽 − 𝛾𝛾 − 𝜎𝜎���4𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

3𝛽𝛽𝛾𝛾𝜎𝜎 > 0 

as 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 − 𝛾𝛾+𝜎𝜎
𝛽𝛽 . 
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Consequently, there exists 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1] such that: 

𝛼𝛼𝜋𝜋 = (1 − 𝜆𝜆)
⎣
⎢⎡2 +

�1 − 𝛽𝛽��𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�
𝛾𝛾 ⎦

⎥⎤

+ 𝜆𝜆
⎣
⎢⎢
⎡��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾
⎦
⎥⎥
⎤

, 

𝛼𝛼∆𝑦𝑦 = �1 − 𝜇𝜇�[0] + 𝜇𝜇 �2𝜎𝜎 −
𝛾𝛾 + 𝜎𝜎

𝛽𝛽 �, 

𝛾𝛾 = (1 − 𝜅𝜅)[0] + 𝜅𝜅��2𝛽𝛽 − 1�𝜎𝜎� 
These simultaneous equations have unique solutions for 𝛼𝛼𝜋𝜋 , 𝛼𝛼∆𝑦𝑦 and 𝛾𝛾 in terms of 𝜆𝜆, 

𝜇𝜇  and 𝜅𝜅 . Substituting these solutions into the discriminant of equation (20)  gives a 

polynomial in 𝜆𝜆, 𝜇𝜇, 𝜅𝜅, 𝛽𝛽, 𝜎𝜎 . As such, an exact global maximum of the discriminant may 
be found subject to the constraints 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1], 𝛽𝛽 ∈ �1

2 , 1�, 𝜎𝜎 ∈ [0, ∞), by using an 

exact compact polynomial optimisation solver, such as that in the Maple computer 
algebra package. Doing this gives a maximum of 0 when 𝛽𝛽 ∈ �1

2 , 1�, 𝜅𝜅 = 1 and 𝜎𝜎 = 0. 

But of course, we actually require that 𝛽𝛽 ∈ �1
2 , 1�, 𝜅𝜅 < 1, 𝜎𝜎 > 0. Thus, by continuity, the 

discriminant is negative over the entire domain. This gives the required contradiction 

to our assumption of three roots to the polynomial, establishing that Assumption 1 

holds for this model. 

Now, when 𝑇𝑇 = 1, 𝑀𝑀 is equal to the top left element of the matrix −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1, 

i.e.: 

𝑀𝑀 =
𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎

𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦�𝑓𝑓 + 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋

. 

Now, multiplying the denominator by 𝑓𝑓  gives: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦�𝑓𝑓 2 + �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋�𝑓𝑓

= �𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆𝑦𝑦�

− �𝛽𝛽𝛼𝛼∆𝑦𝑦𝑓𝑓 − 𝛼𝛼∆𝑦𝑦� = �1 − 𝛽𝛽𝑓𝑓 �𝛼𝛼∆𝑦𝑦 > 0, 

by equation (20). Hence, the sign of 𝑀𝑀 is that of 𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 . I.e., 𝑀𝑀 is 

negative if and only if: 

��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾� − ���1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 < 𝑓𝑓

<
��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾� + ���1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 . 

The upper limit is greater than 1, so only the lower is relevant. To translate this bound 
on 𝑓𝑓  into a bound on 𝛼𝛼∆𝑦𝑦, we first need to establish that 𝑓𝑓  is monotonic in 𝛼𝛼∆𝑦𝑦. 
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Totally differentiating equation (20) gives: 

�3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎��
𝑑𝑑𝑓𝑓

𝑑𝑑𝛼𝛼∆𝑦𝑦
= �1 − 𝛽𝛽𝑓𝑓 ��1 − 𝑓𝑓 �

> 0. 
Thus, the sign of 𝑑𝑑𝑓𝑓

𝑑𝑑𝛼𝛼∆𝑦𝑦
 is equal to that of: 

3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�. 

Note, however, that this expression is just the derivative of the left-hand side of 

equation (20) with respect to 𝑓𝑓 . 
To establish the sign of 𝑑𝑑𝑓𝑓

𝑑𝑑𝛼𝛼∆𝑦𝑦
, we consider two cases. First, suppose that equation 

(20) has three real solutions. Then, the unique solution to equation (20) in (0,1) is its 

lowest solution. Hence, this solution must be below the first local maximum of the left-

hand side of equation (20). Consequently, at the 𝑓𝑓 ∈ (0,1), which solves equation (20), 
3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� > 0 . Alternatively, 

suppose that equation (20) has a unique real solution. Then the left-hand side of this 

equation cannot change sign in between its local maximum and its local minimum (if 

it has any). Thus, at the 𝑓𝑓 ∈ (0,1) at which it changes sign, we must have that 3𝛽𝛽𝜎𝜎𝑓𝑓 2 −
2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� > 0 . Therefore, in either case 

𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

> 0, meaning that 𝑓𝑓  is monotonic increasing in 𝛼𝛼∆𝑦𝑦. 

Consequently, to find the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign, it is sufficient 

to find the lowest solution with respect to both 𝑓𝑓  and 𝛼𝛼∆𝑦𝑦 of the pair of equations: 

𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0, 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. 

The former implies that: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 2 + 𝜎𝜎𝑓𝑓 = 0, 

so, by the latter: 
𝛼𝛼∆𝑦𝑦𝛽𝛽𝑓𝑓 2 − ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋�𝑓𝑓 + 𝛼𝛼∆𝑦𝑦 = 0. 

If 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋 , then this equation holds if and only if: 

𝜎𝜎𝛽𝛽𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0. 
Therefore, the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign are given by: 

𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋, 

𝑓𝑓 =
��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾� − ���1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 . 

Thus, 𝑀𝑀 is negative if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 , and 𝑀𝑀 is zero if and only if 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋 . 
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Appendix L.4: Proof of Proposition 13 
Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝜕𝜕,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝑝𝑝,𝑡𝑡]′, the price targeting model from Appendix F.3 is in 

the form of Problem 2 (OBC), with: 

𝐴𝐴 ≔
⎣
⎢⎡

0 0 0
0 0 0
0 0 1⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 −1 −

1
𝜎𝜎

0 𝛾𝛾 −1 − 𝛽𝛽⎦
⎥⎥
⎥
⎤

, 𝐶𝐶 ≔

⎣
⎢⎢
⎢
⎡

0 0 0

0 1
1
𝜎𝜎

0 0 𝛽𝛽⎦
⎥⎥
⎥
⎤

. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det

⎣
⎢⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 0 0

0 𝛾𝛾 −1⎦
⎥⎥
⎥
⎤

≠ 0 

as 𝛼𝛼∆𝑦𝑦 ≠ 0 and 𝛼𝛼𝜋𝜋 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹3,3, where 𝐹𝐹 is as in Assumption 1. 

Then: 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 0

𝑓𝑓 �1 − 𝑓𝑓 ��𝜎𝜎𝛼𝛼𝜋𝜋 − 𝛼𝛼∆𝑦𝑦�
𝛼𝛼∆𝑦𝑦 + �1 − 𝑓𝑓 �𝜎𝜎

0 0
𝑓𝑓 �1 − 𝑓𝑓 − 𝛼𝛼𝜋𝜋�

𝛼𝛼∆𝑦𝑦 + �1 − 𝑓𝑓 �𝜎𝜎
0 0 𝑓𝑓 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

and so: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��1 + 2𝛽𝛽�𝜎𝜎 + 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾�𝑓𝑓 2 + ��2 + 𝛽𝛽�𝜎𝜎 + �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + (1 + 𝛼𝛼𝜋𝜋)𝛾𝛾�𝑓𝑓

− �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦� = 0. 

Now define: 
𝛼𝛼∆̂𝑦𝑦 ≔ 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦, 𝛼𝛼�̂�𝜋 ≔ 1 + 𝛼𝛼𝜋𝜋  

so: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆̂𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆̂𝑦𝑦 + 𝛾𝛾𝛼𝛼�̂�𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆̂𝑦𝑦 = 0. 

This is identical to the equation for 𝑓𝑓  in Appendix L.3, apart from the fact that 𝛼𝛼∆̂𝑦𝑦 has 

replaced 𝛼𝛼∆𝑦𝑦  and 𝛼𝛼�̂�𝜋  has replaced 𝛼𝛼𝜋𝜋  . Hence, by the results of Appendix L.3, 

Assumption 1 holds for this model as well. 

Finally, for this model, with 𝑇𝑇 = 1, we have that: 

𝑀𝑀 =
�1 − 𝑓𝑓 ��1 + �1 − 𝑓𝑓 �𝛽𝛽�𝜎𝜎2 + ��1 + �1 − 𝑓𝑓 �𝛽𝛽�𝛼𝛼∆𝑦𝑦 + ��1 − 𝑓𝑓 � + 𝛼𝛼𝜋𝜋𝑓𝑓 �𝛾𝛾�𝜎𝜎 + �1 − 𝑓𝑓 �𝛾𝛾𝛼𝛼∆𝑦𝑦

��1 − 𝑓𝑓 ��1 + �1 − 𝑓𝑓 �𝛽𝛽�𝜎𝜎 + �1 + �1 − 𝑓𝑓 �𝛽𝛽�𝛼𝛼∆𝑦𝑦 + ��1 − 𝑓𝑓 � + 𝛼𝛼𝜋𝜋�𝛾𝛾��𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�
> 0. 

Appendix L.5: Proof of Proposition 14 
If 𝑋𝑋� is compact, then Γ is compact valued. Furthermore, 𝑋𝑋� is clearly convex, and Γ 

is continuous. Thus assumption 4.3 of Stokey, Lucas, and Prescott (1989) (henceforth: 

SLP) is satisfied. Since the continuous image of a compact set is compact, ℱ̃  is bounded 
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above and below, so assumption 4.4 of SLP is satisfied as well. Furthermore, ℱ̃   is 

concave and Γ is convex, so assumptions 4.7 and 4.8 of SLP are satisfied too. Thus, by 

Theorem 4.6 of SLP, with ℬ  defined as in equation (21) and 𝑣𝑣∗ defined as in equation 

(22), ℬ  has a unique fixed point which is continuous and equal to 𝑣𝑣∗. Moreover, by 

Theorem 4.8 of SLP, there is a unique policy function which attains the supremum in 

the definition of ℬ(𝑣𝑣∗) = 𝑣𝑣∗. 

Now suppose that 𝑋𝑋� is possibly non-compact, but Γ̃(𝑥𝑥) is compact valued and 𝑥𝑥 ∈
Γ̃(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋�. We first note that for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋�: 

ℱ̃(𝑥𝑥, 𝑧𝑧) ≤ 𝑢𝑢(0) −
1
2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′, 

thus, our objective function is bounded above without additional assumptions. For a 

lower bound, we assume that for all 𝑥𝑥 ∈ 𝑋𝑋� , 𝑥𝑥 ∈ Γ̃(𝑥𝑥) , so holding the state fixed is 

always feasible. This is true in very many standard applications. Then, the value of 

setting 𝑥𝑥𝑡𝑡 = 𝑥𝑥0 for all 𝑡𝑡 ∈ ℕ+ provides a lower bound for our objective function. 
More precisely, we define 𝕍𝕍 ≔ �𝑣𝑣�𝑣𝑣: 𝑋𝑋� → [−∞, ∞)� and 𝑣𝑣, 𝑣𝑣 ∈ 𝕍𝕍 by: 

𝑣𝑣(𝑥𝑥) =
1

1 − 𝛽𝛽 ℱ̃(𝑥𝑥0, 𝑥𝑥0), 

𝑣𝑣(𝑥𝑥) =
1

1 − 𝛽𝛽 �𝑢𝑢(0) −
1
2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′�, 

for all 𝑥𝑥 ∈ 𝑋𝑋�. 

Finally, define ℬ : 𝕍𝕍 → 𝕍𝕍 by: 
ℬ(𝑣𝑣)(𝑥𝑥) = sup

𝑧𝑧∈Γ�(𝑥𝑥)
�ℱ̃(𝑥𝑥, 𝑧𝑧) + 𝛽𝛽𝑣𝑣(𝑧𝑧)� (21) 

for all 𝑣𝑣 ∈ 𝕍𝕍  and for all 𝑥𝑥 ∈ 𝑋𝑋� . Then ℬ(𝑣𝑣) ≥ 𝑣𝑣  and ℬ(𝑣𝑣) ≤ 𝑣𝑣 . Furthermore, if some 

sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞   satisfies the constraint that for all 𝑡𝑡 ∈ ℕ+ , 𝑥𝑥𝑡𝑡 ∈ Γ̃(𝑥𝑥𝑡𝑡−1) , and the 

objective in (8) is finite for that sequence, then it must be the case that ‖𝑥𝑥𝑡𝑡‖∞𝑡𝑡𝛽𝛽
𝑡𝑡
2 → 0 as 

𝑡𝑡 → ∞ (by the comparison test), so:  
lim inf

𝑡𝑡→∞
𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 

Additionally, for any sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞ : 

lim sup
𝑡𝑡→∞

𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 

Thus, our dynamic programming problem satisfies the assumptions of Theorem 2.1 of 

Kamihigashi (2014), and so ℬ   has a unique fixed point in [𝑣𝑣, 𝑣𝑣]  to which ℬ𝑘𝑘(𝑣𝑣) 
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converges pointwise, monotonically, as 𝑘𝑘 → ∞ , and which is equal to the function 

𝑣𝑣∗: 𝑋𝑋� → ℝ defined by: 
𝑣𝑣∗(𝑥𝑥0) = sup�∑ 𝛽𝛽𝑡𝑡−1ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)

∞
𝑡𝑡=1 �∀𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1)� , (22) 

for all 𝑥𝑥0 ∈ 𝑋𝑋�. 

Furthermore, if we define: 
𝕎𝕎 ≔ �𝑣𝑣 ∈ 𝑉𝑉�𝑣𝑣 is continuous on 𝑋𝑋�, 𝑣𝑣 is concave on 𝑋𝑋��, 

then as 𝑢𝑢(̃2) is negative-definite, 𝑣𝑣 ∈ 𝕎𝕎. Additionally, under the assumption that Γ̃(𝑥𝑥) 

is compact valued, if 𝑣𝑣 ∈ 𝕎𝕎, then ℬ(𝑣𝑣) ∈ 𝕎𝕎, by the Theorem of the Maximum,46 and, 

furthermore, there is a unique policy function which attains the supremum in the 
definition of ℬ(𝑣𝑣). Moreover, 𝑣𝑣∗ = lim

𝑘𝑘→∞
ℬ𝑘𝑘(𝑣𝑣) is concave and lower semi-continuous 

on 𝑋𝑋� . 47  We just need to prove that 𝑣𝑣∗  is upper semi-continuous. 48  Suppose for a 

contradiction that it is not, so there exists 𝑥𝑥∗ ∈ 𝑋𝑋� such that: 
lim sup

𝑥𝑥→𝑥𝑥∗
𝑣𝑣∗(𝑥𝑥) > lim

𝑘𝑘→∞
𝑣𝑣∗(𝑥𝑥∗). 

Then, there exists 𝛿𝛿 > 0  such that for all 𝜖𝜖 > 0 , there exists 𝑥𝑥0
(𝜖𝜖) ∈ 𝑋𝑋�  with �𝑥𝑥∗ −

𝑥𝑥0
(𝜖𝜖)�∞ < 𝜖𝜖 such that: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� > 𝛿𝛿 + 𝑣𝑣∗(𝑥𝑥∗). 

Now, by the definition of a supremum, for all 𝜖𝜖 > 0, there exists �𝑥𝑥𝑡𝑡
(𝜖𝜖)�𝑡𝑡=1

∞  such that for 

all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡
(𝜖𝜖) ∈ Γ�𝑥𝑥𝑡𝑡−1

(𝜖𝜖) � and: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� < 𝛿𝛿 + � 𝛽𝛽𝑡𝑡−1ℱ̃�𝑥𝑥𝑡𝑡−1

(𝜖𝜖) , 𝑥𝑥𝑡𝑡
(𝜖𝜖)�

∞

𝑡𝑡=1
. 

Hence: 

� 𝛽𝛽𝑡𝑡−1ℱ̃�𝑥𝑥𝑡𝑡−1
(𝜖𝜖) , 𝑥𝑥𝑡𝑡

(𝜖𝜖)�
∞

𝑡𝑡=1
> 𝑣𝑣∗�𝑥𝑥0

(𝜖𝜖)� − 𝛿𝛿 > 𝑣𝑣∗(𝑥𝑥∗). 

Now, let 𝒮𝒮0 ≔ �𝑥𝑥 ∈ 𝑋𝑋��‖𝑥𝑥∗ − 𝑥𝑥‖∞ ≤ 1 �, and for 𝑡𝑡 ∈ ℕ+, let 𝒮𝒮𝑡𝑡 ≔ Γ�𝒮𝒮𝑡𝑡−1�. Then, since we 

are assuming Γ is compact valued, for all 𝑡𝑡 ∈ ℕ, 𝒮𝒮𝑡𝑡 is compact by the continuity of Γ. 
Furthermore, for all 𝑡𝑡 ∈ ℕ  and 𝜖𝜖 ∈ (0,1) , 𝑥𝑥𝑡𝑡

(𝜖𝜖) ∈ 𝒮𝒮𝑡𝑡 . Hence, ∏ 𝒮𝒮𝑡𝑡
∞
𝑡𝑡=0   is sequentially 

compact in the product topology. Thus, there exists a sequence (𝜖𝜖𝑘𝑘)𝑘𝑘=1
∞  with 𝜖𝜖𝑘𝑘 → 0 as 

𝑘𝑘 → ∞  and such that 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘)  converges for all 𝑡𝑡 ∈ ℕ . Let 𝑥𝑥𝑡𝑡 ≔ lim

𝑘𝑘→∞
𝑥𝑥𝑡𝑡

(𝜖𝜖𝑘𝑘) , and note that 

𝑥𝑥∗ = 𝑥𝑥0 ∈ 𝒮𝒮0 ⊆ 𝑋𝑋�, and that for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘) ∈ Γ�𝑥𝑥𝑡𝑡−1

(𝜖𝜖𝑘𝑘)�, so by the continuity of Γ, 

𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+. Thus, by Fatou’s Lemma: 

𝑣𝑣∗(𝑥𝑥∗) ≥ � 𝛽𝛽𝑡𝑡−1ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
∞

𝑡𝑡=1
≥ lim sup

𝑘𝑘→∞
� 𝛽𝛽𝑡𝑡−1ℱ̃�𝑥𝑥𝑡𝑡−1

(𝜖𝜖,𝑘𝑘), 𝑥𝑥𝑡𝑡
(𝜖𝜖,𝑘𝑘)�

∞

𝑡𝑡=1
> 𝑣𝑣∗(𝑥𝑥∗), 

 
46 See e.g. Theorem 3.6 and following of Stokey, Lucas, and Prescott (1989). 
47 See e.g. Lemma 2.41 of Aliprantis and Border (2013). 
48 In the following, we broadly follow the proof of Lemma 3.3 of Kamihigashi and Roy (2003). 
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which gives the required contradiction. Thus, 𝑣𝑣∗ is continuous and concave, and there 

is a unique policy function attaining the supremum in the definition of ℬ(𝑣𝑣∗) = 𝑣𝑣∗. 

Appendix L.6: Proof of Proposition 15 
Suppose that (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  , (𝜆𝜆𝑡𝑡)𝑡𝑡=1
∞   satisfy the KKT conditions given in equations (15) 

and (16) , and that 𝑥𝑥𝑡𝑡 → 𝜇𝜇  and 𝜆𝜆𝑡𝑡 → 𝜆𝜆����  as 𝑡𝑡 → ∞ . Let (𝑧𝑧𝑡𝑡)𝑡𝑡=0
∞   satisfy 𝑧𝑧0 = 𝑥𝑥0  and 𝑧𝑧𝑡𝑡 ∈

Γ̃(𝑧𝑧𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+. Then, by the KKT conditions and the concavity of: 

(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) ↦ ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ��, 

we have that for all 𝑇𝑇 ∈ ℕ+:49 

� 𝛽𝛽𝑡𝑡−1�ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
𝑇𝑇

𝑡𝑡=1
 

= � 𝛽𝛽𝑡𝑡−1 �ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�

𝑇𝑇

𝑡𝑡=1
 

≥ � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡

′ �Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)

𝑇𝑇

𝑡𝑡=1

− 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑧𝑧𝑡𝑡−1 − 𝜇𝜇
𝑧𝑧𝑡𝑡 − 𝜇𝜇 ��

⎦
⎥⎤ 

≥ � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡�𝑢𝑢⋅,2

(1) + �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)� (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

+ �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,1

(1)� (𝑥𝑥𝑡𝑡−1 − 𝑧𝑧𝑡𝑡−1)
⎦
⎥⎤ 

= � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡

⎣
⎢⎡𝑢𝑢⋅,2

(1) + �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)
𝑇𝑇

𝑡𝑡=1

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)�
⎦
⎥⎤ (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)

⎦
⎥⎤

+ 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇) 

= 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇). 

Thus: 

� 𝛽𝛽𝑡𝑡−1�ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1

≥ lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇)

= lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇�𝑢𝑢⋅,1
(1) + 𝜆𝜆���� ′Ψ⋅,1

(1)��𝑧𝑧𝑇𝑇 − 𝜇𝜇� = lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇�𝑢𝑢⋅,1
(1) + 𝜆𝜆���� ′Ψ⋅,1

(1)�𝑧𝑧𝑇𝑇. 

 
49 Here, we broadly follow the proof of Theorem 4.15 of Stokey, Lucas, and Prescott (1989). 
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Now, suppose lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇𝑧𝑧𝑇𝑇 ≠ 0, then since 𝑢𝑢(̃2) is negative definite: 

� 𝛽𝛽𝑡𝑡−1ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)
∞

𝑡𝑡=1
= −∞, 

so (𝑧𝑧𝑡𝑡)𝑡𝑡=0
∞  cannot be optimal. 

Hence, regardless of the value of lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇𝑧𝑧𝑇𝑇: 

� 𝛽𝛽𝑡𝑡−1�ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1
≥ 0, 

which implies that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  solves Problem 4 (Linear-Quadratic). 
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