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Existence and uniqueness of solutions to dynamic 
models with occasionally binding constraints 

Tom D. Holden, Deutsche Bundesbank & University of Surrey* 

Abstract: Policy makers would like to prevent self-fulfilling fluctuations. 

Given the prevalence of occasionally binding constraints (OBCs) such as 

the zero lower bound (ZLB), this requires understanding the 

determinacy of models with OBCs. To this end, we derive existence and 

uniqueness conditions for otherwise linear models with OBCs. Our main 

result gives necessary and sufficient conditions for such a model to have 

a unique perfect foresight solution returning to a given steady state, for 

any initial condition. We show that while standard New Keynesian 

models with a ZLB possess multiple perfect-foresight paths eventually 

escaping the ZLB, price level targeting restores determinacy.  
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Consider an otherwise linear model with occasionally binding 

constraints (OBCs) and a fixed terminal condition. This paper provides 

the first necessary and sufficient conditions for there to be a unique 

perfect foresight solution to such a model, for any shock sequence and 

any value of the initial state. This gives determinacy conditions for 

models with occasionally binding constraints, much as Blanchard & 

Kahn (1980) provided for the linear case. 

A key application of the results of Blanchard & Kahn (1980) was 

showing that in New Keynesian (NK) models without a zero lower 

bound (ZLB), determinacy requires the Taylor principle to be satisfied, 

meaning there is a sufficiently aggressive response to inflation.1 A key 

application of our results shows that this is insufficient in the presence 

of the ZLB, even if an eventual escape from the ZLB is guaranteed. 

It is now well known that the ZLB can lead to multiplicity of steady 

states (see e.g. Benhabib, Schmitt-Grohé & Uribe 2001a; 2001b). However, 

multiple steady states do not automatically imply multiple dynamic 

solutions, as agents’ beliefs may rule out paths converging to deflation.2 

We apply our results to examine the circumstances under which NK 

models admit multiple solutions when agents have such beliefs.3 We find 

NK models with a ZLB generally have multiple solutions which 

eventually escape the ZLB, even with a monetary rule that satisfies the 

Taylor principle. However, a weak response to the price level in the 

monetary rule is sufficient to restore determinacy. 

To see how multiplicity is possible with the terminal condition fixed, 

suppose the model’s agents knew that from next period onwards, the 
 

1 See e.g. Clarida, Galí & Gertler (1997; 2000). 
2  This is in line with the evidence of Gürkaynak, Levin & Swanson (2010). Christiano and 
Eichenbaum (2012) argue that deflation can be escaped by switching to a money growth rule. 
This may justify the observed beliefs. See Section 5.1.1 for further related discussion. 
3 Hebden, Lindé & Svensson (2011) and Brendon, Paustian & Yates (2013; 2019) provide some 
specific examples of NK models with multiple transition paths to the standard steady state in 
certain states. See Appendix D.1 for further discussion of Brendon, Paustian & Yates (2013; 2019). 
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economy would be away from the bound. Then, in an otherwise linear 

model, expectations of next period’s outcomes would be linear in today’s 

variables. However, substituting out these expectations does not leave a 

linear system in today’s variables, due to the OBC. For some models, this 

non-linear system will have two solutions, with one featuring a slack 

constraint, and the other having a binding constraint. Thus, even though 

the rule for forming expectations is pinned down, multiple outcomes 

may be possible. Without the assumption that next period the economy 

is away from the bound, the scope for multiplicity is even richer, and 

there may be infinitely many solutions. 

We prove that under mild assumptions there are at least as many 

solutions under rational expectations as under perfect foresight.4 Thus, 

our results imply lower bounds on the number of solutions under 

rational expectations, even though the two solution concepts differ due 

to the OBC’s non-linearity.  

In additional results, we give conditions for the global5 existence of 

perfect foresight solutions returning to a given steady state for otherwise 

linear models with OBCs. Non-existence of solutions returning to the 

“standard” steady state may rationalise the beliefs needed to sustain 

indeterminacy driven by multiple steady states, e.g. a belief in the 

possibility of converging to deflation.6 

The next section presents simple examples of multiplicity and non-

existence. In Section 2, we provide the key equivalence result enabling 

us to examine existence and uniqueness in models with OBCs via 

examining the properties of linear complementarity problems. Section 3 

provides our main results on existence and uniqueness, which we use to 

 
4 Proven in Appendix I. 
5 I.e. independent of the value of state variables and shock sequences. 
6 The consequences of indeterminacy of this kind has been explored by Schmitt-Grohé & Uribe 
(2012), Mertens & Ravn (2014) and Aruoba, Cuba-Borda & Schorfheide (2018), amongst others. 
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examine select examples in Section 4. Finally, Section 5 places our results 

in the context of the broader literature and discusses key assumptions. It 

also argues that equilibrium multiplicity can help explain observed 

outcomes during the great recession. 

1. Multiplicity in simple models 
We begin by supplying simple examples of multiplicity and solution 

non-existence, of the type on which we focus in this paper. This will 

make clear why these problems are so common in models with OBCs 

and will illustrate the idea behind our results. 

1.1. A simple first example 
Consider the simplest possible “NK” model: the flexible price limit. 

The model consists of the Fisher equation7 and the Taylor rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1, 
𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡�, 

where the real interest rate 𝑟𝑟𝑡𝑡 = 𝑟𝑟 + 𝜀𝜀𝑡𝑡 , where 𝜀𝜀𝑡𝑡 = 0  for all 𝑡𝑡 > 1 , and 

where 𝑖𝑖𝑡𝑡  is the nominal rate, 𝜋𝜋𝑡𝑡  is inflation and 𝜙𝜙 > 1 . Although the 

model has two steady states (the “standard” one with 𝑖𝑖 = 𝑟𝑟 and 𝜋𝜋 = 0, 

plus the deflationary one with 𝑖𝑖 = 0  and 𝜋𝜋 = −𝑟𝑟 ), we assume that the 

economy returns to the standard steady state away from the ZLB. This 

implies that 𝜋𝜋𝑡𝑡 = 0 for 𝑡𝑡 > 1.8 Hence, in period 1: 

𝑟𝑟 + 𝜀𝜀1 = 𝑖𝑖1 = max�0, 𝑟𝑟 + 𝜀𝜀1 + 𝜙𝜙𝜋𝜋1�. 
If 𝜀𝜀1 > −𝑟𝑟, then 𝑖𝑖1 = 𝑟𝑟 + 𝜀𝜀1 > 0, so 𝜋𝜋1 = 0. However, if 𝜀𝜀1 < −𝑟𝑟, then 𝑖𝑖1 <
0 according to the Fisher equation, which is never consistent with the 

Taylor rule. Thus, the model has no solution returning to the standard 

steady state in this case.9 Finally, if 𝜀𝜀1 = −𝑟𝑟, then 𝑖𝑖1 = 0 and any 𝜋𝜋1 ≤ 0 
 

7 There is no expectation operator in the Fisher equation as there is no uncertainty for 𝑡𝑡 > 1. 
8  Suppose 𝑖𝑖𝑡𝑡 = 0  for some 𝑡𝑡 > 1 , so by the Fisher equation 𝜋𝜋𝑡𝑡+1 = −𝑟𝑟 , meaning 𝑖𝑖𝑡𝑡+1 = 0  by the 
Taylor rule. By induction, 𝑖𝑖𝑠𝑠 = 0  for all 𝑠𝑠 ≥ 𝑡𝑡 , contradicting our assumption of a return to the 
standard steady state. Thus, 𝑖𝑖𝑡𝑡 > 0 for all 𝑡𝑡 > 1, so 𝜋𝜋𝑡𝑡 = 0 for 𝑡𝑡 > 1. 
9 Indeed, the model has no bounded solution in this case. 𝑟𝑟 + 𝜀𝜀1 < 0 means we must have 𝜋𝜋2 > 0 
to ensure 𝑖𝑖1 ≥ 0. Thus, since 𝜙𝜙 > 1, 𝜋𝜋𝑡𝑡 → ∞ and 𝑖𝑖𝑡𝑡 → ∞ as 𝑡𝑡 → ∞. 
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is consistent with the model. To summarise: with 𝜀𝜀1 > −𝑟𝑟, the model has 

a unique solution returning to the standard steady state; with 𝜀𝜀1 = −𝑟𝑟, 

the model has multiple such solutions; and with 𝜀𝜀1 < −𝑟𝑟, the model has 

no such solutions. 

1.2. An example with robust multiplicity 
The previous example only has multiplicity in a knife-edge case, but 

in richer models, multiplicity is more widespread. For example, suppose 

the central bank responds to lagged as well as current inflation.10 This is 

the easiest way of generating some endogenous persistence, but almost 

any state variable would have a similar effect. 11  Assuming 𝑟𝑟𝑡𝑡  is now 

constant, the model is then: 

𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1�, 
where 𝜙𝜙 − 𝜓𝜓 > 1  and 𝜓𝜓 > 0 .12  The initial state, 𝜋𝜋0 , is given. To further 

simplify presentation, we set 𝜙𝜙 ≔ 2, so 𝜓𝜓 < 1. Our results are not specific 

to this special case, however. 

Away from the ZLB, the model’s solution must take the form 𝜋𝜋𝑡𝑡 =
𝐴𝐴𝜋𝜋𝑡𝑡−1. Substituting this back into the model’s equations gives that 𝐴𝐴 =
1 − �1 − 𝜓𝜓 , so the persistence is increasing in 𝜓𝜓 . Note that this 

“fundamental” solution is away from the ZLB at 𝑡𝑡 when 0 < 𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 =
𝑟𝑟 + 𝐴𝐴2𝜋𝜋𝑡𝑡−1, i.e. if and only if 𝜋𝜋𝑡𝑡−1 > − 𝑟𝑟

𝐴𝐴2. 

Now, suppose that in period 1 the economy was at the ZLB, but that 

it was expected to escape next period, meaning that 𝜋𝜋2 = 𝐴𝐴𝜋𝜋1 . The 
Fisher equation then implies that 0 = 𝑖𝑖1 = 𝑟𝑟 + 𝐴𝐴𝜋𝜋1 , so 𝜋𝜋1 = − 𝑟𝑟

𝐴𝐴 . This 

outcome is an equilibrium only if it is consistent with the monetary rule 
in period 1 and 2, which is true if and only if 𝜋𝜋0 ≥ − 𝑟𝑟

𝐴𝐴2.13 

 
10 This may be justified as responding negatively to lagged inflation is optimal in the presence of 
inflation inertia coming from indexation to past inflation. See e.g. Giannoni & Woodford (2003). 
11 Brendon, Paustian & Yates (2013; 2019) consider an Euler + Phillips curve set-up in which the 
monetary policy maker responds to output growth in order to introduce an endogenous state. 
12 These assumptions are sufficient for a real determinate solution in the absence of the ZLB. 
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To recap, the fundamental solution is always away from the ZLB 
when 𝜋𝜋0 > − 𝑟𝑟

𝐴𝐴2 and being at the ZLB today but escaping next period is 

an equilibrium when 𝜋𝜋0 ≥ − 𝑟𝑟
𝐴𝐴2 . So, if 𝜋𝜋0 > − 𝑟𝑟

𝐴𝐴2 , then there are two 

solutions: the usual fundamental one with 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜋𝜋𝑡𝑡−1 and 𝑖𝑖𝑡𝑡 > 0 for all 
𝑡𝑡 > 0, plus an additional solution in which 𝜋𝜋1 = − 𝑟𝑟

𝐴𝐴 (so 𝜋𝜋1 < 𝐴𝐴𝜋𝜋0) and 

𝑖𝑖1 = 0 . This additional solution jumps to the bound in period 1  but 

escapes it next period, before gradually returning to the standard steady 

state. Crucially, the additional solution does not require any change in 

beliefs about the steady state to which the economy will converge. 
Conversely, if 𝜋𝜋0 < − 𝑟𝑟

𝐴𝐴2 , the only remaining possibility is that the 

model is at the ZLB for more than one period. But if 𝑖𝑖𝑡𝑡+1 = 0 with 𝑖𝑖𝑡𝑡+2 >
0  for some 𝑡𝑡 > 0 , then by the Fisher equation, 𝜋𝜋𝑡𝑡+1 = − 𝑟𝑟

𝐴𝐴  and 𝑖𝑖𝑡𝑡 = 𝑟𝑟 −
𝑟𝑟
𝐴𝐴 < 0 which is inconsistent with the monetary rule. So, there cannot be 
a solution path returning to the standard steady state when 𝜋𝜋0 < − 𝑟𝑟

𝐴𝐴2. 

As we approach the canonical model with 𝜓𝜓 → 0  (but 𝜓𝜓 ≠ 0 ), the 

region of non-existence shrinks but the multiplicity region grows until it 

encompasses the entire state space.14 Given that the Fisher equation and 

Taylor rule are the core of all NK models, it should then be unsurprising 

that there is non-knife-edge multiplicity in all NK models with 

endogenous state variables that we have analysed. Even price dispersion 

suffices as a state. We show examples in Section 4 and Appendix F. 

1.3. The mechanics of our main results 
Even in such a simple model, deriving these pen and paper results 

on multiplicity and non-existence is cumbersome. Our general 

theoretical results provide a convenient alternative. To understand how 
 

13 I.e. only if 𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 ≤ 0 and 𝑟𝑟 + 𝜙𝜙𝜋𝜋2 − 𝜓𝜓𝜋𝜋1 ≥ 0 with 𝜋𝜋1 = − 𝑟𝑟
𝐴𝐴 and  𝜋𝜋2 = −𝑟𝑟. The former 

holds if and only if 𝜋𝜋0 ≥ 𝑟𝑟
𝜓𝜓 �1 − 2

𝐴𝐴� = − 𝑟𝑟
𝐴𝐴2 . The latter is equivalent to 0 ≤ �𝜓𝜓

𝐴𝐴 − 1�𝑟𝑟 = (1 − 𝐴𝐴)𝑟𝑟 , 
which always holds. 
14 With 𝜓𝜓 = 0 and constant 𝑟𝑟, there is a unique solution returning to the standard steady state (as 
with 𝜓𝜓 = 0, if 𝑖𝑖𝑡𝑡 = 0 for some 𝑡𝑡 > 0, then 𝜋𝜋𝑡𝑡+1 = −𝑟𝑟, so 𝑖𝑖𝑡𝑡+1 = 0 as well). This no longer holds once 
a shock is introduced, as seen above. 
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they work, it is helpful to begin by looking at the impact of a monetary 

policy shock in the previous model. I.e. consider the model: 

𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡−1 + 𝜈𝜈𝑡𝑡�, 
where 𝜈𝜈𝑡𝑡 = 0 for 𝑡𝑡 > 1 and 𝜋𝜋0 is again given. The solution away from the 

ZLB must take the form 𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜋𝜋𝑡𝑡−1 + 𝐹𝐹𝜈𝜈𝑡𝑡 , with 𝐴𝐴  as before and 𝐹𝐹 =
− 1

𝜙𝜙−𝐴𝐴 < 0. Thus, away from the ZLB, 𝑖𝑖1 = 𝑟𝑟 + 𝐴𝐴2𝜋𝜋0 + 𝐴𝐴𝐴𝐴𝜈𝜈1. With 𝜓𝜓 > 0, 

𝐴𝐴𝐴𝐴 < 0 , so in the fundamental solution to this model, a positive 

monetary policy shock actually lowers nominal interest rates. 
Now suppose that we choose 𝜈𝜈1 = − 𝑟𝑟+𝐴𝐴2𝜋𝜋0

𝐴𝐴𝐴𝐴  . Since 𝐹𝐹 < 0 , this is a 
positive shock if and only if 𝜋𝜋0 > − 𝑟𝑟

𝐴𝐴2 . With this value of 𝜈𝜈1 , in the 

fundamental solution, 𝜋𝜋1 = 𝐴𝐴𝜋𝜋0 + 𝐹𝐹𝜈𝜈1 = − 𝑟𝑟
𝐴𝐴  and 𝑖𝑖1 = 𝑟𝑟 + 𝐴𝐴2𝜋𝜋0 +

𝐴𝐴𝐴𝐴𝜈𝜈1 = 0, so this shock is just the right magnitude to drive the economy 

to touch the ZLB. Observe too that the outcome for inflation is identical 

to that in the non-fundamental solution to the model without a shock 

considered previously. This coincidence is explained by the fact that if 
𝜋𝜋0 > − 𝑟𝑟

𝐴𝐴2, then: 

0 = 𝑖𝑖1 = 𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0 + 𝜈𝜈1 = max�0, 𝑟𝑟 + 𝜙𝜙𝜋𝜋1 − 𝜓𝜓𝜋𝜋0�. 
Given the ZLB and the positivity of 𝜈𝜈1, there is no observable evidence 

that a shock has arrived at all, since the ZLB implies that with these 

values of output and inflation, nominal interest rates should be zero even 

without a shock. Such a jump to the ZLB must then be a self-fulfilling 

prophecy: agents’ beliefs and equilibrium outcomes are as if such a 

monetary policy shock had hit, whether or not it did in reality. Given 
𝜓𝜓 > 0, the condition for multiplicity (𝜋𝜋0 > − 𝑟𝑟

𝐴𝐴2) here is then precisely 

the same as the condition for there to be a positive shock that drives 
interest rates to zero in the absence of the ZLB (𝜋𝜋0 > − 𝑟𝑟

𝐴𝐴2). Likewise, the 

condition for there to be multiplicity for some 𝜋𝜋0 (𝜓𝜓 > 0) is precisely the 

condition for a positive shock to have a negative effect (𝜓𝜓 > 0), which is 

what permits this censoring away of positive shocks. 
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This reveals a tight connection between multiplicity and positive 

shocks having negative effects. Indeed, our key condition for uniqueness 

will require that positive shocks to the bounded variable have positive 

effects.15 It will also require that news today about a future positive shock 

to the bounded variable will result in the bounded variable being higher 

in the period the shock arrives. This is the natural generalisation for 

models in which the bound may be hit in future periods. More than this, 

it requires that the impact of news shocks to the bounded variable at 

different horizons be “jointly” positive, in a sense to be made clear. 

2. Equivalence result 
We now present the result that establishes an equivalence between 

solutions of a DSGE model with OBCs, and solutions of a linear 

complementarity problem (LCP). This result will enable us to leverage 

existing work on existence and uniqueness for LCPs. 

For now, we assume that there is a single OBC of the form 𝑖𝑖𝑡𝑡 =
max{0, … }, where 𝑖𝑖𝑡𝑡 is the constrained variable (not necessarily interest 

rates). This covers all OBCs one encounters in practice, possibly via a 

transformation.16 For example, the Karush-Kuhn-Tucker type constraints 

𝑖𝑖𝑡𝑡 ≥ 0 , 𝜆𝜆𝑡𝑡 ≥ 0 , 𝑖𝑖𝑡𝑡𝜆𝜆𝑡𝑡 = 0  hold if and only if 0 = min{𝑖𝑖𝑡𝑡, 𝜆𝜆𝑡𝑡}  which in turn 

holds if and only if 𝑖𝑖𝑡𝑡 = max{0, 𝑖𝑖𝑡𝑡 − 𝜆𝜆𝑡𝑡} . It is also straightforward to 

generalize to multiple constraints.16 We continue to look for perfect 

foresight solutions converging to a steady state at which 𝑖𝑖𝑡𝑡 > 0,17 taking 

as given the value of the initial state of the model’s endogenous 

variables. We assume throughout that without the bound, the model 

would be determinate around a unique steady state. 

 
15  The condition requires strict positivity precisely so cases like 𝜓𝜓 = 0  are treated correctly as 
cases with multiple solutions. We will always assume that the shock and/or state space is 
sufficiently rich that the path in the absence of the bound is arbitrary. See Section 5.1.2 for 
discussion of this assumption. 
16 See Appendix H. 
17 Constraints that bind in steady state may be handled via a transformation. See Appendix H. 
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Without loss of generality then, the equation containing the bound 

is of the form: 

𝑖𝑖𝑡𝑡 = max�0, 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1�� , (1) 

where 𝑥𝑥𝑡𝑡 contains the model’s period 𝑡𝑡 endogenous variables, including 

𝑖𝑖𝑡𝑡, and 𝑓𝑓  is some differentiable function (later restricted to be linear). The 

model’s other equations are of the form: 

0 = 𝑔𝑔�𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1�, 
for some differentiable function 𝑔𝑔 (also later restricted to be linear). Now 

define: 

𝑦𝑦𝑡𝑡 ≔ max�0, 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1�� − 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1�. 
By construction, 𝑦𝑦𝑡𝑡 ≥ 0. Also: 

𝑖𝑖𝑡𝑡 = 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1� + 𝑦𝑦𝑡𝑡. (2) 

Despite its simplicity (we have just added and subtracted a term), this 

result turns out to be crucial. It states that the value of the bounded 

variable is given by its value in the absence of the constraint (but given 

other endogenous variables), plus an additional positive “forcing” term 

capturing the effect of the constraint. Furthermore, by construction, if 

𝑖𝑖𝑡𝑡 > 0, then 𝑦𝑦𝑡𝑡 = 0 and if 𝑦𝑦𝑡𝑡 > 0, then 𝑖𝑖𝑡𝑡 = 0. Thus, for all 𝑡𝑡, the bounded 

variable 𝑖𝑖𝑡𝑡 and the forcing term 𝑦𝑦𝑡𝑡 satisfy the complementary slackness 

condition, 𝑖𝑖𝑡𝑡𝑦𝑦𝑡𝑡 = 0. For further intuition, note that when the constraint 

originally came from the Karush-Kuhn-Tucker (KKT) conditions 𝑖𝑖𝑡𝑡 ≥ 0, 

𝜆𝜆𝑡𝑡 ≥ 0 , 𝑖𝑖𝑡𝑡𝜆𝜆𝑡𝑡 = 0  (so 𝑖𝑖𝑡𝑡 = max{0, 𝑖𝑖𝑡𝑡 − 𝜆𝜆𝑡𝑡} ), then 𝑦𝑦𝑡𝑡 = max{0, 𝑖𝑖𝑡𝑡 − 𝜆𝜆𝑡𝑡} − 𝑖𝑖𝑡𝑡 +
𝜆𝜆𝑡𝑡 = 𝜆𝜆𝑡𝑡 , meaning 𝑦𝑦𝑡𝑡  recovers the original KKT multiplier. Finally, note 

that since we are assuming the model returns to a steady state where 𝑖𝑖𝑡𝑡 >
0, there must be some period 𝑇𝑇 such that for all 𝑡𝑡 > 𝑇𝑇, 𝑦𝑦𝑡𝑡 = 0. 

In order to understand the behaviour of the model with OBCs, it is 

helpful to first consider the behaviour of a model without OBCs but with 

an exogenous forcing process in one equation. In particular, we consider 

replacing equation (1) with equation (2), where for now we treat 𝑦𝑦𝑡𝑡 as 
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an exogenous forcing process. Since we are working under perfect-

foresight, we assume that the entire path of 𝑦𝑦𝑡𝑡 is known in period 1. We 

also assume that there exists some period 𝑇𝑇 such that for 𝑡𝑡 > 𝑇𝑇, 𝑦𝑦𝑡𝑡 = 0, 

as this always holds when 𝑦𝑦𝑡𝑡 arises endogenously from an OBC. 

We now make the following key definitions: 

Definition 1 Under the setup of the preceding text: 

• 𝑦𝑦 ≔ �𝑦𝑦1, … , 𝑦𝑦𝑇𝑇�′ is a vector giving the path of the forcing variable. 

• 𝑖𝑖: ℝ𝑇𝑇 → ℝ𝑇𝑇 is a function, where for all 𝑦𝑦, 𝑖𝑖�𝑦𝑦� is a vector containing 

the first 𝑇𝑇 elements of the path of 𝑖𝑖𝑡𝑡 for the given path of the forcing 

variable 𝑦𝑦. 

• 𝑞𝑞 ≔ 𝑖𝑖(0) is a vector giving the first 𝑇𝑇 elements of the path of 𝑖𝑖𝑡𝑡 when 

𝑦𝑦𝑡𝑡 = 0  for all 𝑡𝑡 , i.e. 𝑞𝑞  gives the path 𝑖𝑖𝑡𝑡  would follow were there no 

bound in the model. 
• 𝑀𝑀  is a 𝑇𝑇 × 𝑇𝑇  matrix where the 1st column equals 𝜕𝜕𝜕𝜕�𝑦𝑦�

𝜕𝜕𝑦𝑦1
�
𝑦𝑦=0

 , the 2nd 

equals 𝜕𝜕𝜕𝜕�𝑦𝑦�
𝜕𝜕𝑦𝑦2

�
𝑦𝑦=0

, and so on. 

Then, by Taylor’s theorem 𝑖𝑖�𝑦𝑦� = 𝑞𝑞 + 𝑀𝑀𝑀𝑀 + Ο�𝑦𝑦′𝑦𝑦�  for small 𝑦𝑦 . 

Henceforth, we restrict 𝑓𝑓   and 𝑔𝑔  to be linear, in which case this 

approximation is exact and 𝑖𝑖�𝑦𝑦� = 𝑞𝑞 + 𝑀𝑀𝑀𝑀 , with only 𝑞𝑞 , not 𝑀𝑀 , 

depending on the initial state. We prove this and establish expressions 

for the elements of 𝑀𝑀 in Appendix E. The proof proceeds by backwards 

induction, starting from the known transition matrix in period 𝑇𝑇 + 1 

from which point on the economy is away from the bound. 

Note that with 𝑓𝑓  and 𝑔𝑔 linear, the first column of 𝑀𝑀 gives the impulse 

response to a contemporaneous shock to 𝑖𝑖𝑡𝑡 , the second column of 𝑀𝑀 

gives the impulse response to a one period ahead news shock to 𝑖𝑖𝑡𝑡, and 

so on.18 Hence the path of 𝑖𝑖𝑡𝑡  is given by its path in the absence of 

constraints or a forcing process, plus a linear combination of impulse 

responses to the “news” contained in 𝑦𝑦. 
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When 𝑦𝑦 arises endogenously from an OBC, we show in Appendix E 

that 𝑖𝑖�𝑦𝑦� = 𝑞𝑞 + 𝑀𝑀𝑀𝑀  still holds. Effectively then, the OBC provides 

“endogenous news” that 𝑖𝑖𝑡𝑡 will be higher than it would be without the 

bound, in periods in which the bound is hit. Given the complementary 

slackness conditions for 𝑦𝑦𝑡𝑡 already established, and the positivity of the 

path of the bounded variable 𝑖𝑖𝑡𝑡, we then have that 𝑦𝑦 ≥ 0, 𝑞𝑞 + 𝑀𝑀𝑀𝑀 ≥ 0 and 

𝑦𝑦′�𝑞𝑞 + 𝑀𝑀𝑀𝑀� = 0 . It turns out that these conditions completely 

characterise the solution in the presence of OBCs, as shown in the 

following key theorem: 

Theorem 1  

1) Suppose 𝑥𝑥𝑡𝑡  is a solution to the model without an OBC in which 

equation (1) is replaced with equation (2), with 𝑦𝑦𝑡𝑡 as an exogenous 

driving process. Suppose there is some 𝑇𝑇 ≥ 0 such that 𝑦𝑦𝑡𝑡 = 0 for 𝑡𝑡 >
𝑇𝑇 . Then 𝑥𝑥𝑡𝑡  is also a solution to the original model with an OBC, 

permanently escaping the bound after at most 𝑇𝑇 periods, if and only 

if 𝑦𝑦 ≥ 0, 𝑞𝑞 + 𝑀𝑀𝑀𝑀 ≥ 0, 𝑦𝑦′�𝑞𝑞 + 𝑀𝑀𝑀𝑀� = 0, 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1� ≥ 0 for 𝑡𝑡 > 𝑇𝑇. 

2) Suppose 𝑥𝑥𝑡𝑡 is a solution to the model with an OBC which eventually 

escapes the bound. Then there exists 𝑇𝑇 ≥ 0 and a unique 𝑇𝑇 × 1 vector 

𝑦𝑦  such that: 𝑦𝑦 ≥ 0 , 𝑞𝑞 + 𝑀𝑀𝑀𝑀 ≥ 0 , 𝑦𝑦′�𝑞𝑞 + 𝑀𝑀𝑀𝑀� = 0 , 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1� ≥ 0 

for 𝑡𝑡 > 𝑇𝑇 and such that 𝑥𝑥𝑡𝑡 is the unique solution to the model without 

an OBC in which equation (1) is replaced with equation (2), with 𝑦𝑦𝑡𝑡 

exogenous. 

The proof (in Appendix E) again relies on backward induction 

arguments. This theorem establishes that in order to solve for the perfect-

foresight solution of the model with OBCs, we just need to guess a 

 
18 The idea of imposing an OBC by adding news shocks is also present in Holden (2010), Hebden, 
Lindé & Svensson (2011), Holden & Paetz (2012) and Bodenstein, Guerrieri & Gust (2013). Laséen 
& Svensson (2011) use a similar technique to impose a path of nominal interest rates, in a non-
ZLB context. None of these papers formally establish our equivalence result. News shocks were 
introduced by Beaudry & Portier (2006). 
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sufficiently high 𝑇𝑇 , then find a forcing process 𝑦𝑦  which solves the 

following “linear complementarity problem” (LCP): 

Definition 2 (LCP) We say 𝑦𝑦 ∈ ℝ𝑇𝑇 solves the LCP �𝑞𝑞, 𝑀𝑀� if and only if 

𝑦𝑦 ≥ 0, 𝑞𝑞 + 𝑀𝑀𝑀𝑀 ≥ 0 and 𝑦𝑦′�𝑞𝑞 + 𝑀𝑀𝑀𝑀� = 0. 

LCPs have been extensively studied in mathematics. See Cottle (2009) for 

a brief introduction, and Cottle, Pang & Stone (2009a) for a definitive 

survey. 19  LCPs can be solved via mixed-integer linear programming 

(MILP), for which optimised solvers exist. This approach is developed 

into a solution algorithm for models with OBCs in Holden (2016). 

Note that if 𝑦𝑦 solves the LCP �𝑞𝑞, 𝑀𝑀�, then for any 𝜅𝜅 > 0, 𝜅𝜅𝜅𝜅 solves the 

LCP �𝜅𝜅𝜅𝜅, 𝑀𝑀�. Thus, the properties (existence, uniqueness, difficulty, etc.) 

of an LCP cannot depend on the magnitude of 𝑞𝑞, i.e. how close 𝑞𝑞 is to the 

bound. For example, this means that raising the inflation target is 

unlikely to affect the determinacy properties of a model with a ZLB.20 

3. Existence and uniqueness results 
We now turn to our main theoretical results on the existence and 

uniqueness of perfect foresight solutions to models that are linear apart 

from an OBC. Supplemental results are contained in Appendices C and 

J, with the latter relating our findings to models solvable via dynamic 

programming. Our results exploit the bijection between solutions of the 

model with an OBC and solutions to the LCP, which permits us to import 

the conclusions of the LCP literature. The LCP results all rest on the 

properties of the 𝑀𝑀 matrix. Here we will focus on just two: that of being 

a P-matrix and that of being an S-matrix. The former will be key for 

uniqueness, and the latter for existence. 

 
19 Also see Appendix G, for direct results on the properties of small LCPs. 
20 There may be indirect effects as changing the inflation target may change 𝑀𝑀. 
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3.1. Uniqueness results 
We start by looking at uniqueness. The main definition follows: 

Definition 3 (P-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is a P-matrix if and only if 

for all 𝑧𝑧 ∈ ℝ𝑇𝑇×1  with 𝑧𝑧 ≠ 0 , there exists 𝑡𝑡 ∈ {1, … , 𝑇𝑇} , such that 

𝑧𝑧𝑡𝑡(𝑀𝑀𝑀𝑀)𝑡𝑡 > 0. (Cottle, Pang & Stone 2009b) 

Clearly, all symmetric positive definite matrices are P-matrices, so this 

definition captures a broader notion of positivity for an arbitrary matrix. 

Additionally, the diagonal of any P-matrix must be positive. In the 

context of models with a ZLB, this means that positive monetary policy 

shocks must increase nominal interest rates. It also means that news 

about future positive monetary shocks must lead to higher nominal 

interest rates in the period the shock actually hits. Recall that in Section 

1.3 we found that multiplicity was driven by positive monetary policy 

shocks having negative effects. Thus, it is unsurprising that some type of 

positivity of the responses of the bounded variable to shocks is key for 

uniqueness. In fact: 

Theorem 2 The LCP �𝑞𝑞, 𝑀𝑀� has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇, if and 

only if 𝑀𝑀 is a P-matrix. If 𝑀𝑀 is not a P-matrix, then for some 𝑞𝑞 the LCP 

�𝑞𝑞, 𝑀𝑀� has multiple solutions. 

(Samelson, Thrall & Wesler 1958; Cottle, Pang & Stone 2009b) 

Applied to models with an OBC, this becomes: 

Corollary 1 Consider an otherwise linear model with an OBC. Let 𝑇𝑇 >
0. Then: 

1) If 𝑀𝑀 is a P-matrix, and (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  is a solution to the model with an OBC 

that is away from the bound from period 𝑇𝑇 + 1 onwards, then (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  

is the unique such solution. 

2) If 𝑀𝑀 is a P-matrix, then for any 𝑥𝑥0 there exists a unique path (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  

with 𝑥𝑥𝑡𝑡  satisfying the model’s equations from period 1  to 𝑇𝑇  and 
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satisfying the model’s equations without the OBC (i.e. with the max 

removed) from period 𝑇𝑇 + 1 onwards. 

Furthermore, suppose that the model’s state space is rich enough such 
that for any path 𝓆𝓆 ̃ ∈ ℝ𝑇𝑇 , there exists 𝑥𝑥0  such that 𝑞𝑞(𝑥𝑥0) = 𝓆𝓆  ̃ (making 

explicit the dependency of 𝑞𝑞 on 𝑥𝑥0),21 then: 

3) If 𝑀𝑀 is not a P-matrix then there exists 𝑥𝑥0 such that there are multiple 

paths (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  with 𝑥𝑥𝑡𝑡 satisfying the model’s equations from period 1 

to 𝑇𝑇 and satisfying the model’s equations without the OBC (i.e. with 

the max removed) from period 𝑇𝑇 + 1 onwards. 

This result is the equivalent for models with OBCs of the key theorem of 

Blanchard & Kahn (1980). Its proof is immediate from Theorem 1. Note 

that if 𝑀𝑀 is not a P-matrix for some 𝑇𝑇, then 𝑀𝑀 will also not be a P-matrix 

for any larger 𝑇𝑇,22 so to show general multiplicity it suffices to show that 

𝑀𝑀 is not a P-matrix for a small 𝑇𝑇. 

Parts 2) and 3) of Corollary 1 are of practical relevance despite the 

non-imposition of the bound from period 𝑇𝑇 + 1  onwards for several 

reasons. Firstly, with large 𝑇𝑇, we expect there to be at least one solution 

that is away from the bound by period 𝑇𝑇 + 1. Secondly, it stretches the 

plausibility of rational expectations to suppose that outcomes today 

depend on whether the economy is expected to be at the ZLB in (say) 250 

years. Thus, we may only be interested in equilibria that escape the 

bound within (say) 𝑇𝑇 = 1000  quarters. Finally, technological 

developments are likely to make many OBCs eventually obsolete. For 

example, a move to electronic cash will mean the ZLB is no longer a 

constraint. If agents believe this will happen within 250 years, then 

taking 𝑇𝑇 = 1000  quarters would be appropriate. Thus, for practical 

purposes we might consider 𝑇𝑇 = 1000 equivalent to 𝑇𝑇 = ∞. 

 
21 This will hold, for example, if the bounded variable is subject to news shocks. See Section 5.1.2. 
22 Immediate from the alternative definition in Appendix B. See also Cottle, Pang & Stone (2009b). 
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To see why being a P-matrix is the correct notion of positivity, 

suppose that 𝑦𝑦  and 𝑦𝑦 ̃ both solved the LCP �𝑞𝑞, 𝑀𝑀� . Thus, for all 𝑡𝑡 ∈
{1, … , 𝑇𝑇}, 0 = 𝑦𝑦𝑡𝑡�𝑞𝑞 + 𝑀𝑀𝑀𝑀�𝑡𝑡 = 𝑦𝑦𝑡̃𝑡�𝑞𝑞 + 𝑀𝑀𝑦𝑦�̃𝑡𝑡, so: 
�𝑦𝑦 − 𝑦𝑦�̃𝑡𝑡�𝑀𝑀�𝑦𝑦 − 𝑦𝑦�̃�𝑡𝑡 = �𝑦𝑦 − 𝑦𝑦�̃𝑡𝑡��𝑞𝑞 + 𝑀𝑀𝑀𝑀� − �𝑞𝑞 + 𝑀𝑀𝑦𝑦�̃�𝑡𝑡 

= 𝑦𝑦𝑡𝑡�𝑞𝑞 + 𝑀𝑀𝑀𝑀�𝑡𝑡 + 𝑦𝑦𝑡̃𝑡�𝑞𝑞 + 𝑀𝑀𝑦𝑦�̃𝑡𝑡 − 𝑦𝑦𝑡𝑡�𝑞𝑞 + 𝑀𝑀𝑦𝑦�̃𝑡𝑡 − 𝑦𝑦𝑡̃𝑡�𝑞𝑞 + 𝑀𝑀𝑀𝑀�𝑡𝑡 ≤ 0 

as 𝑦𝑦𝑡𝑡 , 𝑦𝑦𝑡̃𝑡 , 𝑞𝑞 + 𝑀𝑀𝑀𝑀  and 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ̃ must all be weakly positive. Hence, if we 

define 𝑧𝑧 = 𝑦𝑦 − 𝑦𝑦,̃ then we have that for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}, 𝑧𝑧𝑡𝑡(𝑀𝑀𝑀𝑀)𝑡𝑡 ≤ 0. If 𝑀𝑀 

is a P-matrix, this implies that 𝑧𝑧 = 0  so 𝑦𝑦 = 𝑦𝑦 ̃, meaning the solution is 

unique.23 Informally, 𝑀𝑀 being a P-matrix guarantees positive shocks to 𝑖𝑖𝑡𝑡 
increase 𝑖𝑖𝑡𝑡  enough on average that one cannot have the kinds of self-

fulfilling jumps to the bound we saw in Section 1. 

One approach to assessing whether 𝑀𝑀  is a P-matrix involves 

checking the positivity of the determinants of all 𝑀𝑀’s 2𝑇𝑇 principal sub-

matrices (see Appendix B). Since this is rather onerous, in Appendix C.1 

we present both easier to verify necessary conditions, and easier to verify 

sufficient conditions. These give a fast answer one way or the other in 

most cases. See Appendix D.2 for a practical guide to checking the 

various conditions. 

3.2. Existence results 
We now turn to existence conditions. In this case, the key property is 

being an S-matrix: 

Definition 4 (S-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called an S-matrix if there 

exists 𝑦𝑦 ∈ ℝ𝑇𝑇  such that 𝑦𝑦 > 0  and 𝑀𝑀𝑀𝑀 ≫ 0 .24  Note: all P-matrices are S-

matrices. 

Again, this captures a type of positivity of 𝑀𝑀. It is considerably weaker 

than the condition of being a P-matrix required for uniqueness. In a 

model with a ZLB it would be satisfied, for example, if raising rates today 
 

23 This argument just follows that of Cottle, Pang & Stone (2009b). 
24 This may be tested by solving a linear programming problem. See Appendix B. 
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raised rates at all horizons due to the model’s persistence. (This 

corresponds to taking 𝑦𝑦 = [1,0,0, … ]′.) 

The property of being an S-matrix is closely related to the feasibility 

of an LCP: 

Definition 5 (Feasibility) We say 𝑦𝑦 ∈ ℝ𝑇𝑇 is feasible for the LCP �𝑞𝑞, 𝑀𝑀� 

if and only if 𝑦𝑦 ≥ 0 and 𝑞𝑞 + 𝑀𝑀𝑀𝑀 ≥ 0. We say a path (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  is feasible for 

a model with an OBC given initial state 𝑥𝑥0 , if when equation (1)  is 

replaced by equation (2), with 𝑦𝑦𝑡𝑡 exogenous, there is some �𝑦𝑦𝑡𝑡�𝑡𝑡=1
∞  with 

𝑦𝑦𝑡𝑡 ≥ 0 for all 𝑡𝑡, such that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  solves the model with equation (2), and 

𝑖𝑖𝑡𝑡 ≥ 0 for all 𝑡𝑡. 

By definition, if an LCP has a solution, then it is feasible. Likewise, if a 

model with an OBC has a solution, then it is feasible. If a monetary policy 

maker could make credible promises about (positive) future monetary 

policy shocks, then feasibility would be sufficient to allow the policy 

maker to ensure a solution. 

If 𝑀𝑀 is an S-matrix then feasibility is guaranteed: 

Proposition 1 The LCP �𝑞𝑞, 𝑀𝑀� is feasible for all 𝑞𝑞 ∈ ℝ𝑇𝑇 if and only if 𝑀𝑀 

is an S-matrix. If the LCP �𝑞𝑞, 𝑀𝑀� has a solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇, then 𝑀𝑀 is 

an S-matrix. (Cottle, Pang & Stone 2009b) 

Moreover, in most cases one encounters in practice, an LCP is solvable 

whenever it is feasible, i.e. whenever 𝑀𝑀  is an S-matrix. 25  This has 

immediate practical consequences: if 𝑀𝑀 is an S-matrix for some 𝑇𝑇 then 

we are likely to be able to solve the size 𝑇𝑇  LCPs we encounter in 

simulating the model, whatever the model’s path without the bound, 𝑞𝑞.  

Additionally, from Theorem 1, we have: 

 
25 Formal sufficient conditions for existence are provided in Appendix C.2. 
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Corollary 2 Let 𝑇𝑇 > 0. Consider an otherwise linear model with an OBC 
where the model’s state space is rich enough such that for any path 𝓆𝓆 ̃ ∈
ℝ𝑇𝑇 , there exists 𝑥𝑥0  such that 𝑞𝑞(𝑥𝑥0) = 𝓆𝓆  ̃.26  Then if 𝑀𝑀  is not an S-matrix, 

there exists 𝑥𝑥0 such that there is no path which escapes the bound after 

at most 𝑇𝑇 periods.27 

Since large 𝑇𝑇  (e.g. 1000 ) may be equivalent to 𝑇𝑇 = ∞  for all practical 

purposes, this result is already a helpful guide to the non-existence of 

relevant solutions. 

Nonetheless, we can also directly obtain results on the existence or 

feasibility of solutions when the constraint is imposed for all periods (i.e. 

𝑇𝑇 = ∞). Proposition 1 implies that the infinite LCP �𝑞𝑞, 𝑀𝑀� is feasible for 
all 𝑞𝑞 ∈ ℝℕ+  if and only if 𝜍𝜍 ≔ sup

𝑦𝑦∈[0,1]ℕ+
inf

𝑡𝑡∈ℕ+
�𝑀𝑀𝑀𝑀�𝑡𝑡 > 0 . Furthermore, in 

Appendix L.1 we prove: 

Proposition 2 Given an otherwise linear model with an OBC, there exist 
potentially informative bounds 𝜍𝜍𝑆𝑆, 𝜍𝜍𝑆𝑆, computable in time polynomial in 

𝑆𝑆, such that 𝜍𝜍𝑆𝑆 ≤ 𝜍𝜍 ≤ 𝜍𝜍𝑆𝑆.28 

This enables us to derive results despite the infeasible infinite 

dimensional problem that defines 𝜍𝜍. Relating this to our situation gives: 

Corollary 3 Suppose that for some 𝑆𝑆, 𝜍𝜍𝑆𝑆 > 0. Then for any 𝑥𝑥0 the model 

with an OBC has a feasible path (a necessary condition for existence of a 
solution). Conversely, suppose 𝜍𝜍𝑆𝑆 = 0. Then there is some path �𝓆𝓆𝑡̃𝑡�𝑡𝑡=1

∞  

such that if 𝑞𝑞𝑡𝑡 = 𝓆𝓆𝑡̃𝑡 for all 𝑡𝑡,29 then the model has no solution. 

 
26 Again, this will hold, e.g. if the bounded variable is subject to news shocks. See Section 5.1.2. 
27 Indeed, there is no path (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  with 𝑥𝑥𝑡𝑡 satisfying the model’s equations from period 1 to 𝑇𝑇 and 
satisfying the model’s equations without the OBC (i.e. with the max removed) from period 𝑇𝑇 +
1 onwards. 
28 The practical informativeness of these bounds is made clear by the results for NK models in 
Section 4.2 and Appendix F. 
29 I.e. in a version of the model without a bound, 𝑖𝑖𝑡𝑡 = 𝓆𝓆𝑡̃𝑡 for all 𝑡𝑡, for example because 𝑥𝑥0 or an 
added forcing process was chosen appropriately. See Section 5.1.2. 
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This result is important as it gives existence conditions without any 

dependence on 𝑇𝑇. It tells us if there are situations in which there is no 

solution that eventually escapes the bound even if we allow the 

constraint to bind for an arbitrarily long (but finite) amount of time. 

We note that the proof of Proposition 2 may be of independent 

interest for two reasons. Firstly, as it derives closed form expressions for 

the limits of the diagonals of 𝑀𝑀, via novel expressions for the impulse 

response to a news shock as the horizon goes to infinity. Secondly, 

because it derives constructive bounds on the elements of 𝑀𝑀  using 

results on pseudospectra from Trefethen and Embree (2005). 

4. Application of our results to the zero lower bound 
This section presents examples of the application of our results to 

NK models with a ZLB. We start by using them to show analytically that 

a response to the price level produces uniqueness in the model of Section 

1.1. We then apply our results to the Smets & Wouters (2003; 2007) 

models. Appendix F contains further NK examples. 

4.1. Revisiting our first example 
Section 1.1 showed that a model with flexible prices and a standard 

Taylor rule had multiple equilibria. To put this result into the context of 

our general theory, we derive the 𝑀𝑀 matrix for this model in the 𝜓𝜓 = 0 

case. Since the 𝑀𝑀 matrix stacks the impulse responses to news shocks at 

different horizons (ignoring the bound), we start by augmenting the 

model without bound by an exogenous forcing process, 𝜈𝜈𝑡𝑡, giving: 

𝑟𝑟 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜈𝜈𝑡𝑡. 
Given the entire path of 𝜈𝜈𝑡𝑡 is known in period 1, the solution must 

take the infinite moving-average form 𝜋𝜋𝑡𝑡 = ∑ 𝐹𝐹𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗
∞
𝑗𝑗=0  . Matching 

coefficients implies that 𝐹𝐹𝑗𝑗 = −𝜙𝜙−�𝑗𝑗+1�  for all 𝑗𝑗 ∈ ℕ , so 𝑖𝑖𝑡𝑡 = 𝑟𝑟 −
∑ 𝜙𝜙−𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞
𝑗𝑗=1 . From this, we can read off the columns of the 𝑀𝑀 matrix. 

The first column is the path of 𝑖𝑖𝑡𝑡 − 𝑟𝑟  when 𝜈𝜈1 = 1  and 𝜈𝜈𝑡𝑡 = 0  for 𝑡𝑡 ≠ 1 , 
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which is 0,0, …. The second column is the path of 𝑖𝑖𝑡𝑡 − 𝑟𝑟 when 𝜈𝜈2 = 1 and 

𝜈𝜈𝑡𝑡 = 0 for 𝑡𝑡 ≠ 2, which is 𝜙𝜙−1, 0,0, …. The third is 𝜙𝜙−2, 𝜙𝜙−1, 0,0, …, and so 

on. Thus, for any 𝑇𝑇, the 𝑀𝑀 matrix has a zero diagonal, a strictly negative 

upper triangle, and a zero lower triangle. Consequently, all 𝑀𝑀’s principal 

sub-matrices have zero determinant, so 𝑀𝑀  cannot be a P-matrix (see 

Appendix B). Thus, as we already saw, this model does not always have 

a unique solution when augmented with appropriate shocks (in this 

case, a shock to the real interest rate). 

Now suppose we augment the Taylor rule with a response to the 

price level, 𝑝𝑝𝑡𝑡, so: 

𝑟𝑟 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟 + 𝜙𝜙�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1� + 𝜒𝜒𝑝𝑝𝑡𝑡�, 
where 𝑝𝑝0 = 0. In this case, to find 𝑀𝑀 we need to solve the model: 

𝑟𝑟 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟 + 𝜙𝜙�𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1� + 𝜒𝜒𝑝𝑝𝑡𝑡 + 𝜈𝜈𝑡𝑡, 
which must have a solution in the form 𝑝𝑝𝑡𝑡 = ∑ 𝐺𝐺𝑗𝑗𝜈𝜈𝑡𝑡+𝑗𝑗

∞
𝑗𝑗=−∞ , where 𝜈𝜈𝑡𝑡 = 0 

for all 𝑡𝑡 ≤ 0. Again, by matching coefficients, we can derive closed form 
expressions for 𝐺𝐺𝑗𝑗, given in Appendix K. Furthermore, we show there 

that for any 𝑇𝑇 , all of the elements of 𝑀𝑀  are strictly increasing in 𝜒𝜒  for 

small 𝜒𝜒. Thus, by Jacobi’s formula, for any principal sub-matrix 𝑊𝑊 of 𝑀𝑀 

with 𝑊𝑊 ∈ ℝ𝑆𝑆×𝑆𝑆 (𝑆𝑆 ≤ 𝑇𝑇), if 𝜒𝜒 = 0: 
𝑑𝑑 det 𝑊𝑊

𝑑𝑑𝜒𝜒 =
𝑑𝑑𝑊𝑊𝑆𝑆,1

𝑑𝑑𝜒𝜒 (−1)𝑆𝑆−1 det 𝑊𝑊1:(𝑆𝑆−1),2:𝑆𝑆 =
𝑑𝑑𝑊𝑊𝑆𝑆,1

𝑑𝑑𝜒𝜒 ��−𝑊𝑊𝑠𝑠,𝑠𝑠+1�
𝑆𝑆−1

𝑠𝑠=1
> 0, 

as with 𝜒𝜒 = 0 , 𝑊𝑊  must be strictly upper triangular with negative 
elements in the upper triangle. Thus, for any 𝑇𝑇, there exists 𝜒𝜒𝑇𝑇 ∈ (0, ∞] 

such that for all 𝜒𝜒 ∈ �0, 𝜒𝜒𝑇𝑇�, 𝑀𝑀 is a P-matrix. Consequently, a weak but 

positive response to the price level restores determinacy in this model. 

Since the Fisher equation and the Taylor rule are present in all NK 

models, it is natural to expect that this result should generalize across all 

NK models. As an example, in the next section we examine price 

targeting within two medium scale DSGE models. 
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4.2. The Smets & Wouters (2003; 2007) models 
Smets & Wouters (2003) and Smets & Wouters (2007) are prototypical 

medium-scale linear DSGE models, featuring assorted shocks, habits, 

price and wage indexation, capital (with adjustment costs and variable 

utilisation) and general monetary policy reaction functions. The former 

model is estimated on Euro area data, while the latter is estimated on US 

data. The latter model also contains trend growth (permitting its 

estimation on non-detrended data), and a slightly more general 

aggregator across industries. However, they are broadly similar models, 

and any differences in their behaviour chiefly stems from differences in 

the estimated parameters. Since both models are well known in the 

literature, we omit their equations here, referring the reader to the 

original papers for further details. 

To assess the likelihood of multiple equilibria in the presence of the 

ZLB, we augment each model with a ZLB on nominal interest rates, and 

evaluate the properties of each model’s 𝑀𝑀  matrix at the estimated 

posterior-modes from the original papers. To minimise the deviation 

from the original papers, we do not introduce an auxiliary variable for 

shadow nominal interest rates, so the monetary rules take the form of 

𝑖𝑖𝑡𝑡 = max�0, 𝜌𝜌𝑖𝑖𝑖𝑖𝑡𝑡−1 + �1 − 𝜌𝜌𝑖𝑖�(⋯ ) + ⋯ �, in both cases. Our results would 

be similar with a shadow nominal interest rate. 

Recall that for ZLB models, the diagonal of the 𝑀𝑀 matrix captures 

whether positive news shocks to monetary policy raise nominal interest 

rates in the period in which the shock hits. If this diagonal ever goes 

negative, then the 𝑀𝑀 matrix cannot be a P-matrix, and hence the model 

will have multiple solutions in at least some states. In Figure 1,30 we plot 

the diagonal of the 𝑀𝑀 matrix for the two models. We see that while in 

the US model, these impacts remain positive at all horizons, in the Euro 

 
30 Details on replicating all of the results in this section are contained in Appendix F.5. 
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area model, these impacts turn negative after just a few periods, and 

remain so at least up to period 40 . Therefore, in the ZLB augmented 

Smets & Wouters (2003) model, there is not always a unique equilibrium. 
 
 

 
Figure 1: The diagonals of the 𝑴𝑴 matrices for the Smets & Wouters (2003; 2007) models 

 

For the Smets & Wouters (2007) model, numerical calculations reveal 

that for 𝑇𝑇 < 9 , 𝑀𝑀  is a P-matrix. However, with 𝑇𝑇 ≥ 9 , the top-left 9 × 9 

sub-matrix of 𝑀𝑀  has negative determinant, so for 𝑇𝑇 ≥ 9 , 𝑀𝑀  is not a P-

matrix. Thus, this model also has multiple equilibria. While placing a 

larger coefficient on inflation in the Taylor rule can make the Euro area 

picture more like the US one, with a positive diagonal to the 𝑀𝑀 matrix, 

even with incredibly large coefficients, 𝑀𝑀  remains a non-P-matrix for 

both models. This is driven by the real and nominal rigidities in the 

model reducing the average value of the impulse response to a positive 

news shock to the monetary rule. Following such a shock’s arrival, the 

rigidities help ensure that the fall in output is persistent. Prior to its 

arrival, consumption habits and capital/investment adjustment costs 

help produce a larger anticipatory recession. Hence, in both the Euro 

area and the US, we ought to take seriously the possibility that the 

existence of the ZLB produces non-uniqueness. 

As an example of multiplicity, in Figure 2 we plot two different 

solutions following the combination of shocks to the Smets & Wouters 

(2007) model that are most likely to produce negative interest rates for a 

year in the absence of a ZLB.31 In both solutions, the dashed line shows 

the response in the absence of the ZLB, for reference. Particularly notable 
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is the flip in sign, since the shocks most likely to take the model to the 

ZLB for a year are expansionary ones reducing prices (positive 

productivity and negative mark-up). Section 5.3.1 shows an example of 

multiplicity in the Smets & Wouters (2003) model, and discusses the 

economic relevance of such multiplicity. 
 

 

  
Figure 2: A “good” solution (left 4 panels) and a “bad” solution (right 4 panels), following a 

combination of shocks to the Smets & Wouters (2007) model 
All variables are in logarithms. Inflation and nominal interest rates are annualized. 

The precise combination of shocks is detailed in Footnote 31. 
In all plots, dashed lines show the path the economy would have followed without the ZLB. 

In addition, it turns out that for neither model is 𝑀𝑀 an S-matrix even 

with 𝑇𝑇 = 1000 , and thus for both models there are some initial states 

(possibly augmented with monetary policy news shocks) for which no 

solution exists which escapes the bound after at most 250 years. This is 

strongly suggestive of non-existence for some initial states even for 

arbitrarily large 𝑇𝑇 . This is reinforced by the fact that for the Smets & 

Wouters (2007) model, with 𝑇𝑇 = 1000, Proposition 2 gives that 𝜍𝜍 ≤ 0 +

 
31  We find the vector 𝑤𝑤  that minimises 𝑤𝑤′𝑤𝑤  subject to 𝑟𝑟 ̅+ 𝑍𝑍𝑍𝑍 ≤ 0 , where 𝑟𝑟 ̅ is the steady state 
interest rate, and columns of 𝑍𝑍 give four periods of the IRF of interest rates to the given shocks. 
This gives: productivity, 3.56 s.d.; risk premium, −2.70 s.d.; government, −1.63 s.d.; investment, 
−4.43 s.d.; monetary, −2.81 s.d.; price mark-up, −3.19 s.d.; wage mark-up, −4.14 s.d.. 
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numerical error (with 𝜍𝜍 as defined in Section 3.2), which is suggestive of 

non-existence even for infinite 𝑇𝑇. 

With a response to the price level, the situation is very different. 

Suppose that in both models we replace the monetary rule by a simple 

rule responding to the price level and output growth, so it becomes: 

𝑖𝑖𝑡𝑡 = max �0, 𝜌𝜌𝑖𝑖𝑖𝑖𝑡𝑡−1 + �1 − 𝜌𝜌𝑖𝑖� log �𝑃𝑃𝑡𝑡
𝑌𝑌𝑡𝑡

𝑌𝑌𝑡𝑡−1
�� ,  

where 𝜌𝜌𝑖𝑖 is as in the original model, 𝑌𝑌𝑡𝑡 is real GDP and where the price 
level 𝑃𝑃𝑡𝑡 evolves according to log 𝑃𝑃𝑡𝑡 = log 𝑃𝑃𝑡𝑡−1 + log�Π𝑡𝑡

Π �. Then, with 𝑇𝑇 =

1000 , for either model the sufficient conditions we introduce in 

Appendix C.1 imply that 𝑀𝑀  is a P-matrix. Hence, the models have a 

unique solution conditional on escaping after at most 250 years. 

Additionally, we have that 𝜍𝜍 > 0.036 for the Euro area model with this 

monetary rule, and that 𝜍𝜍 > 0.009 for the US one (with 𝜍𝜍 as defined in 

Section 3.2). Hence, Corollary 3 implies that the model always has a 

feasible path. This is a necessary condition for existence of a solution for 

any initial state. As one would expect, these results are also robust to 

departures from equal, unit, coefficients on prices and output growth. 

Thus, price level targeting again appears to be sufficient for determinacy 

in the presence of the ZLB. 

In Appendix F we show that this result further generalises to other 

models. As expected, given the analytic results of the previous section, a 

response to the price level ensures determinacy in the presence of the 

ZLB across a wide range of NK models. The intuition again comes down 

to the sign of the response to monetary policy (news) shocks. With the 

price level in the Taylor rule, the reduction in prices brought about by a 

positive monetary policy (news) shock must be followed eventually by a 

counter-balancing increase. But if inflation is higher in future, then real 

rates are lower today, meaning that consumption, output, inflation and 

nominal rates will all be relatively higher today. This ensures that 
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positive monetary policy (news) shocks have sufficiently positive effects 

on nominal rates to prevent self-fulfilling jumps to the bound. Thus, in 

the presence of the ZLB, a positive response to the price level is the 

equivalent of the Taylor principle. We discuss this in the context of the 

existing literature on price level targets in Section 5.3.2. 

5. Further discussion 
To see the broader relevance of our results, in this section we further 

examine them in the context of the prior literature. We start by providing 

further justification for our assumptions. We then provide additional 

context for our general results. We finish with a discussion of the 

application to the zero lower bound, including examining the potential 

contribution of multiplicity to observed outcomes in the great recession. 

5.1. Our assumptions 
In this subsection, we discuss the relevance of our assumptions: first, 

the imposition of a terminal condition; next, the need for a sufficiently 

rich state space in some results. 

5.1.1. Our terminal condition 

Our results are conditional on the economy returning to a given 

steady state about which the economy is locally determinate. For models 

with a ZLB, this means the steady state with positive inflation, unless the 

model is augmented with a sunspot equation following Farmer, 

Khramov & Nicolò (2015). This approach contrasts with the prior 

literature, beginning with Benhabib, Schmitt-Grohé & Uribe (2001a; 

2001b), and further developed by Schmitt-Grohé & Uribe (2012), Mertens 

& Ravn (2014) and Aruoba, Cuba-Borda & Schorfheide (2018), amongst 

others. In this literature, indeterminacy comes from the fact that agents 

place positive probability on the economy converging towards the 

deflationary steady state. 
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A priori, it is unclear whether agents should place positive 

probability on the economy converging to deflation. Firstly, the central 

banks of most major economies have announced (positive) inflation 

targets. Thus, convergence to a deflationary steady state would represent 

a spectacular failure to hit the target. As argued by Christiano and 

Eichenbaum (2012), a central bank may rule out the deflationary 

equilibria in practice by switching to a money growth rule following 

severe deflation, along the lines of Christiano & Rostagno (2001). 32 

Furthermore, Richter & Throckmorton (2015) and Gavin et al. (2015) 

present evidence that the deflationary equilibrium is unstable33  under 

rational expectations if shocks are large enough, making it much harder 

for agents to coordinate upon it. Finally, a belief that inflation will 

eventually return to the vicinity of its target appears to be in line with 

the empirical evidence of Gürkaynak, Levin & Swanson (2010). It is thus 

an important question whether there are still multiple equilibria even 

when all agents believe that in the long run the economy will return to 

the standard steady state. 

However, our results have important consequences even if one is not 

convinced that agents should expect a return to the standard steady 

state. Our examples in Appendix F show that for standard NK models 

with endogenous state variables, there is a positive probability of 

arriving in a state of the world (with certain values of state variables and 

shocks) in which there is no perfect foresight path returning to the non-

deflationary steady state. 34 Hence, if we suppose that in the presence of 

 
32 See also Christiano & Takahashi (2018). 
33 They show that policy function iteration is not stable near the deflationary equilibria. 
34 If the LCP �𝑞𝑞, 𝑀𝑀� is not feasible, then for any 𝑞𝑞 ̂ ≤ 𝑞𝑞 and 𝑦𝑦 ≥ 0, since �𝑞𝑞, 𝑀𝑀� is not feasible there 
exists 𝑡𝑡 ∈ {1, … , 𝑇𝑇} such that 0 > �𝑞𝑞 + 𝑀𝑀𝑀𝑀�𝑡𝑡 ≥ �𝑞𝑞 ̂+ 𝑀𝑀𝑀𝑀�𝑡𝑡, so the LCP �𝑞𝑞,̂ 𝑀𝑀� is also not feasible. 
Consequently, if 𝑞𝑞 is viewed as a draw from an absolutely continuous distribution, then if there 
are some 𝑞𝑞 for which the model has no solution satisfying the terminal condition, then there is 
no solution with positive probability. 
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risk, agents deal with uncertainty by integrating over the space of 

possible future shock sequences, as in the original stochastic extended 

path algorithm of Adjemian & Juillard (2013),35 then such agents would 

likely place positive probability on tending to the “bad” steady state.36 

This rationalises the beliefs needed to sustain multiplicity in the prior 

literature. As switching to a price level target would remove the non-

existence problem, it could also help ensure beliefs about long-run 

inflation remain positive, avoiding this extra source of indeterminacy. 

5.1.2. Rich state spaces 

In e.g. Theorem 2, for some of our results we suppose that the 
model’s state space is rich enough such that for any 𝓆𝓆  ̃, there exists 𝑥𝑥0 

such that 𝑞𝑞(𝑥𝑥0) = 𝓆𝓆 ,̃ where 𝑞𝑞(𝑥𝑥0) gives the 𝑞𝑞 from Definition 1 (the path 

in the absence of the bound) for the given value of 𝑥𝑥0 (the initial state). 

In most models, one way to achieve this is to augment equation (1) with 

an exogenous forcing process, so: 

𝑖𝑖𝑡𝑡 = max�0, 𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1� + 𝜈𝜈𝑡𝑡� 

where 𝜈𝜈𝑡𝑡 = 0  for 𝑡𝑡 > 𝑇𝑇 , and where the entire path of 𝜈𝜈𝑡𝑡  is known in 

period 1 . I.e. 𝜈𝜈𝑡𝑡  acts like news shocks. This is equivalent to a model 

without such a forcing process but with 𝑇𝑇  more state variables which 

track the arrival of these shocks (see Appendix E). For the condition to 

be satisfied under this approach, 𝑀𝑀 must be full rank so that it can be 

inverted to find the shocks required to produce the desired 𝑞𝑞. 

 
35 This is not fully rational, as it is equivalent to assuming that agents act as if the uncertainty in 
all future periods would be resolved next period. However, in practice this appears to be a close 
approximation to full rationality, as demonstrated by Holden (2016). The authors of the original 
stochastic path method now have a version that is fully consistent with rationality (Adjemian & 
Juillard 2016). 
36  The non-existence of a solution returning to the standard steady state does not necessarily 
imply the existence of a solution returning to the deflationary one. However, given the 
indeterminacy of the deflationary steady state, it is easier to find a solution returning there in 
general. With no solution returning to the standard steady state, if there is a solution to the model 
at all, it must be one converging to the deflationary steady state. 
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In the monetary policy context, such news shocks to interest rates 

may reflect forward guidance. A more general justification for the 

presence of news shocks is that they capture future uncertainty, 

following the original stochastic extended path approach of Adjemian & 

Juillard (2013). As previously mentioned, this posits that agents draw 

multiple samples of future shocks for periods 1, … , 𝑇𝑇 , calculate the 

perfect-foresight paths conditional on those future shocks, and then 

average over these realised paths.37 In a linear model with shocks with 

unbounded support, providing at least one shock has an impact on 𝑖𝑖𝑡𝑡 for 

each 𝑡𝑡 ∈ {1, … , 𝑇𝑇} , the distribution of future paths of (𝑖𝑖𝑡𝑡)𝑡𝑡=1
∞   will have 

positive support over the entirety of ℝ𝑇𝑇. This justifies looking for results 

that hold for any possible 𝑞𝑞. 

5.2. Our general results 
We now further discuss our results on uniqueness/multiplicity and 

existence/non-existence with respect to the prior literature. 

5.2.1. Uniqueness and multiplicity 

We have presented uniqueness results for otherwise linear models 

with terminal conditions. We argue here for the importance of these 

results despite their limitation to otherwise linear models. 

Bodenstein (2010) showed that linearization can exclude equilibria. 

Additionally, Boneva, Braun & Waki (2016) show that there may be 

multiple perfect-foresight solutions to a non-linear NK model with ZLB, 

converging to the standard steady state, even though the linearized 

version of their model (with a ZLB) has a unique equilibrium. Thus, the 

multiplicity we find is strictly in addition to the multiplicity found by 

those authors. Our results complement those of Boneva, Braun & Waki 

(2016), since we are able to handle endogenous state variables, while 

their methods permit the analysis of fully non-linear models without 

 
37 See Footnote 35 for caveats to this procedure. 
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endogenous states. Additionally, note that the multiplicity found in a 

simple linearized model in Brendon, Paustian & Yates (2013) is also 

found in the equivalent non-linear model in Brendon, Paustian & Yates 

(2019). This is suggestive evidence for the continued relevance of our 

results in the fully non-linear case. 

In fact, the tools of this paper can be used to analyse the properties 

of perfect-foresight models with nonlinearities other than an 

occasionally binding constraint. Recall that we showed 𝑖𝑖�𝑦𝑦� = 𝑞𝑞 + 𝑀𝑀𝑀𝑀 +
Ο�𝑦𝑦′𝑦𝑦� as 𝑦𝑦′𝑦𝑦 → 0, where 𝑀𝑀 is defined in terms of partial derivatives of 

the path (see Definition 1). We did not need to impose linearity to derive 

the complementary slackness constraints on 𝑦𝑦. Thus, in a fully non-linear 

perfect foresight context, we can still use the tools we develop here to 

look at the (first order approximate) properties of perfect foresight 

problems in which 𝑦𝑦 does not become too large in the solution (which 

usually means that 𝑞𝑞 does not go too negative). In particular, we do not 

need to linearize before deriving 𝑞𝑞  or 𝑀𝑀 , so we can preserve accuracy 

even though only large shocks might drive us to the bound. In this fully 

non-linear case, 𝑀𝑀 will be a function of the initial state. 

Furthermore, studying multiplicity in otherwise linear models is an 

independently important exercise. Firstly, macroeconomists have long 

relied on existence and uniqueness results based on linearization of 

models without occasionally binding constraints, even though this may 

produce spurious uniqueness in some circumstances.38  Secondly, it is 

nearly impossible to find all perfect foresight solutions in general non-

linear models, since this is equivalent to finding all the solutions to a 

huge system of non-linear equations, when even finding all the solutions 

to large systems of quadratic equations is computationally intractable. 

 
38 Perturbation solutions are only valid within some domain of convergence, so even the results 
of e.g. Lan & Meyer-Gohde (2013; 2014) do not mean that first order determinacy implies global 
determinacy. 
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At least if we have the full set of solutions to the otherwise linear model, 

we may use homotopy continuation methods to map these solutions into 

solutions of the non-linear model. Furthermore, finding all solutions 

under uncertainty is at least as difficult in general, as the policy functions 

are also defined by a large system of non-linear equations. Thirdly, 

Christiano and Eichenbaum (2012) argue that the additional equilibria 

of Boneva, Braun & Waki (2016) may be mere “mathematical curiosities” 

due to their non-e-learnability. This suggests that the equilibria that exist 

in the linearized model are of independent interest, whatever one’s view 

on this debate. Finally, our main results for NK models imply non-

uniqueness, so concerns of spurious uniqueness under linearization will 

not be relevant in these cases. 

Indeed, our choice to focus on otherwise-linear models under 

perfect-foresight, with fixed terminal conditions, has biased our results 

in favour of uniqueness for three distinct reasons. Firstly, because there 

at least as many solutions under rational expectations as under perfect-

foresight, as we prove in Appendix I. Secondly, because there are 

potentially other solutions returning to alternate steady states. Thirdly, 

because the original fully non-linear model may possess yet more 

solutions. It is thus all the more surprising that we still find multiplicity 

under perfect foresight in otherwise linear NK models with a ZLB. 

However, we are certainly not the first to look at multiplicity in 

otherwise linear models with OBCs. Hebden, Lindé & Svensson (2011) 

propose a simple way to find multiplicity: namely, hit the model with a 

large shock which pushes it towards the bound, and see if one can find 

more than one set of periods such that being at the bound during those 

periods is an equilibrium. In practice, this suggests first looking if there 

is a solution which finally escapes the bound after one period, then 

looking to see if there is one which finally escapes the bound after two 



29 

periods, and so on.39 This procedure may succeed in finding an example 

of multiplicity, and thus proving that the original model does not 

possess a unique solution. However, it cannot work completely generally 

as the multiplicity may only arise in very particular states, or may feature 

multiple spans at the bound. 

Like us, Jones (2015) presents a uniqueness result for models with 

occasionally binding constraints. He shows that if one knows the set of 

periods in which the constraint binds, then under standard assumptions, 

there is a unique path in which the constraint binds in those periods. 

However, the multiplicity for models with OBCs precisely stems from 

there being multiple sets of periods at which the model could be at the 

bound. Our results are not conditional on knowing in advance the 

periods at which the constraint binds. 

Finally, uniqueness results have also been derived in the Markov 

switching literature. Examples include Davig & Leeper (2007), Farmer, 

Waggoner & Zha (2010; 2011) and Barthélemy & Marx (2019). These 

papers assume regime switching is exogenous. This prevents their 

application to OBCs, which generate endogenous regime switches. 

Determinacy results with endogenous switching were derived by 

Barthélemy & Marx (2017) assuming regime transition probabilities are 

a smooth function of the state. These results are not directly applicable 

to OBCs as OBCs produce jumps in regime transition probabilities. 

5.2.2. Existence and non-existence 

We also produced conditions for the existence of a perfect-foresight 

solution to an otherwise linear model with a terminal condition. These 

results provide new intuition for the prior literature on existence under 

rational expectations, which has found that NK models with a ZLB 

 
39 This is tractable in our context, as it is easy to constrain the MILP representation of the LCP 
problem to be at the bound in the final period. The “DynareOBC” toolkit takes this approach. 
See Holden (2016) for further details. 
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might have no solution at all if the variance of shocks is too high. For 

example, Mendes (2011) derived analytic results on existence as a 

function of the variance of a demand shock, and Basu & Bundick (2015) 

showed the quantitative relevance of such results. Furthermore, 

conditions for the existence of an equilibrium in a simple NK model with 

discretionary monetary policy are derived in close form for a model with 

a two-state Markov shock by Nakata & Schmidt (2014). They show that 

the economy must spend a small amount of time in the bad state for the 

equilibrium to exist, which again links existence to variance. 

While our results are not directly related to the variance of shocks, 

as we work under perfect foresight, they are nonetheless linked. We 

showed that whether a perfect foresight solution exists depends on the 

perfect-foresight path taken by nominal interest rates in the absence of 

the bound. Many of our results assumed that this path was arbitrary. 

However, in a model with a small number of shocks, all of bounded 

support, and no information about future shocks, clearly not all paths 

are possible for nominal interest rates in the absence of the bound. The 

more shocks are added (e.g. news shocks), and the wider their support, 

the greater will be the support of the space of possible paths for nominal 

interest rates in the absence of the ZLB, and hence, the more likely will 

be non-existence of a solution for a positive measure of paths. This helps 

to explain the literature’s prior results. 

There has also been some prior work by Richter & Throckmorton 

(2015) and Gavin et al. (2015; Appendix B) that has related a kind of 

eductive stability (the convergence of policy function iteration) to other 

properties of the model. Non-convergence of policy function iteration is 

suggestive of non-existence, though not definitive evidence. These 

results on stability for small, fully non-linear models under rational 
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expectations are complementary to our results on existence for 

arbitrarily large, otherwise linear models under perfect foresight. 

It is also possible to establish existence by finding a solution to the 

model, perhaps conditional on the initial state. Under perfect foresight, 

the methods described in Holden (2010; 2016) are a possibility, and the 

method of Guerrieri & Iacoviello (2015) (extending Jung, Teranishi & 

Watanabe (2005)) is a prominent alternative. Under rational 

expectations, policy function iteration methods have been used by 

Fernández-Villaverde et al. (2015) and Richter & Throckmorton (2015), 

amongst others. However, solution algorithms cannot help us establish 

non-existence: non-convergence of a solution algorithm does not imply 

non-existence.40  Furthermore, if the problem is solved globally, there 

could still be an area of non-existence outside of the grid on which the 

model was solved. Similarly, if a solution is found under perfect foresight 

for a given initial state, then there is still no guarantee of solution 

existence for other initial points. If we wish to guide policy makers in 

how they should act to ensure existence in any state, then there is an 

essential role for results on global existence, as we have produced here.  

5.3. The application to the zero lower bound 
We finish this section by discussing the relevance of our application 

to the ZLB: first by examining the plausibility of the multiple equilibria 

we find; next by looking further at price level targets. 

5.3.1. Plausibility of multiplicity at the ZLB 

We need to answer two key questions to establish the economic 

relevance of self-fulfilling spells at the ZLB. Firstly, is the coordination of 

beliefs needed to sustain the equilibrium plausible? Secondly, do such 

equilibria feature reasonable movements in macroeconomic variables? It 

 
40 The algorithm of Holden (2016) is a partial exception. This algorithm always converges, either 
producing a solution, or a proof of non-existence. 
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is true that self-fulfilling jumps to the ZLB may feature implausibly large 

falls in output and inflation. This is closely related to the so-called 

“forward guidance puzzle” (Carlstrom, Fuerst & Paustian 2015; Del 

Negro, Giannoni & Patterson 2015). 41  However, if interest rates are 

already low (due to a recession), then a much smaller self-fulfilling 

“news” shock is needed to produce a jump to the ZLB. Thus, there will 

be a much more moderate drop in output and inflation. Furthermore, 

with interest rates low, it takes a smaller movement in confidence for 

people to expect to hit the ZLB. Even more plausibly, if the economy is 

already at the ZLB, then small changes in confidence could easily select 

an equilibrium featuring a longer spell there than in the equilibrium that 

leaves fastest. Indeed, there is no good reason people should coordinate 

on the equilibrium with the shortest time at the ZLB. 

As an illustration, in Figure 3 we plot the impulse response to a large 

magnitude preference shock (scaling felicity), in the Smets & Wouters 

(2003) model.42 The shock is not quite large enough to send the economy 

to the ZLB 43  in the standard solution, shown with a dashed line. 

However, there is an alternative solution in which the economy jumps to 

 
41 McKay, Nakamura & Steinsson (2016) point out that these implausibly large responses to news 
are muted in models with heterogeneous agents, and give a simple “discounted Euler” 
approximation that produces similar results to a full heterogeneous agent model. While 
including a discounted Euler equation makes it harder to generate multiplicity (e.g. reducing the 
parameter space with multiplicity in the Brendon, Paustian & Yates (2013) model), when there is 
multiplicity, the resulting responses are much larger, as the weaker response to news means the 
required endogenous “news” needs to be much greater in order to drive the model to the bound.  
42 The shock is 22.5 standard deviations. While this is implausibly large, the economy could be 
driven to the bound with a run of smaller shocks. It is also worth recalling that the model was 
estimated on the great moderation period, so the estimated standard deviations may be too low, 
and the real interest rate too high. Finally, recent evidence (Cúrdia, Del Negro & Greenwald 2014) 
suggests that the shocks in DSGE models should be fat tailed, making large shocks more likely. 
43 Since the Smets & Wouters (2003) model does not include trend growth, it is impossible to 
produce a steady state value for nominal interest rates that is consistent with both the model and 
the data. We choose to follow the data, setting the steady state of nominal interest rates to its 
mean level over the same sample period used by Smets & Wouters (2003), using data from the 
same source (Fagan, Henry & Mestre 2005). 
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the bound one period after the initial shock, remaining there for three 

periods. While the alternative solution features larger drops in output 

and inflation, the falls are broadly in line with the magnitude of the 

crisis, with Eurozone GDP and consumption falling about 20% below a 

pre-crisis log-linear trend, and the largest drop in annualized Eurozone 

consumption inflation from 2008q3 to 2008q4 being around 4.4%. 44 

Considering this, we view it as plausible that multiplicity of equilibria 

was a significant component of the explanation for the great recession. 
 

 

 
Figure 3: Two solutions following a preference shock in the Smets & Wouters (2003) model. 

All variables are in logarithms. Inflation and nominal interest rates are annualized. 
The dashed line is a solution which does not hit the bound. 

The solid line is an alternative solution which does hit the bound. 

5.3.2. Price level targeting 

Our results suggest that given belief in an eventual return to 

inflation, a determinate equilibrium may be produced in standard NK 

models if the central bank switches to targeting the price level, rather 

than the inflation rate. As the previous figure made clear, the benefits to 

this could be substantial.45 
 

44 Data was again from the area-wide model database (Fagan, Henry & Mestre 2005). 
45 We look more formally at welfare in a model very similar to the Smets & Wouters (2003) model 
in Appendix F.5. 
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There is of course a large literature advocating price level targeting 

already. Vestin (2006) made an important early contribution by showing 

that its history dependence mimics the optimal rule, a conclusion 

reinforced by Giannoni (2010). Eggertsson & Woodford (2003) showed 

the particular desirability of price level targeting in the presence of the 

ZLB, since it produces inflation after the bound is escaped. A later 

contribution by Nakov (2008) showed that this result survived taking a 

fully global solution, and Coibion, Gorodnichenko & Wieland (2012) 

showed that it still holds in a richer model. More recently, Basu & 

Bundick (2015) have argued that a response to the price level ensures 

equilibria exists even when shocks have large variances, avoiding the 

problems stressed by Mendes (2011). Our argument is distinct from 

these; we showed that in the presence of the ZLB, inflation targeting 

rules are indeterminate, even conditional on an eventual return to 

inflation, whereas price level targeting rules produce determinacy, in the 

sense of the existence of a unique perfect-foresight path returning to the 

standard steady state. 

Our results are also distinct from those of Adão, Correia & Teles 

(2011) who showed that if the central bank is not constrained to respect 

the ZLB out of equilibrium (i.e. for non-market-clearing prices),46 and if 

the central bank uses a rule that responds to the right hand side of the 

Euler equation, then a globally unique equilibrium may be produced, 

even without ruling out explosive beliefs about prices. Their rule has the 

flavour of a (future) price-targeting rule, due to the presence of future 

 
46 Bassetto (2004) gives a precise definition of this. The distinction is between constraints that hold 
for any prices, such as agent first order conditions, and constraints that hold only for the market 
clearing prices, such as market clearing conditions. The contention of Bassetto (2004) is that the 
ZLB is in the latter category—the central bank can promise negative nominal interest rates off 
the equilibrium path, which will give determinacy without negative rates actually being 
required. (Negative rates provide an infinite nominal transfer, entirely devaluing nominal wealth, 
so pushing up prices and preventing negative rates ever being called for.) Bassetto notes how 
dangerous it would be to rely on such infinite transfers given the possibility of misspecification. 
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prices in the right-hand side of the Euler equation. We assume though 

that the central bank must satisfy the ZLB even out of equilibrium (i.e. 

for all prices), which makes it harder to produce uniqueness. However, 

in line with the bulk of the NK literature, we maintain the standard 

assumption that explosive paths for inflation are ruled out, an 

assumption which the rules of Adão, Correia & Teles (2011) do not 

require.47  As such, our results are complementary to those of Adão, 

Correia & Teles (2011). 

Somewhat contrary to our results, Armenter (2017) shows that in a 

simple otherwise linear NK model, if the central bank pursues Markov 

(discretionary) policy subject to an objective targeting inflation, nominal 

GDP or the price level, then the presence of a ZLB produces additional 

equilibria quite generally. This difference between our results and those 

of Armenter (2017) is chiefly driven by the fact that we rule out getting 

stuck in the neighbourhood of the deflationary steady state by 

assumption. We also assume commitment to a rule. 

In other related work, Duarte (2016) considers how a central bank 

might ensure determinacy in a simple continuous time new Keynesian 

model. Like us, he finds that the Taylor principle is not sufficient in the 

presence of the ZLB. He shows that determinacy may be produced by 

using a rule that holds interest rates at zero for a history dependent 

amount of time, before switching to a max{0, … } Taylor rule. While we 

do not allow for such switches in central bank behaviour, we do find an 

important role for history dependence, through price targeting. 

 
47 Note that the unstable solutions under price level targeting feature exponential growth in the 
logarithm of the price level, which also implies explosions in inflation rates. 
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6. Conclusion 
Determinacy conditions are crucial for understanding the behaviour 

of the models we work with in macroeconomics. This paper provides the 

first general theoretical results on existence and uniqueness for 

otherwise linear models with occasionally binding constraints, given 

terminal conditions. As such, it may be viewed as doing for models with 

OBCs what Blanchard & Kahn (1980) did for linear models. Applying 

our results, we showed that multiplicity is the norm in New Keynesian 

models, but that a response to the price level can restore determinacy. 

Our conditions may be easily checked numerically using the 

“DynareOBC” toolkit we provide.48 
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