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Abstract

We consider efficiency measurement methods in the presence of uncertain input
and output data, and without the (empirically problematic) assumption of convexity
of the production technology. In particular, we perform a simulation study in order
to contrast two well-established methods, IDEA and Fuzzy DEA, with a recently
suggested extension of Fuzzy DEA in the literature (dubbed the HB method). We
demonstrate that the HB method has important advantages over the conventional
methods, resulting in more accurate efficiency estimates and narrower bounds for
the efficiency scores of individual Decision Making Units (DMUs): thereby provid-
ing more informative results that may lead to more effective decisions. The price is
computational complexity. Although we show how to significantly speed up com-
putational time compared to the original suggestion, the HB method remains the
most computationally heavy method among those considered. This may limit the
use of the method in cases where efficiency estimates have to be computed on the
fly, as in interactive decision support systems based on large data sets.
Keywords: data envelopment analysis, data uncertainty, fuzzy, imprecise data en-

velopment analysis, simulation

*This research was partly funded by the Bio Based Industries Joint Undertaking under the European
Union’s Horizon 2020 research and innovation program under grant agreement No 720757 Tech4Effect.

TDepartment of Food and Resource Economics (IFRO), University of Copenhagen, Rolighedsvej 25,
DK-1958 Frederiksberg C, Denmark. Email: jlh@ifro.ku.dk

tEconomics, NYU Shanghai, China.

$Department of Food and Resource Economics (IFRO), University of Copenhagen, Rolighedsvej 25,
DK-1958 Frederiksberg C, Denmark. Email: pjk@ifro.ku.dk.

TDepartment of Food and Resource Economics (IFRO), University of Copenhagen, Rolighedsvej 25,
DK-1958 Frederiksberg C, Denmark. Email: kun@ifro.ku.dk



1 Introduction

Overview: When studying benchmarking in practice there are often considerable data
uncertainties involved: for instance using data that by nature is imprecise, like prefer-
ence information or information extracted from text and images. Consequently, a wide
range of benchmarking methods have been developed to account for data uncertainties:
see e.g., Emrouznejad and Yang (2018) and Hatami-Marbini et al. (2011). In the present
paper we compare the performance of two of the most popular among these methods
to a recently suggested method in Hougaard and Balezentis (2014). By a simulation
study, we show that this new method has a significant advantage in terms of outcome:
results are more accurate, and reported efficiency bounds are narrower, yielding more
meaningful (and useful) interpretations of the results. The price, however, is computa-
tional complexity. Even though we show how to significantly reduce the computational
burden and the implementation complexity compared to the original formulation of the
method, it is still far heavier to compute than the immediate alternatives. This method
is therefore certainly an attractive alternative to use in many applications, but given its
computational cost might not be ready yet for interactive benchmarking purposes where

results must be computed and analyzed on the fly.

Background: Benchmarking by way of efficiency measurement techniques has a long
line of tradition, see e.g., Bogetoft and Otto (2010). In particular, variations of Data
Envelopment Analysis (DEA) has proved tremendously popular. Conventional DEA,
and its variations, requires crisp data on inputs and outputs, and produce a set of crisp
efficiency scores, one for each Decision Making Unit (DMU) that is being analyzed. Yet,
crisp data and crisp efficiency scores often fail to reflect the underlying uncertainties
that are naturally involved in practical applications of such methods.

Consequently, there has been several attempts to extend the methods to encompass
data uncertainties and result in efficiency ranges (or bounds) rather than crisp scores:
all in order to improve the decision process related to benchmarking, see e.g., Hatami-
Marbini et al. (2011) for a recent review of these methods. Two main approaches are
(i) Imprecise DEA (IDEA) as originally suggested in Cooper et al. (1999) and further
developed by several authors (e.g., Park (2004, 2007), Despotis and Smirlis (2002));
and (ii) Fuzzy DEA where data are represented by fuzzy sets and fuzzy programming
techniques are used as originally suggested in Sengupta (1992) and also further developed
by several authors (e.g., Kao and Liu (2000), Triantis and Girod (1998), Hougaard (1999,
2005)).

However, in practice many of these methods produce efficiency results with little



informative value for the decision maker: ranges of efficiency scores are typically too wide
to be informative. In other words, there is a delicate balance between acknowledging
the uncertainties involved and producing informative results that may lead to effective
and justified decisions.

We test the performance of a new method designed to produce more informative
results in the practically appealing case of a non-convex production technology. The
method was suggested in Hougaard and Balezentis (2014) and relates directly to crisp
FDH as defined in Tulkens (1993) by mimicking the computation of efficiency, but al-
lowing for fuzzy data and fuzzy efficiency scores. In particular, the notion of dominance

— by which the DMUs are ordered — is constructed using a probabilistic approach.

Content: In section 2 we present the model and some preliminaries. Section 3 present
the two well established methods, IDEA and Fuzzy DEA, as well as the newly suggested
HB method. In section 4 we present the simulation study and its results, and section 5

concludes.

2 Model and preliminaries

We consider a finite set of Decision Making Units (DMUs), where each DMU k uses N
inputs Xy, ; € ]Rf to produce M outputs Y ; € Rf at time period t = 1,...,T. The
production technology is Ty = {(X, Y) € RSFNJFM)\X can produce Y} at time period ¢,
with the only assumption of free disposability of inputs and outputs: ie., (X,Y) € Ty =
(X", Y'Y e T, with X’ > X, and Y' < Y.

Unlike most other models, we do not assume convexity of 7T; for two reasons: (i)
convexity is debatable on both theoretical and practical grounds; and (ii) non-convex
DEA models can be solved by simple enumeration which makes them considerable faster
than the ordinary linear programs resulting from the convexity assumption.

Furthermore, let (Xk,n?k,t) = (Xgt + eii,Ym + ezi) be the actual observations
with measurement errors (ei’t, 6%,1:) which are i.i.d and normally distributed (i.e., €t ™~
N(0,02) and €} , ~ N(0,07)).

In order to simplify the computations of the considered methods, we assume that

the observed data is interval-bounded and we construct these interval bounds using



confidence intervals for the normal distribution:

Xkt € [Xﬁ,t, XkUt] = [Xk,t + 20/202, Xt + Zl—a/QUfJE} (1a)

Yk,t S [Yé,tv YkUA = [?k,t + Za/QUy,Yvk’t + Zl,a/gdy} (1b)

By varying the confidence level «, we can shrink or widen the intervals. In the

simulations below we set o = 0.05.

Data uncertainty can also be expressed making use of fuzzy numbers. In particular,
we consider triangular fuzzy numbers which have an intuitive interpretation of capturing
the uncertainty surrounding an observation. More formally, a triangular fuzzy number
A is specified by numbers a, b, c € Ry where a < b < ¢ and its a-cut is defined as (A), =
[(@)a, (¢)a] = [(b—a)ata, —(c—b)a+c] Va € [0, 1] where « captures the uncertainty level
of the observation. No uncertainty corresponds to o = 1 and yields (A); = b (“kernel”)
while complete uncertainty corresponds to o = 0 and yields (A)y = [a, | (“support”).

Figure 1 shows an example of a triangular fuzzy number and one a-cut.

Figure 1: Triangular fuzzy number with a = —2, b = 0 and ¢ = 2. The a-cut for o = 0.5
yields the interval [—1,1].

Interval-bounded data as in (1) is then straightforwardly cast into triangular fuzzy

numbers representation by specifying a = Xﬁt, b= Xkﬂg and ¢ = X,Zt for the input data



and analogously for the output data.

3 Three different methods to handle data uncertainty

In the following we present two popular approaches to handle data uncertainties in
benchmarking. One is a natural extension of conventional DEA called Imprecise DEA
(IDEA), the other relates to data in the form of fuzzy numbers. We contrast these
approaches with a new method where fuzzy numbers are handled without having to rely

on (fuzzy) programming techniques.

3.1 Imprecise Data Envelopment Analysis (IDEA)

The first method we consider is “Imprecise Data Envelopment Analysis” (IDEA) which
was initially proposed by Cooper et al. (1999). The model we consider here follows Park
(2004, 2007) closely with some minor adjustments. We refer the interested reader to
Park (2007) for the full derivation and details. Measuring efficiency using an output

Farrell distance function approach, we start from the following IDEA model:

2
rﬁa)\xﬁ (2a)
K o~ ~
> X < X (2b)
k=1
K ~
> MY > 0¥ (2¢)
k=1
K
> =1 (2d)
k=1
Ak € {0,1} Vk=1,...,K (2e)
(X7,.... X)) =X"eD; Vn=1,...,N (2f)
Y, Y =Y" e D} Ym=1,...,M (2g)

with the constraint sets
D, ={X" e REH, X" <h,} Vn=1,...,N (2h)
D} ={Y™ e RE|HLY™ <h}} Vm=1,...,M (2i)



The constraint sets are quite general and allow for multiple different types of impre-
cise data (see Park (2004) for examples). In our case of interval-bounded data (1), these

constraint sets become:

-1 _Xn
D ={X"eRE|[ F|x"< L Vn=1,...,N (3)

-1 Y
D ={YmeRE|| Flyn<| L Vm=1,...,M (4)

Due to the assumed linear structure of the constraint sets, Park (2007) recognized
that efficiency bounds can easily be computed using linear programming. It is quite

straightforward to show that we can compute inefficiency bounds [0%,6{'] by computing:

L
9 —né}%\XQ (5a)
K
> X[ < X§ (5b)
k=1
K
> NYE = 0YE (5¢)
k=1
K
> =1 (5d)
k=1
Ak € {0,1} Vk=1,...,K. (5¢)
and
05 —ngg\x@ (6a)
K
> ONXE < X{ (6b)
k=1
K
> oMY > 0Y( (6¢)
k=1
K
d =1 (6d)
k=1
Ak € {0,1} Vk=1,...,K. (6e)



The intuition for these programs is as follows: the best-case scenario 6% for the
evaluated DMU 0 is that its inputs are at the lower bound Xg and its produced output
at the upper bound Y([)] while all other DMUs’ inputs equal the upper bound XkU and
produce the lower bound of outputs Y£ . Similarly, the worst-case scenario 06] for the
evaluated DMU 0 is that Xo = ng and Yo = Yé while all other DMUs’ input usage
X, is at the lower bound Xﬁ and they all produce their upper bound Yg. This upper
bound 6§ essentially corresponds to the solution of a robust optimization problem with

a box constraint (see Gorissen et al. (2015) for an introduction).

3.2 Fuzzy FDH

Kao and Liu (2000), here dubbed the KL method, derive an intuitively simple approach
to compute FDH efficiency bounds from fuzzy numbers data. Their idea is actually
identical to the underlying idea of Park (2004, 2007) for imprecise data with the only
distinction that Kao and Liu (2000) compute efficiency bounds for different a-cuts and

that their approach is applicable to fuzzy numbers in general. For each a-cut we find
[(0€)a) (0(()])04] by SOIVng:

(6)ar = max (7a)
K
S X < (XE), (h)
k;l
S M(YE) 2 00YE)a (7o)
k=1

K
d =1 (7d)

A € {0,1} Vk=1,...,K. (7e)



and

A € {0,1} Vk

I
\.H
=
—
(08]
&

Thus, IDEA in (5)-(6) coincides with (7)-(8) for @ = 0 in our particular case of
triangular fuzzy numbers. To summarize the obtained efficiency intervals for different
«, we simply compute the arithmetic average of the lower and the arithmetic average of
the upper bounds for the different c.

The above programs (7)-(8) are mixed integer programming problems, but can effi-
ciently be solved by enumeration (as with ordinary FDH methods (Tulkens, 1993)). The

equivalent enumeration formula are:

[0
(09)a = ma, (err;{?_vM { 3, }) (92)

where the dominance set is

N

Df = {kl(X})a < (X{)a and (Y)a = (Y()a} (9b)

and

where the dominance set is
Df = {k|(X{)a < (X{)a and (Y{)a > (Y{)a} (10b)

Thus, solving both programs requires one simple loop over all observations. This

implies that the computational effort scales linearly with the number of observations K.



3.3 Fuzzy FDH without programming

In contrast to the previous KL method, the fuzzy FDH approach of Hougaard and
Balezentis (2014), here dubbed the HB method, does not rely on fuzzy programming
techniques but utilizes ranking probabilities of intervals when defining a dominance re-
lation between pairs of DMUs as well as Max and Min operators over sets of intervals.
For each a-level, data takes the form of intervals and whether one interval is smaller
(larger) than another interval is represented by the probability that a value drawn from
the first interval is smaller (larger) than a value drawn independently from the other
interval given that values are independently and uniformly distributed over the inter-
vals. Now, such probabilities can be established between every pair of DMUs for every
(interval-valued) input and output, and based on these probabilities we can define a
pairwise dominance relation. In the HB-method, the pairwise dominance relation > is
defined as follows: DMU j dominates DMU j* (written j =4 5*) if,

N i i, L i, U i, L i, U i, L i, U
Zi:lpmm ([X]l ’ij ]7{[X; 7X]Z ]7[X]Z*7X;* ]})

TN
J~=dJ N

>1/2 and

2i ;. pmin ([X;,L’X;,U]7 {[X;L’X;,U], [X;;L7X;,*U]}> < ¢ and
M L U L U L U
Zr:l prex ([Yj 7Y;T ]a {[va 7Y;T ]a [Y;C 7}/;7; ]})
M
Ar pmax ([}/}T,L7)/*J?”7U]’ {[}/jT,L7Y'jT7U]’ D/JQL7Y;;,U]}> < w} ’ (11)

> 1/2 and

where ¢ € (0,1] is a parameter that determines the lowest acceptable level for partial
dominance (the higher 1, the harder it is for a DMU j to dominate), and P™(z;, Z)
(P™*(zj, 7)) represent the probability that a value z drawn from interval z; € Z is
smallest (largest) among values drawn independently from each interval in Z. The
calculation of these probabilities is quite straightforward and enumerates all possible
combinations of how z; can be smallest (largest) among values drawn independently
from every other interval in Z (see Hougaard and Balezentis (2014) for details).

Hence, DMU j dominates DMU j* if and only if, on average over all inputs, the
probability that DMU j’s input is the smallest among the two is larger than 1/2, with
none being smaller that the parameter v, and if, on average over all outputs, the proba-

bility that DMU j’s output is largest among the two is larger than 1/2 (again with none



being smaller than ). The set of DMUs dominating a given DMU j* is denoted,

U(j*,{l,...,K}) - {.7 € {177K}\{]*}’] >'dj*}- (12)

Based on this set we can now mimic the standard definition of the Farrell efficiency
score applied to the FDH model (see Hougaard and Balezentis (2014) for details) which
further requires the definition of Max and Min operators over intervals.

Again we utilize the probabilities P™(z;, Z) and P™¥(z;, Z), but since the set Z
now may contain several intervals and the computation regards all possible combinations
of how z; can be smallest (largest) among values drawn independently from every other
interval in Z, the computation of these probabilities quickly becomes cumbersome due
to the potentially huge number of possible combinations. This turns out to be a major
drawback of the method for practical applications even though the computations can
quite easily be parallelized.

In order to avoid these cumbersome computations, we propose a solution method

that relies on numerical integration. Let X; ~ U(zl,2F) and its cumulative uniform
distribution Fy,(z) with support [2F, 2F] is:
0 if z < 2
L
Fx,(z) = —m'[;ﬁ if 2F <z <2f (13)
1 if > 2f

This piecewise nature of the cumulative uniform distribution can be exploited for the
calculation of P™1(z;, Z) and P™(z;, Z). The probability that a value z drawn from
an interval z; € Z is smallest among values drawn independently from each interval in
Z is:

10



2B
P™(z;,7) = / ’ HP(Xi >z)| P(X; =ux)dx
o i
R

:/L 11 - F.()) ”leHd:c

i LA

max{z]f,min,'#{zf}} 1 mini{zﬁ} _ L 1
z/ T da:Jr/ H(l—x z) da
2L 1] ||zl

max{zf,mim#j{z{’}} itj ”Z]H
2R
0
—&—/] dx
mini{zﬁ} HZJH

_ [ T ]max{zﬁmini#{#}} . /mini{zzR} I (1 - zZL) Lo

1EAl

Z7L max{sz,mini?gj{ziL}} itj ||Z’L|| ||ZJ”
max {zj’;, ming; {zf}} — zJL /mini{zf} H (1 r— ZzL) 1 ;
- — ZX.
HZjH max{zf,min#j{zi[‘}} itj HZ’LH HZJH

(14)

Analogously, one can rewrite the probability that a value x drawn from an interval

zj € Z is largest among values drawn independently from each interval in Z:

11



P (s, 7) — / I P < )| PX; = 2)de
5 i

/ HFX 1' dx

U T
maxi{zf} 0 min{zR,max# {zZR}} . 1
T e [ )]
sz HZJH maxi{ziL} oy ||Zl|| ||Z]H

R
J

z 1
+/ dx
min{z]R,max#j{le}} HZJH

min{zf,maxi;ﬁj{zf}} T — Z-L 1 1 T ZJR
/ () mn* [l

H
/mm{zf,max#j{zf}} H (3; _y >_ 1 et zf — min {ZJR,maXi;éj {zZR}}
i)

maxi{zif“} || 1|| HZ]H ||ZJH

(15)

The integrals in equations (14) and (15) can be solved directly using numerical inte-
gration procedures.! Furthermore, splitting up the integral in this way has the advantage
that one minimizes the incurred numerical error due to the numerical integration method
because the numerical integration interval is minimal. This entirely avoids the combina-
torial procedure inherent in the definition of probabilities P™1(z;, Z) and P™#(z;, Z)
(Hougaard and Balezentis (2014)) and makes the method tractable for larger datasets.

In our simulation study below we consider output-oriented efficiency only (the input-
oriented case can be found in Hougaard and Balezentis (2014)). The output-oriented

efficiency bounds are computed by:

Eg“t (UG {1,...,K})) = arg max {Pmin (z;-’“t(a), Z"“t(a))} (16a)
{zout(a)ljeu (5= {1,....K})}
where . -
T L (16D)
vy

'R comes with the function integrate to accomplish this.

12



and the output dimension r’ with highest probability of dominating is determined by

/ max .]7;7[/ Yj’::U -Y.]’::L Yj’::U
r’ = argmax P 7= | T T . (16¢)
=1,...M Yy~ yh Yy v yh
T J j J j r=1,.,.M

=1,...,

As before one calculates these efficiency bounds for different choices of o and then
computes an arithmetic average of the different efficiency bounds. Note that E2%(-) €
[0, 1] are output efficiency scores and the other methods provide Farrell output measures
6o > 1. Both measures are related by: [1/(0Y)a, 1/(05)a] = ESU(-).

4 Simulation study

We now compare the three methods — the IDEA method, the KL method and the HB

method — by a simulation study.

4.1 Data generation process

The simulation data is generated as follows. The 2-dimensional input data X € Ri of
observation k is drawn uniformly over the closed interval [1,2] (i.e., X1, X7 ~ U(1,2)).
The 1-dimensional output Y; € Ry is computed as Y, = min { f(X}), f(X?)} where f(:)

is a piecewise function consisting of two logistic functions:

4 : .
f(X): m"‘?) if1 <X <1.5;

h A . (17)
Ty s 1 if L5 < X <20,

Figure 2 shows f(X) over its entire domain and clearly shows that it is non-concave.
Thus, this particular choice of function yields a non-convex production set and therefore
matches the underlying assumptions of the discussed models. Finally, we ensure the
generated data is weakly efficient in both the input and output direction by running a
radial input-output oriented DEA model and projecting the generated observations on
the frontier of the production set.

For the purpose of this simulation we only introduce inefficiency and noise in the

output. We draw the inefficiency term from a half-normal distribution and the noise

13



1.0 12 1.4 16 18 2.0

X

Figure 2: f(X)

term from a normal distribution. The final observations k£ = 1,..., K are:
X = X5 (18a)
~ 1
Y==Y. +¢. (18b)
Ok
where é = 1+1ﬂk with @, ~ NT(0,03) and €] ~ N(O,ag). All DEA methods envelop

the data as close as possible and therefore at least one of the simulated observations
needs to be efficient. Otherwise it would be impossible to accurately estimate 0, with
our DEA methods: any DEA method would find 6, = 1 for at least one observation
while one can expect that all observations in the simulated data have 8 > 1.2 For this
reason we randomly select K /20 observations and make them efficient. Figure 3 shows
an example of simulated data for K = 500 with o9 = 0.1 and o, = 0.1.

Because all noise parameters are known and the inputs are noise-free, (1) simplifies

to:

Xy € (X5, XP] = [Xg, X4 (19a)
Yy € [YE, Y]] = [?k + 2020y, Y5 + 21020y (19b)

We compare the discussed methods for 4 different scenarios with varying oy and oy.

2The probability of exactly drawing 6, = 1 for any DMU k is 0.

14



50 175 25 150 175 200 100 125 150 175 200
X1 X1 2

Figure 3: Example of generated data for K = 500 with oy = 0.1 and o, = 0.1.

In each of these scenarios we consider sample sizes K = {50,100, 500} and replicate every
simulation 100 times. The data generation process only adds inefficiency in the output,
so we compute output-oriented efficiency scores. Finally, for both a-level approaches we
calculate efficiency bounds for a = {0.0,0.5,1.0} and average the obtained bounds. We
use Y = 0.4 for the HB method unless stated otherwise.

4.2 Results

We first consider the distribution of the true inefficiency 6, and the computed inefficiency
bounds. Figures 4-5 show histograms on the true and the computed inefficiency bounds.
The top left figure shows a histogram of the true inefficiency ), over all 100 repetitions.
The top right shows a histogram of 8, computed using conventional FDH. The other
methods calculate inefficiency bounds, so we plot 2 histograms for every method: one
for the lower bound (left) and another for the upper bound (right). First of all, by
comparing the top left and top right figures it is clear that the obtained distribution
with conventional FDH is very similar to the distribution of the true inefficiency in
shape, but that it has a much longer tail with much larger inefficiency scores. Thus,
uncertainty in the data can have a very large impact on the computed inefficiency scores.

Figures 6-7 show boxplots of the absolute estimation error for every method (except
for conventional FDH) and Table 1 contains summary statistics. For the methods that

compute efficiency bounds (all except the conventional FDH), we compute this estima-

15
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=0.1 and oy = 0.2.

Histogram of estimated inefficiency scores over all 100 repetitions.
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tion error as follows: if the computed efficiency bounds contain 0, then the estimation
error is 0; Otherwise, we set the estimation error to min {|9,€ — Oy, |0Y — 9~k|} We nor-
malize this absolute estimation error by dividing by the true efficiency 0. From the
figures and the table we conclude the following. First of all, conventional FDH performs
quite good in general. However, as the noise level increases its error also increases. This
is particularly so for the maximum error. Second, it is clear that the HB method per-
forms best in all but one simulation (o9 = 1.0,0, = 0.9 is the exception): i.e., the average
error, standard deviation of the error and maximum error are all lowest compared to the
IDEA and the KL method. Third, both the IDEA and the KL method perform quite
similar with IDEA performing better in some cases and worse in others.

The HB method has a parameter ¢ € (0, 1] that determines the lowest acceptable
level of partial dominance in any dimension. We investigate the impact of this parameter
on the estimation error in Figure 8a. This figure shows the results of a simulation with
og = 1.0 and o, = 0.9 for various choices of 1) over 100 repetitions. As the figure shows,
increasing 1 increases the likelihood of larger estimation errors (i.e. the area near 0
shrinks and the tails fatten slightly). This is expected, because a higher ¢ reduces the
number of dominating peers.

All the considered methods (except conventional FDH) compute efficiency bounds.
Besides the estimation error, it is also important to consider the width of these efficiency
bounds: a method can have a low estimation error simply because the computed effi-
ciency bounds are very wide. Table 2 contains the summary statistics on the width of
the obtained efficiency bounds relative to the true efficiency (i.e., (0¥ — 65)/6;). Tt is
clear from this table that the IDEA method performs well in terms of accuracy because
its computed bounds are wide. In fact, they are widest of the three considered methods.
Here, the HB method performs best with bounds that are much more narrow than the
other methods. The performance of the KL method is similar to the IDEA method, but
yields more narrow bounds in general and significantly more narrow in the worst case.
The impact of v in the HB method on the relative width of the bounds is shown in
Figure 8b. Increasing v seems to shrink the bounds.

Finally, we consider the computational time in Table 3. There are no surprises here:
the HB method is much slower compared to the other methods which scale linearly
with the number of observations. Furthermore, the high standard deviation (SD) also
indicates that the computation time of the HB method not only depends on the number
of observations but also depends a lot on the particular data set. Figure 9 visualizes the
computation time per observation as a function of K over all simulations. It also shows

the result of regressing K on the computation time per observation for each method.
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Figure 6: Boxplots of the absolute estimation error relative to ), over all 100 repetitions.
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Figure 7: Boxplots of the absolute estimation error relative to ), over all 100 repetitions.
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Simulation with oy = 0.1 and oy = 0.1
N | Method nobs  Mean SD Min  Pctl(25) Pectl(75) Max
FDH 5000 -0.0470  0.0617  -0.611 -0.0671 -0.005 0.095
50 IDEA 5000  0.0000 0.0000 0 0 0 0
KL 5000  0.0000  0.0000 0 0 0 0
HB 5000  0.0000  0.0000 0 0 0 0
FDH 10000 -0.0337  0.0514 -0.514 -0.0527 -0.0018 0.176
100 IDEA 10000  0.3083 0.3929 0 3e-04 0.467 2.41
KL 10000 0.3991  0.4319 0 0.0536 0.634 2.89
HB 10000  0.0000  0.0000 0 0 0 0
FDH 50000 -0.0089  0.0353  -0.452 -0.0224  0.0065 0.217
500 IDEA 50000 0.5348 0.4728 0 0.182 0.894 3.15
KL 50000 0.5564 0.5001 0 0.19 0.932 3.45
HB 50000 0.0196  0.0456 0 0 0.0205 1.57
Simulation with oy = 0.1 and o, = 0.2
N | Method nobs  Mean SD Min  Pctl(25) Pectl(75) Max
FDH 5000 -0.0430  0.0683  -0.457 -0.0687 -0.0025 0.271
50 IDEA 5000  0.0000 0.0000 0 0 0 0
KL 5000  0.0000 0.0000 0 0 0 0
HB 5000  0.0000  0.0000 0 0 0 0
FDH 10000 -0.0226  0.0637  -0.501 -0.0468 0 0.443
100 IDEA 10000 0.1235  0.2554 0 0 0.105 1.9
KL 10000 0.2709 0.3784 0 0 0.397 2.55
HB 10000  0.0000  0.0000 0 0 0 0
FDH 50000 0.0107  0.0569  -0.52  -0.0165  0.0365  0.452
500 IDEA 50000 0.4753  0.4229 0 0.144 0.79 2.64
KL 50000 0.5187 0.4731 0 0.162 0.856 3.43
HB 50000 0.0174 0.0442 0 0 0.0164 1.03
Simulation with 0 = 0.3 and o, = 0.2
N | Method nobs  Mean SD Min  Pctl(25) Pctl(75) Max
FDH 5000 -0.0808  0.1093 -0.743 -0.125  -0.0078  0.504
50 IDEA 5000  0.0000  0.0000 0 0 0 0
KL 5000  0.0000  0.0000 0 0 0 0
HB 5000  0.0000 0.0000 0 0 0 0
FDH 10000 -0.0520 0.0962 -0.749 -0.0869 -0.0011 0.741
100 IDEA 10000 0.0566  0.1837 0 0 0 2.81
KL 10000 0.1928  0.3515 0 0 0.233 4.67
HB 10000  0.0000 0.0000 0 0 0 0
FDH 50000 -0.0053  0.0772  -0.825 -0.0363 0.028 1.9
500 IDEA 49995  0.4452  0.4362 0 0.12 0.695 4.84
KL 49995 0.5058  0.5171 0 0.141 0.77 8.14
HB 50000 0.0325  0.1016 0 0 0.024 3.65
Simulation with oy = 1.0 and o, = 0.9
N | Method nobs  Mean SD Min  Pctl(25) Petl(75) Max
FDH 4892  0.2068 59712 -0.929 -0.231 0.0474 283
50 IDEA 5000  0.0000  0.0000 0 0 0 0
KL 5000  0.0000  0.0000 0 0 0 0
HB 5000  0.0000  0.0000 0 0 0 0
FDH 9817  0.4759  19.3308 -0.905  -0.155 0.161 1860
100 IDEA 10000  0.0000 0.0000 0 0 0 0
KL 10000  0.0000  0.0000 0 0 0 0
HB 10000  0.0000  0.0000 0 0 0 0
FDH 49138 2.8491 357.4243 -0.915 -0.0358 0.343 63800
IDEA 38420 0.0478 0.1467 0 0 0.0162 9.99
500 KL 38420 0.1449 0.2544 0 0 0.187 7.28
HB 41345 0.1116  0.4355 0 0 0.0324 10.9

Table 1: Summary statistics of the estimation error relative to 6 over all 100 repetitions.
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Simulation with 09 = 0.1 and o, = 0.1
N | Method nobs Mean SD Min Pctl(25) Pctl(75) Max
IDEA 5000 0.1549  0.1194 0 0.0875 0.227 0.6

50 KL 5000 0.1063  0.0775 0 0.0672 0.156 0.364
HB 5000 0.0230  0.0385 0 0 0.0491  0.158
IDEA 10000 0.1960  0.1327 0 0.109 0.305 0.757

100 KL 10000 0.1321  0.0824 0 0.0789 0.203 0.434
HB 10000 0.0345  0.0457 0 0 0.0602  0.195
IDEA 50000 0.2130  0.1308 0 0.124 0.306 0.964

500 KL 50000 0.1428  0.0792 0 0.0892 0.204 0.548
HB 50000 0.0538  0.0447 0 0 0.0771  0.233

Simulation with 09 = 0.1 and oy = 0.2
N | Method mnobs Mean SD Min Pctl(25) Pctl(75) Max
IDEA 5000 0.3141  0.2456 0 0.151 0.455 1.45

KL 5000 0.2146  0.1577 0 0.119 0.311 0.833
50 HB 5000 0.0546  0.0837 0 0 0.107 0.358
IDEA 10000 0.3982  0.2813 0 0.219 0.61 2.14
100 KL 10000 0.2669  0.1726 0 0.158 0.404 1.2
HB 10000 0.0806  0.0971 0 0 0.129 0.687
IDEA 50000 0.4328  0.2770 0 0.247 0.615 2.35
500 KL 50000 0.2884  0.1656 0 0.177 0.406 1.29
HB 50000 0.1208  0.0904 0 0 0.175 0.557

Simulation with oy = 0.3 and o, = 0.2
N | Method mnobs Mean SD Min  Pctl(25) Pectl(75) Max

IDEA 5000 0.3393  0.3171 0 0.15 0.489 6.92
50 KL 5000 0.2260  0.1863 0 0.119 0.329 3.07
HB 5000 0.0780  0.1040 0 0 0.135 1.19
IDEA 10000 0.4340  0.3652 0 0.23 0.621 5.69
100 KL 10000 0.2837  0.2084 0 0.165 0.408 2.75
HB 10000 0.1043  0.1125 0 0 0.165 0.989
IDEA 49995 0.4883  1.5507 0 0.257 0.655 335
500 KL 49995 0.3142  0.5537 0 0.182 0.426 114
HB 50000 0.1387 0.1765  -15.7  0.0943 0.201 27.1

Simulation with 09 = 1.0 and oy = 0.9
N | Method nobs Mean SD Min  Pctl(25) Pctl(75) Max
IDEA 4080 6.6226 83.0191 0 0.762 2.89 4940

50 KL 4080 2.7132  27.7448 0 0.512 1.66 1650
HB 4652 0.6776 18.4334  -669 0 0.76 990
IDEA 8096  6.2900  43.3440 0 0.976 3.49 1970

100 KL 8096  2.6989  14.5759 0 0.676 1.94 658
HB 8926 0.8174 12.4030  -172 0 0.907 782
IDEA 41244 9.6105 225.3891 0 1.25 3.98 31100

500 KL 41244 3.8847  75.1663 0 0.837 2.18 10400
HB 42767 0.7947 12.6804 -2100  0.487 1.03 1340

Table 2: Relative width of efficiency bounds (i.e., (8¢ — 6F)/6) over all 100 repetitions.
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Notice in particular the large variation in computation time within a fixed K of the HB
method which again underscores our earlier remark that the computation time depends
on the particular data set. Nevertheless, the computation time for this method never

exceeds 5.3 seconds per observation.
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Method
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© HB
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KL
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Figure 9: Computation time per observation over all simulations.

5 Conclusions

Common for the methods we consider in this paper is that they construct efficiency
bounds instead of one crisp efficiency score. We compare these methods on three different
aspects (i.e., accuracy, width of the bounds and computation time) and find that the HB
method of Hougaard and Balezentis (2014) clearly outperforms the other two methods
on accuracy and width of the bounds aspects. We also propose a new approach to
computing the key component and computational intensive interval-probabilities in the
HB method, which relies on numerical integration. This significantly speeds-up the

necessary computations. Nevertheless, the method remains the slowest among those
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Simulation with oy = 0.1 and o, = 0.1
N | Method nobs Mean SD Min Pctl(25) Pctl(75) Max
FDH 100 0.0190 0.0104 0.01 0.01 0.02 0.08
50 IDEA 100 1.1942 0.0313  1.15 1.17 1.2 1.36
KL 100 3.5693 0.0554 3.5 3.54 3.58 3.85
HB 100 7.0359 0.7058  5.35 6.52 7.53 8.63
FDH 100 0.0891 0.0085  0.07 0.08 0.1 0.1
100 IDEA 100 4.6778 0.0565 4.54 4.64 4.71 4.82
KL 100 13.7760  0.0668  13.7 13.7 13.8 14
HB 100 34.7999  2.3679 28.8 33.2 36.3 41.2
FDH 100 5.5388 0.1384 5.23 5.43 5.64 5.88
500 IDEA 100  112.8520 0.4694 112 113 113 114
KL 100 339.0633  1.1480 336 338 340 341
HB 100 1633.7511 47.9344 1500 1610 1660 1760
Simulation with gy = 0.1 and o, = 0.2
N | Method nobs Mean SD Min Pctl(25) Pctl(75) Max
FDH 100 0.0175 0.0081  0.01 0.01 0.02 0.04
50 IDEA 100 1.1908 0.0268 1.15 1.17 1.2 1.34
KL 100 3.5620 0.0468  3.49 3.54 3.58 3.92
HB 100 7.7758 0.6794 6.4 7.22 8.31 9.32
FDH 100 0.0838 0.0086  0.07 0.08 0.09 0.1
100 IDEA 100 4.6795 0.0737  4.54 4.63 4.73 4.84
KL 100 13.7757  0.0670  13.6 13.7 13.8 13.9
HB 100 38.2494 2.3104 335 36.6 40.2 43.1
FDH 100 5.2294 0.1498 4.9 5.15 5.32 5.77
500 IDEA 100 112.8547  0.6106 112 112 113 116
KL 100 339.0549  1.2678 336 338 340 341
HB 100 1840.9044 47.0419 1720 1810 1870 1960
Simulation with oy = 0.3 and o, = 0.2
N | Method nobs Mean SD Min Pectl(25) Pctl(75) Max
FDH 100 0.0196 0.0090 0.01 0.01 0.02 0.06
50 IDEA 100 1.1883 0.0270 1.14 1.17 1.2 1.34
KL 100 3.5671 0.0486 3.5 3.54 3.58 3.93
HB 100 9.8604 0.9849 7.62 9.24 10.3 12.9
FDH 100 0.0777 0.0080  0.06 0.08 0.08 0.1
100 IDEA 100 4.6947 0.0762 4.54 4.64 4.75 4.87
KL 100 13.7827  0.0639  13.6 13.7 13.8 13.9
HB 100 46.1235 2.8282  39.1 43.9 47.8 54.2
FDH 100 4.4429 0.1674 4.04 4.35 4.54 4.99
500 IDEA 100 112.7903  0.5403 112 112 113 114
KL 100 339.0430 1.3611 336 338 340 342
HB 100 2040.8704 42.6421 1930 2010 2070 2160
Simulation with oy = 1.0 and oy, = 0.9
N | Method nobs Mean SD Min Pctl(25) Pctl(75) Max
FDH 100 0.0173 0.0068  0.01 0.01 0.02 0.04
50 IDEA 100 1.2169 0.0215 1.18 1.2 1.23 1.31
KL 100 3.6221 0.0450  3.52 3.59 3.64 3.85
HB 100 13.9948 1.4879  10.6 13 15.1 17.7
FDH 100 0.0598 0.0112  0.03 0.05 0.07 0.08
100 IDEA 100 4.7721 0.0747  4.61 4.72 4.82 4.97
KL 100 13.9592 0.0644 13.8 13.9 14 14.1
HB 100  62.7362  5.0362 51.5 60 66.2 73.8
FDH 100 2.1834 0.4372 1.03 1.9 2.49 3.34
500 IDEA 100  113.0578  0.5079 112 113 113 115
KL 100 339.4892  1.2626 336 339 340 342
HB 100  2454.8042 77.0949 2290 2400 2500 2630

Table 3: Summary statistics on the computation time (in seconds) over all 100 repeti-
tions.
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tested. Depending on the specific application, this method is therefore certainly an

attractive alternative if computation time is less of a concern.
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