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Exact tests on returns to scale and
comparisons of production frontiers in

nonparametric models

Anders Rønn-Nielsen & Dorte Kronborg
Center for Statistics, Department of Finance

Copenhagen Business School

Mette Asmild
Institute of Food and Resource Economics

University of Copenhagen

Abstract

When benchmarking production units by non-parametric methods like
data envelopment analysis (DEA), an assumption has to be made
about the returns to scale of the underlying technology. Moreover,
it is often also relevant to compare the frontiers across samples of
producers. Until now, no exact tests for examining returns to scale
assumptions in DEA, or for test of equality of frontiers, have been
available. The few existing tests are based on asymptotic theory re-
lying on large sample sizes, whereas situations with relatively small
samples are often encountered in practical applications.

In this paper we propose three novel tests based on permutations. The
tests are easily implementable from the algorithms provided, and give
exact significance probabilities as they are not based on asymptotic
properties. The first of the proposed tests is a test for the hypothesis
of constant returns to scale in DEA. The others are tests for general
frontier differences and whether the production possibility sets are,
in fact, nested. The theoretical advantages of permutation tests are
that they are appropriate for small samples and have the correct size.
Simulation studies show that the proposed tests do, indeed, have the
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correct size and furthermore higher power than the existing alternative
tests based on asymptotic theory.

Keywords: Data Envelopment Analysis (DEA), returns to scale, equality of pro-
duction frontiers, exact tests, permutations.
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1 Introduction

A widely used method for benchmarking of a set of production units is the non-
parametric Data Envelopment Analysis (DEA) approach, which estimates the pro-
duction possibility set as a convex envelopment of the observed set of input and
output quantities (Farrell, 1957; Charnes et al., 1978). It is well known that the
DEA method results in a biased estimate of the production frontier and also that
the estimated efficiencies are correlated, introducing the need for extra caution
when these are used for further statistical analysis. The statistical properties of
the estimated efficiencies have been the subject of numerous studies, and in a re-
cent paper Kneip et al. (2015) developed asymptotic results usable for inference
for mean efficiencies.

Most of the developed theory is concentrated on inference for individual or mean
efficiencies, whereas the theory on another important issue - comparison of pro-
duction frontiers - is sparse. Methods for comparison of mean efficiencies for two
independent samples, based on asymptotic normal approximations, are developed
in Kneip et al. (2016), focusing on testing equality of means across two indepen-
dent groups, both when the efficiencies for the two samples are measured relative
to a common frontier or to different frontiers. The former test is formally a test for
a composite hypothesis, namely whether the groups are facing the same frontier
and the mean efficiencies are the same in the two groups and therefore it is not
possible to determine whether rejection is due to different frontiers or different
mean efficiencies.

Here we consider the situation where the production frontiers across independent
samples are to be compared. Equality of production frontiers across samples is an
implicit (but often not tested) assumption when applying DEA, and the mean-
ingfulness of many two-stage analyses rely on the assumption of equal support for
the production possibility sets, also known as the ’separability’ condition c.f. e.g.
Simar and Wilson (2007), Simar and Wilson (2015) and recently Daraio et al.
(2018). Daraio et al. (2018) develop central limit theorems for means of condi-
tional efficiencies and propose an asymptotic test for the ’separability’ condition
when conditioning on a continuous environmental variable. Further, when dealing
with a discrete dichotomous environmental variable the proposed test is basically
the same as in the continuous case expect for the bias-correction method. To avoid
a degenerate test statistic, the method relies on comparison of means of efficien-
cies calculated on random splits of the sample: one sample used for estimating
efficiencies assuming separability and the other sample used for estimating condi-
tional efficiencies. When splitting the sample one does not utilize all the available
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information which, especially when dealing with small samples, can be critical.
Further, if for example the two frontiers intersect, the proposed test will not nec-
essarily reject the separability hypothesis.

Another important issue when studying productivity is the assumption about re-
turns to scale made by the researcher. Methods for deciding the appropriate
technology assumptions have been the subject of several papers, lately Kneip et
al. (2016), but among others Simar and Wilson (2002) and Banker (1996) also
adress the importance of imposing the correct assumption. Kneip et al. (2016)
propose tests for returns to scale, with the hypothesis being constant returns to
scale (CRS) within a model assuming variable returns to scale (VRS), based on the
asymptotic distribution of the difference of sample means of efficiencies calculated
assuming CRS and VRS respectively. Again, to avoid a degenerate test statistic
under the CRS hypothesis the sample is randomly split into two samples, one used
for estimating the VRS efficiencies and one for the CRS efficiencies. This proce-
dure, however, requires a substantial amount of data which may not necessarily
be available in practice. Moreover, the significance probabilities derived from the
above mentioned method rely heavily on the suggested initial random split. The
impact of this effect is larger the smaller the sample. Even when applying the sug-
gested bootstrap confidence intervals based on an asymptotic pivotal test statistic
giving an asymptotic refinement of the test, a considerable amount of data is still
needed to obtain a powerful test with correct size.

In this paper we introduce permutation tests for inference in nonparametric pro-
duction frontier models. The use of permutation tests for exact inference was
originally proposed by Fisher (1935), and subsequently mathematically formal-
ized (see e.g. Lehmann and Romano (2005)). Recently such methods have gained
popularity due to increased computational possibilities.

Here we will describe how permutation tests can be formulated when testing hy-
potheses regarding returns to scale, with the hypothesis being constant returns to
scale. The power and size of the permutation test will be investigated through
Monte-Carlo simulations and the performance of the test will be compared to that
of the test proposed in Kneip et al. (2016).

Further, we introduce and examine two test statistics which can be used for com-
parison of frontiers across separate (independent) groups of production units. The
result of the first test simply indicates whether the frontiers are likely to be differ-
ent (including intersecting frontiers) and the second test supplements the first as it
is designed to detect whether one group overall has better production possibilities
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than the other (nested frontiers). The tests are based on the relative locations of
the frontiers and account for differences in bias obtained in DEA estimated fron-
tiers by the use of jackknife methods.

The structure of the paper is as follows: First we introduce our notation and
the production frontier methodology in Section 2. The method of inference on
returns to scale is described in Section 3 and Section 4 describes the methods for
comparison of frontiers for independent groups. In Section 5 the results of a series
of Monte Carlo experiments for evaluating the performance of the described tests
are presented and compared with an existing asymptotic test. Section 6 concludes
the paper.

2 The non-parametric frontier model

Let the vector of input (x) and output (y) quantities be denoted by (x, y) ∈ Rp+q+ .
Using standard notation the feasible set of input-output combinations, i.e the
production possibility set, is

Ψ = {(x, y) ∈ Rp+q+ | x can produce y}.

The production possibility set is assumed to be closed, convex and satisfying strong
disposablity in both inputs and outputs. The efficient frontier of Ψ is given by

Ψδ = {(x, y) ∈ Ψ | (γ−1x, γy) /∈ Ψ, ∀γ > 1}.

Efficiency of a given production unit is often measured by either the Farrell input
index or the corresponding output index, with the input index given by

θ(x, y) = inf{θ > 0| (θx, y) ∈ Ψ},

and the output index given by

ϑ(x, y) = sup{ϑ > 0| (x, ϑy) ∈ Ψ}.

If θ = 1 the firm is said to be technically efficient in the input direction while if
ϑ = 1 the firm is technically efficient in the output direction. Otherwise, the firm is
referred to as technically inefficient in either the input and/or the output direction.
Technical efficiency can alternatively be measured in hyperbolic distance

γ(x, y) = inf{γ > 0| (γx, γ−1y) ∈ Ψ}.
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Various assumptions about returns to scale are possible. Here we concentrate
on the two most commonly used assumptions: Constant returns to scale, i.e the
production can be scaled arbitrarily up and down

(x, y) ∈ Ψ then λ(x, y) ∈ Ψ,∀λ > 0, (1)

and variable returns to scale where rescaling of all points in the production possi-
bility set is not necessarily possible (λ = 1). Constant returns to scale implies that
the efficiency is invariant under simultaneous scaling of both inputs and outputs
versus the variable returns to scale scenario where the efficiency varies when scal-
ing the units. We will denote the input efficiencies when assuming CRS or VRS
as θCRS and θV RS respectively.

2.1 Statistical model and estimation

In practice, the production possibility set Ψ and the corresponding efficiencies are
unobserved and estimated from a set of n observations, i = 1, . . . , n. The obser-
vations (Xi, Yi) are assumed to be independent and identically distributed on Ψ,
such that (Xi, Yi) has distribution F with density on Ψ for all i = 1, . . . , n.

Along the lines of Farrell (1957) and Charnes et al. (1978) we use the DEA ap-
proach and estimate the production possibility set assuming constant return to
scale by

Ψ̂ = {(x, y) ∈ Rp+q+ |∃ω ∈ Rn+ : x ≥ Xω, y ≤ Yω} ,

where X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). The input efficiency index for
(x, y) is estimated by

θ̂CRS(x, y) = min
θ,ω
{θ | θx ≥ Xω, y ≤ Yω, ω ∈ Rn+} .

Analogously, the production possibility set assuming VRS can be estimated and
the equivalent DEA estimator for the efficiencies in the input direction are

θ̂V RS(x, y) = min
θ,ω
{θ | θx ≥ Xω, y ≤ Yω,

∑
ωi = 1, ω ∈ Rn+} .

In Section 4 we consider frontiers from two different production technologies. Let
the efficient frontier be indexed by a subscript g ∈ {1, 2}, such that Ψδ

g denotes the
frontier for technology g. Assume that there exists a distribution Fg with density
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on Ψg. Let (Xg, Y g) denote random variables with distribution Fg and assume
that the random variables, (X1, Y 1), and (X2, Y 2) are independent. Note that if
the distributions Fg are equal then the frontiers Ψδ

g are equal.

Similarly to the notation for one production plan, the vector (Xg
1 , . . . , X

g
ng) is de-

noted Xg and the vector (Y g
1 , . . . , Y

g
ng) is denoted Yg for g ∈ {1, 2}.

3 Inference on returns to scale

Here we explain how permutation tests can be used to analyze whether a pro-
duction possibility set can be assumed to fulfil an assumption of constant returns
to scale, within a model assuming variable returns to scale. Assume that n in-
dependent and identically distributed observations (Xi, Yi)i=1...n, with a common
production possibility set Ψ, are given. For the test method below to work we need
a few additional assumptions. Therefore, let Zi = ‖Yi‖ and Vi = Yi

Zi
. Furthermore,

let Wi = Xi
‖Xi‖ , let Xδ

i be such that (Xδ
i , Yi) is a point belonging to the frontier, and

let Θi be the efficiency of (Xi, Yi). Thus (Xδ
i , Yi) ∈ Ψδ and Xi =

Xδ
i

Θi
. Note that Xδ

i

is deterministically known from Zi, Vi and Wi. Assume now for each i = 1, . . . , n
that Zi is independent of (Vi,Wi,Θi). This means, that we assume that the length
of the output vector is independent of the output direction, the input direction,
as well as the efficiency.

For an individual observation (x, y)

Frts(x, y) =
θ̂CRS(x, y)

θ̂V RS(x, y)
,

is a measure of the difference between the estimated frontiers in the input direction,
x, when assuming CRS and VRS respectively. The overall difference between the
estimated frontiers can be measured by the geometric mean of these n ratios and
is calculated as

Trts =
n∏
i=1

Frts(Xi, Yi)
1
n . (2)

This statistic can be used to test the hypothesis of constant returns to scale within
a model assuming variable returns to scale. If a value of Trts significantly below
one is observed, the hypothesis of CRS is rejected.
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The distribution of the test statistic Trts is unknown under the hypothesis of
constant returns to scale. However the significance of the hypothesis of CRS can
be evaluated using a permutation test. To implement the permutation test, for
each j = 1, . . . , N we use the following procedure to construct T jrts :

1. For each observation (Xi, Yi), i = 1, . . . , n, calculate Zi = ‖Yi‖. Define
Ui = Xi

Zi
and Vi = Yi

Zi
.

2. Let (Z̃1, . . . , Z̃n) be a random permutation of (Z1, . . . , Zn).

3. Define X̃i = Z̃i · Ui and Ỹi = Z̃i · Vi.

4. Calculate T jrts by applying (2) to the new dataset (X̃i, Ỹi)i=1...n.

The significance probability is obtained by comparing the observed value of Trts
with the empirical distribution of T jrts, j = 1, . . . , N . Since small values provide ev-
idence against the hypothesis of CRS, the significance probability is more precisely
calculated as

p̂ =
1

N

N∑
j=1

1{T jrts≤Trts}
, (3)

i.e., the proportion of T jrts’s smaller than Trts.

Under the assumption of CRS, the frontier point Xδ
i in fact has the form

Xδ
i = Zi ·H(Vi,Wi),

for some appropriate function H. We now have that Xi and Yi are given as

Xi =
Zi ·H(Vi,Wi)

Θi
and Yi = Zi · Vi,

which together with the assumptions of independence between Zi and (Vi,Wi, θi),
and all (Xi, Yi)i=1...n being independent and identically distributed, leads to the
conclusion that the observations (X̃i, Ỹi)i=1,...,n are independent and distributed
with the same distribution F as the original observations (Xi, Yi).

According to Lehmann and Romano (2005), the significance probability p, as cal-
culated in (3), satisfies that

P (p̂ ≤ u) ≤ u,

for all u ∈ (0, 1). That implies that the rejection rate is controlled, i.e. rejecting
the hypothesis when p̂ < α will give an actual rejection rate that is not higher
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than α when the CRS hypothesis is true.

If (1) is satisfied for all 0 < λ ≤ 1, the technology is called non-increasing returns to
scale while λ ≥ 1 is referred to as non-decreasing returns to scale. If relevant, both
non-increasing and non-decreasing returns to scale can by used as models when
testing CRS by applying (2) with the relevant efficiencies in the denominator for
the Frts(x, y)’s.

4 Inference on equality of frontiers

In this section we consider two production technologies, with corresponding pro-
duction possibility sets Ψ1 and Ψ2 and independent observation vectors (X1,Y1)
and (X2,Y2). Without loss of generality assume that n1 ≤ n2, where ng is the
number of observations in (Xg,Yg) for g = 1, 2. We shall assume that the two
production technologies both are CRS. For simplicity of notation θ̂g, g = 1, 2, is
used for the estimated efficiency regardless of the relevant technology. The method
outlined below can, with only a slight change in notation, be adapted to the case
of output oriented efficiencies. If VRS is the appropriate technology the hyperbolic
efficiency measure can be used to ensure the test statistics below being well defined.

We formulate two tests for the hypothesis about equality of the production fron-
tiers: Ψδ

1 =Ψδ
2, or more precisely if the two distributions F1 and F2 are equal.

However, the test statistics in the following are only designed to detect differences
of the distributions F1 and F2 close to the frontiers, or simply differences between
the frontiers Ψδ

1 and Ψδ
2. Confer Asmild et al. (2018) for a similar discussion.

The frontier difference test statistic (GTdiff ) defined in (e) below is the general
test designed to detect differences between the frontiers, whereas the second test
statistic (GTnest) is designed to detect whether one of the groups has better pro-
duction possibilities than the other i.e whether one of the technologies is nested
within the other.

For the first test we define the difference between the two frontiers in the direction
of an observation (x, y) as the proportion of the larger of the distances from the
observation to one of the estimated frontiers to the smaller distance,

Fdiff (x, y) =
maxg∈{1,2}θ̂g(x, y)

ming∈{1,2}θ̂g(x, y)
. (4)

The second test considers which frontier corresponds to the best production pos-
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sibilities and thus we simply use the ratio of the efficiencies for (x, y) relative to
each of the two frontiers

Fnest(x, y) =
θ̂1(x, y)

θ̂2(x, y)
. (5)

The test statistics are calculated using the following jackknife procedure: For
k ∈ 1 . . .m

a. Draw randomly without replacement n1 observations from the sample (X2,Y2).

Denote these (X̄
2
, Ȳ

2
).

b. Estimate the DEA frontiers for each of the datasets (X1,Y1) and (X̄
2
, Ȳ

2
).

c. Calculate Fdiff (x, y) and Fnest(x, y) for each of the 2n1 observations (X1
i , Y

1
i )

and (X̄2
i , Ȳ

2
i ) for i = 1 . . . n1.

d. Calculate the geometric mean of the geometric means of the frontier differ-
ences.

T kdiff =

n1∏
i=1

Fdiff (X1
i , Y

1
i ))

1
2n1 ×

n1∏
i=1

Fdiff (X̄2
i , Ȳ

2
i ))

1
2n1 , (6)

and similarly for the nested test calculate the geometric mean

T knest =

n1∏
i=1

Fnest(X
1
i , Y

1
i ))

1
2n1 ×

n1∏
i=1

Fnest(X̄
2
i , Ȳ

2
i ))

1
2n1 . (7)

e. Repeat (a)-(d) m times and calculate the geometric means GTdiff of the
T kdiff ’s and GTnest of the T knest’s respectively.

Both statistics are positive and close to one if the two frontiers are equal. The
distributions of the test statistics GTdiff and GTnest under the hypotheses are
unknown, but whether the observed value of each test statistic are extreme can be
evaluated using permutation tests. The permutation test based on N permutations
is performed as follows: For each j ∈ 1, . . . , N

1. Permute all n = n1+n2 observations and divide the n observations randomly

into two groups of size n1 and n2 respectively. Let (X̃
1
j , Ỹ

1
j ) and (X̃

2
j , Ỹ

2
j )

be the two new sets of independent observations of sizes n1 and n2.

2. Calculate GT jdiff and GT jnest as described in (a)-(e) above.

Under the hypothesis of equal frontiers the sets of observations (X̃
1
j , Ỹ

1
j ) and

(X̃
2
j , Ỹ

2
j ) are independent and identically distributed and follow the same dis-

tribution as the observations in the dataset. The significance probability for the
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hypothesis can therefore be calculated by looking up GTdiff in the empirical dis-

tribution of the GT jdiff , regarding values of GTdiff much larger than one as critical
for the hypothesis. Similarly, the significance probability for the test for nested-
ness is calculated by comparing the observed value of GTnest with the empirical
distribution of the GT jnest. Note that the use of GTdiff always leads to a one-sided
test, whereas GTnest can be used for both one-sided and two-sided tests. Again,
according to Lehmann and Romano (2005) the rejection rate is controlled as de-
scribed in Section 3.

Note that the purpose of the jackknife procedure described above is to make the
bias that arises when estimating the frontier in each of the two groups of the same
magnitude. This has no effect on the rejection rate under the hypothesis of equal
distributions in the two groups – the permutation argument above works both
with and without jackknifing. However, the use of jackknifing is of substantial
importance for the rejection rate when the hypothesis of equal frontiers (or dis-
tributions) is false, i.e. for the power of the test. Without jackknifing, different
group sizes will lead to unequal magnitudes of the biases for the two frontiers, and
this may neutralize the real difference between them. This effect will be illustrated
in the simulation study below.

4.1 Test under additional assumptions

The hypothesis that is tested can be made clearer by making an additional as-
sumption:

Under a VRS assumption assume furthermore that the distributions of (Z1, V 1,W 1,Θ1)
and (Z2, V 2,W 2,Θ2) are equal, where (Zg, V g,W g,Θg) denotes the input length,
input direction, output direction and efficiency, respectively, of an observation us-
ing technology g = 1, 2. The observation index has been suppressed.

Under this additional assumptions, the test proposed in the present section will ex-
clusively be a test of the hypothesis of the two frontiers being equal: Ψδ

1 =Ψδ
2. This

is simply due to the fact that Ψδ
g together with the distribution of (Zg, V g,W g,Θg)

determines the distribution Fg uniquely.

If instead constant returns to scale can be assumed, it suffices to assume that
(V 1,W 1,Θ1) and (V 2,W 2,Θ2) have equal distributions in order for the test to be
exclusively about the hypothesis of equal frontiers. This is due to (Xg, Y g) having
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the form,

Xg =
Zg ·Hg(V

g,W g)

Θg
and Y g = Zg · V g,

for an appropriate function Hg that only depends on Ψδ
g (see also Section 3). Thus

both Xg and Y g are scaled by the same factor Zg. Since θ̂CRS(x, y) is invariant
under rescaling Xg and Y g by the same factor, also both GTdiff and GTnest do not
depend on the length of the input vectors.

5 Monte Carlo procedure

5.1 Test for returns to scale

Simulation procedure 1

In the following simulations we let p = 2 and q = 1. The frontier is defined by a
Cobb–Douglas function

f(x1, x2) = xα1x
α
2 ,

where α = γ
2 and 0 < γ ≤ 1. A point ((x1, x2), y) is placed on the frontier, if

y = f(x1, x2) .

Note that the case γ = 1 corresponds to a CRS situation, since then with the
frontier Ψδ defined by f , it always holds that ‖(x1, x2)‖ = |y|, when ((x1, x2), y) ∈
Ψδ. If, on the other hand, γ < 1 and ((x1, x2), y) satisfies f(x1, x2) = y, then for
a > 0

f(a · x1, a · x2) = aγ · y ,

demonstrating that CRS cannot be assumed when γ < 1. Thus f is homogeneous
of order 1 under the hypothesis of CRS while γ < 1 corresponds to the alternative
hypothesis of VRS. When γ decreases from one to zero then the ’distance’ to the
CRS hypothesis becomes ’larger’.

We generate each of the points (Xi, Yi)i=1,...,n in the following way, where we
suppress i in the notation:

1. Generate U1 and U2 independently from a Beta(3, 3)–distribution1.

1We use the Beta–distribution to make directions close to the axes less likely than
directions “in the middle”
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2. Define the unit vector (W1,W2) by normalizing (U1, U2). That is

(W1,W2) =
(U1, U2)

‖(U1, U2)‖
.

3. Generate A from a Γ(3, 3)–distribution, and calculate (Xδ
1 , X

δ
2) as

(Xδ
1 , X

δ
2) = A · (W1,W2)

f(W1,W2)1/γ
.

4. Calculate Y as
Y = f(Xδ

1 , X
δ
2)

5. Generate Θ from a Beta(3, 1.5)–distribution2 and calculate (X1, X2) as

(X1, X2) =
(Xδ

1 , X
δ
2)

Θ
.

It should be noted that Y could also be calculated directly from A by using that
Y = Aγ . This means that the simulation procedure satisfies the independence
property stated in Section 3 requiring that the length of Y is independent of the
joint distribution of V,W and Θ.

Results from simulation procedure 1

For different combinations of n, the number of observations, and γ, the degree of
departure from the CRS hypothesis, we have simulated 1000 sets of observations.
For each set we have used the permutation procedure proposed in Section 3 to
calculate a significance probability. From this we have derived the proportion of
rejected hypotheses on a 5% significance level across the 1000 simulations. The
upper part of Table 1 shows the resulting rejection rates.

The first column in the upper part of Table 1 shows the rejection rates for γ = 1.
This corresponds to the situation where the CRS hypothesis is actually true. As
expected, the simulated rejection rate here is close to 5% for all the demonstrated
values of n, meaning that the test has the correct size. In the next columns, the
γ–parameter is decreased, which means that the departure from the CRS hypoth-
esis increases. Here we see that rejection rates, i.e. the power of the test, increases
rather fast, when γ decreases. It is also clear that the test procedure is more

2We use the Beta–distribution to obtain a distribution on (0, 1). The parameter 1.5 is
chosen to limit the probability of observations close to the frontier
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powerful for larger sets of observations.

For comparison, we have included an application of the test procedure3 proposed
in Section 3.2 in Kneip et al. (2016). We have used the test for each of the 1000
sets of observations simulated according to procedure 1 for the same combinations
of values of n and γ. As described in Section 1 this test relies on asymptotic ar-
guments. The resulting rejection rates from this application of the test are seen
in the lower part of Table 1. Here we see that under the CRS–hypothesis, i.e.
where γ = 1, the rejection rate is much higher than the desired 5% for the chosen
values of n – in agreement with the findings in Kneip et al. (2016), who describe
their test for returns to scale as being conservative. After all, the rejection rate,
when the CRS hypothesis is true, does decrease as n increases. This is consistent
with the fact that the test only relies on asymptotic arguments as n goes to infinity.

The subsequent columns demonstrate that the test also has increasing power for
an increasing departure from the CRS–hypothesis. However the rejection rates do
not increase nearly as fast as the ones from the permutation test seen in the upper
part, when γ decreases. This illustrates that the test proposed in Section 3 has a
substantially higher power than the similar test suggested in Kneip et al. (2016).

Simulation procedure 2

To make the Monte Carlo evaluation of the test procedure for returns to scale as
thorough and diverse as possible, we have also included a simulation study, where
the sets of observations are simulated according to the procedure described in Sec-
tion 5.1 in Kneip et al. (2016). Hereby it is possible to compare rejection rates
from the permutation test with both rejection rates using the asymptotic test from
Section 3.2 in Kneip et al. (2016) and using the bootstrapped confidence intervals
suggested in their Section 4. In the simulations, the parameter δ supposedly mea-
sures the departure from the hypothesis of CRS: When δ = 0, the CRS hypothesis
is true, while values different from zero will make it false. However, increasing the
value of δ is not identical to increasing the deviation from the hypothesis of CRS.
The reason is that for large values of δ the simulated points at the upper right
part of the frontiers (up to half of the points) have almost identical benchmarks
near to or at the CRS frontier, and consequently, the corresponding inefficiencies
assuming CRS and VRS do not differ substantially. This is also reflected in the
simulation study performed in Kneip et al. (2016). In their Table 3 and Table 4 it
is seen that the power generally decreases again for large δ and for a large number
of observations, probably due to the simulation procedure.

3The number of subsample splits in the procedure is chosen to be K = 1000
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δ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Rejection rate 0.053 0.075 0.529 0.985 0.997 0.996 1.000 0.997

δ 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.6
Rejection rate 0.999 0.997 0.995 0.998 0.994 0.997 0.996 0.891

Table 2: Proportions of rejected hypotheses when testing returns to scale
on a significance level of α = 5% with observations simulated according to
procedure 2. Using n = 100 observations, p = 2 inputs and varying values of
δ.

Results from simulation procedure 2

We have simulated according to procedure 2 with n = 100 observations in each
dataset, p = 2 input variables, and varying values of δ. For each combination
of the parameters we have simulated 1000 sets of observations, and the rejection
rates for the permutation test are shown in Table 2.

Also in this simulation study we see that the test introduced in Section 3 is very
powerful, and again it has the correct size under the CRS hypothesis. For com-
parison, corresponding rejection rates, using the asymptotic test of Kneip et al.
(2016) can be found in their Table 3 while results from the bootstrapped method
are found in their Table 4. It is noticeable that the rejection rates in Table 2
represent a test that is much more powerful and with more accurate size than the
methods proposed by Kneip et al. (2016). However, the simulation procedure for
generating the sets of observations suffers from the obvious drawback pointed out
above: Increasing values of δ cannot be interpreted directly as the CRS–hypothesis
becoming more incorrect. In fact in all cases, the rejection rate starts to decrease
for very large values of δ.

5.2 Test for equality of frontiers

Simulation procedure 3

In this procedure for generating observations from two independent samples, let
p = 2, q = 1 and assume CRS. Thus we can without loss of generality let Y g

i = 1
for g = 1, 2 and all i = 1, . . . , ng and focus on generating the points Xg

i . For each
sample g = 1, 2, let the frontier be defined by the Cobb-Douglas function

fg(x1, x2) = βgx
αg
1 x

1−αg
2 ,
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such that a point ((x1, x2), 1) is placed on the frontier, if

1 = fg(x1, x2) .

In each group g = 1, 2 we generate Xg
i ∈ R2 as follows, where i is suppressed in

the notation.

1. Generate U1 and U2 independently from a Beta(3, 3)–distribution.

2. Define the unit vector (W1,W2) by normalizing (U1, U2). That is

(W1,W2) =
(U1, U2)

‖(U1, U2)‖
.

3. Generate Θ from a Beta(3, 1.5)–distribution and calculate (X1, X2) as

(X1, X2) =
(W1,W2)

fg(W1,W2)Θ
.

Results from simulation procedure 3

In this section we investigate the performance of the test procedures proposed in
Section 4. The two independent groups of observations are simulated according to
procedure 3. In all simulation studies we have generated 500 datasets each con-
sisting of two groups of observations with varying group sizes n1 and n2. When
calculating the test statistics, the number of jackknife replications, m, is chosen to
be 50, and for the test procedures we have used N = 1000 permutations. For each
combination of the used parameters we have derived the proportion of rejected
hypotheses on a 5% significance level across the 500 simulations.

First we have investigated the performance of the tests in a situation, where the
two production possibility sets are nested. Thus we have chosen β1 and β2 un-
equal, while α1 and α2 are both chosen to be 0.5. We let β1 = 1 and let β2 vary
between 1 and 1.1. Therefore, the production possibility set for group 1 is nested
within the production possibility set for group 2. Furthermore, the sample sizes
vary such that one of them is 50 and the other is either 100 or 200.

In the left part of Table 3 the rejection rates are seen for the cases, where sample
1 is smaller than sample 2, i.e. n1 = 50 and n2 ∈ {100, 200}, and in the right part
group 2 is smaller than group 1. In the first row β2 = 1, which means that the two
frontiers are equal. Here the rejection rates are approximately 5% for both tests –
as expected.
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n1 = 50
β2 n2 = 100 n2 = 200

diff nest diff nest

1.00 0.062 0.048 0.050 0.052
1.02 0.106 0.092 0.110 0.128
1.04 0.148 0.278 0.246 0.278
1.06 0.350 0.382 0.448 0.514
1.08 0.596 0.650 0.706 0.762
1.10 0.806 0.824 0.892 0.918

n2 = 50
β2 n1 = 100 n1 = 200

diff nest diff nest

1.00 0.060 0.060 0.058 0.046
1.02 0.058 0.086 0.088 0.138
1.04 0.134 0.268 0.164 0.314
1.06 0.310 0.422 0.446 0.578
1.08 0.596 0.702 0.680 0.752
1.10 0.816 0.846 0.892 0.910

Table 3: Proportions of rejected hypotheses on a 5% significance level, when
testing equality of frontiers using both the general difference (denoted diff)
and the nested (denoted nest) test. Observations are simulated according
to procedure 3 with β1 = 1 and varying values of β2 such that the two
production possibility sets are in fact nested.

In the following rows β2 is increased, which corresponds to the two frontiers be-
coming more and more different, such that the production possibility set for group
1 is nested within the production possibility set for group 2. Here the rejection
rates are seen to increase substantially for both tests – no matter which of the
groups is larger than the other. However, the rejection rate generally seems to be
slightly higher for the nested test based on (5) than for the general difference test.
This is not surprising, since the nested test is, in fact, designed to detect exactly
the kind of difference between the two frontiers that have been used to produce
the two samples.

To illustrate the importance of the use of the jackknife method in the test pro-
cedures, we have included a simulation study similar to the one in Table 3, but
without jackknifing, both in the calculation of GTdiff and GTnest and when find-

ing GT jdiff and GT jnest for all permutations, j = 1, . . . , N . Here the findings are
remarkably different from those of Table 3: When group 1 is smaller than group
2, the rejection rate increases faster than before. On the other hand, when group
1 is larger than group 2, both of the tests seem to be unable to reject the false
hypothesis of no difference for almost all of the simulated datasets. This is due
to the different magnitude of bias when estimating the two frontiers. In the table
to the right, the production possibility set for group 1 is nested within the pro-
duction possibility set for group 2, but at the same time, the frontier of group 1
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n1 = 50
β2 n2 = 100 n2 = 200

diff nest diff nest

1.00 0.047 0.041 0.051 0.051
1.02 0.139 0.155 0.144 0.150
1.04 0.311 0.349 0.320 0.329
1.06 0.489 0.509 0.599 0.603
1.08 0.746 0.766 0.832 0.831
1.10 0.900 0.904 0.971 0.973

n2 = 50
β2 n1 = 100 n1 = 200

diff nest diff nest

1.00 0.052 0.049 0.059 0.055
1.02 0.029 0.020 0.015 0.013
1.04 0.009 0.004 0.005 0.005
1.06 0.009 0.002 0.000 0.000
1.08 0.025 0.002 0.001 0.000
1.10 0.069 0.014 0.000 0.000

Table 4: Simulations similar to Table 3 but without jackknifing.

is estimated with a smaller bias. These two effects counteract, such that the es-
timated frontiers are so close that the tests are unable to distinguish between them.

Another part of the evaluation of the two tests is to consider a situation, where the
frontiers are different without one production possibility set being nested within
the other. Here we have chosen β1 = β2 = 1, α1 = 0.5 and varying values of
α2. When α1 and α2 are different, the two frontiers will be different, and since
they intersect the corresponding production possibility sets are not nested. The
rejection rates from this simulation study are seen in Table 5. The middle row
with α2 = 0.5 is identical to the first row in the left part of Table 3. Thus, the
rejection rate is approximately 5 %.

In the other rows the frontiers are different, with a larger difference as α2 becomes
more different from 0.5. Here we see that only the general difference test, in the
table denoted as diff , detects the difference with an increasing rejection rate, as
the two frontiers become more and more different. On the other hand, the nested
test is unable to distinguish between the two frontiers: This test keeps track of,
which frontier corresponds to the best production possibilities for each observation,
and when averaging over all observations these differences tend to cancel out when
the frontiers intersect. Thus, in this situation, the two tests jointly detect the
difference between the two frontiers with high power and furthermore correctly
concludes that the production possibility sets are not nested.
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n1 = 50
α2 n2 = 100 n2 = 200

diff nest diff nest

0.1 0.988 0.022 1.000 0.016
0.2 0.948 0.020 0.992 0.030
0.3 0.646 0.024 0.782 0.036
0.4 0.184 0.034 0.262 0.054
0.5 0.062 0.048 0.050 0.052
0.6 0.160 0.038 0.230 0.054
0.7 0.654 0.020 0.778 0.040
0.8 0.952 0.018 0.998 0.012
0.9 0.952 0.014 0.996 0.028

Table 5: Proportions of rejected hypotheses on a 5% significance level, when
testing equality of frontiers using both the general difference (denoted diff)
and the nested (denoted nest) test. Observations are simulated according to
procedure 3 with β1 = β2 = 1, α1 = 0.5 and varying values of α2.

Simulation procedure 4

For completeness of the evaluation of our test for equality of frontiers, we have
included a simulation study using the following procedure that is inspired by a
procedure described in Daraio et al. (2018). However, the two procedures are still
somewhat different: While the observations generated in our procedure are divided
into two groups with a distinct frontier in each group, the datasets generated in
Daraio et al. (2018) all have separate frontiers, determined parametrically by the
value of a numerical covariate.

We let p = q = 2 and assume CRS. In each of the two groups g = 1, 2 we generate
each of the observations (Xi, Yi) for i = 1, . . . , ng in the following way:

1. Generate U and V independently and each following the uniform distribution
on the part of the unit circle, where both coordinates are positive.

2. Generate Z from a standard normal distribution.

3. Calculate X,Y ∈ R2 as

X =

(
1.01− U

‖U‖

)
· (1 + |Z|) · (1 + γg) and Y =

V

‖V ‖
+ 0.01 .
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n1 = 50
γ2 n2 = 100 n2 = 200

Fdiff Fnest Fdiff Fnest

0.0 0.040 0.062 0.050 0.050
0.2 0.634 0.902 0.756 0.938
0.4 0.998 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000

Table 6: Simulation results for test for equality of frontiers, when data is
simulated according to procedure 4. Proportions of rejected hypotheses for
varying values of γ2.

Choosing γ differently for the two groups corresponds to the two groups having
different frontiers in such a way that one of the production possibility sets will be
nested within the other.

Results from simulation procedure 4

The purpose of Table 6 is to investigate the performance of the two tests from
Section 4, when the two groups of observations are simulated according to pro-
cedure 4. For each combination of parameters we have generated 500 datasets.
For the test procedures, we have again used m = 50 jackknife replications and
N = 1000 permutations. Furthermore, the proportions of rejected hypotheses on
a 5% significance level are derived across the 500 simulations.

For different combinations of group sizes, the first row of Table 6 shows the rejection
rates when the two frontiers are equal, i.e. when γ1 = γ2 = 0. As expected
theoretically, all rejection rates in this row are close to 5%. In the next rows
the parameter γ1 = 0 is fixed, while γ2 increases. This corresponds to the two
frontiers becoming more different. Here the two tests with a very high power
correctly identifies both the difference and the fact that the production possibility
sets are nested.

6 Conclusion

In the paper we have proposed three exact tests based on permutations: One test
for returns to scale and the others testing equality of frontiers, one for detecting
general differences and the other specifically whether the production possibility
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sets are nested. Simulation studies revealed that all three tests are of correct size
and have high power. Specifically, both size and power are found to be better
than those of the existing tests for similar hypotheses based on asymptotic theory.
Therefore the proposed permutation tests are more appropriate for practical ap-
plications.

We propose that the tests are used as follows: For any dataset, in order to examine
an underlying assumption of constant returns to scale in DEA, the returns to scale
test can be used. After a decision on returns to scale has been made, if one wishes
to compare the frontiers for two independent groups of observations, the test for
general differences can be applied. If the hypothesis of no difference between the
frontiers is rejected, the analysis can be supplemented with the test examining
nestedness of the production possibility sets.
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