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Green Lights:

Quantifying the economic impacts of drought

Peter Fisker∗

August 29, 2014

Abstract

This study investigates the effect of drought on economic activity

globally using remote sensing data. In particular, predicted variation

in greenness is correlated with changes in the density of artificial light

observed at night on a grid of 0.25 degree latitude-longitude pixels. I

define drought as greenness estimated by lagged variation in monthly

rainfall and temperature. This definition of drought performs well

in identifying self-reported drought events since 2000 compared with

measures of drought that do not take greenness into account, and the

subsequent analysis indicates that predicted variation in greenness is

positively associated with year-on-year changes in luminosity: If a unit

of observation experiences a predicted variation in greenness that lies

1 standard deviation below the global mean, on average 1.5 - 2.5 light

pixels out of 900 are extinguished that year. Finally, an attempt is

made to estimate the global cost of drought.

∗Department of Food and Resource Economics and Changing Disasters, University of
Copenhagen. Supervisors: Profs. John Rand and Henrik Hansen
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1 Introduction

It is important to study the economic consequences of natural disasters both

at the micro and macro level. At the micro level because natural disasters

affect people’s daily lives and hamper their ability to escape from poverty; at

the macro level there is more discussion about the size and even the direction

of the effects. Recent evidence, however, suggests that repeated exposure to

disasters may constitute a boundary to growth in some countries (e.g. Hsiang

and Jina, 2014).

Drought is the most devastating type of natural hazard. According to

the Emergency Database (EM-DAT), droughts have killed 11.7 million peo-

ple since the beginning of the 20th century; more than earthquakes, floods,

storms and volcanic eruptions combined.1 These numbers include only 647

registered occurrences of drought-disasters, but every year there are many

more areas of the world where low rainfall and high temperatures lead to

low incomes and general hardship for people living off the land.

Global warming is causing hotter and more extreme weather across the

globe. Recently, a report from the Intenational Panel on Climate Change

(IPCC)2 warned that a warmer climate will decrease crop yields in especially

the tropical parts of the world, and that - coupled with population growth -

global warming could lead to widespread food insecurity. The tropical parts

of the world also tend to include poorer countries, so the impacts of climate

change are likely to fall disproportionately on poorer nations and on poorer,

agrarian households within those nations (see e.g. Skoufias et al., 2011).

Agencies that promote economic development look increasingly towards

ways of helping poor countries cope with drought. One way to increase poor
1http://www.EMDAT.be
2http://www.ipcc.ch/report/ar5/wg2/
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farmers’ resilience towards drought is the provision of so-called weather index

based insurance. The World Bank, the Food and Agriculture Organization of

the UN and FewsNet are among the leaders in developing insurance schemes

that automatically trigger a payment if defined proxy for drought is below

a certain threshold. Often this proxy is simply rainfall measured at a single

weather station. In order to extend the programs beyond the near vicinity

of weather stations, researchers focus more and more attention on remote

sensing in order to obtain a detailed drought indicator with high spatial and

temporal resolution in remote, rural areas.

The contribution of this paper is two-fold: firstly, I develop a purely

satellite-based drought indicator with many of the same properties as the

most frequently used existing station-based measures and evaluate the dif-

ferent indicators across drought years. Secondly, I investigate the economic

impacts of drought by correlating it with changes in the density of artificial

light observed at night at a grid of 0.25 degree latitude-longitude globally.

Results show that if a unit of observation experiences a predicted variation

in greenness that lies 1 standard deviation below the global mean, on average

1.5 - 2.5 light pixels out of 900 are extinguished that year.

The remainder of the paper is organized as follows: section 2 goes through

the most commonly used measures of drought in the field of development

economics while outlining their shorcomings and arguing how the use of

remote sensing might remedy some of these. The different ways of measuring

drought are then tested in order to see how they perform in identifying

officially registered drought occurences under various circumstances. Finally,

using satellite-based observations only, section 3 attempts to quantify the

economic impacts of drought.
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2 Measuring drought from outer space

This part of the paper outlines some of the most commonly used drought

measures starting with those based on in-situ (i.e. weather station) ob-

servations before focusing on the properties of the Normalized Difference

Vegetation Index (NDVI), which is only recorded from space. While adding

valuable information about greenness (and thus vegetation density) com-

pared to the land-based indexes, there are also disadvantages related to the

NDVI. Section 2.2 attempts to combine information on rainfall and tem-

perature with greenness in order to construct a drought index that is both

precise and reliable across time and space using remote sensing data only.

Finally section 2.3 compares the performance of the different drought indi-

cators across years that are officially registered as being hit by drought in a

specific region and years where no droughts are registered.

2.1 Existing measures of drought

This section focuses on providing an overview of drought measures starting

with the early land-based indexes before gradually moving towards remote

sensing.

2.1.1 Land-based

The Palmer Drought Severity Index (PDSI) was first published in 1964. It is

based on a calculation of supply and demand of soil-moisture using rainfall

and temperature as input variables. The PDSI has been critized for using

arbitrary algorithms and lacks the element of periodicity, which means that

it doesn’t catch shorter droughts as well as longer droughts.

As a response, the Standardized Precipitation Index (SPI) was suggested

in the late 1980’s introducing different times scales over which water deficits
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accumulate in order to separate e.g. hydrological, environmental, and agri-

cultural droughts. The fact that SPI is based solely on precipitation has lead

researchers to develop the Standardized Precipitation-Evapotranspiration In-

dex (SPEI) which is based on the SPI calculation procedure but includes

temperature as one of the input variables in order to estimate the difference

between rainfall and potential evapotranspiration.

All of the above suffer from the following two shortcomings: weather

stations are scarce in many developing countries where droughts often hit

and how rainfall and temperature translate into plant-mass (and thus crop

yields or food for cattle) is very circumstatial - it depends on rivers and

irrigation, soil types, altitude, ruggedness and so forth.

2.1.2 Satellite-based

From space it is possible to obsverve the surface of the earth and measure

the light that is emitted at different wavelenghts. Vegetation indexes such

as the Normalized Difference Vegetation Index translate visible red and near

infrared radiation into a decimal number between -1 and 1 which describes

the greenness of a specified geographical area. In order to use NDVI as a

proxy for drought, it is common to calculate the anomaly, i.e. the deviation

from a long-run average for a specific time of the year. Figure 2.1 shows on

the left how NDVI is calculated as the ratio between near infrared radiation

and visible red radiation; a higher index value is related to a greener land

surface. The map on the right show NDVI anomalies in North America for

a specific month, where it is clear that there is a drought in the east while

some of the north western experience a month that is greener than expected.

NDVI data is obtained from the MODIS Terra satellite. It has been
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Figure 2.1: Normalized Difference Vegetation Index

          

  Source: earthobservatory.nasa.gov.

orbiting Earth daily since 2000, and here we employ a pre-processed product3

made publicly available by NASA that has a temporal resoulution of one

month and a spatial resolution of 0.05 degrees (3 arc minutes or around 5.8

km at the equator). It is later aggregated to 0.25 degrees in order to match

the resolution of the rainfall data and reduce the number of observations. In

the end we have a data frame with 1440x720 obervations over 180 months.

The images used in this analysis are so-called monthly maximum value

composits. Since all athmospheric influence lowers NDVI, NASA stores only

the highest greenness-value for each pixel over the period, where most pixels

are recorded daily. This way cloud cover is filtered out in almost all cases.

It is not unproblematic to use NDVI as a proxy for drought, however.

Year-on-year variation in greenness might be caused by other factors than the

climatic. As an example, deforestation quickly reduces the greenness of an

area without being associated with drought. On the contrary, deforestation

is often a sign of increased economic activity in a region. Broadly speak-
3Mod13c2
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ing, all factors that are non-climatic but affect the greenness of the planet

will create noise in the picture of NDVI anomalies as a drought indicator.

Most of these factors would be anthropogenic and, apart from deforestation,

include changes in cultivation, irrigation and urban expansion. Anomalies

in NDVI is therefore seldomly used in index-based crop insurance schemes.

McLaurin and Turvey (2011) conclude that the relationship between NDVI

and other drought indicators is dependent on location-specific characteristics

and that NDVI should not be applied widely into insurance desings. To our

knowledge, observations of NDVI are today only being used directly for in-

dex insurances in a couple of places among pastoralists (see Chantarat et al.,

2013).

2.2 Predicted greenness

The main contribution of this part of the paper is to exploit the varia-

tion in greenness in combination with rainfall and temperature to obtain a

drought measure that is more precise than existing global drought indicators,

consitent across time and space, and easily accessible and updateable from

satellite data.

This measure, which I shall dub predicted greenness, is obtained from re-

gressing monthly variation in NDVI on lagged monthly variation in rainfall

and temperatures. By this procedure, only the variation in NDVI that is

caused by climatic factors is considered, whereas the noise described above

is filtered out. Furthermore, the measure improvemes on existing drought

indexes such as the SPEI, by adding weights to the summation of lagged vari-

ation in rainfall and temperature which are determined by their correlation

with the variation in NDVI.

Usually, anomalies are calculated for each observation as the deviation in

8



Figure 2.2: Basic idea behind predicted greenness
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Predicted greenness is a measure of drought that uses the variation in greenness
caused by variation in rainfall and temperature.

a time period from the historical average. However, in this case we use data

from 2000-2012, so a historical average is not obtainable. One possibility

would be to focus on the latest years only, say 2010-2012, and then compare

with the average for the 2000-2010 period. But this would mean a dramatic

loss in the number of observations and general variation in the data. Instead,

in order to avoid bias in the regressions in section 3, the focus is year-on-year

changes, as will be described in more detail below.

2.2.1 Data

This section describes the data on land surface temperature and rainfall that

will be used along with the variation in NDVI in the first-stage regression.

All the data that is being used at this stage has a temporal resolution of one

month.

Land surface temperature: Like NDVI, land surface temperature is

measured from space globally using the MODIS Terra satellite, and again,

the product in use has a spatial resolution of 0.05 degrees.4 Year-on-year
4The observations are available starting from February 2000 through the gridded prod-

uct Mod11c3
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changes in both daytime and nighttime temperatures are included in the

model. On average, it is expected that daytime temperatures affect green-

ness negatively since hotter means drier in most parts of the world. Night-

time temperatures are likely to affect greenness positively, however, since

cold also becomes a serious constraint for plant growth when moving away

from the equator.

Figure 2.3: Geographical extent of NDVI, temperature and rainfall data.

The analysis is limited to the central blue rectangle since this is where the satellite
based rainfall data is available.

Rainfall: While greenness is best seen from above, rainfall is harder to

measure using satellites. This study uses data from the Tropical Rainfall

Measuring Mission (TRMM)5 which to our knowledge is the most precise

and valid remote sensing estimate of rainfall for the relevant period. In

terms of spatial extent and resolution, the TRMM data is not as good as

our measures of greenness and land surface temperature. It includes pixels

of 0.25 degrees and only covers the ‘tropical’ areas of the world, i.e. a band

stretching from 50 degrees north to 50 degrees south. However, the spatial

resolution seems sufficient for our purpose and the exclusion of the areas
5http://trmm.gsfc.nasa.gov/
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furthest away from the equator is a price we have to pay and a fact to be

aware of when interpreting the results.

2.2.2 Model

I model the link between year-on-year change in NDVI and the climatic

background variables for every month using up to 11 lags so that it is only

what has happened during the preceding year that is included. The first stage

relationship in pixel i for year t and month m can be written as follows:

∆tNDV Iitm =

γ0 +
11∑
n=0

(γ1n∆tPit,m−n + γ2n∆tTdit,m−n + γ3n∆tTnit,m−n) + εitm

(2.1)

where P is precipitation, Td is daytime land surface temperature and Tn is

nighttime land surface temperature. ∆t indicates a year-on-year change, so

for each variable that has this operator, the previous year’s value has been

subtracted.

2.2.3 Results

Table 2.1 and figure 2.4 show the results of applying equation 2.1 to the

global monthly data set of NDVI, rainfall and temperatures. As can be

read, year-on-year changes in rainfall affect year-on-year changes in NDVI

mostly in the month prior to the observation of NDVI whereas temperature

changes have the largest effect on NDVI changes when looking at the same

month. This is probably because plants take some time to transform rainfall

into biomass whereas extreme heat or cold has a more immediate effect the

color of leaves.

Using a standard linear prediction technique, ∆tN̂DV Iitm represents

11



Table 2.1: Lagged monthly correlations between year-on-year changes in
rainfall, temperature and NDVI globally

Lags (months) Δt Rainfall  Δt LST (day)  Δt LST (night)  

0 164.79*** (1.428) -0.66*** (0.001) 1.09*** (0.002) 
1 514.77*** (1.432) -0.66*** (0.001) 0.89*** (0.002) 
2 323.70*** (1.432) -0.34*** (0.001) 0.32*** (0.002) 
3 174.63*** (1.431) -0.11*** (0.001) 0.20*** (0.002) 
4 103.50*** (1.431) -0.07*** (0.001) 0.09*** (0.002) 
5 92.60*** (1.432) -0.06*** (0.001) -0.00*** (0.002) 
6 54.85*** (1.432) -0.02*** (0.001) -0.01*** (0.002) 
7 99.79*** (1.433) -0.03*** (0.001) 0.01*** (0.002) 
8 49.04*** (1.433) -0.06*** (0.001) 0.00*** (0.002) 
9 45.77*** (1.434) 0.00*** (0.001) -0.04*** (0.002) 
10 49.56*** (1.435) 0.04*** (0.001) -0.04*** (0.002) 
11 80.36*** (1.432) 0.09*** (0.001) -0.08*** (0.002) 

  
Dependent variable: ∆NDV It. Robust standard errors in parentheses. *, ** and
*** indicate significance at 10%, 5%, and 1% levels, respectively. 25 climate zone
dummies included, N = 19,795,008, R2= 0.1167

Figure 2.4: Lagged monthly correlations between year-on-year changes in
rainfall, temperature and NDVI globally
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the drought indicator that will be used in section 3 after aggregating from

months to years.

2.3 Identifying droughts

So far the section has been concerned with variation in climatic variables as

a continous measure of drought. But droughts are often seen as a discrete

phenomenon; either there is a drought or the situation is normal. A drought

can be defined as a period of unusually dry conditions leading to water
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shortages or reduced plant growth, that might turn into a disaster for the

people living in drougt-affected areas.

This section compares the deviation from the long-run average of different

indicators of drought across years that are registered as being hit by drought.

Figure 2.5 shows all droughts that have been officially registered betweem

2000 and 2012 at the sub-national level according to the Global Disaster

Identifier Number (GLIDE) database6. Colors indicate the frequency from

1 (beige) to 6 (dark red).

Figure 2.5: Frequency of droughts registered in the GLIDE database

Beige represents provinces or districts with 1 registered drought in the period;
dark red represents 6.

A drought is considered to be officially registered when it is contained in

the GLIDE database and is geographically delimited based on information

contained in that database about the specific parts, regions or districts of

a country that are hit by drought. Obviously, self-reported droughts suffer

from a number of selection biases, but here they will serve as a crude division

rule that will be used for comparison of different gridded drought indicators.
6Maintained by the Asian Disaster Reduction Center (ADRC) in collaboration

with ISDR, CRED, UNDP, IFRC, FAO, World Bank, OFDA/USAID, LA Red, and
OCHA/ReliefWeb. A GLIDE number is generated for all disaster events with the aim
being that the number is then attached to all databases documenting the same disaster
thereby linking the various information sources. Source: EMDAT
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Table 2.2 contains the Z-scores of a list of drought indicators. All have

been normalized to a mean of zero and a standard deviation of 1 for the

period 2000-2012 in order to be comparable. Basically, what we see is that

all indicators react to a change between a normal year and a registered

drought-year. Starting from the left, the columns below globally show the

difference on these indicators between normal years (No drought) and a

registered drought year (Drought) across the globe. Predicted greenness is

the measure that shows the largest difference between normal and drought.

Table 2.2: Comparison of average anomalies of monthly key variables by
drought incidence
 Globally Semi-arid zones Croplands 

Z-scores No Drought Drought No Drought Drought No Drought Drought 

NDVI 0.00 -0.49 0.00 -0.59 0.00 -0.44 
Rainfall 0.00 -0.18 0.00 -0.24 0.00 -0.10 
LST_day 0.00 0.30 0.00 0.36 0.00 0.45 
LST_night 0.00 -0.09 0.00 -0.10 0.00 -0.05 
Predicted greenness 0.00 -0.59 0.00 -0.74 0.00 -0.45 
1-m SPEI 0.00 -0.18 0.00 -0.15 0.00 -0.23 
6-m SPEI 0.00 -0.36 0.00 -0.38 0.00 -0.56 
12-m SPEI 0.00 -0.36 0.00 -0.47 0.00 -0.65 
Observations 41.9 mio. 59,967 4.19 mio. 15,416 1.22 mio. 1,948 

 

  
The rest of the table contains similar comparisons, but for semi-arid

climate zones and croplands respectively. Maps A.1 and A.2 in the appendix

show the areas that are referred to. When only looking at the semi-arid

zones (columns 3-4), there is generally a larger difference between drought

and non-drought years for all but the SPEI whereas in cropland areas (colums

5-6) the difference is smaller.

In general, SPEI reacts stronger to droughts in areas of cropland and

less in the semi-arid zones. This might be due to the fact that it is based on

observations from weather stations and these are more densely distributed

when there is a high population density and degree of development. Thus in

the semi-arid zones there is in general longer distances between the stations

and more interpolation and smoothing is required. See map of weather
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stations behind the SPEI in appendix A.

3 Quantifying economic impacts of drought

This part of the paper turns to the second research question: what are the

economic impacts of drought? Firstly the empirical strategy is presented,

then the results at the global level, and finally an attempt is made to put

numbers on the cost of drought.

3.1 Empirical strategy

In order to answer the question of how drought affects global economic de-

velopment, the first step is to obtain good quality data on both aspects.

While the paper so far has centered around estimating drought precisely

and consistenly across the globe using satellite data, here a similarly precise

and consitent measure of economic development is presented. Secondly, the

econometric specification is outlined before turning to the results.

3.1.1 Lights at night

Measures of economic activity, such as gross domestic product (GDP), is typ-

ically only constructed for rather large administrative units, such as provinces

of a country. Furthermore, it is not always measured in the same way across

the world, and finally, measurement errors in GDP are not uncorrellated

with the level of economic development.

This study therefore employs an increasingly popular measure of local

economic activity, first advocated by Henderson et al. (2012), namely the

density of artificial lights at night, or luminosity, as some authors prefer

to call it. The data is downloadable in different versions from the Defense
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Meteorological Satellite Program’s Operational Linescan System (DMSP-

OLS) providing pictures of Earth at night between 20:30 and 22:00 local

time. Naturally occuring lights such as fires and aurora are filtered out, and

the data that is available at the yearly level is a composite image, where only

stable lights are included and observations of cloud cover are dropped.

As previously mentioned, this study uses pixels of 0.25 degrees7 as the

unit of analysis whereas the pixels containing information on artificial lights

at night are only 0.008 degrees8. There are thus 900 light pixels per unit

of analysis. This allows for the construction of an indicator of economic

development that measures the share of lit light-pixels within the larger unit

of analysis. This method is inspired by Michalopoulos and Papaioannou

(2013) and is thought to be better than taking the average amount of light

emitted in a unit because it puts more weight on the variation that takes

place in darker, less developed regions of the world.

Figure 3.1: Illustration of light measure

 

 

0.25 degrees 

Luminosity is here defined as the share of light pixels that are lit within one unit
of analysis. In this case the share of lit pixels is 75/900 = 8.3%

As shown by Henderson et al. (2012) among others, there is a strong
715 arc minutes around 28 km at the equator
830 arc seconds or around 1 km at the equator
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correlation between changes in luminosity and changes in GDP per capita at

a sub-national level. For this particular purpose, there are even more argu-

ments why the measure is useful: Most areas where drought has a profound

impact on people’s lives are in poor countries in the warm parts of the world,

and these are also areas where trustworthy GDP figures at the subnational

level are harder to find.

3.1.2 Model

Turning to the econometric specification, the relationship between drought

and economic development for pixel i in year t can be stated as follows:

∆Lightsit = α+
5∑

s=0

βs∆N̂DV Ii,t−s + εit (3.1)

Where ∆Lightsit is the share of lit sub-pixels in pixel i and year t. ∆N̂DV Iit

is the predicted values of model 1 aggregated from monthly to yearly values:

∆N̂DV Iit =

12∑
m=1

∆tN̂DV Iitm (3.2)

In focusing on year-on-year changes in predicted greenness, model 3.1

controls for all time-invariant factors that might affect change in luminosity.

The error term εit is clustered at the country level allowing for correlation

between the errors within a country while holding on to an assumption of

no correlation between countries.

3.2 Results

This section contains the results of a regression analysis that is based on

equation 3.1. Table 3.1 includes the results of regressing changes in lumi-

nosity on predicted changes in greenness with 0 (column a) to 5 (column

17



f) lags. It shows that predicted changes in greenness has a clear positive

effect on changes in luminosity between year t and t− 1. The effect persists

in the first lag (with around half the size), but then disappears when more

lags are added. This suggests that drought does not affect economic growth

permanently, but could have an observable effect on the levels of economic

activity if the repeatedly hit the same regions.9

Table 3.1: Changes in light and predicted greenness

 a b c d e f 
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     ̂
       

 0.15*** 
(0.04)*** 

0.17*** 
(0.07)*** 

0.14*** 
(0.06)*** 

0.12*** 
(0.06)*** 

0.28*** 
(0.10)*** 

     ̂
       

 
 

-0.04*** 
(0.08)*** 

-0.09*** 
(0.04)*** 

-0.12*** 
(0.04)*** 

0.11*** 
(0.07)*** 

     ̂
       

 
 

 0.07*** 
(0.09)*** 

0.02*** 
(0.12)*** 

0.24*** 
(0.13)*** 

     ̂
       

 
 

  -0.06*** 
(0.08)*** 

0.13*** 
(0.09)*** 

     ̂
       

 
 

   0.08*** 
(0.15)*** 

Constant 
0.03*** 

(0.05)*** 
-0.01*** 

(0.05)*** 
0.05*** 

(0.05)*** 
-0.03*** 

(0.05)*** 
-0.06*** 

(0.06)*** 
0.15*** 

(0.04)*** 

N 1,605,344*** 1,440,490*** 1,281,234*** 1,128,323*** 980,150*** 834,878*** 
R2 .0011*** .0016*** .0072*** .0025*** .0028*** .0034*** 

  Dependent variable: ∆Lightst. Standard errors clustered at country level in
parentheses. Clustering at province or district level yields similar result, but with
higher levels of significance. Including country-dummies does not affect results.

Quantitavely, the main result from table 3.1 is that if a given 0.25*0.25

degree pixel experiences a predicted change in greenness that lies 1 standard

deviation above the global mean, on average an extra 1.5 - 2.5 light pixels out

of 900 are lit that year. This is likely to reflect increased economic activity as-

sociated with higher agricultural productivity, more hydropower generation

or migration away from areas hit by drought to greener regions. Likewise

if an area is subject to drought in the sense that the predicted change in

greenness lies 1 standard deviation below the global average, between 1.5
9For a discussion of the long-run impacst of natural disasters on economic growth, see

Hsiang and Jina (2014).
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and 2.5 fewer pixels are lit.

3.3 The cost of drought

Looking again at the map in figure 2.5 showing the frequency of droughts

registered in the GLIDE database, we now take a look at how luminosity has

changed in these areas compared to the rest of the world. On average, across

the extent of this analysis, luminosity increases 0.017% each year. In areas

where at least one drought has been recorded in a given year, luminosity has

decreased 0.23% those years. In other words, 2 out of the 900 light-pixels

that are contained in each unit of observation are extinguished.
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A Maps

Figure A.1: Geographical extent of the Koppen-Geiger climate zones classi-
fied as semi-arid.

Blue areas cover the hot semi-arid zones and teal the cold semi-arid zones.

20



Figure A.2: Global croplands

Pixels where the majority of sub-pixels are classified as croplands by MODIS
Terra.

Figure A.3: Weather stations used for calculation of the SPEI index:
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