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Abstract

We discuss nonparametric regression models for panel data. A fully nonparametric panel
data specification that uses the time variable and the individual identifier as additional
(categorical) explanatory variables is considered to be the most suitable. We use this
estimator and conventional parametric panel data estimators to analyse the production
technology of Polish crop farms. The results of our nonparametric kernel regressions
generally differ from the estimates of the parametric models but they only slightly depend
on the choice of the kernel functions. Based on economic reasoning, we found the estimates
of the fully nonparametric panel data model to be more reliable.
Keywords: nonparametric kernel regression, panel data, choice of the kernel, kernels for
categorical variables, production function
JEL codes: C14, C23, D24, Q12
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1. Introduction

When analysing economic phenomena within a regression framework, economic theory
very rarely provides distinct information regarding the functional form of a relation-
ship between a dependent variable and its covariates. Simple specifications of regression
functions—such as models that are linear in parameters—are most widely applied in em-
pirical applications, because this simplifies both the econometric estimation as well as
the economic interpretation of the estimated regression parameters. Nevertheless, the a
priori assumption regarding the functional form of the regression function involves the
risk of parametric misspecification, which could result in incorrect economic conclusions
and recommendations. Nonetheless, in practice it is common that no formal test is con-
ducted to detect a possible misspecification of the functional form (e.g. Ramsey’s (1969)
Regression Specification Error Test (RESET) or Utts’ (1982) Rainbow test).
In recent years the rapidly growing literature on nonparametric econometric meth-

ods has offered a remedy for the problems related to the parametric misspecification of
econometric regression models. Nonparametric regression techniques do not obligate the
researcher to assume and specify a functional form for the relationship between the ex-
planatory variables and the dependent variable. Thus, the functional form is determined
by the data rather than by the researcher’s arbitrary decision.
Nonparametric regression methods are most often applied to cross-sectional data, while

they are seldom applied to panel data sets. However, the popularity of semiparametric
and nonparametric regression methods for panel data has recently increased (e.g. Porter,
1996; Lin and Carroll, 2000; Wang, 2003; Henderson and Ullah, 2005; Su and Ullah, 2007;
Henderson, Carroll and Li, 2008),1 but which approach is the most suitable to account
for the panel structure in nonparametric panel data models is still an open question. In
order to answer this question, we discuss different panel data specifications which may be
applied within nonparametric regression. We apply fully nonparametric specifications by
using the time variable and the individual identifier as additional (categorical) explanatory
variables in the nonparametric kernel regression framework for mixed data types that was
proposed by Racine and Li (2004). Next we confront the result of the nonparametric
regression models that utilised the fully nonparametric panel data specification with the
results of parametric regression that use the conventional, therefore fully parametric panel
data specification.
Furthermore, we investigate the use of different kernel functions in nonparametric kernel

regression, where we particularly focus on the kernels for the categorical explanatory

1 The most recent literature review on nonparametric and semiparametric panel data econometric meth-
ods can be found in Su and Ullah (2010). Although semiparametric models rely on less assumptions
regarding the functional form than fully parametric models, they are still susceptible to the same
misspecification problems as their parametric counterparts. Therefore, we will focus on fully non-
parametric methods.
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variables that are used to account for the panel structure, i.e. individual heterogeneity
and time heterogeneity. Previous studies have found that the choice of the kernel is not as
important as the choice of the bandwidths—for both continuous regressors (e.g. Silverman,
1986; Taylor, 1989) and categorical regressors (Racine and Li, 2004). We highlight the fact
that bandwidths are not always directly comparable between different kernel types and
we show how bandwidths for categorical variables can be made comparable. This allows
us to compare the permissible individual heterogeneity and time heterogeneity across
fully nonparametric panel data estimations with different kernels for the (categorical)
individual and time variables.
As an empirical example, we estimate a firm-level production function of Polish crop

farms based on a balanced panel data set of 342 farms in the years 2004–2010, which
gives 2,394 observations in total. The concept of a production function is frequently used
to investigate, e.g., the optimal firm size, the substitutability between production inputs,
or the productivity and efficiency of individual firms. These issues have significant policy
implications and therefore it is crucial to obtain consistent estimates. The nonparametric
estimation of the production function with a fully nonparametric panel data specifica-
tion avoids incorrect conclusions due to a misspecified functional form or a misspecified
parametric panel data specification. In our specific empirical example, we focus on the
returns to scale and the optimal firm size in order to contribute to the on-going policy
debate about the structural change in the Polish farm sector and the numerous policy
interventions that affect this restructuring.
The paper is organized as follows. Section 2 discusses different specifications of panel

data regression models. Section 3 describes our empirical application, section 4 delivers
and discusses the results of the conducted analyses, and section 5 concludes.

2. Specifications of panel data models

The increasing availability of panel data sets has resulted in rapid theoretical development
of panel data regression methods during recent decades. The advantages of panel data
over conventional cross-sectional and time-series datasets are unquestionable (see Hsiao,
2003, for detailed discussion on the advantages and challenges of panel data analysis).
A vast literature on panel data analysis exists and a profound description of panel data
methods can be found in many econometrics textbooks (e.g. Wooldridge, 2002; Arellano,
2003; Hsiao, 2003; Baltagi, 2005). Up to now, methodological contributions to panel data
analysis, as well as empirical applications with panel data, have focused on parametric
regression approaches.
A panel data regression model can be generally specified as:

yit = f(xit, i, t) + εit, (1)
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where yit is the observed dependent variable, f(.) is the unknown regression function, xit
is a set of explanatory variables, εit is an idiosyncratic error term with E[εit|xit, i, t] =
0, whereas i = 1, . . . , N indicates the individual, and t = 1, . . . , T indicates the time.
Regression models for panel data usually differ in the specification (simplification) of the
unknown regression function f(xit, i, t).

2.1. Fully parametric panel data specification

In parametric panel data models, it is often assumed that the individual effects are additive
and separable:2

f(xit, i, t) = f ∗(xit, t) + µi, (2)

where µi is an individual-specific effect and f ∗(.) is the remaining part of the unknown
regression function that is assumed to be the same for all individuals i. These panel
data models are most often estimated as (one-way) “fixed effects” models, where the
individual effects are usually eliminated either by the so-called “within transformation”
or by first-differencing:

ỹit ≡ yit − ȳi = f ∗(xit, t)−
1
N

∑
i

f ∗(xit, t) + ε̃it (3)

∆yit ≡ yit − yi,t−1 = f ∗(xit, t)− f ∗(xi,t−1, t− 1) + ∆εit, (4)

where ȳi = (1/T ) ∑
t yit, ε̃it = εit − ε̄i with ε̄i = (1/T ) ∑

t εit, and ∆ is the first-difference
operator.
In parametric panel data models, it is often assumed that f ∗(.) is linear in xit and t3

so that the regression models (3) and (4) simplify to:

ỹit = f ∗(x̃it, t) + ε̃it (5)
∆yit = f ∗(∆xit,∆t) + ∆εit, (6)

respectively, where x̃it = xit − x̄i with x̄i = (1/T ) ∑
t xit. These models can be estimated

by standard linear regression methods such as ordinary least squares (OLS).

2 In this context, separability means that the individual effects are separable from (the effects of) the
explanatory variables xit and from (the effects of) time t and vice versa, i.e. ∂f(.)/∂xit and ∂f(.)/∂t
do not depend on i and ∂f(.)/∂i does not depend on xit or t.

3 This does not necessarily rule out nonlinear relationships between the dependent variable and the
explanatory variables and/or time. For instance, variable yit and vector xit may be nonlinear trans-
formations (e.g. logarithms) of the original dependent variable and the original explanatory variables,
respectively. Furthermore, vector xit may include more than one transformation of each original ex-
planatory variable (e.g. linear and quadratic), one or more transformations of the time variable t,
and interaction terms among and between the (original and transformed) explanatory variables and
(original or transformed) time variables.
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Sometimes, it is assumed that, as well as the individual effects, the time effects are also
additive and separable:4

f(xit, i, t) = f ∗∗(xit) + µi + νt, (7)

where νt is a time-specific effect and f ∗∗(.) is the remaining part of the unknown regression
function that is assumed to be the same for all individuals i and over all time periods t.
In this case, the “within transformation” can be applied twice to eliminate both the
individual effects and the time effects:

˜̃yit ≡ yit − ȳi − ȳt = f ∗∗(xit)−
1
N

∑
i

f ∗∗(xit)−
1
T

∑
t

f ∗∗(xit)− µ̄− ν̄ + ˜̃εit, (8)

where ˜̃εit = εit − ε̄i − ε̄t with ε̄t = (1/N) ∑
i εit.

If f ∗∗(.) is linear in xit,5 regression model (8) simplifies to:

˜̃yit = f ∗∗(˜̃xit)− µ̄− ν̄ + ˜̃εit, (9)

where ˜̃xit = xit − x̄i − x̄t with x̄t = (1/N) ∑
i xit. This model can also be estimated

by standard linear regression methods such as ordinary least squares (OLS), where the
average individual and time effects, i.e. µ̄ and ν̄, are absorbed by the intercept of the
regression function f ∗∗(.).

2.2. Nonparametric models with parametric panel data specifications

Since economic theory is very rarely informative regarding the functional form, the a
priori selection of a functional form of f(.), f ∗(.), or f ∗∗(.) involves the risk of specifying
a functional form that is not similar to the “true” functional relationship between xit

and yit. This misspecification can lead to inconsistent parameter estimates, and hence to
incorrect inference regarding the investigated phenomena. A nonparametric estimation
of the regression function avoids the risk of a misspecified functional form. However, the
model specifications in (5), (6), and (9) are based on the linearity of f ∗(.) and f ∗∗(.) so
that they are invalid in a nonparametric framework.
Li and Stengos (1996) introduced an estimator for the partially linear (semiparametric)

regression of panel data models with fixed individual effects (2). This estimator relies on
first-differencing and uses kernel instrumental variable regression with lagged explanatory
variables as instruments for the estimation of the nonparametric part of the regression
equation. However, Baltagi and Li (2002) showed that the estimator of Li and Stengos
(1996) suffers from the ‘curse of dimensionality’ and that it can be used to estimate the

4 In this context, separability means that the individual and time effects are separable from each other
and from (the effects of) the explanatory variables, i.e. ∂f(.)/∂xit do not depend on i or t, ∂f(.)/∂i
does not depend on xit or t, and ∂f(.)/∂t does not depend on xit or i.

5 This does not necessarily rule out nonlinear relationships between the dependent variable and the
explanatory variables (see footnote 3).
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function F ∗(xi,t, xi,t−1, t) ≡ f ∗(xi,t, t) − f ∗(xi,t−1, t − 1) in (4) but it cannot be used to
estimate the original unknown function f ∗(xi,t, t), which is of primary interest in non-
parametric regression analysis. Therefore, Baltagi and Li (2002) proposed to estimate
semiparametric panel data models with fixed individual effects (2) in the first-differenced
form (6), where the nonparametric part is modelled using a ‘series estimation’ method
(e.g. a power series6 or a series of spline functions). Ai and Li (2008) also used ‘series
estimation’ to address the same problem as Baltagi and Li (2002). However, while Baltagi
and Li (2002) use first-differencing, Ai and Li (2008) use the “within” transformation and
estimate model (2) in the form (3).7 Alternative solutions to the problems of Li and Sten-
gos’s (1996) estimator are the kernel marginal integration method of Linton and Nielsen
(1995) and the backfitting method of Buja, Hastie and Tibshirani (1989). These methods
are compared in Opsomer and Ruppert (1997).
By applying a Taylor-series approximation to the unknown (true) regression func-

tion f ∗(.), Ullah and Roy (1998) proposed a method for the nonparametric estimation
of one-way individual fixed effects models (2) that uses a conventional “within” transfor-
mation (5) but uses the original regressors xit rather than x̃it in the kernel (weighting)
functions. However, Lee and Mukherjee (2008) showed that nonparametric estimators
that use the conventional “within” transformation or first differencing (e.g. the estima-
tors of Li and Stengos (1996) and Ullah and Roy (1998)) are biased and that the bias
does not decrease with sample size. As a solution to this problem, the authors proposed
a local-linear kernel estimator for models with fixed individual effects (2) or fixed individ-
ual and time effects (7) that uses the locally weighted averages of the regressors for the
“within” transformation.8 Lee and Mukherjee (2008) provided the asymptotic properties
of this estimator and showed that it is asymptotically unbiased and consistent.
Henderson and Ullah (2005) proposed a generalisation of the method of Ullah and

Roy (1998). This local-linear weighted least squares estimator uses information from the
covariance matrix of the disturbance vector to obtain a consistent estimator for random
effects models. However, in most empirical economic applications, the “random effects”
estimator is found to be inconsistent, because the individual (or time) effects are correlated
with the regressors (Henderson, Carroll and Li, 2008).
Based on the marginal nonparametric kernel regression method for panel data intro-

duced by Wang (2003), Henderson, Carroll and Li (2008) proposed an iterative procedure
for nonparametric kernel estimations of panel data models with fixed individual effects (2).
This method uses the profile likelihood method to estimate the differenced form of the

6 However, since power series estimators are sensitive to outliers, their use is rather limited.
7 Ai and Li (2008) provide an in-depth discussion of nonparametric ‘series estimation’ approaches.
8 Since there is no averaging in first-difference transformations, the method of Lee and Mukherjee (2008)
cannot be applied to the first-difference estimator.
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unknown regression function as specified in (4).9 The approaches of Wang (2003) and
Henderson, Carroll and Li (2008) are extensively discussed in Li and Racine (2007).
In summary, all the methods discussed above use a parametric panel data specification—

either (2) or (7)—and some kind of data transformation, which is often a generalisation
of the conventional panel data transformations.

2.3. Fully nonparametric panel data specification

All nonparametric panel data estimators discussed in the previous section assume that the
individual effects (and/or time effects) are additive and separable. These parametric as-
sumptions about the panel data structure contradict the idea of nonparametric regression
and hence make the use of nonparametric regression questionable (Racine, 2009). There-
fore, Altonji and Matzkin (2005), Evdokimov (2010), and Hoderlein and White (2012)
proposed nonparametric estimation procedures of nonseparable panel data models. Al-
though these methods do not rely on the restrictive assumption of additive and separable
individual effects (and/or time effects), they still rely on first-differencing. However, the
first differencing results in a considerable loss of observations (degrees of freedom), partic-
ularly when the time dimension of the panel data set is short or when the panel is highly
unbalanced, both of which are not uncommon in many panel data sets. The reduction
in the number of observations is a substantial drawback in nonparametric regression, be-
cause these methods require a large number of observations. Moreover, to our knowledge,
these estimators are not available in any software package, which currently limits their
use in applied research.
In our analysis, we use a different specification of a fully nonparametric and nonsepa-

rable panel data model that has been suggested by Henderson and Simar (2005), Racine
(2008), and Gyimah-Brempong and Racine (2010). They estimate equation (1) as a fully
nonparametric two-ways effects panel data model with time (t) and individual ID (i) as
categorical explanatory variables using the nonparametric regression method proposed by
Li and Racine (2004) and Racine and Li (2004) that can handle both continuous and cat-
egorical explanatory variables. This estimator does not require any data transformation
(e.g. “within” transformation or first differencing) so that it does not suffer from a loss
of observations. Furthermore, this approach does not assume additivity or separability
of the individual or time effects. This means that the level of the dependent variable
(“intercept”) and also the marginal effects of the explanatory variables on the dependent
variable (“slopes”) may differ between time periods and between individuals and the time
effects may depend on the individual, while the individual effects may vary over time.

9 Henderson, Carroll and Li (2008) use a slightly different differencing than usual, namely yit − yi,1 =
f∗(xit, t)− f∗(xi,1, 1), i.e. subtracting the variables from the first time period rather than subtracting
the variables from the previous time period, but they claim that the asymptotic properties are similar
to the standard first-differencing approach.
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Hence, this estimator does not imply any restrictions on the most general specification
of panel data models, i.e. function f(.) in (1). Furthermore, the bandwidths of the ex-
planatory variables can be selected using data driven cross-validation methods. Thus, the
overall shape of the relationship between the dependent variable and the covariates xit,
the individual i, and time t is entirely determined by the data. Therefore, we call it fully
nonparametric panel data specification.
The only arbitrary choice to be made by the researcher is the choice of the kernel func-

tion. However, it has been shown (e.g. in Silverman, 1986; Taylor, 1989; Racine and Li,
2004) that this choice is less important than the selection of the smoothing parameters
(bandwidths). Initially, nonparametric kernel regression methods could only include con-
tinuous explanatory variables and they usually used the Gaussian kernel or the Epanech-
nikov kernel for these variables. In this study, we use a more recent local-linear regression
method proposed by Li and Racine (2004) and Racine and Li (2004) that can also include
kernels for categorical explanatory variables using generalised product kernels. In this
approach the kernel suggested by Aitchison and Aitken (1976) or the kernel suggested by
Li and Racine (2004) can be used for unordered categorical variables, while the kernel
suggested by Wang and van Ryzin (1981) or the kernel suggested by Racine and Li (2004)
can be used for ordered categorical variables.10 The statistical significance levels of the
explanatory variables can be obtained by bootstrapping using the methods proposed by
Racine (1997) and Racine, Hart and Li (2006).

3. Empirical application

We use the production function framework to empirically illustrate the use of the para-
metric and nonparametric panel data estimators. However, our considerations apply to
panel data regression in general.
We use a balanced panel data set from the Polish Farm Accountancy Data Network

(FADN), which consists of 342 farms specialised in crop production during the period
2004 to 2010. Hence, our data set includes 2,394 observations in total. The dependent
variable of the production function is the farms’ output, which is measured as the value
of the total agricultural production. Four explanatory variables (inputs) are used in the
regression analyses: labour (L), land (A), intermediate inputs (V ), and capital (K).11

We take the logarithms of all variables. This approach has three advantages. First, the
log-transformed values are more equally distributed, which is particularly desirable when
fixed bandwidths in local-linear kernel regression are used. Second, the unknown true
relationship between the input quantities and the output quantity is likely much closer to
a log-linear relationship (Cobb-Douglas technology) than to a linear relationship (linear

10 The mathematical specifications of these kernels are given in Appendix B.
11 This data set is extensively discussed in Czekaj and Henningsen (2012). Therefore, we only describe

it briefly here.
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technology) so that the use of logarithmic quantities of the inputs and the output allows
for larger bandwidths, which in turn increases the precision of the local-linear estimates,
because they are based on a larger number of observations. Third, the estimated gradients
of nonparametric regression can be directly interpreted as partial output elasticities in the
production function framework.

4. Results

All estimations and calculations were conducted within the statistical software environ-
ment “R” (R Development Core Team, 2012) using the add-on package “plm” (Croissant
and Millo, 2008) for estimation and testing of parametric panel data models, the add-on
package “lmtest” (Zeileis and Hothorn, 2002) for further parametric specification tests,
and the add-on package “np” (Hayfield and Racine, 2008) for nonparametric regression
and nonparametric specification tests.12

4.1. Fully parametric panel data estimations

We start with traditional parametric estimations of a “pooled” model (i.e. ignoring the
panel structure of the data set) and the panel data models that are defined in equations (5),
(6), and (9), where we estimated specifications (5) and (9) additionally with the “random
effects” estimator. We use the two functional forms that are most widely applied in
econometric production analysis, i.e. the log-linear (Cobb-Douglas) and the log-quadratic
(Translog) functional forms. The estimation results are summarised in Table 1. The panel
data specification generally had a greater effect on the estimation results (e.g. the partial
output elasticities and the elasticities of scale at the sample mean) than the specification
of the functional form. The most salient result is that the partial output elasticities of land
and intermediate inputs are around 0.15 and 0.8, respectively, if individual heterogeneity
is ignored, while these elasticities are around 0.5 and 0.4, respectively, if the models allow
for additive and separable fixed individual effects. The estimates of the random effects
models take a middle ground between these two groups of estimators. Moreover, the first-
difference models indicate decreasing returns to scale, while all other estimates indicate
increasing returns to scale.
We apply statistical tests in order to check, which model gives us the most reliable

results. Standard parametric tests indicate that the log-quadratic (Translog) two-ways
fixed effects model is the most suitable (least unsuitable) parametric model specification,
because it only suffers from serial correlation, while all other specifications are rejected
by at least two tests.13

12 The R commands used for this analysis are available in Appendix C.
13 Poolability tests and the Lagrange Multiplier tests of Breusch and Pagan for individual, time, and two-

ways effects indicate that individual effects and time effects are significant (tested separately as well
as jointly); Hausman (1978) tests indicate that all four random effects estimators are inconsistent; a
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Table 1: Results of fully parametric estimations of panel data models
Model form ID Year Labour Land Int. inp. Capital Scale
Pool CD — — 0.052∗∗ 0.121∗∗∗ 0.815∗∗∗ 0.080∗∗∗ 1.068
1WWI CD 0.236∗∗∗ — 0.065∗ 0.453∗∗∗ 0.472∗∗∗ 0.052∗∗ 1.043
1WWT CD — 0.064∗∗∗ 0.054∗∗ 0.128∗∗∗ 0.808∗∗∗ 0.080∗∗ 1.070
1WRI CD 0.223∗∗∗ — 0.067∗∗ 0.347∗∗∗ 0.581∗∗∗ 0.081∗∗∗ 1.076
1WRT CD — 0.057∗∗∗ 0.054∗∗ 0.128∗∗∗ 0.808∗∗∗ 0.080∗∗∗ 1.070
FD CD > 0 — 0.044 0.512∗∗∗ 0.339∗∗∗ 0.017 0.911

2WW CD 0.243∗∗∗ 0.072∗∗∗ 0.064∗ 0.507∗∗∗ 0.448∗∗∗ 0.047∗∗ 1.066
2WR CD 0.229∗∗∗ 0.071∗∗∗ 0.068∗∗ 0.388∗∗∗ 0.548∗∗∗ 0.076∗∗∗ 1.080
Pool TL — — 0.050∗∗ 0.161∗∗∗ 0.754∗∗∗ 0.088∗∗∗ 1.053
1WWI TL 0.239∗∗∗ — 0.060+ 0.506∗∗∗ 0.413∗∗∗ 0.054∗∗ 1.030
1WWT TL — 0.064∗∗∗ 0.051∗∗ 0.169∗∗∗ 0.746∗∗∗ 0.089∗∗∗ 1.055
1WRI TL 0.223∗∗∗ — 0.063∗ 0.393∗∗∗ 0.518∗∗∗ 0.091∗∗∗ 1.065
1WRT TL — 0.058∗∗∗ 0.051∗∗ 0.169∗∗∗ 0.746∗∗∗ 0.089∗∗∗ 1.055
FD TL > 0 — 0.073+ 0.522∗∗∗ 0.294∗∗∗ 0.001 0.890

2WW TL 0.244∗∗∗ 0.072∗∗∗ 0.050+ 0.562∗∗∗ 0.390∗∗∗ 0.058∗ 1.060
2WR TL 0.231∗∗∗ 0.071∗∗∗ 0.058∗ 0.436∗∗∗ 0.486∗∗∗ 0.091∗∗∗ 1.071

Notes: model “1WWI” denotes the one-way within specification with fixed individual effects (5),
model “1WWT” denotes the one-way within specification with fixed time effects, “FD” denotes
the first-difference specification (6), “2WW” denotes the two-ways within specification (9),
“1WRI” indicates the one-way specification with random individual effects, and “2WR”
indicates the two-way random effects estimator. “CD” denotes to the log-linear (Cobb-Douglas)
functional form and “TL” denotes to the log-quadratic (Translog) functional form. The
numbers in the columns “ID” and “Year” indicate the standard deviations of the individual
effects and time effects, respectively. The numbers in the following columns indicate the partial
output elasticities of the inputs and the elasticity of scale evaluated at the mean values of the
explanatory variables. The asterisks indicate the significance levels of the explanatory variables
(not the significance levels of the corresponding standard deviations or elasticities), where +

indicates P < 0.10, ∗ indicates P < 0.05, ∗∗ indicates P < 0.01, and ∗∗∗ indicates P < 0.001.

Moreover, we use two variations of the bootstrap nonparametric consistent model spec-
ification test described in Hsiao, Li and Racine (2007) to test the functional forms of the
parametric models. One specification uses a local-constant and the other specification
uses a local-linear kernel estimation as the nonparametric counterpart to the tested para-
metric specification. The Cobb-Douglas functional form is not rejected by the local-linear
version of the test, but it is rejected at the 10% significance level by the local-constant
version. We found that for our data set only the two-ways fixed effects model with the
Translog functional form is accepted by the nonparametric consistent model specification

Wald test rejects the log-linear (Cobb-Douglas) specification in favour of the log-quadratic (Translog)
specification; and the regression error specification test (RESET) proposed by Ramsey (1969) rejects
the linearity of the log-linear specification but accepts the log-quadratic (Translog) specification with
a P-value of 0.112. We also estimated models in the first-difference specification (6). To investigate
whether the first-difference estimator or the “within” estimator is more suitable for our data set, we
conducted tests for serial correlation that have been suggested by Wooldridge (2002). We found serial
correlation in both models. Therefore, we cannot conclude which of these two estimators is more
efficient. Detailed test results are given in Tables A1 to A6 in Appendix A.
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test (see Table A6 in Appendix A), which is also the most suitable model according to
the parametric tests.

4.2. Fully nonparametric panel data estimations

We estimate the most general panel data specification (1) by nonparametric kernel re-
gression, where we use the ID of the individual farm (i) and the time (t) as additional
(categorical) explanatory variables using the estimator proposed by Li and Racine (2004)
and Racine and Li (2004), because it can account for both continuous and categorical
explanatory variables. This estimator allows the effect of one explanatory variable to
depend on the values of all other explanatory variables, e.g. the effect of a continuous
explanatory variable may differ between individuals and between time periods.
In the nonparametric kernel regressions, we can either use the Epanechnikov kernel or

the Gaussian kernel for the continuous explanatory variables. The categorical regressors
may be modelled either as ordered or unordered categorical variables. For ordered cate-
gorical variables, we can either use the Wang and van Ryzin (1981) kernel or the Li and
Racine (2004) kernel for ordered categorical variables. For unordered categorical variables,
we can either use the Aitchison and Aitken (1976) kernel or the Li and Racine (2004) ker-
nel for unordered categorical variables. While the ID of the individual farm is clearly an
unordered categorical variable, time can either be considered as an ordered categorical
variable or as an unordered categorical variable (Czekaj and Henningsen, 2012).
We make the frequently used assumption that the bandwidths (smoothing parameters)

for the explanatory variables can differ between regressors but are constant over the
domain of each regressor. The bandwidths (smoothing parameters) of the kernel functions
are chosen according to the expected Kullback-Leibler cross-validation criterion (Hurvich,
Simonoff and Tsai, 1998). Hence, the researcher’s only arbitrary decision is the choice of
the kernel. In order to increase the validity and objectivity of our results, we estimated
our fully nonparametric panel data model with all combinations of the different kernels
and different specifications of the time variable. As the ID variable and time were not
always statistically significant (at the 5% significance level), we estimated two additional
models: one model without a time variable (but with an ID variable) and another model
without a time or ID variable. The latter specification is effectively a “pooled” model
that completely ignores the panel structure of our data set.
The cross-validated (optimal) bandwidth for the ID variable clearly depends on the

kernel functions that are used for the categorical explanatory variables (i.e. ID and time).
If the Li and Racine (2004) kernel for unordered categorical variables is used for the ID
variable, the bandwidth of this variable is either 0.006 (if the Wang and van Ryzin (1981)
kernel is used for unordered categorical variables) or 0.003 (otherwise). If the Aitchison
and Aitken (1976) kernel is used for the ID variable, the bandwidth of this variable is either
around 0.68 (if the Wang and van Ryzin (1981) kernel is used for unordered categorical
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variables) or 0.52 (otherwise) (Table 2). While the bandwidth of the Li and Racine (2004)
kernel for unordered categorical variables directly indicates the weight of the other levels
(farms) relative to the current farm (all other variables being equal), this is not the case
for the Aitchison and Aitken (1976) kernel. For this kernel, the weight of the other levels
(farms) relative to the current level (all other variables being equal) is λ/((c− 1)(1− λ)),
where c indicates the total number of levels (= 342 farms in our application) and λ

indicates the bandwidth (see Appendix B.1). In our application, the relative weights based
on the Aitchison and Aitken (1976) kernel are virtually identical to the relative weights
based on the Li and Racine (2004) kernel for unordered categorical variables: 0.006 if the
Wang and van Ryzin (1981) kernel is used for unordered categorical variables and 0.003
otherwise. As Aitchison and Aitken (1976) kernel and the Li and Racine (2004) kernel
for unordered categorical variables are basically the same kernel function but just use
different measures (normalisations) of the smoothing parameter (bandwidth), the cross-
validation resulted in virtually identical relative weights so that the estimation results
do not depend on the choice of the kernel for unordered categorical variables. The low
weights of the other farms relative to the current farm allows for considerable variations
in the production technology between the individual farms (Table 3). According to the
bootstrap significance test proposed by Racine (1997) and Racine, Hart and Li (2006),
the ID variable has a statistically significant effect, at least at the 10% significance level
(Table 3).
In all model specifications, i.e. no matter which kernel functions are used, the bandwidth

of the time variable is at its upper boundary (Table 2), which is one for the Wang and van
Ryzin (1981) kernel and the Li and Racine (2004) kernels and (c− 1)/c for the Aitchison
and Aitken (1976) kernel, where c indicates the total number of levels (= 7 years in our
application) (see Appendix B.2). In case of the two Li and Racine (2004) kernels and
the Aitchison and Aitken (1976) kernel, the effect of time is smoothed out, because the
current year always has the same weight as the other years so that there is no variation
over time (all other variables being equal) (Table 3). In contrast, the Wang and van Ryzin
(1981) kernel cannot smooth out time, because the current year always has at least twice
the weight as the other years (see Appendix B.2). Therefore, the models with the Wang
and van Ryzin (1981) kernel for the time variable still allow for variation over time even
though the bandwidth is one (Tables 2 and 3). The bootstrap significance test proposed
by Racine (1997) and Racine, Hart and Li (2006) even indicates that the time variable
has a statistically significant effect if the Wang and van Ryzin (1981) kernel is used for
the time variable (Table 3).14 As the models with the Wang and van Ryzin (1981) kernel

14 This test also indicates that time has a highly statistically significant effect in the model with the
Gaussian kernel for continuous variables, the Aitchison and Aitken (1976) kernel for unordered cate-
gorical variables, and the Li and Racine (2004) kernel for ordered categorical variables, although the
effect of time is smoothed out in this model. This seems to be strange and needs further investigation
in the future.

13 IFRO Working Paper 2013 / 5



are the only models that allow for variation over time (all other variables being equal),
these models have a considerably larger cross-validated bandwidth of the ID variable,
probably because the removal of the variation over time leaves less variation that could
be attributed to the ID variable. One could argue that the Wang and van Ryzin (1981)
kernel is generally unsuitable, because it does not allow for a variable to be smoothed out
even if it is completely irrelevant. However, as time has a statistically significant effect
in all of our models with the Wang and van Ryzin (1981) kernel for the time variable,
it might also be argued that the Wang and van Ryzin (1981) kernel can be particularly
useful in specific situations, because it can prevent statistically significant variables from
being smoothed out.
In all model specifications except for the two “pooled” estimations, the cross-validation

suggests using rather large bandwidths for the (logarithmic) input quantities (Table 2).
This means that the gradient with respect to a continuous explanatory variable (∂f(.)/∂xjit)
does not depend on the value of this variable (xjit). However, the gradients are not nec-
essarily the same for all observations (as in the Cobb-Douglas functional form), because
the gradients may depend on the values of other explanatory variables (including the ID
variable and time). This is indeed the case, as the estimated gradients vary considerably
across the observations. According to the bootstrap significance test proposed by Racine
(1997) and Racine, Hart and Li (2006), all continuous regressors (logarithmic input quan-
tities) have a statistically significant effect on the dependent variable (logarithmic output
quantity) in all model specifications except for the two “pooled” estimations (Table 3).
The choice of the kernel for the continuous explanatory variables only affects the (statis-
tically insignificant) results of the “pooled” model but does not affect the estimates of the
other models. However, this observation should not be generalised, because in our appli-
cation the irrelevance of the choice of the kernel is caused by the very large bandwidths
of the continuous explanatory variables.
Although the choice of the kernels for continuous variables and ordered categorical

variables (but not the choice between the two kernels for unordered categorical variables
with successfully cross-validated bandwidths) could affect the estimation results, our re-
sults of the fully nonparametric panel data estimations do not notably depend on the
choice of the kernel, e.g. the partial output elasticities are very similar across all model
specifications and the elasticity of scale is always around 1.07 (Table 3). As the effect of
time is smoothed out in most model specifications, the removal of the time variable as an
explanatory variable does not crucially affect the results either. However, the “pooled”
regression without the time and the ID as explanatory variables partly gives different esti-
mation results while almost no continuous input variable (logarithmic input quantity) has
a statistically significant effect on the dependent variable (logarithmic output quantity).
This indicates—together with the statistical significance of the ID variable—that there is
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Table 2: Bandwidths and R2 values from fully nonparametric estimations of panel data
models

kernels ID year log(L) log(A) log(V ) log(K) R2

E LRU LRO 0.003 1.000 2316379 633905 406870 543084 0.952
E LRU WVR 0.006 1.000 372534 851210 260011 1031526 0.956
G LRU LRO 0.003 1.000 7525905 6768702 2483181 2948212 0.952
G LRU WVR 0.006 1.000 2992012 1897999 1063737 718268 0.956
E AA LRO 0.520 1.000 642045 454157 635336 1152330 0.952
E AA WVR 0.680 1.000 297105 1102811 6459913 14735939 0.955
G AA LRO 0.520 1.000 383454 389440 11385661 6398439 0.952
G AA WVR 0.677 1.000 21460075 1992734 1071484 17226491 0.956
E LRU LRU 0.003 1.000 1615763 724623 341968 519111 0.952
E AA AA 0.520 0.857 1766820 8571562 1395782 1860381 0.952
G LRU LRU 0.003 1.000 698517 1886805 251145 4821524 0.952
G AA AA 0.520 0.857 5694530 6108610 4872012 8777948 0.952
E LRU — 0.003 — 1528159 1918044 325765 361992 0.952
E AA — 0.520 — 736114 672573 2894058 12216425 0.952
G LRU — 0.003 — 1302064 1398033 365152 418384 0.952
G AA — 0.520 — 19559263 4317483 6661354 4884191 0.952
E — — — — 362667 0.181 0.413 0.375 0.905
G — — — — 286273 0.173 0.389 0.386 0.922

Notes: the first, second, and third abbreviation in the “kernels” column indicate the kernel for
(continuous) input quantities, the kernel for the (unordered categorical) ID variable, and the
kernel for the (ordered or unordered categorical) time variable, respectively. Kernel “E” indi-
cates the Epanechnikov kernel for continuous explanatory variables, “G” indicates the Gaussian
kernel for continuous explanatory variables, “LRO” indicates the Li and Racine (2004) kernel
for ordered categorical variables, “LRU” indicates the Li and Racine (2004) kernel for unordered
categorical variables, “WVR” indicates the Wang and van Ryzin (1981) kernel for ordered cat-
egorical variables, and “AA” indicates the Aitchison and Aitken (1976) kernel for unordered
categorical variables.

considerable heterogeneity between the individual farms so that the “pooled” regression
is unsuitable.

4.3. Comparison of different panel data specifications

When comparing the results in Tables 1 and 3, it is surprising that the mean partial
output elasticities and the elasticities of scale from the (fully) nonparametric models
are very similar to the corresponding elasticities that are estimated by the parametric
models that do not allow for individual effects (e.g. pooled estimations), although these
models were strongly rejected by several statistical tests. In contrast, the partial output
elasticities of land and intermediate inputs strongly differ between the fully nonparametric
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Table 3: Significance levels and elasticities from fully nonparametric estimations of panel
data models

kernels ID Year Labour Land Int. inp. Capital Scale
E LRU LRO 0.157+ 0.000 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
E LRU WVR 0.133∗ 0.032∗∗ 0.054∗∗∗ 0.147∗∗∗ 0.785∗∗∗ 0.084∗∗∗ 1.070
G LRU LRO 0.157+ 0.000 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
G LRU WVR 0.133∗ 0.032∗∗ 0.054∗∗∗ 0.147∗∗∗ 0.785∗∗∗ 0.084∗∗∗ 1.070
E AA LRO 0.157+ 0.000 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
E AA WVR 0.131∗ 0.032∗∗ 0.054∗∗∗ 0.145∗∗∗ 0.787∗∗∗ 0.084∗∗∗ 1.070
G AA LRO 0.157+ 0.000∗∗∗ 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
G AA WVR 0.131∗ 0.032∗∗ 0.054∗∗∗ 0.146∗∗∗ 0.786∗∗∗ 0.084∗∗∗ 1.070
E LRU LRU 0.157+ 0.000 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
E AA AA 0.157+ 0.000 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
G LRU LRU 0.157+ 0.000 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
G AA AA 0.157+ 0.000 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
E LRU — 0.157+ 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
E AA — 0.157+ 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
G LRU — 0.157+ 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
G AA — 0.157+ 0.056∗∗∗ 0.168∗∗∗ 0.760∗∗∗ 0.088∗∗∗ 1.071
E — — 0.052 0.385 0.769 0.100 1.306
G — — 0.063∗∗∗ 0.168 0.759 0.098 1.087

Notes: the model specifications and abbreviations are explained below table 2. The numbers in
the columns “ID” and “Year” indicate the standard deviations of the individual effects and time
effects, respectively. The numbers in the following columns indicate the mean partial output
elasticities of the inputs and the mean elasticity of scale. The significance levels are explained
below table 1.

panel data models and the most suitable parametric model (and all other parametric
models with fixed individual effects), although the small bandwidth of the ID variable
allows for considerable variation between individual farms in the nonparametric model—
similarly to the fixed individual effects in the parametric models. However, while the fully
nonparametric panel data models allow the effects of the explanatory variables (“slopes”)
to differ between individuals, the parametric models do not allow for this. Furthermore,
although the mean elasticities from the nonparametric models are similar to the elasticities
from the parametric models with fixed individual effects derived at the sample mean,
the elasticities evaluated at each individual observation considerably differ between the
parametric models and the nonparametric models (see also Czekaj and Henningsen, 2012).
We use economic reasoning to further assess and compare the suitability of the nonpara-

metric models and the most suitable parametric model. In case of profit maximisation,
the marginal value products of the variable inputs are expected to be equal to the prices
of these inputs. In our application, the intermediate input is perfectly suited for such an
analysis, because it is the only input that the farmers in our sample can freely adjust at
a given market price and the difference of the marginal value products between the two
types of models is very large. We calculate the ratio of the costs of intermediate inputs
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and the total revenue for each individual observation and compare these ratios to the
estimated output elasticities of the intermediate inputs. If the farmers maximise profit
and the estimated production function is correct, then the ratio of the costs of interme-
diate inputs and the total revenue should be equal to the partial output elasticities.15

Table 4 indicates the mean values and the median values of the partial output elasticities
of intermediate inputs that were estimated by two nonparametric models and the most
suitable parametric model. Furthermore, the table indicates the mean squared differences
(MSDs) and the mean absolute differences (MADs) between the elasticities and the ratio
between the costs of intermediate inputs and the total revenue.

Table 4: Partial output elasticities of intermediate inputs

Mean Median MSE to cV /R MAD to cV /R
cV /R 0.6507 0.6246 — —
εV (E LRU) 0.7596 0.7653 0.0718 0.2036
εV (E LRU WVR) 0.7851 0.7850 0.0715 0.2081
εV (TL 2WW) 0.4095 0.3984 0.1281 0.2769

Notes: εV denotes the partial output elasticity of intermediate inputs. cV /R is the ratio between the
costs of intermediate inputs and the total revenue for each individual observation, which should be equal
to εV in case of profit maximisation. The abbreviations of the econometric models are explained below
Tables 1 and 2.

The mean (and median) values of the ratio between the costs of intermediate inputs
and the total revenue lie in between the mean (and median) values of the estimated par-
tial output elasticities of the intermediate inputs from the fully nonparametric models
and the fully parametric model but they are much closer to the estimates from the fully
nonparametric models. Moreover, the mean squared deviations and the mean absolute de-
viations between the costs of intermediate inputs and the total revenue and the estimated
partial output elasticities of the intermediate inputs are considerably smaller for the fully
nonparametric models than for the fully parametric model. Finally, the nonparametric
regression indicates that the farmers generally use slightly too few intermediate inputs,
while the parametric regression indicates that most farmers use much too much interme-
diate inputs, of which the former case is much more plausible, as it could be explained by
risk aversion and credit constraints. This indicates that the estimation results from the
fully nonparametric panel data models are more reliable than the estimation results from
the fully parametric panel data model—at least in our data set.

15The marginal value product of ith input is defined as MV Pi = Po · (∂Qo/∂Qi), where Po is the output
price, Qo is the output quantity and Qi is the quantity of the ith input. The partial output elasticity
of the ith input is defined as εi = (∂Qo/∂Qi) · (Qi/Qo). Profit maximisation implies MV Pi = Pi,
where Pi is the price of the ith input. By re-arranging, we get: εi = (∂Qo/∂Qi) · (Po Qi)/(Po Qo) =
MV Pi ·Qi/(Po Qo) = (Pi Qi)/(Po Qo).
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5. Conclusion

Nonparametric regression methods are becoming increasingly popular in econometric anal-
yses because they avoid the specification of a potentially unsuitable functional form for
the relationship between the explanatory variables and the dependent variable. How-
ever, at the moment, nonparametric methods are not used very often for the analysis of
panel data. In this paper we discuss different approaches to the nonparametric estimation
of panel data regression models and we distinguish between (i) nonparametric regression
models with parametric panel data specifications and (ii) nonparametric regression models
with a nonparametric panel data specifications. As the assumption of additive and sepa-
rable individual (or time) effects in the parametric panel data specifications contradicts
the idea of nonparametric regression (Racine, 2009), we apply a nonparametric regres-
sion model with a fully nonparametric panel data specification (Henderson and Simar,
2005; Racine, 2008; Gyimah-Brempong and Racine, 2010) in our empirical application.
In this specification, the firms’ individual identifiers and the time variable are used as
additional (categorical) explanatory variables in the nonparametric regression, thereby
taking account of possible individual and time heterogeneity in the data. Compared to
other nonparametric regression models with fully nonparametric panel data specifications,
our specification does not rely on first differencing and hence, does not suffer from a reduc-
tion in the number of observations, particularly relevant in short and unbalanced panel
data sets. Moreover, we discuss the use of different kernel functions for the ID and time
variables and we show how the bandwidths of different kernels for categorical variables
(e.g. the ID and time variables) can be compared. Finally, we compare the estimates from
the fully nonparametric regression model with estimates from traditional fully parametric
panel data methods.
In our empirical application, we estimate the production technology of Polish crop

farmers based on a balanced panel data set with 2,394 observations in total. We found
that the choice of the kernel for the ID and time variables only had a minor influence
on the results. However, we found some economically relevant differences between the
estimates of the fully nonparametric regression model and the estimates of traditional
fully parametric estimators. Based on economic reasoning, we found that the estimates of
the fully nonparametric panel data regression model were more reliable than the estimates
of the traditional fully parametric panel data model.
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Appendix

A. Results of diagnostic tests for Cobb-Douglas and Translog production functions

Table A1: Poolability tests for parametric panel data models
Models Statistics Decision

CD pooled vs 1WWI F (341, 2048) = 5.355, p < 0.001 pooled model rejected
CD pooled vs 1WWT F (6, 2383) = 18.508, p < 0.001 pooled model rejected
CD pooled vs 2WW F (347, 2042) = 6.538, p < 0.001 pooled model rejected
CD pooled vs 1VCI F (1705, 684) = 2.1072, p < 0.001 pooled model rejected
CD pooled vs 1VCT F (30, 1339) = 5.6442, p < 0.001 pooled model rejected
CD 1WWI vs 1VCI F (1364, 684) = 1.1561, p = 0.015 1WWI model rejected
CD 1WWT vs 1VCT F (24, 2359) = 2.3648, p < 0.001 1WWT model rejected
TL pooled vs 1WWI F (341, 2038) = 5.251, p < 0.001 pooled model rejected
TL pooled vs 1WWT F (6, 2373) = 19.103, p < 0.001 pooled model rejected
TL pooled vs 2WW F (347, 2042) = 6.451, p < 0.001 pooled model rejected
TL pooled vs 1VCT F (90, 2289) = 3.1818, p < 0.001 pooled model rejected
TL 1WWT vs 1VCT F (84, 2289) = 1.9964, p < 0.001 1WWT model rejected

Notes: “1VCI” indicates the one-way varying coefficient model, where all coefficients may differ between
individuals; “1VCT” indicates the one-way varying coefficient model, where all coefficients may differ
between time periods; all other abbreviations are explained below table 1. The “1VCI” cannot be
estimated for the Translog functional form, because this functional form has more parameters (11) than
the number of time periods in our data set (7).

Table A2: Breusch and Pagan tests for parametric panel data models
Models Statistics Decision

CD individual χ2(1) = 685.357, p < 0.001 significant individual effects
CD time χ2(1) = 707.415, p < 0.001 significant time effects
CD two-ways χ2(2) = 1392.772, p < 0.001 significant individual and time effects
TL individual χ2(1) = 644.163, p < 0.001 significant individual effects
TL time χ2(1) = 756.113, p < 0.001 significant time effects
TL two-ways χ2(2) = 1400.275, p < 0.001 significant individual and time effects

Note: The abbreviations of the model specifications are explained below table 1.
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Table A3: Hausman tests for parametric panel data models
Models Statistics Decision

CD 1WWI vs 1WRI χ2(4) = 109.733, p < 0.001 random effects model rejected
CD 1WWT vs 1WRT χ2(4) = 12.876, p = 0.012 random effects model rejected
CD 2WW vs 2WR χ2(4) = 121.808, p < 0.001 random effects model rejected
TL 1WWI vs 1WRI χ2(14) = 113.087, p < 0.001 random effects model rejected
TL 1WWI vs 1WRT χ2(14) = 39.163, p < 0.001 random effects model rejected
TL 2WW vs 2WR χ2(14) = 124.391, p < 0.001 random effects model rejected

Note: The abbreviations of the model specifications are explained below table 1.

Table A4: Tests for serial correlation in the parametric panel data models
Models Statistics Decision
Wooldridge’s test for serial correlation of FD residuals (∆εit)
CD χ2(1) = 214.112, p < 0.001 rejected (serial correlation in ∆εit)
TL χ2(1) = 213.507, p < 0.001 rejected (serial correlation in ∆εit)
Breusch-Godfrey/Wooldridge’s test for serial correlation of FE residuals (ε̃it)
CD χ2(7) = 259.18, p < 0.001 rejected (serial correlation in ε̃it)
TL χ2(7) = 260.64, p < 0.001 rejected (serial correlation in ε̃it)
Wooldridge’s test for serial correlation of FE residuals (ε̃it) in “short” panels
CD χ2(1) = 8.217, p = 0.004 rejected (serial correlation in ε̃it)
TL χ2(1) = 8.334, p = 0.004 rejected (serial correlation in ε̃it)
Note: The abbreviations of the model specifications are explained below table 1.

Table A5: Wald tests of CD vs. TL parametric panel data models
Models Statistics Decision

TL pooled vs. CD pooled χ2(10) = 52.357, p < 0.001 CD pooled rejected
TL 1WWI vs. CD 1WWI χ2(10) = 30.581, p < 0.001 CD 1WWI rejected
TL 1WWT vs. CD 1WWT χ2(10) = 56.171, p < 0.001 CD 1WWT rejected
TL 2WW vs. CD 2WW χ2(10) = 35.561, p < 0.001 CD 2WW rejected
TL 1WRI vs. CD 1WRI χ2(10) = 33.339, p < 0.001 CD 1WRI rejected
TL 1WRT vs. CD 1WRT χ2(10) = 56.040, p < 0.001 CD 1WRT rejected
TL 2WR vs. CD 2WR χ2(10) = 39.109, p < 0.001 CD 2WR rejected
TL FD vs. CD FD χ2(10) = 17.101, p = 0.072 CD FD rejected

Note: The abbreviations of the model specifications are explained below table 1.
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B. Kernel functions for ordered and unordered factor variables

B.1. Kernel functions for unordered factor variables

• Aitchison and Aitken (1976) kernel:

l(xi, x, λ) =
 1− λ, if xi = x

λ/(c− 1), if xi 6= x
(10)

where c is the number of levels of the unordered categorical variable x and smoothing
parameter λ must lie between 0 and (c− 1)/c.

Weight of the other levels relative to the current level:

l(xi, x 6= xi, λ)
l(xi, x = xi, λ) = λ/(c− 1)

1− λ = λ

(c− 1) · (1− λ) (11)

• Li and Racine (2004) kernel:

l(xi, x, λ) =
 1, if xi = x

λ, if xi 6= x
(12)

where smoothing parameter λ must lie between 0 and 1.

Weight of the other levels relative to the current level:

l(xi, x 6= xi, λ)
l(xi, x = xi, λ) = λ

1 = λ (13)

• Relationship between the Aitchison and Aitken (1976) kernel and the Li and Racine
(2004) kernel: both kernel functions result in identical relative weights and hence,
identical estimation results, if:

λLRU = λAA
(c− 1) · (1− λAA) (14)

and consequently
λAA = λLRU · (c− 1)

1 + λLRU · (c− 1) , (15)

where λAA is the bandwidth for the Aitchison and Aitken (1976) kernel, λLRU is the
bandwidth for the Li and Racine (2004) kernel for unordered categorical variables,
and c is the number of levels of the unordered categorical variable x.
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B.2. Kernel functions for ordered factor variables

• Wang and van Ryzin (1981) kernel:

l(xi, x, λ) =
 1− λ, if |xi − x| = 0

(1−λ)
2 λ|xi−x|, if |xi − x| > 1

(16)

where smoothing parameter λ must lie between 0 and 1.

Weight of the other levels relative to the current level:

l(xi, x 6= xi, λ)
l(xi, x = xi, λ) =

(1−λ)
2 λ|xi−x|

1− λ = λ|xi−x|

2 (17)

• Racine and Li (2004) kernel:

l(xi, x, λ) =
 1, if |xi − x| = 0
λ|xi−x|, if |xi − x| > 1

(18)

where smoothing parameter λ must lie between 0 and 1.

Weight of the other levels relative to the current level:

l(xi, x 6= xi, λ)
l(xi, x = xi, λ) = λ|xi−x|

1 = λ|xi−x| (19)

• Relationship between the Wang and van Ryzin (1981) kernel and the Li and Racine
(2004) kernel: both kernel functions result in identical relative weights and hence,
identical estimation results, if:

λLRO =
λ|xi−x|

WVR

2

 1
|xi−x|

= λWVR

2
1

|xi−x|
= 0.5

1
|xi−x| λWVR (20)

and consequently
λWVR = λLRO 2

1
|xi−x| , (21)

where λWVR is the bandwidth for the Wang and van Ryzin (1981) kernel and λLRO is
the bandwidth for the Li and Racine (2004) kernel for ordered categorical variables.
Hence, the Wang and van Ryzin (1981) kernel and the Li and Racine (2004) kernel
for ordered categorical variables can only result in the same relative weights if x
has only two levels (so that |xi − x| only has one possible value for x 6= xi) and
λLRO ≤ 0.5

1
|xi−x| . where |xi − x| ≥ 1. As an ordered categorical variable with just

two levels is not different from unordered categorical variable with two levels, the
Wang and van Ryzin (1981) kernel is practically never equivalent to the Li and
Racine (2004) kernel for ordered categorical variables.
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C. R code

C.1. Preparing the variables

# load add-on packages
library( "plm" )
library( "lmtest" )
library( "np" )
# load the data
load("npPanel_est.RData")
# calculate additional variables for Translog function (squares and interactions)
PLF_TF13$lL_sq <- 0.5 * PLF_TF13$lL * PLF_TF13$lL
PLF_TF13$lL_lA <- PLF_TF13$lL * PLF_TF13$lA
PLF_TF13$lL_lV <- PLF_TF13$lL * PLF_TF13$lV
PLF_TF13$lL_lK <- PLF_TF13$lL * PLF_TF13$lK
PLF_TF13$lA_sq <- 0.5 * PLF_TF13$lA * PLF_TF13$lA
PLF_TF13$lA_lV <- PLF_TF13$lA * PLF_TF13$lV
PLF_TF13$lA_lK <- PLF_TF13$lA * PLF_TF13$lK
PLF_TF13$lV_sq <- 0.5 * PLF_TF13$lV * PLF_TF13$lV
PLF_TF13$lV_lK <- PLF_TF13$lV * PLF_TF13$lK
PLF_TF13$lK_sq <- 0.5 * PLF_TF13$lK * PLF_TF13$lK
# create the panel data frame PLF_TF13_pd
PLF_TF13_pd <- pdata.frame(PLF_TF13, index = c("ID", "T"))
# add within (individual effects) transformed regression variables to PLF_TF13
PLF_TF13$lY_w <- Within(PLF_TF13_pd$lY, effect = "individual")
PLF_TF13$lL_w <- Within(PLF_TF13_pd$lL, effect = "individual")
PLF_TF13$lA_w <- Within(PLF_TF13_pd$lA, effect = "individual")
PLF_TF13$lV_w <- Within(PLF_TF13_pd$lV, effect = "individual")
PLF_TF13$lK_w <- Within(PLF_TF13_pd$lK, effect = "individual")
PLF_TF13$lL_sq_w <- Within(PLF_TF13_pd$lL_sq, effect = ("individual"))
PLF_TF13$lL_lA_w <- Within(PLF_TF13_pd$lL_lA, effect = "individual")
PLF_TF13$lL_lV_w <- Within(PLF_TF13_pd$lL_lV, effect = "individual")
PLF_TF13$lL_lK_w <- Within(PLF_TF13_pd$lL_lK, effect = "individual")
PLF_TF13$lA_sq_w <- Within(PLF_TF13_pd$lA_sq, effect = "individual")
PLF_TF13$lA_lV_w <- Within(PLF_TF13_pd$lA_lV, effect = "individual")
PLF_TF13$lA_lK_w <- Within(PLF_TF13_pd$lA_lK, effect = "individual")
PLF_TF13$lV_sq_w <- Within(PLF_TF13_pd$lV_sq, effect = "individual")
PLF_TF13$lV_lK_w <- Within(PLF_TF13_pd$lV_lK, effect = "individual")
PLF_TF13$lK_sq_w <- Within(PLF_TF13_pd$lK_sq, effect = "individual")
# add within (time effects) transformed regression variables to PLF_TF13
PLF_TF13$lY_w_t <- Within(PLF_TF13_pd$lY, effect = ("time"))
PLF_TF13$lL_w_t <- Within(PLF_TF13_pd$lL, effect = ("time"))
PLF_TF13$lA_w_t <- Within(PLF_TF13_pd$lA, effect = "time")
PLF_TF13$lV_w_t <- Within(PLF_TF13_pd$lV, effect = "time")
PLF_TF13$lK_w_t <- Within(PLF_TF13_pd$lK, effect = "time")
PLF_TF13$lL_sq_w_t <- Within(PLF_TF13_pd$lL_sq, effect = ("time"))
PLF_TF13$lL_lA_w_t <- Within(PLF_TF13_pd$lL_lA, effect = "time")
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PLF_TF13$lL_lV_w_t <- Within(PLF_TF13_pd$lL_lV, effect = "time")
PLF_TF13$lL_lK_w_t <- Within(PLF_TF13_pd$lL_lK, effect = "time")
PLF_TF13$lA_sq_w_t <- Within(PLF_TF13_pd$lA_sq, effect = "time")
PLF_TF13$lA_lV_w_t <- Within(PLF_TF13_pd$lA_lV, effect = "time")
PLF_TF13$lA_lK_w_t <- Within(PLF_TF13_pd$lA_lK, effect = "time")
PLF_TF13$lV_sq_w_t <- Within(PLF_TF13_pd$lV_sq, effect = "time")
PLF_TF13$lV_lK_w_t <- Within(PLF_TF13_pd$lV_lK, effect = "time")
PLF_TF13$lK_sq_w_t <- Within(PLF_TF13_pd$lK_sq, effect = "time")
# add within (two-ways (individual and time) effects) transformed regression
# variables to PLF_TF13
PLF_TF13$lY_w_tw <- Within(Within(PLF_TF13_pd$lY, effect = "individual"),

effect = "time")
PLF_TF13$lL_w_tw <- Within(Within(PLF_TF13_pd$lL, effect = "individual"),

effect = "time")
PLF_TF13$lA_w_tw <- Within(Within(PLF_TF13_pd$lA, effect = "individual"),

effect = "time")
PLF_TF13$lV_w_tw <- Within(Within(PLF_TF13_pd$lV, effect = "individual"),

effect = "time")
PLF_TF13$lK_w_tw <- Within(Within(PLF_TF13_pd$lK, effect = "individual"),

effect = "time")
PLF_TF13$lL_sq_w_tw <- Within(Within(PLF_TF13_pd$lL_sq, effect = "individual"),

effect = "time")
PLF_TF13$lL_lA_w_tw <- Within(Within(PLF_TF13_pd$lL_lA, effect = "individual"),

effect = "time")
PLF_TF13$lL_lV_w_tw <- Within(Within(PLF_TF13_pd$lL_lV, effect = "individual"),

effect = "time")
PLF_TF13$lL_lK_w_tw <- Within(Within(PLF_TF13_pd$lL_lK, effect = "individual"),

effect = "time")
PLF_TF13$lA_sq_w_tw <- Within(Within(PLF_TF13_pd$lA_sq, effect = "individual"),

effect = "time")
PLF_TF13$lA_lV_w_tw <- Within(Within(PLF_TF13_pd$lA_lV, effect = "individual"),

effect = "time")
PLF_TF13$lA_lK_w_tw <- Within(Within(PLF_TF13_pd$lA_lK, effect = "individual"),

effect = "time")
PLF_TF13$lV_sq_w_tw <- Within(Within(PLF_TF13_pd$lV_sq, effect = "individual"),

effect = "time")
PLF_TF13$lV_lK_w_tw <- Within(Within(PLF_TF13_pd$lV_lK, effect = "individual"),

effect = "time")
PLF_TF13$lK_sq_w_tw <- Within(Within(PLF_TF13_pd$lK_sq, effect = "individual"),

effect = "time")
# add first difference transformed regression variables
PLF_TF13$lY_fd <- diff(PLF_TF13_pd$lY)
PLF_TF13$lL_fd <- diff(PLF_TF13_pd$lL)
PLF_TF13$lA_fd <- diff(PLF_TF13_pd$lA)
PLF_TF13$lV_fd <- diff(PLF_TF13_pd$lV)
PLF_TF13$lK_fd <- diff(PLF_TF13_pd$lK)
PLF_TF13$lL_sq_fd <- diff(PLF_TF13_pd$lL_sq)
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PLF_TF13$lL_lA_fd <- diff(PLF_TF13_pd$lL_lA)
PLF_TF13$lL_lV_fd <- diff(PLF_TF13_pd$lL_lV)
PLF_TF13$lL_lK_fd <- diff(PLF_TF13_pd$lL_lK)
PLF_TF13$lA_sq_fd <- diff(PLF_TF13_pd$lA_sq)
PLF_TF13$lA_lV_fd <- diff(PLF_TF13_pd$lA_lV)
PLF_TF13$lA_lK_fd <- diff(PLF_TF13_pd$lA_lK)
PLF_TF13$lV_sq_fd <- diff(PLF_TF13_pd$lV_sq)
PLF_TF13$lV_lK_fd <- diff(PLF_TF13_pd$lV_lK)
PLF_TF13$lK_sq_fd <- diff(PLF_TF13_pd$lK_sq)
# update the panel data frame PLF_TF13_pd
PLF_TF13_pd <- pdata.frame(PLF_TF13, index = c("ID", "T"))

C.2. Estimation of parametric models

##################### Estimation of parametric models ##########################
######################## Cobb-Douglas models ###############################
#### Create the general formula of Cobb-Douglas functional form
cdFormula <- log(Y) ~ log(L) + log(A) + log(V) + log(K)
### Estimation of varying coefficient models
## with individual effects
cd_vc_i <- pvcm( cdFormula, data = PLF_TF13_pd,

model = "within", effect = "individual" )
summary( cd_vc_i )
## with time effects
cd_vc_t <- pvcm( cdFormula, data = PLF_TF13_pd,

model = "within", effect = "time" )
summary( cd_vc_t )
### Estimate first difference models
## with individual effects
cd_fd <- plm( cdFormula, data = PLF_TF13_pd,

model = "fd", effect = "individual" )
summary( cd_fd )
# Estimation of the same model with lm() (necessary to conduct resettest()
# and npcmstest())
cd_fd_lm <- lm( lY_fd ~ lL_fd + lA_fd + lV_fd + lK_fd, data = PLF_TF13,

x = TRUE, y = TRUE )
summary( cd_fd_lm )
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal( coef( cd_fd ), coef( cd_fd_lm ), check.attributes = FALSE )

### Estimation of within (fixed effects) models
## with individual effects
cd_w_i <- plm( cdFormula, data = PLF_TF13_pd,

model = "within", effect = "individual" )
summary( cd_w_i )
# Estimation of the same model with lm() (necessary to conduct resettest()
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# and npcmstest())
cd_w_i_lm <- lm( lY_w ~ 0 + lL_w + lA_w + lV_w + lK_w, data = PLF_TF13,

x = TRUE, y = TRUE )
summary( cd_w_i_lm )
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal( coef( cd_w_i ), coef( cd_w_i_lm ), check.attributes = FALSE )
## with time effects
cd_w_t <- plm( cdFormula, data = PLF_TF13_pd,

model = "within", effect = "time" )
summary( cd_w_t )
# Estimation of the same model with lm() (necessary to conduct resettest()
# and npcmstest())
cd_w_t_lm <- lm( lY_w_t ~ 0 + lL_w_t + lA_w_t + lV_w_t + lK_w_t,

data = PLF_TF13, x = TRUE, y = TRUE ) )
summary( cd_w_t_lm )
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal( coef( cd_w_t ), coef( cd_w_t_lm ), check.attributes = FALSE )
## with two-ways effects
cd_w_it <- plm( cdFormula, data = PLF_TF13_pd,

model = "within", effect = "twoways" )
summary( cd_w_it )
# Estimation of the same model with lm() (necessary to conduct resettest()
# and npcmstest())
cd_w_it_lm <- lm( lY_w_tw ~ 0 + lL_w_tw + lA_w_tw + lV_w_tw + lK_w_tw,

data = PLF_TF13, x = TRUE, y = TRUE )
summary( cd_w_it_lm)
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal( coef( cd_w_it ), coef( cd_w_it_lm ), check.attributes = FALSE )
### Estimation of random effects models
## with individual effects
cd_r_i <- plm( cdFormula, data = PLF_TF13_pd,

model = "random", effect = "individual",
random.method = "amemiya" )

summary( cd_r_i )
## with time effects
cd_r_t <- plm( cdFormula, data = PLF_TF13_pd,

model = "random", effect = "time", random.method = "amemiya" )
summary( cd_r_t )
# two-ways effects
cd_r_it <- plm( cdFormula, data = PLF_TF13_pd,

model = "random", effect = "twoways", random.method = "amemiya" )
summary( cd_r_it )
### Estimation of pooled model
cd_pool <- plm( cdFormula, PLF_TF13_pd, model = "pooling" )
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summary( cd_pool )
# Estimation of the same model with lm() (necessary to conduct npcmstest())
cd_pool_lm <- lm( cdFormula, data = PLF_TF13, x = TRUE, y = TRUE )
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal( coef( cd_pool ), coef( cd_pool_lm ), check.attributes = FALSE )

############################ Translog models ###############################
#### Create the general formula of Translog functional form
tlFormula <- log(Y) ~ log(L) + log(A) + log(V) + log(K) +

I(0.5*log(L)^2) + I(0.5*log(A)^2) + I(0.5*log(V)^2) + I(0.5*log(K)^2) +
I(log(L)*log(A)) + I(log(L)*log(V)) + I(log(L)*log(K)) +
I(log(A)*log(V)) + I(log(A)*log(K)) + I(log(V)*log(K))

# Function tlEla for calculating partial output elasticities at mean values
# of regression variables
tlEla <- function( object ) {
tlCoef <- coef( object )
mDat <- colMeans( PLF_TF13_pd[ , c( "L", "A", "V", "K" ) ] )
result <- numeric(4)
result[1] <- tlCoef["log(L)"] +
tlCoef["I(0.5␣*␣log(L)^2)"] * log( mDat["L"] ) +
tlCoef["I(log(L)␣*␣log(A))"] * log( mDat["A"] ) +
tlCoef["I(log(L)␣*␣log(V))"] * log( mDat["V"] ) +
tlCoef["I(log(L)␣*␣log(K))"] * log( mDat["K"] )

result[2] <- tlCoef["log(A)"] +
tlCoef["I(log(L)␣*␣log(A))"] * log( mDat["L"] ) +
tlCoef["I(0.5␣*␣log(A)^2)"] * log( mDat["A"] ) +
tlCoef["I(log(A)␣*␣log(V))"] * log( mDat["V"] ) +
tlCoef["I(log(A)␣*␣log(K))"] * log( mDat["K"] )

result[3] <- tlCoef["log(V)"] +
tlCoef["I(log(L)␣*␣log(V))"] * log( mDat["L"] ) +
tlCoef["I(log(A)␣*␣log(V))"] * log( mDat["A"] ) +
tlCoef["I(0.5␣*␣log(V)^2)"] * log( mDat["V"] ) +
tlCoef["I(log(V)␣*␣log(K))"] * log( mDat["K"] )

result[4] <- tlCoef["log(K)"] +
tlCoef["I(log(L)␣*␣log(K))"] * log( mDat["L"] ) +
tlCoef["I(log(A)␣*␣log(K))"] * log( mDat["A"] ) +
tlCoef["I(log(V)␣*␣log(K))"] * log( mDat["V"] ) +
tlCoef["I(0.5␣*␣log(K)^2)"] * log( mDat["K"] )

return( result )
}

### Estimation of varying coefficient model with time effects
tl_vc_t <- pvcm( tlFormula, data = PLF_TF13_pd,

model = "within", effect = "time" )
summary( tl_vc_t )
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### Estimation of first difference models
## with individual effects
tl_fd <- plm( tlFormula, data = PLF_TF13_pd,

model = "fd", effect = "individual" )
summary( tl_fd )
# Print partial output elasticities
tlEla( tl_fd )
# Estimation of the same model with lm() (necessary to conduct resettest()
# and npcmstest() )
tl_fd_lm <- lm( lY_fd ~ lL_fd + lA_fd + lV_fd + lK_fd +

lL_sq_fd + lA_sq_fd + lV_sq_fd + lK_sq_fd +
lL_lA_fd + lL_lV_fd + lL_lK_fd + lA_lV_fd + lA_lK_fd + lV_lK_fd,
data = PLF_TF13, x = TRUE, y = TRUE )

summary( tl_fd_lm)
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal(coef( tl_fd ), coef( tl_fd_lm ), check.attributes = FALSE )
### Estimation of within (fixed effects) models
## with individual effects
tl_w_i <- plm( tlFormula, data = PLF_TF13_pd,

model = "within", effect = "individual" )
summary( tl_w_i )
# Print partial output elasticities
tlEla( tl_w_i )
# Estimation of the same model with lm() (necessary to conduct resettest()
# and npcmstest() )
tl_w_i_lm <- lm( lY_w ~ 0 + lL_w + lA_w + lV_w + lK_w +

lL_sq_w + lA_sq_w + lV_sq_w + lK_sq_w +
lL_lA_w + lL_lV_w + lL_lK_w + lA_lV_w + lA_lK_w + lV_lK_w,
data = PLF_TF13, x = TRUE, y = TRUE )

summary( tl_w_i_lm )
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal(coef( tl_w_i ), coef( tl_w_i_lm ), check.attributes = FALSE )
## with time effects
tl_w_t <- plm( tlFormula, data = PLF_TF13_pd,

model = "within", effect = "time" )
summary( tl_w_t )
# Print partial output elasticities
tlEla( tl_w_t )
# Estimation of the same model with lm() (necessary to conduct resettest()
# and npcmstest() )
tl_w_t_lm <- lm( lY_w_t ~ 0 + lL_w_t + lA_w_t + lV_w_t + lK_w_t +

lL_sq_w_t + lA_sq_w_t + lV_sq_w_t + lK_sq_w_t +
lL_lA_w_t + lL_lV_w_t + lL_lK_w_t +
lA_lV_w_t + lA_lK_w_t + lV_lK_w_t,
data = PLF_TF13, x = TRUE, y = TRUE )
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summary( tl_w_t_lm )
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal(coef( tl_w_t ), coef( tl_w_t_lm ), check.attributes = FALSE )
## with two-ways effects
tl_w_it <- plm( tlFormula, data = PLF_TF13_pd,

model = "within", effect = "twoways" )
summary( tl_w_it )
# Print partial output elasticities
tlEla( tl_w_it )
# Estimation of the same model with lm() (necessary to conduct resettest()
# and npcmstest() )
tl_w_it_lm <- lm( lY_w_tw ~ 0 + lL_w_tw + lA_w_tw + lV_w_tw + lK_w_tw +

lL_sq_w_tw + lA_sq_w_tw + lV_sq_w_tw + lK_sq_w_tw +
lL_lA_w_tw + lL_lV_w_tw + lL_lK_w_tw + lA_lV_w_tw +
lA_lK_w_tw + lV_lK_w_tw,

data = PLF_TF13, x = TRUE, y = TRUE )
summary( tl_w_it_lm )
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal( coef( tl_w_it ), coef( tl_w_it_lm ), check.attributes = FALSE )
### Estimation of random effects models
## with individual effects
tl_r_i <- plm( tlFormula, data = PLF_TF13_pd,

model = "random", effect = "individual",
random.method = "amemiya" )

summary( tl_r_i )
# Print partial output elasticities
tlEla( tl_r_i )
# time effects
tl_r_t <- plm( tlFormula, data = PLF_TF13_pd,

model = "random", effect = "time", random.method = "amemiya" )
summary( tl_r_t )
# Print partial output elasticities
tlEla( tl_r_t )
## with two-ways effects
tl_r_it <- plm( tlFormula, data = PLF_TF13_pd,

model = "random", effect = "twoways", random.method = "amemiya" )
summary( tl_r_it )
# Print partial output elasticities
tlEla( tl_r_it )
### Estimation of pooled model
tl_pool <- plm( tlFormula, data = PLF_TF13_pd, model = "pooling" )
summary( tl_pool )
# Print partial output elasticities
tlEla( tl_pool )
# Estimation of the same model with lm() (necessary to conduct npcmstest() )
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tl_pool_lm <- lm( tlFormula, data = PLF_TF13, x = TRUE, y = TRUE )
# Check if the coefficients of the models estimated with plm() and lm()
# are equal
all.equal( coef( tl_pool ), coef( tl_pool_lm ), check.attributes = FALSE )

C.3. Parametric tests of parametric models

############ Testing significance of input quantities ######################
#Create the Translog formula without Labor variable
tlFormulaNoL <- log(Y) ~ log(A) + log(V) + log(K) +

I(0.5*log(A)^2) + I(0.5*log(V)^2) + I(0.5*log(K)^2) +
I(log(A)*log(V)) + I(log(A)*log(K)) + I(log(V)*log(K))

#Create the Translog formula without Land variable
tlFormulaNoA <- log(Y) ~ log(L) + log(V) + log(K) +

I(0.5*log(L)^2) + I(0.5*log(V)^2) + I(0.5*log(K)^2) +
I(log(L)*log(V)) + I(log(L)*log(K)) + I(log(V)*log(K))

#Create the Translog formula without Intermediate inputs variable
tlFormulaNoV <- log(Y) ~ log(L) + log(A) + log(K) +

I(0.5*log(L)^2) + I(0.5*log(A)^2) + I(0.5*log(K)^2) +
I(log(L)*log(A)) + I(log(L)*log(K)) + I(log(A)*log(K))

#Create the Translog formula without Capital variable
tlFormulaNoK <- log(Y) ~ log(L) + log(A) + log(V) +

I(0.5*log(L)^2) + I(0.5*log(A)^2) + I(0.5*log(V)^2) +
I(log(L)*log(A)) + I(log(L)*log(V)) + I(log(A)*log(V))

#Wald test for significance of input quantities in pooled model
waldtest( tl_pool, tlFormulaNoL )
waldtest( tl_pool, tlFormulaNoA )
waldtest( tl_pool, tlFormulaNoV )
waldtest( tl_pool, tlFormulaNoK )
#Wald test for significance of input quantities in within model with individual
#effects
waldtest( tl_w_i, tlFormulaNoL )
waldtest( tl_w_i, tlFormulaNoA )
waldtest( tl_w_i, tlFormulaNoV )
waldtest( tl_w_i, tlFormulaNoK )
#Wald test for significance of input quantities in within model with time
#effects
waldtest( tl_w_t, tlFormulaNoL )
waldtest( tl_w_t, tlFormulaNoA )
waldtest( tl_w_t, tlFormulaNoV )
waldtest( tl_w_t, tlFormulaNoK )
#Wald test for significance of input quantities in random effects model with
#individual effects
waldtest( tl_r_i, tlFormulaNoL )
waldtest( tl_r_i, tlFormulaNoA )
waldtest( tl_r_i, tlFormulaNoV )
waldtest( tl_r_i, tlFormulaNoK )
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waldtest( tl_r_t, tlFormulaNoL )
waldtest( tl_r_t, tlFormulaNoA )
waldtest( tl_r_t, tlFormulaNoV )
waldtest( tl_r_t, tlFormulaNoK )
#Wald test for significance of input quantities in first differenced model
waldtest( tl_fd, tlFormulaNoL )
waldtest( tl_fd, tlFormulaNoA )
waldtest( tl_fd, tlFormulaNoV )
waldtest( tl_fd, tlFormulaNoK )
#Wald test for significance of input quantities in within (fixed effects) model
#with twoways (individual and time) effects
waldtest( tl_w_it, tlFormulaNoL )
waldtest( tl_w_it, tlFormulaNoA )
waldtest( tl_w_it, tlFormulaNoV )
waldtest( tl_w_it, tlFormulaNoK )
#Wald test for significance of input quantities in random effects model
#with twoways (individual and time) effects
waldtest( tl_r_it, tlFormulaNoL )
waldtest( tl_r_it, tlFormulaNoA )
waldtest( tl_r_it, tlFormulaNoV )
waldtest( tl_r_it, tlFormulaNoK )

############ Testing individual and time effects ############################
####Calculate standard deviations of individual and time effects
### Cobb-Douglas
sd( fixef( cd_w_i ) )
sd( fixef( cd_w_t ) )
sqrt( cd_r_i$ercomp$sigma$id )
sqrt( cd_r_t$ercomp$sigma$id )
sd( fixef( cd_w_it ) )
sd( fixef( cd_w_it, effect = "time" ) )
sqrt( cd_r_it$ercomp$sigma$id )
sqrt( cd_r_it$ercomp$sigma$time )
### Translog
sd( fixef( tl_w_i ) )
sd( fixef( tl_w_t ) )
sqrt( tl_r_i$ercomp$sigma$id )
sqrt( tl_r_t$ercomp$sigma$id )
sd( fixef( tl_w_it ) )
sd( fixef( tl_w_it, effect = "time" ) )
sqrt( tl_r_it$ercomp$sigma$id )
sqrt( tl_r_it$ercomp$sigma$time )
############ Testing poolability ###########################################
### Cobb-Douglas
# test equality of all individual or time effects
pooltest( cd_pool, cd_w_i )
pooltest( cd_pool, cd_w_t )
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pooltest( cd_pool, cd_w_it )
pooltest( cd_w_i, cd_w_it )
pooltest( cd_w_t, cd_w_it )
# test equality of all parameters (incl. individual or time effects)
pooltest( cd_pool, cd_vc_i )
pooltest( cd_pool, cd_vc_t )
# test equality of all slope parameters
pooltest( cd_w_i, cd_vc_i )
pooltest( cd_w_t, cd_vc_t )
### Translog
# test equality of all individual or time effects
pooltest( tl_pool, tl_w_i )
pooltest( tl_pool, tl_w_t )
pooltest( tl_pool, tl_w_it )
pooltest( tl_w_i, tl_w_it )
pooltest( tl_w_t, tl_w_it )
# test equality of all parameters (incl. time effects)
pooltest( tl_pool, tl_vc_t )
# test equality of all slope parameters
pooltest( tl_w_t, tl_vc_t )

############ Breusch Pagan tests ####################

### Cobb-Douglas
plmtest( cd_pool, effect = "individual", type = "bp" )
plmtest( cd_pool, effect = "time", type = "bp" )
plmtest( cd_pool, effect = "twoways", type = "bp" )

### Translog
plmtest( tl_pool, effect = "individual", type = "bp" )
plmtest( tl_pool, effect = "time", type = "bp" )
plmtest( tl_pool, effect = "twoways", type = "bp" )

############ Hausman tests ####################
### Cobb-Douglas
phtest( cd_w_i, cd_r_i )
phtest( cd_w_t, cd_r_t )
phtest( cd_w_it, cd_r_it )

### Translog
phtest( tl_w_i, tl_r_i )
phtest( tl_w_t, tl_r_t )
phtest( tl_w_it, tl_r_it )

############ Testing serial correlation ####################
### first-differences
pwfdtest( cd_fd )
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pwfdtest( tl_fd )
### Breusch-Godfrey / Wooldridge test
pbgtest( cd_w_i )
pbgtest( tl_w_i )
### Wooldridge’s test for "short" panels
pwartest( cd_w_i )
pwartest( tl_w_i )

############ Wald tests ####################
##Test Cobb-Douglas vs. Translog
waldtest( tl_pool, cd_pool )
waldtest( tl_w_i, cd_w_i )
waldtest( tl_w_t, cd_w_t )
waldtest( tl_w_it, cd_w_it )
waldtest( tl_r_i, cd_r_i )
waldtest( tl_r_t, cd_r_t )
waldtest( tl_r_it, cd_r_it )
waldtest( tl_fd, cd_fd )

############ RESET tests ####################
##Test the Cobb-Douglas specification
resettest( cd_pool , power = 2:3, type = "regressor" )
resettest( cd_w_i_lm , power = 2:3, type = "regressor" )
resettest( cd_w_t_lm , power = 2:3, type = "regressor" )
resettest( cd_w_it_lm , power = 2:3, type = "regressor" )
resettest( cd_fd_lm , power = 2:3, type = "regressor" )
##Test the Translog specification
resettest( tl_pool , power = 2:3, type = "regressor" )
resettest( tl_w_i_lm , power = 2:3, type = "regressor" )
resettest( tl_w_t_lm , power = 2:3, type = "regressor" )
resettest( tl_w_it_lm , power = 2:3, type = "regressor" )
resettest( tl_fd_lm , power = 2:3, type = "regressor" )

C.4. Nonparametric tests of parametric models

########### Nonparametric Consistent Model Specifications Tests #############
# Cobb-Douglas
# Pooled model
# Nonparametric Consistent Model Specifications Test (local constant version)
npcmstest_cd_lc_pooled <- npcmstest( model = cd_pool_lm,

xdat = model.frame(cd_pool_lm)[-1],
ydat = model.frame(cd_pool_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
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ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_cd_lc_pooled)
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_cd_ll_pooled <- npcmstest( model = cd_pool_lm,

xdat = model.frame(cd_pool_lm)[-1],
ydat = model.frame(cd_pool_lm)[1],
nmulti = 10,
regtype = "lL",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_cd_ll_pooled)
# Within (fixed effects) individual effects
# Nonparametric Consistent Model Specifications Test (local constant version)
npcmstest_cd_lc_1WWI <- npcmstest( model = cd_w_i_lm,

xdat = model.frame(cd_w_i_lm)[-1],
ydat = model.frame(cd_w_i_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_cd_lc_1WWI )
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_cd_ll_1WWI <- npcmstest( model = cd_w_i_lm,

xdat = model.frame(cd_w_i_lm)[-1],
ydat = model.frame(cd_w_i_lm)[1],
nmulti = 10,
regtype = "ll",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399)

summary( npcmstest_cd_ll_1WWI )
# Within (fixed effects) time effects
# Nonparametric Consistent Model Specifications Test (local constant version)
# of pooled Cobb-Douglas parametric model

36 IFRO Working Paper 2013 / 5



npcmstest_cd_lc_1WWT <- npcmstest( model = cd_w_t_lm,
xdat = model.frame(cd_w_t_lm)[-1],
ydat = model.frame(cd_w_t_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_cd_lc_1WWT )
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_cd_ll_1WWT <- npcmstest( model = cd_w_t_lm,

xdat = model.frame(cd_w_t_lm)[-1],
ydat = model.frame(cd_w_t_lm)[1],
nmulti = 10,
regtype = "ll",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_cd_ll_1WWT )
# Within (fixed effects) twoways (individual and time) effects
# Nonparametric Consistent Model Specifications Test (local constant version)
npcmstest_cd_lc_2WW <- npcmstest( model = cd_w_it_lm,

xdat = model.frame(cd_w_it_lm)[-1],
ydat = model.frame(cd_w_it_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_cd_lc_2WW)
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_cd_ll_2WW <- npcmstest( model = cd_w_it_lm,

xdat = model.frame(cd_w_it_lm)[-1],
ydat = model.frame(cd_w_it_lm)[1],
nmulti = 10,
regtype = "ll",
method = "cv.aic",
type = "fixed",
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ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_cd_ll_2WW)
# First difference model
# Estimation of the parametric model
# Nonparametric Consistent Model Specifications Test (local constant version)
npcmstest_cd_lc_FD <- npcmstest( model = cd_fd_lm,

xdat = model.frame(cd_fd_lm)[-1],
ydat = model.frame(cd_fd_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_cd_lc_FD)
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_cd_ll_FD <- npcmstest( model = cd_fd_lm,

xdat = model.frame(cd_fd_lm)[-1],
ydat = model.frame(cd_fd_lm)[1],
nmulti = 10,
regtype = "ll",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_cd_ll_FD )
# Translog
# Pooled model
# Nonparametric Consistent Model Specifications Test (local constant version)
npcmstest_tl_lc_pooled <- npcmstest( model = tl_pool_lm,

xdat = model.frame(tl_pool_lm)[-1],
ydat = model.frame(tl_pool_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )
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summary( npcmstest_tl_lc_pooled )
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_tl_ll_pooled <- npcmstest( model = tl_pool_lm,

xdat = model.frame(tl_pool_lm)[-1],
ydat = model.frame(tl_pool_lm)[1],
nmulti = 10,
regtype = "ll",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_tl_lc_pooled )
# Within (fixed effects) individual effects
# Nonparametric Consistent Model Specifications Test (local constant version)
npcmstest_tl_lc_1WWI <- npcmstest( model = tl_w_i_lm,

xdat = model.frame(tl_w_i_lm)[-1],
ydat = model.frame(tl_w_i_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_tl_lc_1WWI)
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_tl_ll_1WWI <- npcmstest( model = tl_w_i_lm,

xdat = model.frame(tl_w_i_lm)[-1],
ydat = model.frame(tl_w_i_lm)[1],
nmulti = 10,
regtype = "ll",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_tl_ll_1WWI)
# Within (fixed effects) time effects
# Nonparametric Consistent Model Specifications Test (local constant version)
npcmstest_tl_lc_1WWT <- npcmstest( model = tl_w_t_lm,

xdat = model.frame(tl_w_t_lm)[-1],
ydat = model.frame(tl_w_t_lm)[1],
nmulti = 10,
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regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_tl_lc_1WWT )
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_tl_ll_1WWT <- npcmstest( model = tl_w_t_lm,

xdat = model.frame(tl_w_t_lm)[-1],
ydat = model.frame(tl_w_t_lm)[1],
nmulti = 10,
regtype = "ll",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_tl_ll_1WWT)
# Within (fixed effects) twoways (individual and time) effects
# Nonparametric Consistent Model Specifications Test (local constant version)
npcmstest_tl_lc_2WW <- npcmstest( model = tl_w_it_lm,

xdat = model.frame(tl_w_it_lm)[-1],
ydat = model.frame(tl_w_it_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_tl_lc_2WW )
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_tl_ll_2WW <- npcmstest( model = tl_w_it_lm,

xdat = model.frame(tl_w_it_lm)[-1],
ydat = model.frame(tl_w_it_lm)[1],
nmulti = 10,
regtype = "ll",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )
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summary( npcmstest_tl_ll_2WW )
# First difference model
# Nonparametric Consistent Model Specifications Test (local constant version)
npcmstest_tl_lc_FD <- npcmstest( model = tl_fd_lm,

xdat = model.frame(tl_fd_lm)[-1],
ydat = model.frame(tl_fd_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_tl_lc_FD )
# Nonparametric Consistent Model Specifications Test (local linear version)
npcmstest_tl_ll_FD <- npcmstest( model = tl_fd_lm,

xdat = model.frame(tl_fd_lm)[-1],
ydat = model.frame(tl_fd_lm)[1],
nmulti = 10,
regtype = "lc",
method = "cv.aic",
type = "fixed",
ckertype = "epanechnikov",
ckerorder = 2,
pckertype = "Second-Order␣Epanechnikov",
boot.num = 399 )

summary( npcmstest_tl_ll_FD )

C.5. Estimation of nonparametric models

#model.np.e.lr.of.PLF_TF13
bw.e.lr.of.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
nmulti = 10,
data = PLF_TF13 )

summary( bw.e.lr.of.PLF_TF13 )
model.np.e.lr.of.PLF_TF13 <- npreg( bws = bw.e.lr.of.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.e.lr.of.PLF_TF13 )
sigtest.model.np.e.lr.of.PLF_TF13 <- npsigtest( model.np.e.lr.of.PLF_TF13,
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boot.num = 399 )
summary( sigtest.model.np.e.lr.of.PLF_TF13 )
summary( model.np.e.lr.of.PLF_TF13$grad )
# model.np.e.lr.wvr.of.PLF_TF13
bw.e.lr.wvr.of.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "wangvanryzin",
nmulti = 10,
data = PLF_TF13 )

summary( bw.e.lr.wvr.of.PLF_TF13 )
model.np.e.lr.wvr.of.PLF_TF13 <- npreg( bws = bw.e.lr.wvr.of.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.e.lr.wvr.of.PLF_TF13 )
sigtest.model.np.e.lr.wvr.of.PLF_TF13 <- npsigtest( model.np.e.lr.wvr.of.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.e.lr.wvr.of.PLF_TF13 )
summary( model.np.e.lr.wvr.of.PLF_TF13$grad )
# model.np.g.lr.of.PLF_TF13
bw.g.lr.of.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "gaussian",
ukertype = "liracine",
okertype = "liracine",
nmulti = 10,
data = PLF_TF13 )

summary( bw.g.lr.of.PLF_TF13 )
model.np.g.lr.of.PLF_TF13 <- npreg( bws = bw.g.lr.of.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g.lr.of.PLF_TF13 )
sigtest.model.np.g.lr.of.PLF_TF13 <- npsigtest( model.np.g.lr.of.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.g.lr.of.PLF_TF13 )
summary( model.np.g.lr.of.PLF_TF13$grad )
# model.np.g.lr.wvr.of.PLF_TF13
bw.g.lr.wvr.of.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "gaussian",
ukertype = "liracine",
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okertype = "wangvanryzin",
nmulti = 10,
data = PLF_TF13 )

summary( bw.g.lr.wvr.of.PLF_TF13 )
model.np.g.lr.wvr.of.PLF_TF13 <- npreg( bws = bw.g.lr.wvr.of.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g.lr.wvr.of.PLF_TF13 )
sigtest.model.np.g.lr.wvr.of.PLF_TF13 <- npsigtest( model.np.g.lr.wvr.of.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.g.lr.wvr.of.PLF_TF13 )
summary( model.np.g.lr.wvr.of.PLF_TF13$grad )
# model.np.e.aa.lr.of.PLF_TF13
bw.e.aa.lr.of.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "aitchisonaitken",
okertype = "liracine",
nmulti = 10,
data = PLF_TF13 )

summary( bw.e.aa.lr.of.PLF_TF13 )
model.np.e.aa.lr.of.PLF_TF13 <- npreg( bws = bw.e.aa.lr.of.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.e.aa.lr.of.PLF_TF13 )
sigtest.model.np.e.aa.lr.of.PLF_TF13 <- npsigtest( model.np.e.aa.lr.of.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.e.aa.lr.of.PLF_TF13 )
summary( model.np.e.aa.lr.of.PLF_TF13$grad)
# model.np.e.aa.wvr.of.PLF_TF13
bw.e.aa.wvr.of.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "aitchisonaitken",
okertype = "wangvanryzin",
nmulti = 10,
data = PLF_TF13 )

summary( bw.e.aa.wvr.of.PLF_TF13 )
model.np.e.aa.wvr.of.PLF_TF13 <- npreg( bws = bw.e.aa.wvr.of.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.e.aa.wvr.of.PLF_TF13 )
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sigtest.model.np.e.aa.wvr.of.PLF_TF13 <- npsigtest( model.np.e.aa.wvr.of.PLF_TF13,
boot.num = 399 )

summary( sigtest.model.np.e.aa.wvr.of.PLF_TF13 )
summary( model.np.e.aa.wvr.of.PLF_TF13$grad )
# model.np.g.aa.wvr.of.PLF_TF13
bw.g.aa.wvr.of.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "gaussian",
ukertype = "aitchisonaitken",
okertype = "wangvanryzin",
nmulti = 10,
data = PLF_TF13 )

summary( bw.g.aa.wvr.of.PLF_TF13 )
model.np.g.aa.wvr.of.PLF_TF13 <- npreg( bws = bw.g.aa.wvr.of.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g.aa.wvr.of.PLF_TF13 )
sigtest.model.np.g.aa.wvr.of.PLF_TF13 <- npsigtest( model.np.g.aa.wvr.of.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.g.aa.wvr.of.PLF_TF13 )
summary( model.np.g.aa.wvr.of.PLF_TF13$grad )
# model.np.g.aa.lr.of.PLF_TF13
bw.g.aa.lr.of.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "gaussian",
ukertype = "aitchisonaitken",
okertype = "liracine",
nmulti = 10,
data = PLF_TF13 )

summary( bw.g.aa.lr.of.PLF_TF13 )
model.np.g.aa.lr.of.PLF_TF13 <- npreg( bws = bw.g.aa.lr.of.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g.aa.lr.of.PLF_TF13 )
sigtest.model.np.g.aa.lr.of.PLF_TF13 <- npsigtest( model.np.g.aa.lr.of.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.g.aa.lr.of.PLF_TF13 )
summary( model.np.g.aa.lr.of.PLF_TF13$grad )
# model.np.e.lr.PLF_TF13
bw.e.lr.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_uf +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
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ukertype = "liracine",
nmulti = 10,
data = PLF_TF13 )

summary( bw.e.lr.PLF_TF13 )
model.np.e.lr.PLF_TF13 <- npreg( bws = bw.e.lr.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.e.lr.PLF_TF13 )
sigtest.model.np.e.lr.PLF_TF13 <- npsigtest( model.np.e.lr.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.e.lr.PLF_TF13 )
summary( model.np.e.lr.PLF_TF13$grad )
# model.np.e.aa.PLF_TF13
bw.e.aa.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_uf +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "aitchisonaitken",
nmulti = 10,
data = PLF_TF13 )

summary( bw.e.aa.PLF_TF13 )
model.np.e.aa.PLF_TF13 <- npreg( bws = bw.e.aa.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.e.aa.PLF_TF13 )
sigtest.model.np.e.aa.PLF_TF13 <- npsigtest( model.np.e.aa.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.e.aa.PLF_TF13 )
summary( model.np.e.aa.PLF_TF13$grad )
# model.np.g.lr.PLF_TF13
bw.g.lr.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_uf +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "gaussian",
ukertype = "liracine",
nmulti = 10,
data = PLF_TF13 )

summary( bw.g.lr.PLF_TF13 )
model.np.g.lr.PLF_TF13 <- npreg( bws = bw.g.lr.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g.lr.PLF_TF13 )
sigtest.model.np.g.lr.PLF_TF13 <- npsigtest( model.np.g.lr.PLF_TF13,

boot.num = 399 )
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summary( sigtest.model.np.g.lr.PLF_TF13 )
summary( model.np.g.lr.PLF_TF13$grad )
# model.np.g.aa.PLF_TF13
bw.g.aa.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK + T_uf +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "gaussian",
ukertype = "aitchisonaitken",
nmulti = 10,
data = PLF_TF13 )

summary( bw.g.aa.PLF_TF13 )
model.np.g.aa.PLF_TF13 <- npreg( bws = bw.g.aa.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g.aa.PLF_TF13 )
sigtest.model.np.g.aa.PLF_TF13 <- npsigtest( model.np.g.aa.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.g.aa.PLF_TF13 )
summary( model.np.g.aa.PLF_TF13$grad )
# model.np.e.lr.ow.PLF_TF13
bw.e.lr.ow.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
nmulti = 10,
data = PLF_TF13 )

summary( bw.e.lr.ow.PLF_TF13 )
model.np.e.lr.ow.PLF_TF13 <- npreg( bws = bw.e.lr.ow.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.e.lr.ow.PLF_TF13 )
sigtest.model.np.e.lr.ow.PLF_TF13 <- npsigtest( model.np.e.lr.ow.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.e.lr.ow.PLF_TF13 )
summary( model.np.e.lr.ow.PLF_TF13$grad )
# model.np.e.aa.ow.PLF_TF13
bw.e.aa.ow.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "aitchisonaitken",
nmulti = 10,
data = PLF_TF13 )

summary( bw.e.aa.ow.PLF_TF13 )
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model.np.e.aa.ow.PLF_TF13 <- npreg( bws = bw.e.aa.ow.PLF_TF13,
data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.e.aa.ow.PLF_TF13 )
sigtest.model.np.e.aa.ow.PLF_TF13 <- npsigtest( model.np.e.aa.ow.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.e.aa.ow.PLF_TF13 )
summary( model.np.e.aa.ow.PLF_TF13$grad )
# model.np.g.lr.ow.PLF_TF13
bw.g.lr.ow.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "gaussian",
ukertype = "liracine",
nmulti = 10,
data = PLF_TF13 )

summary( bw.g.lr.ow.PLF_TF13 )
model.np.g.lr.ow.PLF_TF13 <- npreg( bws = bw.g.lr.ow.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g.lr.ow.PLF_TF13 )
sigtest.model.np.g.lr.ow.PLF_TF13 <- npsigtest( model.np.g.lr.ow.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.g.lr.ow.PLF_TF13 )
summary( model.np.g.lr.ow.PLF_TF13$grad )
# model.np.g.aa.ow.PLF_TF13
bw.g.aa.ow.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "gaussian",
ukertype = "aitchisonaitken",
nmulti = 10,
data = PLF_TF13 )

summary( bw.g.aa.ow.PLF_TF13 )
model.np.g.aa.ow.PLF_TF13 <- npreg( bws = bw.g.aa.ow.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g.aa.ow.PLF_TF13 )
sigtest.model.np.g.aa.ow.PLF_TF13 <- npsigtest( model.np.g.aa.ow.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.g.aa.ow.PLF_TF13 )
summary( model.np.g.aa.ow.PLF_TF13$grad )
# model.np.e.pool.PLF_TF13
bw.e.pool.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK,
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regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
nmulti = 10,
data = PLF_TF13 )

summary( bw.e.pool.PLF_TF13 )
model.np.e.pool.PLF_TF13 <- npreg( bws = bw.e.pool.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.e.pool.PLF_TF13 )
sigtest.model.np.e.pool.PLF_TF13 <- npsigtest( model.np.e.pool.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.e.pool.PLF_TF13 )
summary( model.np.e.pool.PLF_TF13$grad )
# model.np.g.pool.PLF_TF13
bw.g.pool.PLF_TF13 <- npregbw( lY ~ lL + lA + lV + lK,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "gaussian",
nmulti = 10,
data = PLF_TF13 )

summary( bw.g.pool.PLF_TF13 )
model.np.g.pool.PLF_TF13 <- npreg( bws = bw.g.pool.PLF_TF13,

data = PLF_TF13,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g.pool.PLF_TF13 )
sigtest.model.np.g.pool.PLF_TF13 <- npsigtest( model.np.g.pool.PLF_TF13,

boot.num = 399 )
summary( sigtest.model.np.g.pool.PLF_TF13 )
summary( model.np.g.pool.PLF_TF13$grad )

C.6. Partial output elasticities of intermediate inputs (Table 4)

## create E_int matrix
E_int <- matrix( data = NA, nrow = 4, ncol = 4 )
colnames( E_int ) <- c( "Mean", "Median","MSE␣to␣E","MAD␣to␣E" )
rownames( E_int ) <- c( "cv_R","eV(E␣LRU)", "eV(E␣LRU␣WVR)", "eV(TL␣2WW)" )

## calculate the value of the intermediate inputs
V_int <- ( PLF_TF13$SE281 + PLF_TF13$SE336 ) / 1000
## calculate the quantity of the intermediate inputs
Q_int <- ( PLF_TF13$SE281_2004 + PLF_TF13$SE336_2004 ) / 1000
## calculate the price of the intermediate inputs
P_int <- V_int / Q_int
## calculate the value of the output
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V_out <- PLF_TF13$SE131 / 1000
## calculate the quantity of the output
Q_out <- PLF_TF13$SE131_2004 / 1000
## calculate the price of the output
P_out <- V_out / Q_out
## calculate the ratio between the costs of intermediate inputs and
## the total revenue
E <- ( P_int * Q_int )/( P_out * Q_out )
summary( E )
E2 <- V_int / V_out
all.equal( E, E2 )
## calculate partial output elasticities (tlEla2 function is based on
## tlEla function)
tlEla2 <- function( object ) {

tlCoef <- coef( object )
mDat <- ( PLF_TF13_pd[ , c( "L", "A", "V", "K" ) ] )
result <- numeric(4)
result[1] <- tlCoef["log(L)"] +
tlCoef["I(0.5␣*␣log(L)^2)"] * log( mDat["L"] ) +
tlCoef["I(log(L)␣*␣log(A))"] * log( mDat["A"] ) +
tlCoef["I(log(L)␣*␣log(V))"] * log( mDat["V"] ) +
tlCoef["I(log(L)␣*␣log(K))"] * log( mDat["K"] )

result[2] <- tlCoef["log(A)"] +
tlCoef["I(log(L)␣*␣log(A))"] * log( mDat["L"] ) +
tlCoef["I(0.5␣*␣log(A)^2)"] * log( mDat["A"] ) +
tlCoef["I(log(A)␣*␣log(V))"] * log( mDat["V"] ) +
tlCoef["I(log(A)␣*␣log(K))"] * log( mDat["K"] )

result[3] <- tlCoef["log(V)"] +
tlCoef["I(log(L)␣*␣log(V))"] * log( mDat["L"] ) +
tlCoef["I(log(A)␣*␣log(V))"] * log( mDat["A"] ) +
tlCoef["I(0.5␣*␣log(V)^2)"] * log( mDat["V"] ) +
tlCoef["I(log(V)␣*␣log(K))"] * log( mDat["K"] )

result[4] <- tlCoef["log(K)"] +
tlCoef["I(log(L)␣*␣log(K))"] * log( mDat["L"] ) +
tlCoef["I(log(A)␣*␣log(K))"] * log( mDat["A"] ) +
tlCoef["I(log(V)␣*␣log(K))"] * log( mDat["V"] ) +
tlCoef["I(0.5␣*␣log(K)^2)"] * log( mDat["K"] )

return( result )
}
## fill the Table 4 (E_int matrix ) with calculated values
E_int[1,1] <- mean( E )
E_int[2,1] <- mean( model.np.e.lr.ow.PLF_TF13$grad[,3] )
E_int[3,1] <- mean( model.np.e.lr.wvr.of.PLF_TF13$grad[,3] )
E_int[4,1] <- mean( tlEla2( tl_w_it )[[3]] )
E_int[1,2] <- median( E )
E_int[2,2] <- median( model.np.e.lr.ow.PLF_TF13$grad[,3] )
E_int[3,2] <- median( model.np.e.lr.wvr.of.PLF_TF13$grad[,3] )
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E_int[4,2] <- median( tlEla2( tl_w_it )[[3]])
E_int[2,3] <- mean( ( E - model.np.e.lr.ow.PLF_TF13$grad[,3] )^2 )
E_int[3,3] <- mean( ( E - model.np.e.lr.wvr.of.PLF_TF13$grad[,3] )^2 )
E_int[4,3] <- mean( ( E - (tlEla2( tl_w_it )[[3]] ) )^2 )
E_int[2,4] <- sum(abs( E - model.np.e.lr.ow.PLF_TF13$grad[,3] ) )/

dim( PLF_TF13 )[1]
E_int[3,4] <- sum( abs( E - model.np.e.lr.wvr.of.PLF_TF13$grad[,3] ))/

dim( PLF_TF13 )[1]
E_int[4,4] <- sum( abs( E - ( tlEla2( tl_w_it )[[3]]) ) )/dim( PLF_TF13 )[1]
print( E_int, digits=4 )
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