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Intuitive Mathematical Economics Series
Linear Structures I

Linear Manifolds, Vector Spaces and Scalar Products

Sergio A. Pernice1

Universidad del CEMA
Av. Córdoba 374, Buenos Aires, 1054, Argentina

Abstract

Linear algebra is undoubtedly one of the most powerful structures of pure and applied math-
ematics. It combines extreme generality with deeply held spatial intuitions. In economics
and data science, one would dare to say, it lies at the basis of most of the other mathematical
techniques used. Yet, standard presentations of the subject tend to refrain from displaying
the full extent of the deeply intuitive nature of the underlying structures, despite the fact that
such intuitions are so useful when applying linear algebra, and when extending techniques to
tackle nonlinear problems. This is the first paper of the “Intuitive Mathematical Economics
Series”, dedicated to presenting linear algebra’s intuitive and general nature. In this case we
present linear manifolds and vector spaces.

Keywords: Vector spaces, linear manifolds.

1 Introduction

Linear algebra is undoubtedly one of the most powerful structures of pure and applied mathemat-
ics. It combines extreme generality with deeply held spatial intuitions. In economics and data
science, one would dare to say, it lies at the basis of most of the other mathematical techniques
used. Yet, standard presentations of the subject tend to refrain from displaying the full extent
of the deeply intuitive nature of the underlying structures, despite the fact that such intuitions
are so useful when applying linear algebra, and when extending techniques to tackle nonlinear
problems.

1sp@ucema.edu.ar
This is a β version of this paper. Any suggestion and/or pointing of errors by email are welcome.
The points of view of the author do not necessarily represent the position of Universidad del CEMA.
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In the context of the “Intuitive Mathematical Economics Series”, this first paper is dedicated to
presenting linear manifolds, vector spaces and scalar products. We leave linear mappings for
further works.

In line with the idea of presenting mathematical techniques displaying both the underlying intu-
itions and the powerful generality of the fundamental abstract ideas, there are many very useful
videos on the Internet that I encourage the reader to explore. In particular, as a preview for
this paper, I recommend watching the first two videos, [3B1B LA1] and [3B1B LA2], of the
“Essence of linear algebra” series in the 3Blue1Brown, Youtube channel, by Grant Sanderson.

The paper is organized as follows. In section 2 we present some general equilibrium linear
models as motivators for linear structures. In section 3 we present the intuitions behind linear
manifolds. We emphasize the distinction between the underlying linear manifold, modeled as
a generalization of real space, and vector spaces, modeled as generalizations of displacements
in real space. In section 4 we introduce vectors spaces, first emphasizing the intuitions just
mentioned, then their abstract generality, then standard definitions and theorems, and finally back
to the intuitions behind them. In this section we fully display a general theme of this series: the
power of developing the ability to switch back and forth between our intuitive mode of thinking
and our rational, abstract mode. It is in this back and forth that the full power of mathematical
structures and their applications can be mastered. Powerful as vector spaces are, they do not fully
capture important aspects of our spatial intuitions such a distance and orthogonality. For that we
need to endow linear spaces with a scalar product. This additional structure greatly enlarges
the domain of applications of linear algebra. These are the contents of section 5. In section 6,
we return, more formally, to the relationship between vector spaces and the underlying manifold,
and the different ways to view linear equations that this relationship enables. Section 7 deals with
the important problem of finding the point in a subspace closest to a given point in the full vector
space, or its equivalent in the underlying manifold. We conclude this section by showing that
the useful econometric techniques of least square linear regressions are nothing but an example
of this general problem. Finally, in section 8 we conclude and briefly display the content of the
next paper on linear structures.

Notation: we use capital letters, like A, to refer to points in the linear space (or manifold),
and also for collections of points such as subspaces. Small letters like a to refer to numbers (or
scalars), bold small letters like v to refer to vectors, and bold capital letters A to refer to matrices.
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2 A prototypical example: general equilibrium in a linear
market model

Suppose we have two goods, 1 and 2, that have linear demand and supply curves, and suppose
that the two markets interact with each other:

qd
1 = ad

10 + ad
11 p1 + ad

12 p2 (2.1)
qs

1 = as
10 + as

11 p1 + as
12 p2 (2.2)

qd
2 = ad

20 + ad
21 p1 + ad

22 p2 (2.3)
qs

2 = as
20 + as

21 p1 + as
22 p2 (2.4)

The upper index d refers to demand, and s to supply, pi refers to the price of product i. For
the moment we assume only two products. The coefficients ad

i j (as
i j) characterize the demand

(supply) curve: ad
i0 (as

i0) is the quantity demanded (supplied) of the good i when all prices are
zero, and ad

i j (as
i j) for i, j , 0 is the amount that the demand (supply) of good i increases (if

positive) or decreases (if negative) for a unit increase in price of good j.

For the time being, there is no restriction on the possible values of these coefficients, but in every
concrete case, the economics of the problem will naturally impose some restrictions.

Consider one numerical case:

qd
1 = 10 − 1.0 × p1 + 0.5 × p2 (2.5)

qs
1 = 0 + 1.0 × p1 + 0.0 × p2 (2.6)

qd
2 = 20 + 0.7 × p1 − 2.0 × p2 (2.7)

qs
2 = 0 + 0.0 × p1 + 1.5 × p2 (2.8)

Let’s interpret, for example, line (2.7): the quantity demanded of product 2 would be 20 units if
p1 = p2 = 0, it will increase by 0.7 units for every unit increase in the price of product 1, and
will decrease by 2.0 units for every unit increase in the price of product 2. Similarly for the other
lines.

If the market is free, the prices will adjust so that

qd
i = qs

i ≡ qi, i = 1, 2. (2.9)

therefore the curves (2.1-2.4) imply equations in equilibrium that can be written in various ways.

On the one hand, we can simply equate the right hand side of (2.1) to the right hand side of (2.2),
and similarly for (2.3) and (2.4), to find the equations:

ad
10 + ad

11 p1 + ad
12 p2 = as

10 + as
11 p1 + as

12 p2

ad
20 + ad

21 p1 + ad
22 p2 = as

20 + as
21 p1 + as

22 p2
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which can be reordered as(
ad

11 − as
11

)
p1 +

(
ad

12 − as
12

)
p2 =

(
as

10 − ad
10

)
(2.10)(

ad
21 − as

21

)
p1 +

(
ad

22 − as
22

)
p2 =

(
as

20 − ad
20

)
(2.11)

This is a two step process. In the first step, solving the 2 equations with 2 unknowns (2.10-2.11),
one obtains the equilibrium prices. And in the second step, inserting these prices in (2.1) and
(2.3), one obtains the equilibrium quantities.

For the particular numerical example (2.5-2.8), the system of equations (2.10-2.11), with a trivial
rearrangement, becomes:

p2 = 4p1 − 20 (2.12)
p2 = 0.2p1 + 5.71 (2.13)

Alternatively, one can write 4 equations with 4 unknowns

q1 = ad
10 + ad

11 p1 + ad
12 p2

q1 = as
10 + as

11 p1 + as
12 p2

q2 = ad
20 + ad

21 p1 + ad
22 p2

q2 = as
20 + as

21 p1 + as
22 p2

which can be rewritten as

q1 − ad
11 p1 − ad

12 p2 = ad
10 (2.14)

q1 − as
11 p1 − as

12 p2 = as
10 (2.15)

q2 − ad
21 p1 − ad

22 p2 = ad
20 (2.16)

q2 − as
21 p1 − as

22 p2 = as
20 (2.17)

and solve it to find both, the prices and the quantities, simultaneously. This is a single step
process, but it requires solving a system of 4 equations with 4 unknowns.

For the particular numerical example (2.5-2.8), the system of equations (2.14-2.17), becomes:

q1 + 1.0 × p1 − 0.5 × p2 = 10.0 (2.18)
q1 − 1.0 × p1 − 0.0 × p2 = 0.0 (2.19)
q2 − 0.7 × p1 + 2.0 × p2 = 20.0 (2.20)
q2 − 0.0 × p1 − 1.5 × p2 = 0.0 (2.21)

Whichever your preferred way of solving the equations, the solutions are q1 = 6.77, q2 = 10.60,
p1 = 6.77, p2 = 7.07.

Systems (2.10-2.11), or (2.14-2.17) can be written in matrix form. In the first case the matrix
form is: (

ad
11 − as

11 ad
12 − as

12
ad

21 − as
21 ad

22 − as
22

) (
p1

p2

)
=

(
as

10 − ad
10

as
20 − ad

20

)
(2.22)
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which, for the particular numerical example (2.5-2.8) becomes:(
−2.0 0.5
0.7 −3.5

) (
p1

p2

)
=

(
−10.0
−20.0

)
(2.23)

equivalent to (2.12-2.13).

HW 2.1: Prove the equivalence.

The matrix form of (2.14-2.17) is:
1 0 −ad

11 −ad
12

1 0 −as
11 −as

12
0 1 −ad

21 −ad
22

0 1 −as
21 −as

22




q1

q2

p1

p2

 =


ad

10
as

10
ad

20
as

20

 (2.24)

which, for the particular numerical example (2.5-2.8) becomes:
1 0 1.0 −0.5
1 0 −1.0 0.0
0 1 −0.7 2.0
0 1 0.0 −1.5




q1

q2

p1

p2

 =


10.0
0.0
20.0
0.0

 (2.25)

Forms (2.10-2.11) and (2.14-2.17) (or (2.12-2.13) and (2.18-2.21), if you prefer a more concrete
example), evoke a different picture than forms (2.22) and (2.24) (or (2.23) and (2.25)).

Let us consider for simplicity and concreteness the two-dimensional case (2.12-2.13), and its cor-
responding matrix form (2.23). Look at equations (2.12) and (2.13); they correspond to straight
lines in the “space of prices (p1, p2)”, see Fig. 1. The task is to find the intersection of these two
lines.

6 7 8 9
p1

5

10

15

p2

Figure 1: Picture evoked by equations (2.12-2.13): a pair of straight lines in the “space of prices
(p1, p2)”. Solving the equations implies finding the intersection between these two lines.

The picture evoked by the matrix-vector equation (2.23) is completely different: the matrix trans-
forms vectors to vectors, solving the problem implies finding the particular vector of prices that
is transformed by the matrix into the vector2 (−10,−20)T, see Fig. 2.

2The upper index “T”, as in (−10,−20)T, represents the “transpose” operation. It will defined in part 2 of this
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Figure 2: Picture evoked by equation (2.23) in matrix form: the matrix transforms the vector of
prices into another vector. Solving the problem implies finding the particular vector of prices
that is transformed by the matrix into the vector (−10,−20)T .

These pictures are not limited to two-dimensional systems. As we will see, each line in equa-
tions (2.18-2.21) represents a linear “3-dimensional surface”, or “3-linear surface”, in the four-
dimensional space of parameters (q1, q2, p1, p2). In general, except for degenerate cases, four
3-linear surfaces will intersect in a point, just like two 1-linear surfaces (or straight lines) will in
general intersect in a point in 2 dimensions, and three 2-linear surfaces (or planes) will in general
intersect in a point in 3 dimensions. More generally, except in degenerate cases, a number n of
(n − 1)-linear surfaces will intersect in a single point in an n-dimensional space.

Similarly, in general, except for degenerate cases, a 4 × 4 matrix like the one appearing in (2.25)
transforms every 4-dimensional vector, or “4-vector” into another 4-vector in a one to one rela-
tionship, just as a 3 × 3 matrix in general transforms every “3-vector” into another 3-vector in a
one to one relationship, and an n × n matrix in general transforms every “n-vector” into another
n-vector in a one to one relationship.

If we have a market of n products with linear demand and supply curves, model (2.1-2.4) be-
comes, in a slightly more abstract notation:

qd
i = ad

i0 +

n∑
j=1

ad
i j p j (2.26)

qs
i = as

i0 +

n∑
j=1

as
i j p j, i = 1, · · · , n (2.27)

work. For the moment simply assume that (a, b)T =

(
a
b

)
.
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In equilibrium
qd

i = qs
i ≡ qi, i = 1, · · · , n. (2.28)

In line with the previous analysis, one can do two things. One possibility is to equate the right
hand side of (2.26) with the right hand side of (2.27), leading to n equations with n unknown
p j’s:

n∑
j=1

(
ad

i j − as
i j

)
p j =

(
as

i0 − ad
i0

)
, i = 1, · · · , n. (2.29)

For each i, (2.29) represents an “(n − 1)-surface” in the n dimensional space of parameters
(p1, · · · , pn). Since there are n of them, in general the solution will be a unique point in that
space.

Or one can write it in the matrix-vector form, that in a more compact notation is

Ap = a0 (2.30)

where A represents an n × n matrix with elements:

Ai j = ad
i j − as

i j, (2.31)

p represents an n-dimensional column vector whose elements are the unknown prices:

element j of p = p j (2.32)

and a0 represents an n-dimensional column vector whose elements are:

element i of a0 = as
i0 − ad

i0 (2.33)

Equation (2.30), like (2.22), evokes the picture represented in Fig. 2, but for n-dimensional
vectors. It is the same idea: the problem is finding the unknown vector p that the matrix A
transforms into a0.

Whatever form you prefer, the solution gives the n equilibrium prices p j, and in a second step
one finds the n equilibrium quantities q j.

Alternatively one can write the 2n equations with 2n unknowns that generalizes equations (2.14-
2.17) and represent 2n “(2n − 1)-linear surfaces” in the 2n dimensional space of parameters
(q1, · · · , qn, p1, · · · , pn). Or, one can write the 2n × 2n matrix-vector equation that generalizes
(2.24), to find simultaneously the n equilibrium quantities and prices.

HW 2.2: Write down explicitly the n products generalization of equations (2.14-2.17) and
equation (2.24).

The two pictures could not be more different. But of course they have to be equivalent, since
they give the same result. There are many ways of understanding this equivalence. In this paper
we will focus on the picture described in Fig. 1. Various ways of understanding this picture will
be presented. Along the way we will acquire many concepts very useful for economists, some of
them not emphasized in standard textbooks. In paper II of this work, we will focus on the picture
described in Fig. 2 and the equivalence between the two pictures.

7



3 The Manifold

The picture evoked by figures like 1, or its extension to higher dimensions, tends to be more
familiar for economics students than the picture evoked by figures like 2. Fig. 1 is a graphical
representation of the prices p1, p2, and it is common practice to call it a graphical representation
in the “space of prices”, or, more generally, in the “space of variables” of the problem. However,
we will use the word space exclusively to refer to vector spaces, so it is convenient to use a
different word, manifold, for the space of variables of our problem.

The word manifold is used in geometry to refer to “smooth” surfaces that are locally Euclidean.
In this paper we will be working with spaces that are also globally Euclidean, so we will not be
concerned for the moment with subtle definitions.

The objective of this section is to elevate the status of the manifold of variables to something
more important than the simple graphical representation of the space of variables. This is a first
necessary step towards a more intuitive understanding of linear structures.

The variables of economic problems may have restrictions in the values they can take. For
example, if the variables are quantities of a given product, they usually are nonnegative numbers.
However, we will assume in this paper that they can have any value from −∞ to ∞. In fact, in
finance, it is common practice to talk about negative quantities: to have, say, “−300 stocks of a
company”, corresponds to having a short position on that company, or having sold those stocks
without previously having them.

Correspondingly, the price of a short position in a given stock is negative: when someone enters
into a short position she receives money, i.e. her cost is negative, she sells the underlying product
(without having it) therefore she receives, rather than pays, money. In that sense the price of a
short position is negative. Of course, eventually, she has to cover the short position.

In any case, if the problem demands it, we will eventually learn to impose constraints on the
values of variables. For example, the constraint that such and such variable should be non-
negative. For the moment, however, let us assume that our variables can go from −∞ to +∞.

Consider, to ease the visualization, only two variables, say two prices, p1 and p2, and assume,
as explained above, that they can be positive or negative. Let us compare the manifold of prices
(p1, p2), understood as a simple visualization tool for economic variables, with a real two dimen-
sional plane, say a piece of paper, or a smooth piece of land. Let us assume that the piece of land
is big enough for the borders to be irrelevant when considering translations, and small enough
to ignore the spherical nature of earth’s surface. That is, let us consider what most people would
call a “real plane”. What are the differences between the real plane and the price manifold?

A first difference we can point out is that, while in the plane all points are equivalent, i.e. the
plane is homogeneous, in the manifold of prices there is a natural origin, or special point: the
point p1 = 0, p2 = 0, corresponding to free goods, see Fig. 3. In the real plane we can, and will,
choose an arbitrary point and call it the “origin”. But it is an arbitrary choice. In the manifold
of prices, the p1 = 0, p2 = 0 point is the natural origin.

8



(a) Real space: no special points (homogeneous). (b) Manifold of prices: (0, 0) is a special point.

Figure 3: Comparison between the homogeneous real space and the manifold of prices.

A second difference is even deeper. We intuitively understand that the points of a real plane exist
independently of how we name them. Naming them with a pair of real numbers is, in a sense,
arbitrary3. On the other hand, in the case of prices, what really exists is the numbers, namely,
the prices themselves. The assignments of points to these prices (the manifold), is simply a
visualization device.

It is worth to pause and ponder about the above paragraph. One needs to adjust to the idea
that the manifold exists independently from the numbers we use to describe them, like the real
space exists completely independently from any Cartesian coordinate one can use to localize
objects. Moreover, at least as an intellectual exercise, one should give ontological primacy to the
manifold4, and consider the numbers just as arbitrary names for its points. If one does that, then
a vast reservoir of extremely useful, deeply held spatial intuitions becomes almost self-evident.

Giving ontological primacy to manifolds over numbers is not natural when learning math coming
from economics. In economics what exists is the values of the variables of our models, the mani-
fold being for most economics students just an ad-hoc visualization device. But still, I encourage
economics students to think about the act of conceding ontological primacy to the manifolds over
numbers simply as part of a “technology” to increase even more your mathematical visualization
capacity.

Think about it, when people try to develop technologies such as augmented reality, they go into
the details of our visualization system to seamlessly merge the perception of real objects with the
augmented parts. Similarly, it may help economists to use “devices” that enhance their ability
to see the mathematical objects used in their models. Although our brains’ ability to develop
intuitions in different areas of knowledge is well documented, not all intuitions are “created
equal”. For evolutionary and acquired reasons, few intuitions are as deeply held as our spatial
intuitions. Therefore, think of developing the ability to switch in your mind from the ontological

3On second thoughts, the assignments of a pair of real numbers to points of a plane, or, even simpler, the
relationship of real numbers and points in a line, should produce awe: how can two ontologically different things,
namely, points of a line and real numbers, share properties so deeply as to blur the difference between them? In fact,
mathematicians use the real numbers to define the line. In this paper, however, to make more concrete the notion of
manifold, I suggest the reader to think about a real plane, or the space of our experience.

4Giving ontological primacy to the manifold simply means thinking about the existence of the manifold as
completely independent from the existence of numbers, exactly as one intuitively thinks about the real space of our
experience. And thinking about the numbers as simple names for the points of the manifold.
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(a) The ontological primacy of the manifold makes it
obvious the arbitrariness of the assignments of num-
bers to points, i.e., the election of a coordinate sys-
tem. (b) Manifold of prices: “natural” assignments of

points to numbers.

Figure 4: Comparison between real space and the manifold of prices: 2.

primacy of the variables of your model towards manifolds and vice versa as one step in the
development of “math visualization technology”.

Let us consider again a plane. Assuming that the plane exists independently of how we name its
points makes it obvious that the actual assignment of numbers to points of the plane, that is, the
choice of a coordinate system, can be done in arbitrary ways, as the one in Fig 4a. In fact, if the
manifold is the real thing, the assignment of numbers to points doesn’t even have to be linear.
However, we leave nonlinear assignments for a different work.

On the contrary, if we think of prices as the only real thing and relegate the manifold to just a
basic visualization device, there is no such arbitrariness, and we will simply visualize the price
manifold in the standard way of two perpendicular axes as in Fig 4b.

They are like two “mathematical visualization technologies”, but one is version 1.0 and the other
2.0. The 2.0 version provides vastly more freedom to adapt the technology to your problem. As
we will see when studying linear mappings of vectors spaces, this freedom to select the most
convenient “coordinate system” is very useful to visualize what matrices really are.

4 Vector Spaces

In the previous section we developed the ability to think of manifolds as existing independently of
the values of the variables of our economic problem, just as we think of real space as independent
of any coordinate system. But focus again on the real space: we infer most of its properties
through displacements. Let us explore this notion of inferring the properties of space through
displacements in an intuitive way first, and abstractly later.

4.1 Intuition behind vectors

Let us choose an arbitrary point as both the origin in the manifold and the starting point of our
displacements. If we characterize displacements only by their starting and final points, without

10



(a) Different displacements to go from a to c.

(b) A sequence of two identical displacements is
equivalent to a displacement in the same direction
but twice as large.

Figure 5: Properties of displacements.

concern for the intermediate points, it is clear that there is a one-to-one relationship between the
points in the manifold and the displacements that start at the origin and end in the chosen point.
We can represent such displacements as straight arrows that start at the origin and end at the
chosen point. Let us see how most of our intuitions about space are derived from displacements
like these.

The space of our everyday experience is 3 dimensional, although most of the time we move
on a two-dimensional surface. We have an intuitive notion of dimension, at least from 1 to 3,
associated to displacements in space: we intuitively understand that if we move in one direction,
no matter how far we go, we will never reach an object that is in another direction.

We also have an intuitive notion of distance. Our 3-D visual system allows us to perceive if one
object is closer than another. And if the two objects are at similar distances, a compass will allow
us to know which object is closer.

We also intuitively understand that, if the objective is going from a to c (see Fig. 5a), doing first
a displacement x, and after that a displacement y, does the same as the direct displacement z.
We know that if we actually move in a plane with no obstacles, first by x, and then by y, the
whole path takes more effort than displacement z. But if we only care about the starting and final
points, x followed by y represents the same displacement as z. Therefore, we could say “z = x
followed by y”.

Doing first a displacement w, and after that another displacement w, with identical direction and
length, would be equivalent to a net displacement twice as large and in the same direction (see
Fig. 5b). And doing first a displacement w, and after that another displacement of identical
length and opposite direction, one would return to the starting point. It is natural the call −w to
the second displacement.

Perhaps not so intuitive is the validity of the commutative property of displacements: if moving
on a plane surface with no obstacles, doing first a displacement x and then a displacement y, you
reach the same point than if you do first a displacement y and then a displacement x, see Fig. 6a.
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(a) Commutativity of displacements. (b) Pythagoras theorem for perpendicular displace-
ments.

Figure 6: Properties of displacements.

The commutativity of displacements may not be as intuitively obvious as the other properties.
But take two identical blue sticks and another two identical red sticks, not necessarily of the
same length as the blue sticks, and join them in the extremes like in Fig. 6a, allowing the angle
between two adjacent sticks to freely change. Now it is immediately obvious that, no matter
what the angle between adjacent sticks is, the sequence red-blue will lead you from one extreme
to the opposite extreme, exactly as the sequence blue-red.

HW 4.1: By drawing, convince yourself of the validity of the associative property of displace-
ments: doing a displacements d, that is the resultant of doing first a displacement a and then
a displacement b, and after d doing a displacement c, is equivalent to doing a displacement a
followed by a displacement e, that is the resultant of doing first a displacement b and then a
displacement c.

Finally, although it is at first not obvious intuitively, we learn in primary school Pythagoras’
theorem. In terms of displacements, if one displacement x is followed by a perpendicular dis-
placement y, then the square of the length of the resulting displacement z equals the square of
the length of x plus the square of the length of y, see Fig. 6b.

Notice that the above properties go from completely intuitive, to mildly intuitive, to not intuitive
(at least at first sight). In the completely intuitive camp we include, for example, a basic dimen-
sionality notion, composition of displacements (doing one displacement first and then another)
and the notion that two different sequences of displacements can lead from the same initial point
to the same point (Fig. 5a), so that if one only cares about initial and final points, then the two
sequences of displacements are equal. It is also completely intuitive to compare the length of
two displacements starting from the same point and both pointing in the same direction.

In the in the mildly intuitive camp, we include for example the commutativity and associativity
of displacements.
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Lastly, in the “not intuitive at first sight” camp, we include the notion of distance traveled when
the sequence includes displacements in different directions. In particular, Pythagoras’ theorem.

Before we formalize all this, I suggest another mental “ontological exercise”. As an economics
or data science student, you probably tend to think of vectors as numbers ordered in columns (or
rows), and visualize them in a Cartesian coordinates representation. But here we have introduced
vectors as displacements. We have made that choice for many reasons, a very important one is
that, if you think of vectors as displacements, they obviously have an existence independent
of the numbers you use to name them. So, as we did with the manifold, another ingredient
of our visualization technology 2.0 is to think of vectors (or displacements) as ontologically
independent from its numerical (Cartesian or otherwise) representation.

Finally, I would like to summarize that we have defined two categories of objects: manifolds,
as an extension of the intuitive notion of space, and vectors, as an extension of the notion of
displacements in that space. If we select in the manifold an arbitrary point O as our origin, for
any other point A in the manifold, if we only care about starting and final points, we can find one
and only one vector (or displacement) a that starts at the origin O and ends at A. Moreover, this
one-to-one relationship can also include the origin itself if we decide to include, among our set
of vectors, the null vector 0, that starts and ends at the origin.

4.2 Abstract vector spaces

Before presenting the abstract definition of vectors spaces, let us give the intuition behind its
defining operations. The “sum” between vectors, z = x + y, is an operation that returns another
vector, and amounts to the concatenation of the two vectors x and y. It coincides with the intuition
of z as a displacement equal to doing first a displacement x followed by a displacement y in Fig.
5a, if one only cares about initial and final points.

The “product” between a real number a and a vector w, r = a w, intuitively scales the length
of the vector w by a factor of |a|, keeping the same direction as w if a > 0, and the opposite
direction if a < 0, see Fig. 5b. Since this operation scales the vectors, we will sometimes refer
to real numbers like a as “scalars.”

The “visualization technology 2.0” that I am trying to present to you works best when one is
able to switch at will between an intuitive mode of thinking and a rational, abstract mode. While
reading the definition of vector spaces and the axioms of their operations, I suggest to switch to
your abstract mode of thinking, suppressing for a moment the intuitions about vectors presented
above. Think of them instead, for a moment, as abstract objects and operations defined only by
the axioms.

Definition of vector space: a vector space V is a collection of vectors where two operations
are defined. A sum, with two vectors as input and a vector as output, and a product, with a real
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number and a vector as input and a vector as output5. These operations satisfy the following
axioms.

Axioms of the sum between vectors:

• Associativity: (a + b) + c = a + (b + c).

• Commutativity: a + b = b + a.

• Identity element: there exist a vector z ∈ V such that for any other vector a, a + z = a. It
is customary to call to this vector the zero vector: 0.

• Inverse element: for every vector a ∈ V , there is another vector d ∈ V such that a + d = 0.
It is customary to call −a to the inverse vector of a.

Axioms of the product between a real number and a vector:

• Compatibility of scalar multiplication with number multiplication: a(bv) = (ab)v.

• Identity element of scalar multiplication: 1v = v, where 1 is the real number one.

• Distributivity of scalar multiplication with respect to vector addition: a(v + w) = av + aw.

• Distributivity of scalar multiplication with respect to real numbers addition: (a + b)v =

av + bv.

Abstract mathematical structures, and the interplay between abstractions and intuitions, are in-
credibly useful for practical problems. Sometimes it is possible to map a problem A into another
problem B, only to find that, at the abstract level, they are the same problem. So, a proven
property of problem B automatically becomes a proven property of problem A. The mapping of
problem A into problem B is specially useful when problem B is very visual, like ideal displace-
ments in 1, 2 and 3 dimensional Euclidean spaces are.

Another way in which abstractions are useful is that sometimes they allow us to naturally create
new mathematical objects, like spaces with arbitrary dimensions, that later turn out to be of
practical use in unexpected ways. Moreover, since these new mathematical objects share many
of the abstract properties with the original one, if the original one is very visual, again, like ideal
displacements in 1, 2 and 3 dimensional Euclidean spaces are, then, with a little practice you
start developing intuition in many dimensions too.

HW 4.2: Consider ordered pairs of numbers and dispose them in a two-component column.
a) Prove that all the axioms above are satisfied by the “natural” sum and product by scalars. b)

5A vector space can be defined over real numbers, over complex numbers, rational numbers, etc. In general, it
can be defined over any field. However, most of our applications will involve real numbers, so the definition above
is enough for our purposes.
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Draw the arrows corresponding to two vectors, v and w, and the arrows corresponding to v + w
and to 1.5v and convince yourself that these operations do exactly what we expect if we think of
the arrows as displacements.

HW 4.3: Do the same for 3-component column vectors. By hand, or with your preferred
software, draw in 3D the corresponding arrows. Convince yourself, now in 3-D, that these
operations do exactly what we expect, if we think of the arrows as displacements6.

HW 4.4: Prove that the set of column vectors of n real numbers, with the natural sum between
vectors and product by a scalar, form a vector space (i.e., they satisfy the axioms).

Definition: We will call Rn to the vector space of n ordered real numbers.

In the HWs above we insist in viewing vectors as displacements. However, it is natural to visu-
alize, say, a two-component column vector, as the corresponding point in the plane itself, each
component being the Cartesian coordinate of the corresponding point with respect to two axes
perpendicular to each other. Similarly for a three-component column vector, as a point in space,
etc. However, this would correspond to “visualization technology 1.0”, not the 2.0 version we are
presenting here. For this, it is very important to distinguish between the points of the manifold
and the vector that starts at the origin and ends at the selected point. We will associate n ordered
numbers organized in columns (or in raws) with vectors, or, if you prefer, with displacements on
the manifold, not with the points of the manifold themselves.

Of course, once we have arbitrarily selected a point in the manifold and call it the origin, as
already mentioned, there is a one-to-one relationship between points in the manifold and vectors.
Moreover, for the sake of brevity, we will sometimes be sloppy and talk about “point q” instead
of the more correct “point Q with associated vector q.” But for the “visualization technology
2.0” to work properly, it is very important to keep in mind the distinction between points of the
manifold and vectors of the vector space despite this on-to-one relationship.

4.3 Linear Independence, bases, linear subspaces, affine subspaces, etc.

In this section we present standard definitions and theorems on vector spaces. While reading this
section, I recommend the student to activate the abstract mode of thinking for definitions and
theorems (in particular, try to prove the theorems abstractly), and switch to the intuitive mode
for the HWs that are not proofs of theorems.

Linear combination: given the vectors vi ∈ V , i = 1, · · · , n, we call a linear combination of
6In all the HWs in which you have to graphically represent 3-D in a 2-D paper, the graph should be clear. If you

find it difficult to do these graphs by hand at the beginning, do them with your preferred software. But you should
learn to visualize 3-D graphs in your mind and in the plane. If you learn to visualize in 3-D, many extensions to n-D,
helped by the mathematical machinery we are developing, will be trivial. Visualizing in 2-D only, is not enough to
make the leap to n-D.
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these vectors to an expression like:

y =

n∑
i=1

aivi (4.1)

In the above expression, different upper indices i, as in vi, correspond to different vectors, while
different lower indices i, as in ai, correspond to different scalars.

HW 4.5: Consider two ordered pairs of two numbers as vectors with the natural sum and
product by scalars. a) Construct a linear combination of these two vectors and draw it to see its
geometric meaning. b) Do the same for two ordered pairs of three numbers.

Linear dependence: a set of vectors vi ∈ V , i = 1, · · · , r is linearly dependent, if there is a set
of scalars ai, i = 1, · · · , r, not all of them zero, such that

r∑
i=1

aivi = 0 (4.2)

If the only way to make the sum above equal to zero is with all ai = 0, then the vectors vi are
linearly independent.

HW 4.6: a) Write two linearly dependent two-component column vectors. How do you draw
them in a plane? b) Do the same for three linearly dependent three-component column vectors
(two of them must be linearly independent, none of them should be a scaled version of one of
the other two).

Span of a set of vectors: given a set of vectors W = {wi ∈ V , i = 1, · · · , n}, the set of all vectors
of the form

v =

n∑
i=1

aiwi (4.3)

for arbitrary ai, is called the span of W.

HW 4.7: a) Consider the span of a single two-component column vector. What does it cor-
respond to graphically? b) Do the same for two linearly independent two-component column
vectors. c) Do the same for 1 and 2 linearly independent three-component column vectors. d)
Write 3 linearly dependent three-component column vectors such that two of them are linearly
independent and none of them is a scaled version of one of the other two. Consider now the
span of these 3 vectors, what does it correspond to geometrically? e) Do the same for 3 linearly
independent three-component column vectors.

Basis of V: If a set of vectors W span V , then W is a basis of V .

HW 4.8: a) Write two vectors forming a basis of the vector space of two-component column
vectors. b) Do the same for a basis of 3 vectors of the vector space of two-component column
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vectors. c) Do the same for a basis of 3 vectors of the vector space of three-component column
vectors. d) Do the same for a basis of 5 vectors of the vector space of three-component column
vectors.

Linearly independent basis of V: If a set of linearly independent vectors W span V , then W is
a linearly independent basis of V .

Theorem 4.1 If W = {wi ∈ V, i = 1, · · · , n} is a linearly independent basis of V, then every
vector v ∈ V can be written as a linear combination of the wis in a unique way.

HW 4.9: Prove the theorem.

HW 4.10: Prove that Rn, for every n > 0, has a linearly independent basis.

HW 4.11: Prove that any linearly independent basis of Rn, has exactly n components.

Dimension of a vector space: The number of vectors of any linearly independent basis of a
vector space V is the same. This number is by definition the dimension of V .

Theorem 4.2 If a set of n vectors is a basis of V, then any set of n + 1 vectors is linearly
dependent.

HW 4.12: Prove the theorem.

Dimension of the manifold associated to a vector space V: The dimension of V is also the
dimension of the manifold corresponding to V .

Theorem 4.3 If V has dimension n, then a linearly independent set of n vectors in V is a basis
of V.

HW 4.13: Prove the theorem.

Linear subspaces of a vector space V: If a vector space V has dimension n, then the span W of
any set of vectors in V is a subspace of V with dimension ≤ n.

Corollary 1: The vector 0 belongs to any subspace of V .
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Through the one-to-one relationship between manifolds and vector spaces, a linear subspace
corresponds to a linear manifold of smaller dimension than the manifold in which it is embedded
that passes through the origin.

Affine subspaces of a vector space V: The set S of all vectors of the form

r = a + w (4.4)

where w ∈ W, a subspace of V , and a , 0 is a fixed vector in V , is an affine subspace of V .

Geometrically, an affine subspace corresponds to a linear manifold of smaller dimension than the
manifold in which it is embedded that does not passes through the origin.

4.4 Back to intuitive thinking

Enough definitions, theorems, and purely abstract thinking for the moment. Let us return to the
intuitions of subsection 4.1, trying to find the mathematical expression for these intuitions. We
go from the completely intuitive, to the mildly intuitive, to the non-intuitive.

Completely intuitive properties:

1. Basic dimensionality notion: we mentioned that we intuitively understand that “if we
move in one direction, no matter how far we go, will never reach an object that is in
another direction.”

Let us model this mathematically with two-component column vectors: chose two linearly
independent two-component column vectors x1 and x2. Consider the span of x1. It rep-
resents “moving in one direction (the direction of x1) as far we wish”. x2, that is linearly
independent of x1, represents the position of “an object that is in another direction”. The
fact that x2 is not in the span of x1 (because it is linearly independent), means that “if we
move in one direction (the direction of x1), no matter how far we go, will never reach an
object (located at x2) that is in another direction”.

We see how vector spaces capture mathematically exactly our intuitive notion of dimen-
sionality, or independent directions. Do the corresponding graph.

HW 4.14: Explain the same intuition with two linearly independent three-component
column vectors, x1 and x2, whose span represents our possible displacements, say, on the
surface of the earth. However, “no matter how far we go”, will never reach an object
located at x3 if x3 is linearly independent of the other two (say, it is ten meters high).

HW 4.15: Construct a similar story with n-component column vectors.

2. Composition of displacements: with column vectors and the corresponding graphs, we
already showed that the sum of vectors correspond to compositions of displacements in
2-D and 3-D.
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3. Length comparison between two vectors, x1 and x2, that start from the same point and both
point in the same direction.

HW 4.16: How do know which one is longer mathematically? Explain.

The mildly intuitive properties of associativity and commutativity have already been analyzed.

Non-intuitive at first sight properties:

HW 4.17: Select two linearly independent two-column vectors, spend 5 to 10 minutes (no more
than that) trying to prove abstractly (this means, no graphs allowed, and using only operations
defined in the axioms), whether these two vectors are orthogonal or not. Please do not turn the
page until you try to solve this problem in the allotted time.

19



(a) (b)

Figure 7: The axioms of vector spaces do not have a way to conceptualize if two vectors are or-
thogonal. The graphical difference between 7a and 7b does not have a mathematical counterpart
yet.

It turns out that you can’t prove it...

“...But wait!...”, you are probably thinking, “...why can’t I say, for example, that x1 =(
1
0

)
and x2 =

(
0
1

)
are orthogonal? As a matter of fact, we have been using their

orthogonality all along in the graphical representations of the previous HWs! What
is wrong with drawing them as two perpendicular arrows in a standard Cartesian
coordinate system like Fig. 7a? Isn’t there an obvious angle of 90◦ between them?
how come they are not orthogonal?...”

Pause and ponder about the meaning of “proving something using only operations defined in the
axioms”. Within the given axioms you can’t even define what orthogonality means. The closest
thing you can prove is the weaker notion of linear independence between two vectors, which, as
we have seen, is enough to define dimensionality. But it is not enough to define orthogonality.

This is an important lesson, it teaches us that if we really want to build and enhanced mathe-
matical visualization system that draws on our deeply held spatial intuitions, for every one of
these visual intuitions there has to be a corresponding mathematical conceptualization. Only if
we have this tight relationship between intuitions and mathematical concepts, are we going to be
able to extend these intuitions safely to spaces beyond our experience.

As it turns out, we still don’t have the mathematical concept associated with such an important
property of real space as is the notion of orthogonality. This, of course, implies that we don’t yet
have the mathematical concept associated to the corresponding intuition.

To gauge the importance associated to a lack of mathematical concepts for orthogonality, note
that a crucial ingredient of our spatial intuitions is the notion of distance in 2-D and 3-D. A
mathematical codification of a notion of distance that mimics the real distance between objects
should be consistent with what we know about distance since primary school: Pythagoras’ the-
orem7. But a prerequisite to safely apply that theorem is that two sides of the triangle should

7In 1-D this is not required, so a 1-D real vector space inherits the notion of distance of the real numbers.
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be orthogonal to each other. So we see that in order to have a notion of distance we need first a
notion of orthogonality!

This means that if we want to endow vector spaces and the underlying manifold with a notion of
distance that mimics the real distance, we should extend our axioms to be able to tell, using only
operations defined in the axioms, whether two vectors are orthogonal or not. We deal with this
in the next section.

5 “Dot” (or scalar) product vector spaces

As we have seen, vector spaces do not have enough structure to define orthogonality. For that
we need to incorporate an additional structure.

In addition to a sum, a linear operation that inputs two vectors and returns another vector, and a
product, an operation that inputs a real number and a vector and returns another vector, we define
now a “dot”, or “scalar”, product. It is an operation that inputs two vectors and returns a real
number, or scalar, for which we use the notation “x · y”, and satisfies the following axioms.

Axioms of the dot, or scalar, product x · y:

• Symmetry:
x · y = y · x

• Linearity in the second argument:

x · (a y) = a (x · y)
x · (y + z) = x · y + x · z

• Positive definite:

x · x ≥ 0
x · x = 0 ⇔ x = 0

HW 5.1: Prove that these axioms imply linearity in the first argument as well.

Since the dot product is linear in both the first and the second argument, it is said to be “bi-linear”.

We could continue abstractly, but I think it is best to show a realization of this dot product for
column vectors and eventually generalize the notation.

HW 5.2: Prove that, if we have two n components column vectors, x, with components xi, and
y, with components yi, then, the operation

x · y =

n∑
i=1

xiyi (5.1)
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satisfies the axioms of the scalar product.

Now we can define orthogonality:

Definition of orthogonality: In a scalar product space V , two non-zero vectors x and y are said
to be orthogonal to each other if and only if x · y = 0.

With this notion, we can finally distinguish between (7a) and (7b).

Let us use a slightly more abstract notation that will allow us to appreciate the generality of the
concepts defined here. Call êi to the n-component column vector whose elements are all zero
except the ith component that is equal to 1.

HW 5.3: Prove that
êi · ê j = δi j (5.2)

where the symbol δi j is defined by

δi j =

{
1, if i = j
0, if i , j (5.3)

and is called the “Kronecker delta”.

Any column vector can be written as

x =


x1

x2
...

xn

 =

n∑
i=1

xi êi (5.4)

and the bi-linearity of the scalar product allows us to compute it as

x · y =

 n∑
i=1

xi êi

 ·
 n∑

j=1

y j ê j

 (5.5)

=

n∑
i=1

n∑
j=1

xiy j êi · ê j

=

n∑
i=1

n∑
j=1

xiy j δ
i j

=

n∑
i=1

xiyi (5.6)

(5.6) is identical to (5.1).

HW 5.4: Justify each step from (5.5) to (5.6).

22



Definition of orthogonal and orthonormal basis:

Orthogonal basis: A basis {xi}, i = 1, · · · , n, of an n-dimensional scalar product space V , is
orthogonal, if

xi · x j = 0 for i , j (5.7)

and different from zero when i = j.

Orthonormal basis: A basis {êi}, i = 1, · · · , n, of an n dimensional scalar product space V , is
orthonormal, if

êi · ê j = δi j for i, j = 1, · · · , n (5.8)

Given an orthogonal basis {xi}, i = 1, · · · , n, one can construct the corresponding orthonormal
basis {êi}, i = 1, · · · , n as:

êi =
xi

(xi · xi)1/2 for i = 1, · · · , n (5.9)

HW 5.5: Prove that the basis {êi}, i = 1, · · · , n, defined in (5.9) is orthonomal if the basis {xi},
i = 1, · · · , n is orthogonal.

HW 5.6: Write an orthonormal basis in the space of column vectors of dimension 5.

Now we can define the magnitude of a vector, and the length in the underlying manifold.

Definition of magnitude, or norm, of a vector: The magnitude of a vector x, for which we will
use the symbol ‖x‖, is defined by:

‖x‖ = (x · x)1/2 (5.10)

If x is written in terms of an orthonormal basis like (5.8),

x =

n∑
i=1

xi êi (5.11)

the square of the norm is

‖x‖2 = x · x =

n∑
i=1

x2
i (5.12)

this is just the extension to n dimensions of Pythagoras’ theorem. We can appreciate how, when
orthogonality is defined through the scalar product, Pythagoras’ theorem, which requires orthog-
onality, emerges naturally.

See Fig. 8 for the particular case of equation (5.12) in 3 dimensions. Note that the red arrow is
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Figure 8: Pythagoras in 3-D: ‖r‖2 = ‖rxy‖
2 + ‖rz‖

2. But, ‖rxy‖
2 = ‖rx‖

2 + ‖ry‖
2. Therefore:

‖r‖2 = ‖rx‖
2 + ‖ry‖

2 + ‖rz‖
2.

the projection of the blue arrow on the (x, y) plane, and the green arrow is the projection of the
blue arrow on the z axis, orthogonal to the (x, y) plane. In the two-dimensional plane determined
by these three arrows, the standard two-dimensional Pythagoras’ theorem works as usual. But
if we want to decompose the red arrow into its x and y components, applying again Pythagoras’
theorem to the red arrow we finally arrive at the expression ‖x‖2 =

∑3
i=1 x2

i corresponding to
(5.12). Exactly the same happens in n dimensions.

For any two vectors x1 and x2 in a scalar product vector space V , the norm satisfies two important
inequalities:

Figure 9: The green dashed line is the projection of x2 in the direction of x1, and the red dashed
line is the projection orthogonal to x1.

Cauchy–Schwarz inequality:
(
x1 · x2

)2
≤

(
x1 · x1

) (
x2 · x2

)
, or, taking the square root on both

sides:
|x1 · x2| ≤ ‖x1‖ ‖x2‖ (5.13)
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Proof: Consider the vector

x2⊥1 = x2 −

(
x2 · x1

x1 · x1

)
x1 (5.14)

x2⊥1 is the component of x2 orthogonal to x1, the red dashed line in Fig. 9. To see this note that
x2⊥1 · x1 = 0 and

x2 = x2⊥1 +

(
x2 · x1

x1 · x1

)
x1 (5.15)

Then,

‖x2‖2 = x2 · x2 (5.16)

=

(
x2⊥1 +

(
x2 · x1

x1 · x1

)
x1

)
·

(
x2⊥1 +

(
x2 · x1

x1 · x1

)
x1

)
= ‖x2⊥1‖2 +

(
x2 · x1

x1 · x1

)2

x1 · x1

≥

(
x2 · x1

)2

x1 · x1 =

(
x2 · x1

)2

‖x1‖2

Multiplying both sides by ‖x1‖2 and taking the square root we arrive at (5.13).

The proof makes clear that the equality holds when ‖x2⊥1‖2 = 0, i.e., when x2 does not have a
component orthogonal to x1. If x2 does not have a component orthogonal to x1, it means that x2

is linearly dependent on x1 (or either of them are zero, a particular case of linear dependence).

HW 5.7: Justify each step in the proof (5.16).

Triangle inequality: ‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖.

This inequality quantifies the qualitative idea described in Fig. 5a, that the length along path “x
then y” (equal to ‖x‖ + ‖y‖) is longer than the length of the direct path z (equal to ‖x + y‖). The
only exception being if y points in the same direction than x, as in Fig. 5b. Let us prove the
inequality.

Proof:

‖x1 + x2‖2 =
(
x1 + x2

)
·
(
x1 + x2

)
(5.17)

= ‖x1‖2 + ‖x2‖2 + 2 x1 · x2

≤ ‖x1‖2 + ‖x2‖2 + 2 |x1 · x2| (x1 · x2 ≤ |x1 · x2|)
≤ ‖x1‖2 + ‖x2‖2 + 2 ‖x1‖ ‖x2‖ (by Cauchy–Schwarz inequality)

=
(
‖x1‖ + ‖x2‖

)2

Taking the square root we finally prove the inequality.

Note that equality only holds if |x1 · x2| = ‖x1‖ ‖x2‖ and x1 · x2 = |x1 · x2| are true. As we saw in
the proof of the Cauchy–Schwarz inequality, the first condition only holds if x1 = a x2. And the
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second condition holds if, in addition, a ≥ 0. This means that the equality holds in situations like
in Fig. 5b, where the triangle of Fig. 5a becomes a straight path that never changes direction.
This makes sense, if the triangle becomes a straight path that never changes direction, there is no
difference between the “x1 then x2” path and the direct one x1 + x2. But note that we have proved
much more: as long as a scalar product satisfying the appropriate axioms is defined, this deeply
rooted intuition is valid also in vector spaces of any dimension.

Definition of distance between two points in the underlying manifold: Consider the points
X and Y in a manifold in which an arbitrary origin has been chosen. We have pointed out many
times that there is a one to one relation between points in the manifold and vectors. Assume that
the vectors x and y are, respectively, associated to these points. Then, the distance between X
and Y is:

dist (X,Y) ≡ ‖x − y‖ (5.18)

HW 5.8: a) Interpret in 2-D the geometrical meaning of the vector x − y. b) Convince yourself,
and write the corresponding explanation, that the definition (5.18), that requires the definition of
magnitude of a displacement (5.10), corresponds to our intuitive notion of distance in real space.
c) Do a) and b) for 3-D.

We have now all the ingredients we need to extend our “visualization technology” to any dimen-
sion. Before we apply it to practical problems, let us summarize what was done until now:

1. The notion of vector space captures the idea of the set of all possible displacements in an
underlying manifold.

2. The notion of linear independence corresponds to the notion of translations in different
directions.

3. The notion of span of a set of vectors captures the idea of all possible displacements gen-
erated by concatenating and scaling the displacements included in the set. This naturally
leads to subspaces of a vector space.

4. If the span of a set of vectors is the whole space, then the set includes displacements in all
possible directions. In that case the set is called a basis of the space.

5. If the basis is linearly independent, intuitively, the number of vectors in the basis is count-
ing the maximum number of independent directions in the space, which defines its dimen-
sion. This number is basis independent and therefore is an intrinsic property of the vector
space.

6. Through the one-to-one relationship between displacements and points of the underlying
manifold, this number also defines the dimension of the underlying manifold.

7. However, this is not enough to define orthogonality and distance. A scalar product is
necessary for that.
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8. The endowment of a vector space with a scalar product structure is equivalent to select-
ing a linearly independent basis, establishing by decree that the vectors of this basis are
orthonormal, and establishing that the scalar product is bilinear.

9. Once the vector space is endowed with a scalar product, the norm of a vector can be defined
satisfying Pythagoras’ theorem.

10. The norm of vectors allows us to define a distance in the underlying manifold. This is
fitting; distance is ultimately measured by displacements of an arbitrarily defined unit of
length in real space.

11. The necessity of a notion of orthogonality to define a distance between two points mimick-
ing the real distance in dimension greater than one, ultimately comes from the requirement
of the generalized validity of Pythagoras’ theorem.

12. One way to see the relevance of this requirement for the distance between two points in
any dimension, even though the original Pythagorean theorem is valid for two-dimensional
right triangles, is that the vectors corresponding to these two points span a two-dimensional
subspace, and in this subspace the theorem applies.

5.1 Geometric meaning of the scalar product

Let us remember the definition of the cosine and sine functions. If we have a circle of radius r,
the radius making an angle θ with the x-axis has a projection on the x-axis equal to r cos θ, and a
projection over the y-axis equal to r sin θ, see Fig. 10.

Figure 10: Definition of the functions cos θ and sin θ.
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Let us write this vectorially: if we name r the vector corresponding to the radius r making an
angle θ with the x-axis, we have:

r = ‖r‖ cos θ x̂ + ‖r‖ sin θ ŷ (5.19)

where x̂ is the unit vector in the direction of the positive x-axis and ŷ is the unit vector in the
direction of the positive y-axis. Of course x̂ and ŷ are orthogonal to each other. Therefore x̂ and
ŷ form an orthonormal basis on the plane:

‖x̂‖ = 1 (5.20)
‖ŷ‖ = 1 (5.21)

x̂ · ŷ = 0 (5.22)

From (5.19), (5.20), (5.21) and (5.22) we get:

r · x̂ = ‖r‖ cos θ (5.23)
r · ŷ = ‖r‖ sin θ (5.24)

i.e., the scalar product of r with the unit vector x̂ is the projection of r in the direction of x̂. This
projection defines the cosine function. Similarly, the scalar product of r with the unit vector ŷ is
the projection of r in the direction of ŷ. This projection defines the sine function.

If, instead of calculating the scalar product of r with x̂ we do it with a vector proportional to x̂,
say, z = ‖z‖ x̂, the bi-linearity of the scalar product implies

r · z = r · (‖z‖ x̂) = ‖z‖ (r · x̂) = ‖z‖ ‖r‖ cos θ (5.25)

In words, the scalar product between a vector r, of modulus ‖r‖, and a vector z of modulus ‖z‖,
is the product of their modules times the cosine of the angle between them. Note that, since
| cos θ | ≤ 1, taking the absolute value on both sides of (5.25) we get,

|r · z| ≤ ‖r‖ ‖z‖ (5.26)

the equality holding only when r, z, or θ are zero, or if θ = π. If θ = 0 or π, then r = a z, i.e.,
they are linearly dependent. This is an instance of the Cauchy–Schwarz inequality (5.13).

Before we submerge in n dimensions, note that in equation (5.24), the fact that the sine function
appears instead of the cosine, is just because θ is the angle with the x-axis, not with the y-
axis. The angle between r and ŷ is α = π/2 − θ, and as you remember from high school,
sin(θ) = cos(π/2 − θ) = cos(α). So again, r · ŷ is the product of the modules times the cosine of
the angle between the vectors.

We will see now, helped with the machinery we have built, that we can extend all this to n
dimensions, and in the process finally understand the geometric meaning of the scalar product.

Consider two vectors, x1 and x2, in an n-dimensional scalar product space V , see Fig. 9. x1 and
x2 span a two-dimensional subspace of V . Think of the axis generated by the span of x1 as our
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previous x-axis. Since x1 and x2 define a unique plane in V , on that plane everything above still
holds:

x1 · x2 = ‖x1‖ ‖x2‖ cos θ (5.27)

Equation (5.27) defines the cosine of the angle θ between x1 and x2. The Cauchy–Schwarz
inequality (5.13) ensures that | cos θ | ≤ 1.

Ok, that was perhaps a little too fast. Let us go slower. The vector

ê1 ≡
x1

‖x1‖
(5.28)

is a unit vector pointing in the direction of x1, see equation (5.9). Multiplying both sides by the
modulus we have

x1 = ‖x1‖ ê1 (5.29)

which is an expression for x1 that neatly separates the modulus ‖x1‖, and the direction ê1.

The vector

Projx1(x2) = Projê1(x2) ≡ (ê1 · x2) ê1 =

(
x1 · x2

x1 · x1

)
x1 (5.30)

is, by definition, the orthogonal projection of x2 in the direction of x1 (or of ê1).

HW 5.9: Prove the last equality in (5.30).

What gives us the right to define the projection of a vector in the direction of another, as in
(5.30)? We already discussed this when we proved the Cauchy–Schwarz inequality (5.13), but
let us do it again in this more geometric context.

The word “orthogonal projection” is charged with geometric meaning, as in Fig. 11, where the

Figure 11: Orthogonal projection of x2 in the direction of x1, and in the orthogonal direction.

dashed green line is the orthogonal projection of x2 in the direction of ê1 (or x1), and the dashed
red line is the orthogonal projection in the direction of ê2. ê1 and ê2 are themselves orthogonal to
each other. Therefore x2, its projection in the direction of ê1, and its projection in the direction
of ê2 form a right triangle where Pythagoras’ theorem should apply. Does our definition, in an
abstract n-dimensional space, satisfy all these properties? Only if it does do we have the right to
call an expression like (5.30) an orthogonal projection.
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Consider the following equation:

x2 = Projê1(x2) + Projê2(x2) (5.31)

(5.31) defines Projê2(x2), with Projê1(x2) previously defined in (5.30). If all of these makes sense,

Projê2(x2) = x2 − Projê1(x2) (5.32)

should be orthogonal to x1. Is it? Yes, here is the proof:

Projê2(x2) · x1 =
(
x2 − Projê1(x2)

)
· x1 (5.33)

=

(
x2 −

(
x1 · x2

x1 · x1

)
x1

)
· x1

= x2 · x1 −

(
x1 · x2

x1 · x1

) (
x1 · x1

)
= x2 · x1 − x1 · x2

= 0

HW 5.10: Justify each step in the proof (5.33).

So the two projections in (5.31) are orthogonal to each other. This was the first condition to
rightly call Projê1 in (5.30) a projection.

The second is the validity of Pythagoras’ theorem. Does it hold for these abstract orthogonal
projections in our n-dimensional context? Yes, here is the proof:

‖x2‖2 = x2 · x2 (5.34)
=

(
Projê1(x2) + Projê2(x2)

)
·
(
Projê2(x2) + Projê2(x2)

)
= Projê1(x2) · Projê1(x2) + Projê1(x2) · Projê2(x2)

+ Projê2(x2) · Projê1(x2) + Projê2(x2) · Projê2(x2)
= ‖Projê1(x2)‖2 + ‖Projê2(x2)‖2

HW 5.11: Justify each step in the proof (5.34).

Orthogonal projections and Pythagoras’ theorem are all we need to genuinely define the cosine
function. So we are justified in saying that the scalar product between two vectors, x1 and x2, is
equal to the product of the respective modules times the cosine of the angle between them:

x1 · x2 = ‖x1‖ ‖x2‖ cos θ (5.35)

This is the geometric meaning of the scalar product between two vectors of a scalar product
vector space V in any dimension. When x1 · x2 = 0 and none of them are 0, cos θ = 0 and the
angle is 90◦ (or 270◦), as it should for orthogonal vectors.
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Note that the scalar product between two vectors only depends on the angle between them. It is
independent of the direction of each of these vectors with respect to any coordinate system. In
this sense, it is an intrinsic property of the relationship between two vectors. In the vector space
all directions are equivalent, only relations between directions have meaning.

Remember that we mentioned that the underlying manifold is homogeneous, since there was no
special point, see Fig. 3. Then we insisted on the idea that the manifold exists independently
of any numerical representation. Now we are faced with another important property that the
manifold inherits from its relationship with the corresponding vectors space: since all directions
are equivalent, it is said to be isotropic.

We don’t experience the real 3-D space of our experience as isotropic; there is a clear distinction
between the two independent directions on the surface of the earth and the vertical direction.
The whole Aristotelian model of the world rested on this difference. We had to wait until the
scientific revolution to learn that space was isotropic. But as we will see, as a concept to handle
data, the isotropy of the vector space, and of the underlying manifold, is incredibly useful. And
for our post-scientific-revolution intuition, it is not hard to imagine an isotropic manifold; it is
just the extension of how we naturally think about a plane.

5.2 Gram-Schmidt process

The Gram-Schmidt process consist of transforming a set J = {xi}, i = 1, · · · , n, of n linearly in-
dependent vectors, into another set K = {vi} of n orthogonal vectors spanning the same subspace
as J. And by a trivial extension, into the set E = {êi} of n orthonormal vectors spanning the same
subspace as J. After reading the previous section, the process should be easy to grasp. It consists
of the following:

1. Define v1 as equal to x1:
v1 ≡ x1 (5.36)

ê1 is the unit norm vector in the direction of v1:

ê1 =
v1

‖v1‖
(5.37)

2. Define v2 as:

v2 = x2 − Projv1(x2) = x2 −

(
v1 · x2

v1 · v1

)
v1 (5.38)

As we saw in (5.33), v2 is orthogonal to v1 (and therefore to x1), and v1 and v2 span the
same subspace as x1 and x2. The unit norm vector in the direction of v2 is:

ê2 =
v2

‖v2‖
(5.39)
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3. Define v3 as:

v3 = x3 − Projv1(x3) − Projv2(x3) = x3 −

(
v1 · x3

v1 · v1

)
v1 −

(
v2 · x3

v2 · v2

)
v2 (5.40)

v3 is orthogonal to v1 and v2, and v1, v2 and v3 span the same subspace as x1, x2 and x3.
The unit norm vector in the direction of v3 is:

ê3 =
v3

‖v3‖
(5.41)

4. In general, assuming that this process has been done for i = 1, · · · , j − 1, define v j as:

v j = x j −

j−1∑
i=1

Projvi(x j) = x j −

j−1∑
i=1

(
vi · x j

vi · vi

)
vi (5.42)

v j is orthogonal to vi, for i = 1, · · · , j − 1. The set {vi}, with i = 1, · · · , j, span the same
subspace as {xi}, i = 1, · · · , j. The unit norm vector in the direction of v j is:

ê j =
v j

‖v j‖
(5.43)

HW 5.12: a) Prove that v3, as defined in (5.40), is orthogonal to v1and v2. b) Prove that v1, v2

and v3 span the same subspace as x1, x2 and x3.

HW 5.13: a) Prove that v j, as defined in (5.42), is orthogonal to vi, for i = 1, · · · , j−1. b) Prove
that the set {vi}, with i = 1, · · · , j, span the same subspace as {xi}.

HW 5.14: In R2 suppose that you have the basis {x1, x2} given by x1 = ê1 + ê2, x2 = ê1, where
ê1 and ê2 are orthonormal. a) Draw x1 and x2 in a plane with the horizontal axis pointing in the
direction of ê1 and the vertical axis pointing in the direction of ê2. b) Define v1 = x1 (see (5.36))
and compute v2 as in (5.38). Verify that v2 is orthogonal to v1. c) Draw v1 and v2 in plane with
the horizontal axis pointing in the direction of ê1 and the vertical axis pointing in the direction of
ê2. d) Normalize v1 and v2 to obtain ê1 and ê2. e) Assuming that the column vector representation
of ê1 = (1, 0)T and ê2 = (0, 1)T, give the column vector representation of v1 and v2 and of ê1 and
ê2.

HW 5.15: Do the same in R3. Assume that you have the base {x1, x2, x3} given by x1 =

ê1 + ê2 + ê3, x2 = ê1, and x3 = ê2, where ê1, ê2 and ê3 are orthonormal. Assume first v1 = x1. Do
the same assuming v1 = x2. Explain why you obtain two different bases. Prove that these two
different basis span the same vector space.

The Gram-Schmidt process shows the validity of the following theorems:
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Theorem 5.1 Every nonzero linear subspace of a dot product space V has an orthogonal basis.

Theorem 5.2 For every orthogonal collection of vectors vi, i = 1, · · · , j, spanning a subspace
W of the dot product state V, every vector w ∈ W has a (unique) expansion in terms of vi as:

w =

j∑
i=1

(
w · vi

vi · vi

)
vi (5.44)

If the collection of vectors êi, i = 1, · · · , j is orthonormal, the denominator of (5.44) is 1, so:

w =

j∑
i=1

(
w · êi

)
êi (5.45)

5.3 Orthogonal complements

Orthogonal complement: Given a subspace W of a scalar product space V , the set of all vectors
orthogonal to W is the orthogonal complement, W⊥ of W:

W⊥ = {u ∈ V, such that u · w = 0 for all w ∈ W} (5.46)

HW 5.16: Given the subspace spanned by (2, 5)T, find the orthogonal complement in R2.

HW 5.17: Given the subspace spanned by (−1, 1,−1)T, find the orthogonal complement in R3.

Theorem 5.3 Given a vector v in a scalar product space V, and a subspace W of V, there is a
unique way to express v as a sum

v = w + u (5.47)

where w ∈ W and u ∈ WT.

HW 5.18: Prove the theorem.

Theorem 5.4 If W is a subspace of a scalar product space V of dimension n, and WT is its
orthogonal complement, then

dim WT = n − dim W (5.48)

HW 5.19: Prove the theorem.

Theorem 5.5 If xi, i = 1, · · · , n, is a basis of a scalar product space V, and xi, i = 1, · · · ,m, with
m < n, is a basis of a subspace W, then, the Gram-Schmidt orthogonalization process starting
with v1 = x1 generates an orthogonal basis of W given by vi, i = 1, · · · ,m, and an orthogonal
basis of WT given by vi, i = m + 1, · · · , n.

HW 5.20: Prove the theorem.
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6 Manifold and vector space description of mathematical ob-
jects

As we have mentioned many times, once we choose an (arbitrary) origin in the manifold, there
is a one-to-one relationship between vectors in the vector space and points in the manifold. But
we have mostly been working with vectors. In this section we dig deeper into this relationship.

6.1 Coordinate systems and grids on the manifold

For simplicity of visualization, let us consider an Euclidean plane, and the associated vector
space V = R2. Having chosen a point O in the plane as the origin, to every point G in the
manifold corresponds a vector g ∈ V .

Consider two linearly independent vectors, x1 and x2, that form a basis of V . Theorem 4.1 tells
us that every vector g ∈ V can be written as a linear combination of the xis in a unique way:

g = x1x1 + x2x2 (6.1)

Coordinate system: (x1, x2) are the coordinates of the point G of the manifold in the coordinate
system determined by the origin O and the basis vectors x1 and x2.

We write the coordinates as an ordered pair of numbers in a row (in n dimensions it will be a row
of n ordered numbers).

Let us use for this example the column representation of vectors:

x1 =

(
2
1

)
, x2 =

(
1
2

)
, g =

(
4
3

)
, (6.2)

Explicitly, g has components 3 and 4 in the orthogonal basis {(1, 0)T, (0, 1)T}. This means that in
the coordinate system determined in the manifold by these orthogonal vectors, the coordinates
of the point corresponding to the vector (4, 3)T are (4, 3). What are the coordinates of the same
point in the coordinate system determined by {x1, x2}?

We have the following vectorial equation:

x1

(
2
1

)
+ x2

(
1
2

)
=

(
2x1 + x2

x1 + 2x2

)
=

(
4
3

)
(6.3)

This equation “lives” in the vector space V . Remember that you can always think of the vector
space as the set of all possible displacements. Taking the scalar product of vectorial equation
(6.3), first with (1, 0)T and then with (0, 1)T, we get two equivalent equations determining the
coordinates x1 and x2 in the coordinate system determined by {x1, x2}:

2x1 + x2 = 4 (6.4)
x1 + 2x2 = 3 (6.5)
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Equations (6.4-6.5) “live” in the manifold. The solution is x1 = 5/3, x2 = 2/3. The graphical
representation is given in Fig. 12.
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Figure 12: The same point in the manifold has different coordinates in coordinate systems deter-
mined by different bases. Note the importance of thinking about the manifold and its points as
independent from the “names” we assign to these points.

One can visualize the coordinate systems as a grid in the manifold. Consider the affine subspaces
of V given by

v(n, λ) = n x2 + λ x1, lines of the grid parallel to x1 (6.6)
w(m, β) = m x1 + β x2, lines of the grid parallel to x2 (6.7)

n and m can be any integer (0,±1,±2, · · · ). For each value of n, λ runs from −∞ to ∞ for a line
of the grid parallel to x1. Similarly, for each value of m, β runs from −∞ to ∞ for a line of the
grid parallel to x2.

Grid: the points in the manifold corresponding to the affine subspaces (6.6) and (6.7) form the
grid on the manifold associated to the coordinate system determined by the basis {x1, x2}.

In Fig 13 we can appreciate, in red, the grid on the plane corresponding to the basis {x1, x2} given
in equation (6.2), and in blue, the grid corresponding to the orthogonal basis {(1, 0)T, (0, 1)T}.

HW 6.1: In Fig 13, what are the coordinates in the coordinate system determined by {x1, x2}, of
the points whose coordinates in the coordinate system determined by {(1, 0)T, (0, 1)T} are: (3, 3),
(−1, 4), and (−2,−4)?
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Figure 13: Coordinate systems in the manifold can be visualized as grids. The blue grid is
generated by the orthogonal vectors ê1 = (1, 0)T and ê2 = (0, 1)T. The red grid is generated by
the non-orthogonal vectors x1 = 2ê1 + ê2 = (2, 1)T and x2 = ê1 + 2ê2 = (1, 2)T.

HW 6.2: In Fig 13, what are the coordinates in the coordinate system determined by {(1, 0)T, (0, 1)T},
of the points whose coordinates in the coordinate system determined by {x1, x2} are: (2,−1),
(−2, 2), and (−1,−2)?

Earlier we insisted in thinking about the manifold, and the corresponding vector space, as objects
to which one should concede ontological primacy over the number representation. Now we are
beginning to see the tip of the iceberg of the advantages of assigning such ontological primacy.
A problem may be difficult in one coordinate system and simple in another. The manifold idea,
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and the freedom to choose the coordinate system we like, gives us the freedom to switch from
one description to another while intuitively recognizing that it is still the same problem. This
freedom will become far more important in part two, when we analyze linear mappings.

6.2 Equivalent descriptions of lines and surfaces

Equations like (6.6) or (6.7) are examples of vectorial representations of lines. The vectorial
description of lines as the points in the manifold associated to the corresponding affine subspace
extends to any dimension. One just has to select any point A in the line, with the corresponding
vector a, and a vector d pointing in the direction of the line. So the whole line is the collection
of points corresponding to the vectors r(λ):

r(λ) = a + λd, −∞ ≤ λ ≤ ∞ (6.8)

Note that if a1 and a2, both belong to the line8, r(λ) = a1 + λd and r(λ) = a2 + λd represent the
same line. It is just that a given value of λ corresponds to different points in the line in the two
descriptions. For example, λ = 0 corresponds in the representation r(λ) = a1 + λd, to r(0) = a1,
and in the representation r(λ) = a2 + λd, to r(0) = a2.

Similarly, if d points in the direction of the line, any other vector in the span of d, like f = γ d,
also points in the direction of the line. Therefore if r(λ) = a + λd is a representation of the line,
r(λ) = a + (λ/γ) γd = a + δ f, with δ = λ/γ is also a representation of the same line.

If {êi}, i = 1, · · · , n, is an orthonormal basis of V , the vectors a and d in (6.8) can be expanded as
a =

∑n
i=1 ai êi and d =

∑n
i=1 di êi. A generic vector x ∈ V can also be expanded as x =

∑n
i=1 xi êi.

With the vectors expanded in this base, equation (6.8) can be written as

x =

n∑
i=1

xiêi = a + λd =

n∑
i=1

aiêi + λ

n∑
i=1

diêi =

n∑
i=1

(ai + λdi) êi (6.9)

Taking the scalar product of (6.9) with ê j, for j = 1, · · · , n, we obtain the n equations

x j = a j + λd j, j = 1, · · · , n (6.10)

This is a parametric description of a line. While equation (6.9) is an equation in the vector space
V , it is convenient to view (6.10) as an equation in the manifold, corresponding to the parametric
coordinates of the line in the reference frame determined by the basis {êi}.

From (6.10), λ = (x j−a j)/d j, therefore, yet another form of equations determining the same line
is

(x1 − a1)/d1 = (x2 − a2)/d2 = · · · = (xn − an)/dn (6.11)
8The points in the manifold A1 and A2 belong to the line, not the vectors a1 and a2. However, we have already

mentioned at the end of section 4.2 that, for purposes of brevity, we will sometimes talk about “point ai” instead of
the more correct “point Ai with associated vector ai”.
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(6.11) is sometimes referred to as the Cartesian equation of the line. One can express all the
Cartesian coordinates in terms of one of them, say x1: from (6.10), λ = (x j − a j)/d j, therefore,
yet another form of equations determining the same line is

x j = a j +
d j

d1
(x1 − a1), j = 1, · · · , n (6.12)

Finally, in the particular case of V = R2, given an equation of the line like (6.8), there is a one-
dimensional subspace of V orthogonal to the line. Any vector n on the orthogonal subspace must
be orthogonal to d, d · n = 0. Therefore the scalar product of any vector r on the line and n
should give the same result:

r · n = a · n + λd · n = a · n (6.13)

(6.13) is yet another description of the line in R2. The line is the set of points r that have the
same scalar product with a vector orthogonal to the line.

HW 6.3: Make a graph to visualize that any point in the line should have the same projection
over a vector n orthogonal to the line. In particular, if the line passes through the origin, r ·n = 0.

Equation (6.8) is the vector equation for a line. Similarly, the two-dimensional affine subspace

r(λ1, λ2) = a + λ1 d1 + λ2 d2, −∞ ≤ λ1, λ2 ≤ ∞ (6.14)

represents a two-dimensional linear surface in the manifold corresponding to the vector space V ,
where a is any point in the surface and d1 and d2 are two linearly independent vectors parallel to
the surface.

Generalizing, the affine subspace

r(λ1, · · · , λn) = a +

n∑
i=1

λi di, −∞ ≤ λi ≤ ∞, i = 1, · · · , n (6.15)

represents an n-dimensional linear hypersurface, where a is any point in the n-surface and {di}

are n linearly independent vectors parallel to the linear n-surface.

It should be clear that if in (6.15) we replace the linearly independent vectors {di} by any other n
linearly independent vectors {fi

} spanning the same subspace as {di}, we are still describing the
same n-dimensional linear surface.

HW 6.4: Find expressions equivalent to (6.15) in a form similar to and (6.10) and (6.12).

Consider an (n−1)-dimensional subspace W, of an n-dimensional vector space V , spanned by the
linearly independent vectors xi, i = 1, · · · , n − 1. Through the Gram-Schmidt process described
in section 5.2, one can construct an orthonormal basis of V , {êi}, i = 1, · · · , n, such that the first
n − 1 vectors constitute an orthonormal basis of W. Therefore any vector in W can be written as

r(λ1, · · · , λn−1) =

n−1∑
i=1

λi êi (6.16)
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And any (n − 1)-dimensional affine subspace of V “parallel to W” can be written as

r(λ1, · · · , λn−1) = a +

n−1∑
i=1

λi êi (6.17)

The points in the manifold corresponding to this affine subspace form an (n − 1)-dimensional
hypersurface.

Another way of characterizing this (n − 1)-dimensional hypersurface is obtained by taking the
scalar product of (6.16) with ên:

r · ên = a · ên (6.18)

In words, an (n − 1)-dimensional hypersurface in an n-dimensional manifold corresponds to the
points that have the same projection over a vector ên orthogonal to the hypersurface. This is a
generalization of (6.13).

For example, equation (2.12) corresponds to a line in the two-dimensional manifold (p1, p2)
orthogonal to the vector (4,−1)T and such that the scalar product of any vector (p1, p2)T in the
line with (4,−1)T is equal to 20. Since the vector (1, 4)T is orthogonal to (4,−1)T, and, say, the
vector (5, 0)T has a scalar product with (4,−1)T equal to 20, a vectorial expression equivalent to
(2.12) is, for example, (

p1

p2

)
=

(
5
0

)
+ λ

(
1
4

)
(6.19)

HW 6.5: Find a vectorial expression equivalent to (2.13)

HW 6.6: Each one of the equations (2.18-2.21) correspond to a 3-hypersurface in the 4-
dimensional manifold (q1, q2, p1, p2). Find a vectorial expressions equivalent to each one of
these equations.

7 Projections and minimization of distance

7.1 Point in a line closest to a point Q external to it

Line embedded in R2

The problem we want to solve is represented in Fig. 14. There is a one-dimensional subspace W
of V = R2 spanned by a vector d. The vectors w ∈ W can be written in the form

w = λd (7.1)

We want to find the point in W closest to a point Q corresponding to a vector q. This is the same
as minimizing the magnitude of the vector r such that:

w + r = λd + r = q (7.2)
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Figure 14: The closest point to Q in W corresponds to the orthogonal projection of q in the
direction of d.

One could write the expression for ‖r‖, or ‖r‖2, and use calculus to minimize that magnitude.
However, our spatial intuition, and the machinery we have built to exploit it, provides the answer
almost effortlessly. A simple inspection at the Fig. 14 will convince you that the closest point
corresponds to an r orthogonal to the line, or, what is the same, to d:

rmin · d = (q − λd) · d = 0 (7.3)

this equation determines the parameter λ corresponding to the point in W that minimizes the
distance with Q:

λ =
d · q
d · d

(7.4)

Therefore, the closest point to Q in W:

w =

(
d · q
d · d

)
d (7.5)

In equation (5.30) we defined an expression like (7.5) as the orthogonal projection of q in the
direction of d. The solution to the problem of finding the point in the subspace W closest to a
point Q is, therefore, the orthogonal projection of q in the direction of any vector d spanning W.
rmin spans the orthogonal complement W⊥ of W (see equation (5.46)):

rmin = q −
(
d · q
d · d

)
d (7.6)

and the actual minimal distance from Q to W is given by Pythagoras’ theorem. Therefore the
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square of the length of a side of the triangle can be written in terms of the square of the hy-
potenuse and the square of the length of the other side:

min dist2 (Q,W) = rmin · rmin

=

[
q −

(
d · q
d · d

)
d
]
·

[
q −

(
d · q
d · d

)
d
]

= q · q −
(d · q)2

d · d
(7.7)

HW 7.1: Prove the last equality in (7.7).

It is important to note how both the closest point in W (7.5) and the actual minimal distance (7.7)
scale when the vectors q and d are scaled to βq and γd respectively:

when q,d → βq, γd

w →

(
γd · βq
γd · γd

)
γd = βw (7.8)

min dist (Q,W) →
(
βq · βq −

(γd · βq)2

γd · γd

)1/2

= βmin dist (Q,W) (7.9)

As expected, they scale linearly with the scaling of the vector q, and do not depend on the scaling
of the vector d. Since d is an arbitrarily chosen base of W, the solution should not depend on our
arbitrary selection of a larger of a shorter vector.

Suppose now that the line corresponds to points in the manifold associated to an affine subspace
W ′ of V . Instead of (7.1) we have

w′ = a + λd (7.10)

for the vectors corresponding to the points in the line (see Fig. 15). The vector r is defined by
the analog of equation (7.2)

w′ + r = a + λd + r = q (7.11)

or
r = (q − a) − λd (7.12)

It is still the case, as in (7.3), that the closest point to Q is the one that makes r orthogonal to d:

rmin · d =
[
(q − a) − λd

]
· d = 0 (7.13)

determining λ as

λ =
d · (q − a)

d · d
(7.14)

analogous to (7.4). This corresponds to the closest point to Q in W ′:

w′ = a +

(
d · (q − a)

d · d

)
d (7.15)
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Figure 15: The closest point to Q in W corresponds to the orthogonal projection of q in the
direction of d.

analogous to (7.5).

Pause and look at Fig. 15 for a while: q − a would be the vector corresponding to Q in a
coordinate system with origin at a, and λd = w′ − a would be the vector corresponding to the
closest point in the same coordinate system. We see, then, that solutions (7.14) and (7.15) are
identical to (7.4) and (7.5) but in a coordinate system shifted by a.

This is another instance of the homogeneity of the underlying manifold. Solutions remain the
same after translations because in the problems tackled so far there is nothing special about any
point. Again, this is trivial once we give ontological primacy to the manifold and vector space
rather than the numbers, with the corresponding geometric intuition that comes with it.

HW 7.2: write equations analogous to (7.6) and (7.7) for the case in which the line corresponds
to an affine subspace W ′ of V .

Line embedded in Rn

By now, your geometric intuition should allow you to “see” that a one-dimensional line, and a
point Q external to that line, determine a unique plane independently of the dimension of the
space in which they are embedded9. The machinery we have built to exploit our intuition, for the
most part, does not make explicit reference to the dimension of that space. Therefore, it should
not be too surprising that equations (7.4), (7.5), (7.6) and (7.7), or (7.14-7.15), are the solution

9If the line passes through the origin, any vector in that line, and the vector q corresponding to the external point
Q, form a basis of that plane. For the case in which the line does not passes through the origin, as we have seen, it
is just the translation of this.
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independently of the dimension of the embedding space!

7.2 Point in a plane closest to a point Q external to it

Plane embedded in R3

Consider a two-dimensional subspace W of V = R3 spanned by the not necessarily orthogonal
basis {x1, x2}. We want to find the point in W closest to a point Q corresponding to a vector q.

v3

v2

v1x1

x2
W

min r

Q

0.0
0.5

1.0

v1

0.0
0.5

1.0
1.5

2.0v2

0.0

0.5

1.0

v3

Figure 16: The closest point to Q in W corresponds to the orthogonal projection of q in W.

Since any point in W can be written as w = λ1x1 + λ2x2, the closest point will correspond to the
values of λ1 and λ2 such that

min
λ1,λ2

∥∥∥∥q −
(
λ1x1 + λ2x2

) ∥∥∥∥ (7.16)

Since the square of a quantity is an always increasing function of that quantity, the minimization
(7.16) is equivalent to the minimization of its square:

min
λ1,λ2

[
q −

(
λ1x1 + λ2x2

)]
·
[
q −

(
λ1x1 + λ2x2

)]
(7.17)

This is a calculus problem of minimization in two variables that can be fairly tedious to solve.
But, as in the line problem, simple observation of Fig. 16, in which W corresponds to the
horizontal plane, tells us that the solution is the orthogonal projection of q into W.

The problem is then how to compute this projection. The orthogonal projection into the non-
orthogonal basis {x1, x2} won’t work: it is clear from Fig. 16 that the vector sum of the projection
of q into x1 and the projection of q into x2 will not give the right answer, because the projection
into x2 has a component in the direction of x1.

We need an orthogonal basis, like {v1, v2} in Fig. 16, where the projection of q into any of these
vectors has zero component into the other. The solution is then the following three step process:
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1. From the non-orthogonal basis {x1, x2} of W, find the orthogonal basis {v1, v2}. This can
be done with the Gram-Smidth process.

2. Once {v1, v2} has been found, simply project q into that basis:

w =

2∑
i=1

(
vi · q
vi · vi

)
vi (7.18)

w is the vector corresponding to the point in W closest to Q.

3. The minimum distance is the magnitude of the vector rmin, such that w + rmin = q. It’s
square is:

min dist2 (Q,W) = ‖rmin‖
2 =

∥∥∥∥∥∥q −
2∑

i=1

(
vi · q
vi · vi

)
vi

∥∥∥∥∥∥2

= q · q −
2∑

i=1

(
vi · q

)2

vi · vi (7.19)

rmin ∈ W⊥ is a side of the right triangle whose other side is w of (7.18) and has q as the
hypothenuse. (7.19) is Pythagoras’ theorem applied to this triangle.

HW 7.3: Finding the closest distance between two arbitrary lines in R3, say r1 = a1 + λ1d1 and
r2 = a2 + λ2d2, is a fairly complicated problem of calculus. a) Choose numerical vectors for ai

and di, i = 1, 2, and do a 3-D graph of the two lines, and a vector that starts at a chosen point in
line 1 and finishes at another chosen point in line 2. Appreciate in this graph that the problem is
far from trivial. b) Solve the problem by mapping it into the problem of finding the closest point
to a plane and applying the 3-steps solution. c) Pause and ponder about what you have just done:
you mapped a complicated problem into a completely different problem. You knew the solution
of this second problem, therefore you solved the first problem.

Plane embedded in Rn

If the two-dimensional surface is embedded in Rn, one would think that the problem gets far
more complicated. But this is not the case with the machinery we have built. In fact, the 3-step
process described above gives the solution in any dimension.

HW 7.4: Explain why.

7.3 Point in an r-dimensional subspace W closest to a point Q ∈ V = Rn,
r < n

The r-dimensional subspace is spanned by a linearly independent, not necessarily orthogonal
basis {xi}, i = 1, · · · , r. Any point in W can be written as w =

∑r
i=1 λixi; the closest point will

correspond to the values of λi such that

min
λ1,··· ,λr

∥∥∥∥∥∥q −
r∑

i=1

λixi

∥∥∥∥∥∥ (7.20)
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The three-step process that worked for the projection of Q into the plane spanned by {xi}, i = 1, 2,
also works, with a trivial extension, for the projection into an r dimensional subspace spanned
by {xi}, i = 1, · · · , r:

1. From the non-orthogonal basis {x1, · · · , xr} of W, find the orthogonal basis {v1, · · · , vr}.
This can be done with the Gram-Smidth process.

2. Once {v1, · · · , vr} has been found, simply project q into that basis:

w =

r∑
i=1

(
vi · q
vi · vi

)
vi (7.21)

w is the vector corresponding to the point in W closest to Q.

3. The minimum distance is the magnitude of the vector rmin, such that w + rmin = q. The
square of the minimum distance is:

min dist2 (Q,W) = ‖rmin‖
2 =

∥∥∥∥∥∥q −
r∑

i=1

(
vi · q
vi · vi

)
vi

∥∥∥∥∥∥2

= q · q −
r∑

i=1

(
vi · q

)2

vi · vi (7.22)

rmin ∈ W⊥ is a side of the right triangle whose other side is w of (7.21) and has q as the
hypothenuse. (7.22) is Pythagoras’ theorem applied to this triangle.

Pause and ponder about what we have just achieved: almost effortlessly we have found the
closest point in a subspace or r dimensions of a point that “lives” in n dimensions. n could be
1, 000, 000, and r could be, for example, 299, 89110, and the solution simply works. And we can
confidently talk about Pythagoras’ theorem, projections, etc. This is the power of a formalism
that on the one hand exploits deeply ingrained spatial intuitions, and on the other it is sufficiently
abstract so that these generalizations are possible.

7.4 Regressions and geometry

Least square regressions and its extensions rank among the most thoroughly used econometric
techniques. Let us consider the simplest case of linear regression with one independent variable,
x, and one dependent variable y. We typically have n pairs of empirical data (xi, yi), as in the
table below.

10Just for fun, I chose the highest prime number smaller than 300.000.
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X Y
0.00 3.54
0.65 5.13
0.44 2.58
0.94 2.38
0.53 3.42
0.17 -1.23
0.09 -0.61
0.45 -2.07
0.95 3.34
0.67 -0.45

The objective is to find the “best” line y = λ1 + λ2 x that fits the data, see figure 17. In this figure,

Figure 17: The blue dots are our data. The blue line is the “best” straight line for this data
(compare it, for example, with the orange line Z). “Best” means the line that minimizes the sum
of the squares of the “errors” (red bars).

every pair of data points in the table is represented as a blue dot. It is intuitively obvious that
the blue line is a better fit to the data than, for example, the orange line Z. But what do we mean
exactly by “better fit”?

We model the data with a straight line like y = λ1 + λ2x. The yi values of our data will be given
by the value of the straight line plus “errors”:

yi = λ1 + λ2xi + εi, i = 1, · · · , n (7.23)

The problem is to find λ1 and λ2 such that the “errors” εi are somehow minimized. In figure 17,
the errors of two points are marked with red bars. As can be seen, some errors are positive, and
others are negative.

A simple criterion for “best” fit is to choose the parameters λ1 and λ2 in such a way that the sum
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of the squares of the “errors” is minimized, so that the sign of the errors is irrelevant:

min
λ1,λ2

S = min
λ1,λ2

n∑
i=1

ε2
i = min

λ1,λ2

n∑
i=1

[
yi − (λ1 + λ2 xi)

]2 (7.24)

It is not the purpose of this section to enter into the statistical fundamentals of the method; I
just want to point out that there is a nice geometric interpretation of this problem that makes the
solution much easier to visualize.

Consider a vector space V of dimension n, equal to the number of pairs of empirical data, and an
orthonormal basis {êi} in V . Consider the following four vectors:

x =

n∑
i=1

xi êi (7.25)

1 =

n∑
i=1

1 êi (7.26)

w = λ1 1 + λ2 x =

n∑
i=1

(λ1 + λ2xi) êi (7.27)

y =

n∑
i=1

yi êi (7.28)

where the values of xi and yi are given by our data. For the particular example of Fig. 17, they
are given in the table above.

The of sum of the squares of the errors (7.24) is nothing but the square of the modulus of the
“error vector” ε ≡ y − w:

ε · ε = (y − w) · (y − w)
= (y − λ1 1 − λ2 x) · (y − λ1 1 − λ2 x) (7.29)

=

 n∑
i=1

(yi − λ1 − λ2xi) êi

 ·
 n∑

j=1

(y j − λ1 − λ2x j) ê j


=

n∑
i, j=1

(
yi − λ1 − λ2xi

) (
y j − λ1 − λ2x j

)
êi · ê j

=

n∑
i=1

(
yi − λ1 − λ2xi

)2

= S

therefore, the problem of minimizing (7.24) is equivalent to minimizing (7.29):

min
λ1,λ2

S = min
λ1,λ2

n∑
i=1

(
yi − λ1 − λ2xi

)2
= min

λ1,λ2
(y − λ1 1 − λ2 x) · (y − λ1 1 − λ2 x) (7.30)
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but the right hand side of (7.30) is equivalent to the problem (7.17) with

q ↔ y (7.31)
x1 ↔ 1 (7.32)
x2 ↔ x (7.33)

We conclude that if one has n pairs of data points (xi, yi), the least square linear regression is
equivalent to finding in Rn the closest point to the plane spanned by the vectors x1 = 1 (7.26),
and x2 = x (7.25). Equation (7.18) gives the vector w in this plane closest to y.

It may seem surprising at first sight, that the seemingly two dimensional problem illustrated in
Fig. 17 has a much deeper and fruitful interpretation in the space of n dimensions where these
vectors “live”, where n is the number of data points, in our example n = 10. This is just one
example of how one can map a problem into another to find previously unimagined relationships
and solutions.

The calculation of the vector w is a big step towards the solution of our regression problem.
However, (7.18) expresses w in the basis {vi}, but we want λ1 and λ2 of equation (7.23). Accord-
ing to equation (7.27), these coefficients are the components of w in the basis {1, x}, not in the
{vi} basis! How do we find them?

One could express the basis vectors I and x in terms of the v1 and v2 by projecting them in this
orthogonal basis. Once this is done, one could “invert” these and express v1 and v2 in terms of I
and x. Finally, inserting these expressions in equation (7.18) and rearranging, one would obtain
the coefficients λ1 and λ2 that we are looking for.

However this procedure is tedious, specially when there are many explanatory (independent)
variables. It also obscures the essential fact described above that a regression problem is sim-
ply a projection problem. The ultimate reason it is tedious is that working with nonorthogonal
bases is a mess in general. In contrast, orthogonal basis are neat, because the projection on one
vector has zero components in the projection on another vectors. This enormously simplifies our
calculations.

Unfortunately, real world problems almost always present us with nonorthogonal vectors. This is
one reason why it would be great if we could figure out a formalism to work with nonorthogonal
basis as comfortably as we work with orthogonal ones. It turns out that such formalism exists!

Moreover, as we will see, other regressions parameters such as the correlation coefficients, r2

goodness tests, etc., also have neat geometrical interpretations that help us not to get lost when the
complexity of the problem increases. We leave the mentioned formalism, these interpretations,
and many others, for the next works in this series.
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8 Conclusions

We have presented the fundamental building blocks of linear algebra: linear manifolds, vector
spaces, scalar products, and many applications. These concepts lie at the basis of almost all the
techniques used in mathematical economics, and the mathematics used in data analysis. How-
ever, the extremely important topics of linear mappings have not yet been covered. These will be
the subject of the next two paper in this series. As we will see, with the help of the structures and
intuitions presented here, linear mappings, and their many entangled properties, will become far
more transparent.
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