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Multi-unit multiple bid auctions in balancing markets: an agent-based

Q-learning approach

Johannes Viehmanna,∗, Stefan Lorenczikb, Raimund Malischekb

aInstitute of Energy Economics at the University of Cologne; Vogelsanger Strasse 321, 50827 Cologne, Germany
bInternational Energy Agency; 31-35 rue de la Fédération, 75739 Paris Cedex 15, France

Abstract

There is an ongoing debate on the appropriate auction design for competitive electricity balancing mar-

kets. Uniform (UPA) and discriminatory price auctions (DPA), the prevalent designs in use today, are

assumed to have di�erent properties with regard to prices and e�ciencies. These properties cannot be

thoroughly described using analytical methods due to the complex strategy space in repeated multi-unit

multiple bid auctions. Therefore, using an agent-based Q-learning model, we simulate the strategic bidding

behaviour in these auctions under a variety of market conditions. We �nd that UPAs lead to higher prices

in all analysed market settings. This is mainly due to the fact that players engage in bid shading more

aggressively. Moreover, small players in UPAs learn to free ride on the price setting of large players and

earn higher pro�ts per unit of capacity owned, while they are disadvantaged in DPAs. UPAs also generally

feature higher e�ciencies, but there are exceptions to this observation. If demand is varying and players

are provided with additional information about scarcity in the market, market prices increase only in case

asymmetric players are present.

Keywords: Agent-based computational economics; Auction design; Electricity markets

JEL classi�cation: C63; D43; D44; L94

1. Introduction and motivation

The relative performance of di�erent auction designs both in terms of e�ciency and prices has been

a controversial issue for many years. This is particularly true when it comes to more complex settings

such as repeated Multi-Unit Multiple Bid (MUMB) auctions. In multi-unit auctions the auctioneer buys

several units of the same good and bidders are allowed to place several bids.1 In contrast to single-bid

auctions, classical closed-form solutions are not available for multiple bid auctions as bidders might engage

∗Corresponding author, phone: +49 (0)221.277 29-100
Email address: johannes.viehmann@gmail.com (Johannes Viehmann)

1This process is also referred to as competitive bidding, in which bidders compete for the right to sell. Even though not
covered in our analysis, our results are valid also for the typical auction case in which bidders compete for the right to buy.



in bid shading, i.e., they might increase bid prices in order to maximise expected pro�ts. Another layer

of complexity is added if auctions are hold repeatedly, information about auction results vary, secondary

markets exist or players are asymmetric, either in terms of their size or costs. The most common auction

designs are Uniform Price Auctions (UPAs) in which every successful bid receives the marginal clearing price

and Discriminatory Price Auctions (DPAs)2 in which every successful bid is paid its bidding price. Vickrey

auctions (see Vickrey, 1961) on the other hand are less common.

The above mentioned controversy about performance of alternative auction designs is mirrored in the

development of the electricity industry ever since deregulation started and markets began to evolve. Nowa-

days, most Day-Ahead (DA) electricity markets in Europe are operated by means of transparent, repeated

UPAs. However, the picture looks more diverse when it comes to procurement of balancing capacity which

is also referred to as Ancillary Services (AS).3 The European Network of Transmission System Operators

for Electricity (ENTSO-E) provides a comprehensive survey on how AS are currently procured and how bal-

ancing markets are designed across European countries (ENTSO-E, 2017). The procurement schemes range

from several mandatory designs to bilateral arrangements between Transmission System Operators (TSOs)

and market players to organized markets and hybrid schemes. The United Kingdom and most central Eu-

ropean countries such as Belgium, Germany, Austria, Switzerland, the Czech Republic or Slovakia currently

apply repeated DPAs to procure most of their balancing capacities (ENTSO-E, 2017). Portugal, Spain,

Norway, Greece and Romania on the other hand are preferably using UPAs. Some countries such as France

and the Netherlands use both auction types for di�erent types of balancing capacities. However, even if

the same auction type is applied, signi�cant di�erences exist with regard to the detailed auction rules and

the publication of auction results, not only among di�erent countries but also within countries for di�erent

types of balancing capacity.

Our motivation is threefold. First, we aim to contribute to the current discussion on European harmon-

isation of procurement rules by showing how di�erent levels of market concentration a�ect prices in UPAs

and DPAs. This is particularly interesting as policy makers in Europe seem to be undecided which scheme

to prefer and as the costs of procurement of balancing capacities are eventually paid by the consumers of

electricity. In an earlier version of the Network Code on Electricity Balancing (NCEB), ENTSO-E (2014)

stated that the procurement of balancing energy shall be based on marginal pricing (UPAs). However,

according to the latest version of the guideline (ENTSO-E, 2017b), each TSO is free to de�ne its rules for

procurement of balancing capacity. On the other hand, ENTSO-E (2017a) published a consultation report

2Also referred to as Pay-as-Bid Auctions (PABAs).
3In the draft network code on electricity balancing, ENTSO-E (2013) de�nes balancing as "all actions and processes, on

all time-scales, through which Transmission System Operators ensure, in a continuous way, to maintain the system frequency
within a prede�ned stability range [...]". Any deviations from the planned schedule are de�ned as imbalances and will be
balanced by the Transmission System Operator (TSO). In order to do so, the TSO procures beforehand balancing reserves, also
referred to as balancing capacity, from market players (Balancing Service Providers (BSPs)). In case of real-time imbalances,
the TSO will then call BSPs for the activation of balancing energy.
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on the �FCR Cooperation�4 in which the partner TSOs propose a change from the current DPA to a UPA

settlement scheme in the future.

Second, we investigate how the auction types perform in term of e�ciency. In the context of our auction

game, total welfare is at its maximum if costs are minimized. Hence, we de�ne the 100% e�ciency benchmark

as an auction result in which only those bids that are associated to the lowest cost capacities have been

accepted. While regulators and TSOs in Europe focus mainly on consumer surplus which is equivalent to

lower consumer prices in markets with a non-elastic demand, social welfare doesn't seem to be the main

objective. However, we believe that the e�ciency of the competing auction schemes is an essential feature

that should be analysed thoroughly as well.

The third part of our motivation stems from a decision taken by the Bundesnetzagentur for Electricity,

Gas, Telecommunications, Post and Railway (BNetzA) in April 2011. With this decision, several auction-

ing rules for the procurement of balancing capacity, precisely, of Secondary Reserve (SR)5, were modi�ed

(BNetzA, 2011). Of particular interest was the decision to reduce information given to Balancing Service

Providers (BSPs) about auction results. Whilst, prior to the decision, accepted (infra-marginal) and non-

accepted (extra-marginal) bids have been published, the BNetzA decided that TSOs would only publish

accepted bids in the future (Figure 1). Even though the agency admitted that this step would reduce

transparency in the market, it stated that the expected bene�ts were likely to outweigh the negative e�ects.

Especially, the risk of strategic behaviour by pivotal players ought to be reduced. As the market was domi-

nated by a limited number of big players (see Heim and Götz, 2013), the agency believed that the knowledge

of prices and volumes of extra-marginal bids might have led to an increase of bid prices by pivotal players

(BNetzA, 2011). To the present day, extra-marginal bids are published for Minute Reserve (MR) auctions,

but not for SR and PR auctions in Germany.

In the paper at hand we develop an agent-based Q-learning model that allows for comparing UPAs and

DPAs in repeated MUMB auctions. The model enables us to investigate a wide range of market settings such

as a varying number of players, or player characteristics, such as symmetric or asymmetric players both in

terms of size or cost. In a dynamic setting, we vary the demand and control the amount of information that

is available to market players about past auction results. Thus, we can test whether information about the

supply-demand ratio increases strategic behaviour and consumer prices. Vickrey auctions are not considered

in our analysis as they are not found in electricity markets to our knowledge.

4The FCR cooperation is a cooperation between several European TSOs including the Austrian TSO APG, the Belgian
TSO ELIA, the Danish TSO EnergieNet, the Dutch TSO Tennet, the French TSO RTE, the German TSOs 50Hertz, Amprion,
Tennet and TransnetBW as well as the Swiss TSO SwissGrid. Currently, these TSOs hold a common weekly FCR (Frequency
Containment Reserve, also referred to as Primary Reserve (PR)-auction.

5Also referred to as automatic Frequency Restoration Reserve (aFRR).
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Figure 1: Schematic illustration of balancing capacity bids

First, our results indicate that marginal prices of UPAs turn out to be higher than average prices of DPAs,

a result which is valid for all settings. Second, and not surprisingly, we �nd that with a decreasing number of

players and increasing asymmetry between players in terms of size and increasing demand to supply ratios,

prices are increasing. With regard to e�ciency we observe that UPAs are generally more e�cient, but there

are some exceptions to this observation. Our analysis with respect to di�erent information regimes shows

that prices tend to increase with additional information about the supply/demand ratio only if the number

of players is limited and a large asymmetry in terms of size exists.

The remainder of this paper is structured as follows. Section 2 provides an overview of related literature,

section 3 introduces the applied agent-based model and the learning algorithm. Section 4 presents the results

of our analysis and section 5 concludes.

2. Literature

2.1. Discriminatory (DPAs) vs. uniform pricing auctions (UPAs)

There is a vast amount of literature comparing uniform and discriminatory price auctions. While most

analytical papers favour discriminatory pricing in terms of lower consumer prices, experimental and empirical

publications �nd a high degree of collusion in repeated DPAs resulting in possibly higher consumer prices

and lower overall e�ciency. Fabra et al. (2006) analytically look into how bidding behaviour is a�ected by

the auction format. They start their analysis with a model of two suppliers owning one unit of capacity each

of which has to be submitted to the market by one single o�er for the entire capacity. Player's capacities

and costs are known but asymmetric and demand is certain and inelastic. They �nd that for high demand,

DPA consumer prices are lower in comparison to UPA, while the e�ect on welfare is ambiguous and subject

to the model parameters.6 Expanding their model to a symmetric oligopoly, Fabra et al. (2006) show by a

6For low-demand, prices are competitive and dispatch is e�cient for both DPA and UPA.
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numerical example that for a given number of suppliers in the DPA, roughly twice as many suppliers are

required for the UPA in order to reduce consumer prices to the same level. Frederico and Rahman (2003)

analytically compare UPA and DPA with uncertain and elastic demand and perfect information about the

cost structure of the industry. In case of perfect competition, they �nd that a switch from UPA to DPA

leads to lower consumer prices, but also to a reduction in welfare. In case of perfect collusion (monopoly),

consumer prices and output are lower as well but the e�ect on welfare is ambiguous. Additionally, they

conclude that abuse of market power by the monopolist is harder under DPA. However, if demand is

certain, UPA and DPA yield identical outcomes.

On the contrary to most analytical papers, Kahn et al. (2001) strongly argue against a switch from UPA

to DPA. They believe that �rms will change their bidding behaviour immediately after the introduction of

DPA, trying to bid at or slightly below the marginal price. As a result, average DPA prices are equal to

UPA prices. However, �rms face higher costs in order to forecast the marginal price and overall e�ciency is

likely to decrease as some low-marginal cost bids might be rejected �because their bidders have overestimated

the market-clearing price� (Kahn et al., 2001). In the case of imperfect or oligopolistic markets, Kahn et al.

(2001) argue that smaller bidders are disadvantaged in DPAs as they have higher forecasting costs per unit

of production and are likely to bene�t less from exertion of market power by bigger players. Hence, market

entry of new players and long-term disappearance of market power becomes less likely. Finally, Kahn et al.

(2001) criticise the lower transparency in DPAs which makes it di�cult to detect collusive behaviour.

To our knowledge, a publication by Rassenti et al. (2003) is the most detailed experimental study

comparing UPA and DPA in complex electricity market environments. Strikingly, they �nd that �DPA in

a no market power environment is as anti-competitive as a UPA with structural induced market power�.

Rassenti et al. (2003) argue that in an environment with cyclic and revealed inelastic demand, also present

in PABAs in German balancing markets, �the DPA invites sellers to tacitly collude, coordinating their o�ers

without explicit communication at the highest previously observed price in a similar period�. Similar results

were obtained in an empirical study by Heim and Götz (2013) who �nd collusive behaviour in the DPA for

SR in Germany. Using data provided by BNetzA, Heim and Götz (2013) �rst show that a high degree of

market concentration and pivotal players exist. They believe that observed price increases can be traced

back to �repeated pretended bad guessing� of the clearing price. As a result, �rms can pro�t from increased

price levels in later periods of the repeated DPA. Finally, they stress that regulatory authorities are unable

to take legal action against abusive behaviour in DPAs as �rms can hide behind the �guess the clearing price

principle� (Heim and Götz, 2013).

2.2. Information regimes

Next to the market design, the question which information is available to market participants is of great

importance when evaluating the performance of di�erent auction designs, especially in case of repeated
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auctions. However, most publications choose one particular set of information without variation. To our

knowledge, there is little literature that sheds light on the e�ect of di�erent information regimes in repeated

MUMB auctions. Müsgens and Ockenfels (2011) present a qualitative assessment on information feedback

in repeated DPAs. The article is written in the context of European balancing power markets and gives

an overview of di�erent information regimes. While in some markets there was no feedback at all about

past auction results, others publish only the marginal clearing price, the volume weighted average price of

all accepted bids or both. The complete bid curve including non-accepted extra-marginal bids (see Figure

1) is published only for very few markets. Müsgens and Ockenfels (2011) argue that the publication of the

marginal bid price is important for the e�ciency of the market. However, they reject that the bene�t of

additionally publishing extra-marginal bids outweighs the risk of pivotal players increasing their bid prices.

Even though Bower and Bunn (2001) do not vary the information available to players, they explicitly set

up a case in which no information about the market outcome or other players' bids is made public. Merely

private information and success of own bids at previous auctions is known to players. In the England and

Wales electricity market with asymmetric �rms, they �nd signi�cantly higher prices for DPA when compared

to UPA as larger �rms with more bids can gather more information about past market outcomes due to

their sheer size. With UPAs however, all �rms with successful bids have the same information about the

marginal clearing price.

2.3. Agent-based models

Agent-based models have become increasingly popular in economic studies. The applications range from

microeconomic topics like the exploration of the supply function equilibrium in Kimbrough and Murphy

(2013) or the Cournot equilibrium in Waltman and Kaymak (2008) to more macro-based analysis as for

instance presented in Geanakoplos et al. (2012) on systemic risk in the eye of the housing bubble. Appli-

cations to energy markets are diverse, naming just exemplarily Bunn and Oliveira (2007) for an analysis

of technology diversi�cation or Naghibi-Sistani et al. (2006) for an analysis of bidding behaviour in market

based power systems.7

One reason for this increasing popularity is that agent-based models allow to analyse situations and

problems in which classical closed-form solutions are not available. Further, they allow to increase models

complexity and to take into consideration more realistic modelling assumptions and real life market features

that are usually excluded from economic analyses. They are also particularly suited in situations in which

there is the opportunity for learning due to repeated action. This is for instance the case in daily electricity

market auctions.

Agent-based models have also been used to explore the relative performance of UPAs and DPAs. These

auction formats are prevalent in electricity day-ahead and balancing market auctions and serve as motivation

7Weidlich and Veit (2008) provide an overview of the vast applications of agent-based modelling in energy markets.
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for our analysis. In MUMB UPAs and DPAs, closed-form solutions are no longer available and hence a

particular interesting �eld to study via agent-based models. A common mistake in analysing these auctions

is to directly transfer results from the corresponding single-unit auction to the multi-unit case. In general,

results do not transfer from single-unit to multi-unit auctions as shown for instance in an overview by Krishna

(2002) or the literature cited therein. Therefore, in the absence of closed-form solutions, agent-based models

provide a valuable option to analyse these auction types. Previous agent-based analysis of UPAs and DPAs

include the works of Hailu and Thoyer (2007), Bower and Bunn (2001), Bakirtzis and Tellidou (2006) as

well as Xiong et al. (2004). These analyses have painted an unclear picture of the relative performance of

the di�erent auctions. Whereas for instance Bower and Bunn (2001) �nd evidence that prices are higher

in DPAs due to the non-availability of market prices, Hailu and Thoyer (2007) argue that there is no clear

ordering of the auction formats and results are dependent on the population and the characteristics of supply

relative to demand. All studies have assumed a �xed information regime.

Our analysis adds to the existing stream of literature on three key aspects: First and most importantly,

we are to our knowledge the �rst to extend the Q-learning algorithm to a Multi-Unit Multiple Bid (MUMB)

set-up, other than Bakirtzis and Tellidou (2006) and Xiong et al. (2004) who use a multi-unit single bid

approach. Second, we incorporate demand uncertainty for each consecutive auction. And third, we analyse

the e�ect of di�erent information regimes, i.e., the information about market outcomes that is provided to the

players after each round of play. To our knowledge we are the �rst to incorporate the di�erent information

that can be provided to the players into the learning algorithm and to explore its e�ect systematically.

3. The model

We explore bidding strategies of players under di�erent auction and information regimes using an agent-

based model. In the model, players bid price-quantity pairs. In doing so, players take into account their

costs for providing the good as well as a player speci�c capacity constraint, i.e., the amount of the good

a player can supply. Players have two separate blocks of a �xed size, for which they can make separate

bids. We incorporate di�erent bid con�gurations for each player, ranging from rather �at supply curves

to more hockey stick shaped bids. The maximum bid for a block is restricted by an upper bound. The

introduction of a price cap is necessary in order to prevent prices to approach in�nity as demand is assumed

to be inelastic. The minimum possible bid is the player's marginal cost. The inelastic demand is either

deterministic or stochastic, based on the setting.

Each auction is repeated many times to enable learning. Also each set-up is repeated several times to

check robustness of results. We use the Q-learning algorithm which is a variant of the reinforcement learning

approach. Players get feedback on their actions and improve their behaviour in successive rounds of play
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allowing them to learn from the past through memory.8 In general, the Q-learning framework consists of a

memory-state space which is given by a set S, elements of which are represented by s. st then represents

the state a certain player is in at time-point t. Agents choose actions a ∈ A which lead to a transition from

state st to st+1. Actions are chosen by drawing from the probability distribution over the action space given

by

Prob(a) =
exp(Qt(st, a)/β)∑

a′∈A exp(Qt(st, a′)/β)
(1)

This representation is also known as the Boltzman exploration strategy and corresponds to a logit model.

Qt(st, a) denotes the Q-value of the agent when he is in state st and action a. Intuitively, the Q-value

represents how favourable the execution of action a in state st is. β > 0 represents the experimentation

parameter: the higher the value of β, the more experimentation is performed as the probability Prob(a) of

choosing any action a is closer to being evenly distributed. In our implementation, following the literature

(see, e.g., Waltman and Kaymak, 2008), we use a gradually decreasing parameter β of the form

β(t) = 1000 ∗ 0.99995t (2)

The parameter β steers the exploration phase and the subsequent transition to the exploitation phase.

Using the Q-learning algorithm � as for many other learning algorithms � it is necessary for players to have

a su�ciently long exploration phase in which they randomly choose all actions many times to learn about

possible pay-o�s. After the transition to the exploitation phase is completed, parameter β ensures that

players select those actions with the highest expected pay-o�s only.

The Q-values of the players are updated after each round of play according to the following rule:

Qt+1(s, a) =

(1− α)Qt(s, a) + α(πt + γmaxa′∈AQt(st+1, a
′)) if s = st and a = at

Qt(s, a) otherwise.

(3)

0 < α ≤ 1 and 0 ≤ γ < 1 represent the learning parameter and the discount factor. In our setting they are

chosen to be 0.5, similar to other analysis in the literature (see, e.g., Waltman and Kaymak, 2008). A lower

value of the learning parameter α implies that more weight is put on the old Q-value in the updating process,

which can be interpreted as putting more weight on the player's history as compared to recent experience.

The γ parameter represents the time preference of the players, with smaller values of γ indicating more

myopic behaviour. πt represents the players pay-o� after round t. As a result of the Q-learning algorithm,

each players individually learns the optimal behaviour that maximises its pay-o� in the long run.

8(see, e.g., Bakirtzis and Tellidou, 2006; Xiong et al., 2004; Kutschinski et al., 2003) for previous applications of Q-learning
in economic research.
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Applied to our MUMB auction, the state st of a player at time t is de�ned by the auction results of

the previous round such as the marginal price, the volume weighted average price of all accepted bids and

for our uncertainty case (see section 4.4) also the level of total demand. Given the state st, each player

now selects an action at according to equation 1 which means, he decides at which prices he is going to

place his capacity via two bids of equal size into the market. Next, all bids of all players are collected, the

market clears and moves to a new landing state st+1. Each player can now compute its pro�ts and also the

maximum Q-value of the new state. These information are now used to update the corresponding Q-value

of the initial state (see equation 3). After one auction round is concluded, a new auction round begins, this

time with the landing stage st+1 as starting point. The less pro�table an action is, the lower the Q-value

gets and the less often a player selects the corresponding strategy. In the �nal exploitation phase, a player

will only select the strategy with the highest Q-value.

4. Simulation and results

4.1. Overview

Unlike in energy only markets, there is only very little fundamental information in balancing markets.

German TSOs for example merely publish a list of all players on a �rm level, but not of the individual

units prequali�ed to provide balancing capacity. Firms might be able to obtain some information regarding

the general availability of generation units which are assumed to be able to provide balancing capacity

via mandatory messages about planned and unplanned non-usabilities of generation units. However, even

if units are available to produce power on the energy-only market, speci�c technical reasons that do not

need to be published might prevent them from providing balancing capacity. Cost calculations are even

more complex. First, players are likely to face opportunity costs for selling production units into competing

markets like the energy-only market or other balancing markets. Second, it is unknown how competitors

split costs between positive and negative balancing capacity in case a unit is sold for positive and negative

reserve at the same time, how they estimate added pro�ts from energy calls, how they can reduce capacity

costs using the portfolio e�ect (see also Müsgens et al., 2012) and how they calculate back-up costs in case

of unplanned outages. The Q-learning approach is particularly suitable to simulate strategic behaviour in

balancing markets as players have very little fundamental information. Therefore, they mainly use historical

auction prices as basis for their bidding. The same is true for our Q-learning approach in which prices (and

demand levels) are the only information required to de�ne the initial states st of each auction round.9

We distinguish between three main model settings. We start with the Base Case in section 4.2, in which

demand is constant and all players have capacity costs of zero10. We analyse how the number of players,

9It is important to work with a limited number of criteria (such as volume weighted average price, marginal price and level
of demand) that de�ne states in Q-learning. Otherwise, the memory-state space grows too large and computing time increases.

10Cost of zero were chosen arbitrarily, we could have also selected costs of 1 or 2. In the base case it is merely important
that costs are constant and equal for all players.
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their symmetry in terms of size and di�erent demand levels a�ect prices of UPAs and DPAs. In the Cost

Case (section 4.3), we allocate costs to the individual players capacities in order to study how the competing

auction designs perform in terms of e�ciency. Finally, we present the Uncertainty and Information Case in

section 4.4. In this case, we vary the demand from auction to auction within a model run and also modify the

information players receive about total demand. In all model settings, players receive information about the

state they are in, which is de�ned by the previous auctions marginal price and the volume weighted average

price of all accepted bids. Additionally, information about the demand level is added in our Uncertainty

and Information Case. Size and costs of a player are always constant within a model run.

On the more technical details: if two or more players bid capacities at the same price and this price is

equal to the marginal price, the principle of pro-rata allocation is applied. The price cap is set to 10, the price

�oor to zero. All players have costs of zero except in the cost case. Each scenario is calculated with either

four and/or eight players and di�erent (average) demand levels. We run each case 50 times as a general rule

with 400,000 to 700,000 successive auctions in each run. At the beginning of the subsequent auctions, players

choose their actions randomly while learning which ones have the highest pay o� (exploration phase). Later

on, players base their choice on previous experiences: They have learned successful strategies and start to

exploit this knowledge (exploitation phase, see also section 3). We run each model con�guration 50 times

with varying seeds for the random number generator. This way we are able to check for more multiple

stable outcomes and the robustness of results. The number of auctions per run depends on the complexity

of the model settings. In our basic scenario with symmetric players, merely 400,000 successive auctions per

run are required before a stable equilibrium is found. With a higher level of (demand) uncertainty, agents

require up to 700,000 runs to commit themselves to a limited set of strategies. For our static Base Case

and Cost Case we denote the equilibrium as stable if the average price of the last 10,000 auctions deviates

by less than 2% from the average price of the 10,000 auctions that were hold 100,000 rounds prior to the

last 10,000 auctions11. However, for the Uncertainty and Information Case, we change the de�nition for

a stable equilibrium as this case is more dynamic due to the varying demand. Therefore, stability of the

equilibrium is de�ned by the stable formation of Q-values of the individual players.12 As the players are

exploring strategies at the beginning, we truncate the results of the majority of the auctions. The average

prices presented in the following subsections take into account merely the last 10,000 auctions of each model

run. Also, the term average prices always refers to the marginal price in UPAs and the volume weighted

average price of accepted bids in DPAs across all 50 runs.

11As an example, if the average price of the successive auctions 390,001 to 400,000 deviate by less than 2% from the average
price of auction rounds 290,001 to 300,000, the result is considered to be stable.

12Prices have been used as convergence criterion for the Base and Cost Case merely for the simplicity of the approach.
Checking for convergence of the Q-values, as done in the Uncertainty and Information Case, would have yielded the same
result.
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4.2. Base Case

We start by analysing the base case without uncertainty, i.e., both demand and supply are constant for

all subsequent auctions of each model run. For this case, we will solely focus on the in�uence of the market

clearing scheme given di�erent settings with regard to the level of demand, the number and the symmetry

in terms of size of participants. Aggregated supply is always set to 100. Hence, in the symmetric base case,

there are 4 (or 8) identical players competing with a capacity of 25 (12.5) units each. Costs are set to zero

for all players. Figure 2(a) illustrates the results for di�erent levels of demand for 4 (dashed lines) and 8

(dotted lines)symmetric players. The uniform price scheme is indicated in grey, discriminatory pricing in

black. Focussing on the in�uence of the number of players, we observe that � as expected � with a higher

number of market participants prices decrease13. The opposite is true for the market demand: the higher

the demand levels, the higher the market prices observed. At a demand level of 100 (demand to supply ratio

of 1), prices always converge to the price cap of 10, hence this data point is not shown in any of the �gures.
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Figure 2: Avg. price in UPA and DPA with symmetric and asymmetric players

With regard to the market clearing scheme and focussing on the symmetric case (Figure 2(a)), we can

observe generally higher prices in UPAs than in DPAs. This observation is independent from the number

of market participants and the level of demand. Merely for low levels of demand at which prices are close

to the price �oor and high demand at which prices are close to the price cap, both auction types converge.

The shape of the price increase from low to higher levels of demand indicates that strategic bidding is easier

at an earlier stage in the case of UPAs. Especially in the market with 8 players, market prices with DPA

remain closer to the price �oor while UPAs prices have already increased. Regarding the market power of

individual players, demand levels at which (in the symmetrical case all) players become pivotal14 are at 75

13Some sample runs with less than 4 and more than 8 players clearly con�rm this observation.
14If a player is pivotal, demand cannot be covered without some capacity of this player. Hence, the barrier at which a player

becomes pivotal serves as a measure of market concentration and indicates a potential for collusive behaviour.
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for 4 and 87.5 for 8 players. In UPAs, the most rapid price increases can already be observed at demand

levels without any pivotal player (between 37.5 and 50 for 4 and between 50 and 62.5 for 8 players). In case

of DPA, the most rapid price increase occurs around the pivotal levels. Thus, players appear to be able to

collaborate more easily with UPAs and can coordinate on higher prices even if capacity is hardly scarce.

A closer look into bidding strategies reveals some possible explanations for the price patterns observed.

Comparing the individual average pro�ts of the players, it can be noted that they hardly deviate from

each other. The average standard deviation of observed pro�ts is negligibly small. This is noteworthy as

individual players have no information about other players' bidding strategies or realised pro�ts, yet they

�nd an equilibrium in which pro�ts are nearly evenly distributed amongst them. Therefore, we consider

average bid prices and acceptance rates of all players in the subsequent analysis on bidding strategies. In

Figure 3(a), the average bid prices of the �rst and second bid are shown. The �rst bid is lower than or equal

to the second bid by de�nition. It is very obvious that the price spread between the �rst and second bid

is much lower in DPAs when compared to UPAs, independent of the demand level. As derived by Krishna

(2002), players in UPAs learn to heavily shade their bids and place the second bid signi�cantly higher than

the �rst one on average. This e�ect is less pronounced in DPAs, but still existing, which is an interesting

�nding by itself. Our data also reveals that the rate at which players bid both bids at the same price is

twice as high for DPAs in the 4 player auctions (55 vs. 27%) and almost three times as high in the 8 player

auctions (58 vs. 21%) across all demand levels.
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Figure 3: Avg. bid prices and bid acceptance rates in UPA and DPA with symmetric players

The corresponding average bid acceptance rates of the �rst and second bid are displayed in Figure 3(b).15

The bid acceptance rate is generally higher for the �rst and lower for the second bid in UPAs compared to

DPAs. This seems plausible as players engage more aggressively in bid shading and the �rst bid potentially

15The bid acceptance rate shows which share of the capacity of the �rst and second bid is accepted on average.
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pro�ts more from a high second bid, even if the acceptance rate of the second bid is very low. In the 4

player UPA case at a demand level of 50, the highest di�erential between �rst bid acceptance rate (98.4%)

and second bid acceptance rate (1.6%) can be observed. At the very same observation point, the average

di�erence between bid prices (see Figure 3(a)) reaches it maximum (�rst bid at 2.0, second bid at 7.9) and

the average second bid price even its absolute maximum. As shown earlier in Figure 2(a), UPA prices rise

steeply towards the demand level of 50 and the di�erence between UPA and DPA is at its maximum. For

the 8 player case, the picture looks very similar at the demand level of 62.5. Hence, the higher UPA prices

are a result of complex interactions between second bid acceptance rate and more aggressive bid shading.

As a �rst modi�cation from our symmetric base case, we also consider the case of asymmetric players as

shown in Figure 2(b). In our 4 player setting, one large player is endowed with half of the capacity, while

the remaining 3 players are identical and own a capacity of one third of 50 each. In our 8 player setting,

we have two large players are endowed with a capacity of 25 each, while the remaining 6 identical players

merely own one sixth of 50 each. All other parameters remain unchanged. Generally, prices exceed those of

the symmetric case16. This is to be expected as large players can exercise more market power than small

players. Also, prices tend to rise faster towards the price cap at lower demand levels, at high demand levels

the gradient of the price increase slows down. The general in�uence of the auction type remains unchanged,

meaning that UPAs result in higher price levels than DPA independent from the level of demand. Demand

levels at which the large player(s) become pivotal are at 50 for 4 and at 75 for 8 players.

In the asymmetric case, the analysis of the di�erent bidding strategies of the large and small players is

of particular interest. The average bid acceptance rates of the single large player (L) and the three small

players (S) in the 4 player case17 are displayed in Figure 4(a). At low and medium demand levels, the

acceptance rates of the small players' �rst bids are much higher than those of the large player, the same

is true for the second bids. In fact, the �rst bid acceptance rate of the small players at a demand level of

37.5 in the UPA case is already at 97.8% (large player at 46.1%). At a demand level of 75, the second bid

acceptance rate of the small player is at 100%, while the second bid of the large player is not accepted at

all. These di�erences are due to the fact that the large player places on average higher bids then the small

players and takes the role of setting the marginal price. Our data shows that the large player is placing the

marginal bid in more than 99.5% of all auctions for demand levels of 62.5 or higher for both auction types.

The di�erence in bid acceptance rates is generally smaller in DPAs.

In UPAs, the small players learn to free ride on the high price setting of the large player. Hence, their

pro�ts per unit of capacity owned18 are signi�cantly higher than those of the large player for all demand levels

(see Figure 4(b)). This is due to the fact that they earn the same marginal price for a higher share of their

16One exception is the 4 player DPA at a demand level of 87.5. An explanation is given at the end of this subsection.
17In this section, we focus on the 4 player case exclusively. While the results of the 8 player case are similar, they are less

pronounced as there are two large players that have less market power than the single large player in the 4 player case.
18If a share of a players capacity is not sold, it is valued at a pro�t of zero.
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capacities. The distribution of pro�ts looks quite di�erent when it comes to DPAs, in which the di�erences

in pro�ts are much less pronounced. The small players still manage to secure higher bid acceptance rates,

but this comes at the cost of bidding at lower prices. In fact, they maintain a considerable safety distance to

the large players' bids in order for the large player not to be tempted to underbid the small players. As this

safety distance is particularly large at high demand levels (75 and 87.5), the large players' pro�t per unit of

capacity owned even exceeds the average pro�ts of the small players19. These �ndings con�rm a statement

by Kahn et al. (2001) who argue that smaller bidders are disadvantaged in DPAs as they are likely to bene�t

less from the exertion of market power by bigger players.
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Figure 4: Avg. bid acceptance rates and pro�ts in UPA and DPA with 4 asymmetric players

4.3. Cost Case

In the base case above, capacity costs were set to zero. Now, we allocate di�erent costs to the individual

capacities of the individual players. Hence, this scenario additionally allows for analysing the e�ciency of

the competing auction types. In the context of our auction game, total welfare is at its maximum if costs

are minimised. Hence, we de�ne the 100% e�ciency benchmark as an auction result in which only those

bids that are associated to the lowest cost capacities have been awarded. As soon as one low capacity cost

bid is not awarded and replaced by a higher capacity cost bid, the cost base increases to above 100% and

the e�ciency decreases accordingly.

We conducted a wide range of trial runs with di�erent cost allocations and found two main cases whose

results show di�erent characteristics. In the �rst set, costs are allocated in ascending order (cost scenario

CA) as shown in Table 1. In the 4 player case, this translates into the �rst player having cost of zero

allocated to one half of its capacity and costs of 1 to its other half, the second player having costs of 2 and

19This is also the reason for the single exception observed (4 player DPA, demand level of 87.5), at which prices of the
symmetric case are higher than in the asymmetric case.
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3 and so on. In the second case, costs are mixed among players (cost scenario CM). In the 4 player case,

the �rst player is now endowed with cost of zero and 7, the second player with 1 and 6 and so on20.

Table 1: Cost allocation schemes among players (1st half of capacity/2nd half of capacity)

The results of the 4 player auction are displayed in Figure 5(a). In the ascending cost scenario (CA),

prices increase mainly in parallel with the minimum cost. Only at a demand level of 75 for UPAs (87.5

for DPAs), the price increase accelerates. The price di�erences between UPA and DPA are small when

compared to our zero cost case as displayed in Figure 2(a), but UPA prices again exceed those of DPAs for

all demand levels. The corresponding cost base is generally decreasing (e�ciency is increasing) with higher

demand levels. There are two systematic reasons for this trend. First, the relative cost di�erence is higher at

low cost (and low demand) levels even though the absolute cost di�erence between our costs steps is constant

and amounts to 121. Second, the higher the demand level, the less high-cost extra-marginal capacities are

available that might potentially increase the cost base. At a demand level of 100 (not shown in the graphs),

the cost base and e�ciency are per de�nition at 100% as all capacities available are required to cover the

demand. With regard to the auction types, the cost base of UPA is 4 to 10 percentage points lower when

compared to DPA for demand levels of 50 or higher. Merely at low demand levels, UPAs feature a slightly

higher cost base. Comparing the mixed cost scenario (CM) to CA reveals some remarkable di�erences, even

though the overall costs and hence the minimum cost are the same. The modi�ed allocation of costs leads

to a steep increase of UPA prices at demand levels of 62.5 and 75, while DPA prices are very similar to CA

scenarios and rise in parallel with the minimum cost for the most part. The price increase coincides with

a sudden rise of the cost base. At a demand level of 62.5, the UPA cost base exceeds DPA by almost 5

percentage points, whereas UPA cost base is equal to DPA at a demand level of 75 and 5 to 23 percentage

points lower than DPA for all other demand levels.

The results of the 8 player auction are shown in Figure 5(b). Again, prices in the CA scenario rise in

parallel with the minimum cost, the UPA price increase at demand levels of 62.5 and 75 in the CM scenario

is much less pronounced than in the 4 player case but still visible. The corresponding increase in the cost

20We also conducted extensive runs for a mixed cost case in which the �rst player is endowed with capacity costs of zero and
4, the second player with 1 and 5 and so on. As the results are very similar to the CM scenario as shown in Table 1, we choose
not to present the data here.

21As an example, if a low capacity cost bid (cost of 1) is replaced by the next higher bid (cost of 2), the cost base increases
by 100%. If a bid with associated costs of 4 is replaced by the next higher bid (cost of 5), the cost base merely increases by
25%.

15



base is less steep as well. Therefore, UPA cost base remains below DPA for all demand levels by up to 34

percentage points. The same holds true for the CA scenarios, in which DPA cost base exceeds UPA by up

to 16 percentage points.
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Figure 5: Avg. price and cost base in UPA and DPA with 4 and 8 players

Taking a closer look, we �rst explore why the UPA cost base is lower than DPA in most cases and second,

why prices in the UPA CM scenario are signi�cantly higher than in CA at demand levels of 62.5 and 75. The

average bid acceptance rates of the 4 player auctions are shown in Figure 6. The sub�gures are now arranged

by the underlying capacity costs in order to put the competing cost allocation scenarios on a comparable

basis22. The average bid acceptance rate in the UPA ascending cost CA scenario (see Figure 6(a)) displays

an interesting pattern. Players learn to push in their �rst (low capacity cost) bid very aggressively, while

they place their second bid at a price in between the next (higher capacity cost) players' �rst and second

bid. Also, they rise the bid acceptance rate of their second bid close to 100% before the second next player

is able to increase its �rst bid well above 20%. At a demand level of 50, the average �rst bid acceptance rate

of the third player with underlying capacity costs of 4 (C4, P3, B1) is signi�cantly higher (59%) than the

second players' second bid (C3, P2, P2, 31%), while the rate of the �rst players' second bid (C1, P1, B2)

is already above 99%. This pattern is true for all players and all demand levels. Low capacity cost players

largely exclude higher cost players from the market (except of the �rst bid of the next player), which comes

at the expense of relatively low UPA prices as seen in Figure 5(a) and of a certain degree of ine�ciency, as

the higher cost �rst bids of the next player have higher acceptance rates than the previous players lower

cost second bids.

As shown in Figure 6(b), the pattern of the acceptance second bid rates looks quite di�erent in the DPA

CA scenarios. At demand levels of 50 or higher, the second bid acceptance rates of lower cost capacities

22For explanation: the �rst line in Figure 6(a) shows the �rst bid (B1) acceptance rate with underlying capacity cost of zero
(C0) of player 1 (P1).
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are signi�cantly lower, giving room to more costly capacities, while the �rst bid acceptance rates are only

slightly lower than in UPA. At a demand level of 50, the average second bid acceptance rate of the �rst

player (C1, P1, B2) is down from 99 to 82% when compared to UPA, while the rate of the second player (C3,

P2, B2) is up from 35 to 56%. At this point, the �rst player sets the marginal bid in 76% and plays a same

bid price strategy in 71% of all auctions. In UPAs on the other hand, the same player sets the marginal bid

in only 6% of all auctions as the average second bid price is considerably lower (2.7 versus 4.8). In DPAs,

low cost players cannot hide behind higher cost players by placing low bid prices, hence they are forced to

play the same bid price strategy and set the marginal price more often. This ultimately results in a higher

cost base (lower e�ciency) for DPAs at demand levels of 50 or higher and for all demand levels in the 8

player case as shown in Figure 5(b).
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Figure 6: Avg. bid acceptance rates in UPA and DPA with 4 symmetric players for cost scenarios CA and CM

Due to the di�erent allocation of costs, players modify their bidding strategies in the UPA CM scenarios

as displayed in Figure 6(c). The acceptance rates of the 4 lowest capacity costs bids (C0 to C3), which are

equivalent to the players �rst bids in CM, are decreasing as costs increase. The lowest cost bid features the
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highest acceptance rates, the second lowest the second highest acceptance rates and so on. As the di�erence

of the �rst and second capacity is larger now, the strategy of pushing more expensive players entirely out

of the market does not apply any more. At a demand level of 50, the 4 cheapest bids, which are su�cient

to cover demand, posses a combined market share of 97% (as compared to 84% in UPA CA), which also

explains the lower cost base of 105% (114% in UPA CA). However, at a demand level of 62.5, the pattern

suddenly changes. The average acceptance rate of the next expensive capacity bid (C04, P4, B2) drops to

31% (as compared to 93% in UPA CA for bid (C04, P3, B1)) and the rates of the three most costly capacity

bids rise to on average 23% (9% in UPA CA). As a consequence, the cost base rises to 113%, exceeding the

cost of UPA CA (107%) and even the cost of DPA CM (109%). As the bidding strategy from UPA CA is

not applicable any more, players learn to jointly rise their second bids. Even though e�ciency decreases,

this strategy pays o� in terms of higher UPA prices and higher pro�ts per player.

Finally, we compare the results above with those of the DPA CM scenarios as shown in Figure 6(d). At

demand levels of 50 or lower, low capacity cost bids have on average lower acceptance rates than in UPA

CM, resulting in a higher cost base. However, compared to DPA CA, the capacity cost allocation leads to

a more distinct segregation, with the order of acceptance rates of individual capacities mostly in line with

their underlying costs. Hence, the cost base is lower at demand levels of 50 or higher by 2 to 6 percentage

points.

To sum up, the argument of Kahn et al. (2001) that e�ciency in DPAs is worse compared to UPAs as

some low cost bids might be rejected as bidders overestimate the market clearing price can only partly be

con�rmed by our results. We have shown several examples, in which the e�ciency of UPAs is worse than

in DPAs. This is particularly true for low supply to demand ratios and for certain cost allocations among

the players. Plus, there seems to be a general misconception about e�ciency in MUMB UPAs. As bidders

engage in bid shading and increase prices of their second bids, UPA results are generally ine�cient as well.

4.4. Uncertainty and Information Case

In this section, we start with our initial setting from section 4.2 in which all players have zero costs.

We vary the market set-up in two ways: �rst, we introduce demand uncertainty, i.e., in each auction

round, demand is randomly adjusted within the interval [-10;10] from the indicated average level of demand

and demand changes from auction to auction are randomly chosen from {−1, 0, 1}.23 Second, the market

participants are provided with two di�erent levels of information about the previous auction: either the

demand of the previous auction is known (Info 2) or unknown (Info 1). If it is unknown (Info 1), players

have to develop a bidding strategy not knowing the current level of demand, i.e., a strategy that maximises

the expected pro�t for varying demand. In case demand of the previous auction is known, players still face

23This restriction is important. If demand changes were completely random in the whole interval [-10;10], information about
the previous demand would be entirely worthless.
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the uncertainty of demand changes from one auction to the other within the range {−1, 0, 1}. However,

knowing the previous demand reduces uncertainty about the demand in the next auction and gives and

indication about scarcity in the market and whether a player might be pivotal or not.

We are aware of the fact that in most European balancing markets, the demand for balancing capacity is

rather constant and the supply is varying instead. Even though one might think that it is irrelevant whether

there is uncertainty about demand or supply, there are some structural di�erences. This is mainly due to

the fact that if supply is varying, the individual players posses additional private information as they are

aware of the change of their own supply. Hence, even in the Info 1 regime in which players do not know

the total supply, they are aware of their own supply changes. The larger a player's capacity is, the more

conclusions he can draw from its own to the total supply changes. This higher level of information in the

Info 1 case diminishes the di�erential between the two information regimes. For this reason, we decided to

show demand instead of supply variation in this section.

The results of the 4 player asymmetric case with one large player being endowed with half of the capacity

and the remaining players with one third of 50 each is shown in Figure 7(a). We choose the asymmetric case

as di�erences between the two info levels are much more pronounced compared to symmetric player case.

As seen in the previous sections, UPA prices always exceed those of DPAs and prices rise with increasing

demand. The e�ect of the information level on prices is signi�cant around the pivotal demand level of the

large player (37.5 to 62.5). If players know about the total demand of the previous auction (Info 2), prices

exceed those of the Info 1 regime for both UPA and DPA. The di�erence between the two information

regimes is largest at a demand level of 37.5 for UPAs and 50 for DPAs. However, at demand levels of 75

or higher the di�erential between the two information regimes becomes very small, with Info 1 prices even

slightly exceeding those of Info 2.

A �rst explanation for the price pattern observed can be found in Figure 7(b). Here, each observation

point of Figure 7(a) is further decomposed into three sub demand levels. For example, the average Info 2

UPA price at an average demand of 37.5 amounts to 4.6 (see Figure 7(a)). However, the actual underlying

demand varies between 27.5 and 47.5. We divide this range into three parts of equal si0e and then report

their average prices in Figure 7(b). In this case, the average price for low demand levels (interval [27.5;34.2])

amounts to 2.4, for medium demand levels [34.2;40.8] to 4.8 and for high demand [40.8;47.5] to 6.7. The Info

2 gradient of the price increase exceeds the one of Info 1 at all demand levels and for both auction types.

This indicates that players use the additional information about the demand level of the previous auction

to actively di�erentiate their bidding strategies, which is not possible in the Info 1 regime. This e�ect is

largest around the pivotal demand level of 50 of the large player. However, at high average demand levels,

Info 1 prices exceed those of Info 2 in the low demand sub-interval, as players in Info 2 actively push down

prices while the slope of Info 1 is rather �at. This e�ect results in overall slightly higher Info 1 prices for

demand levels of 75 or higher as seen in Figure 7(a).

19



0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

25 37,5 50 62,5 75 87,5 

A
vg

. P
ri

ce
 

Demand Level 

UPA , 4 P , Info 1 

UPA , 4 P , Info 2 

DPA , 4 P , Info 1 

DPA , 4 P , Info 2 

(a) overview

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

12,5 25 37,5 50 62,5 75 87,5 100 

A
vg

. P
ri

ce
 

Demand Level 

UPA , 4 P , Info 1 

UPA , 4 P , Info 2 

DPA , 4 P , Info 1 

DPA , 4 P , Info 2 

(b) grouped by demand level

Figure 7: Avg. price in UPA and DPA with demand uncertainty and information levels with 4 asymmetric players

As already assumed, the large player can be identi�ed as the main driver for higher prices and steeper

price gradients observed in the Info 2 regime. The average bid prices24 of the large and small players are

displayed in Figure 8. At average demand levels of 37.5 to 62.5, the large player aggressively di�erentiates

its bidding strategy with respect to the sub demand levels (see Figure 8(a)). This is intuitive because if the

large players know that he is pivotal, he can exploit this situation more strongly compared to the case in

which he has to guess its strategic position (Info 1).
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Figure 8: Avg. bid prices in UPA and DPA with demand uncertainty and information levels with 4 asymmetric players

Small players on the other side exhibit di�erent bidding strategies as displayed in Figure 8(b). In UPAs,

average bid prices are signi�cantly lower when compared to the large player and the di�erential between

Info 1 and Info 2 is smaller as well. This is mainly due to the fact that small players free ride, independent

of the information regime. In DPAs, di�erences compared to the large player are smaller, but absolute bid

24To simplify the graphic, we show the combined average price of the �rst and second bid in Figure 8.

20



prices are still at a generally lower level. It is very interesting to observe, that the largest price increase in

DPA Info 2 occurs at an average demand level of 87.5, the level at which the small players become pivotal.

We choose to exclusively show the 4 player asymmetric case in this section which features the most

signi�cant di�erences between the information regimes. However, we have conducted several test runs with

symmetric and with 8 players. In both cases, the price di�erentials between the two information regimes

diminish. This is mainly due to an e�ect that we have observed in our 4 player asymmetric case at high

demand levels of 62.5 and 75 (see Figure 7(a)). In the absence of a dominant player, players still actively

di�erentiate their bidding strategies with Info 2. However, their higher prices in the high demand sub-

interval are mostly o�set by lower prices in the low demand subinterval when compared to the Info 1 prices.

Hence, average prices turn out to be very similar.

5. Conclusion

In this paper, we develop an agent-based Q-learning model to simulate strategic bidding behaviour in

repeated auctions under varying market clearing schemes. To our knowledge, we are the �rst to extend the

Q-learning algorithm to a MUMB set-up. In addition, we analyse the in�uence of uncertainty and di�erent

information regimes regarding previous auctions provided to the players. Our �ndings are manifold:

First, we �nd that with an increasing number of players and increasing supply to demand ratio prices

are decreasing. This corresponds to common expectations and indicates reasonable bidding behaviour of the

modelled players. Furthermore, we observe higher average prices under UPA than with DPA. This result is

valid for all levels of demand and number of players. Uniform pricing seems to facilitate strategic bidding in

repeated auctions even if the available supply signi�cantly exceeds demand and no single player is pivotal.

This is mainly due to the fact that players aggressively engage in bid shading by rising the price of their

second bids as described by Krishna (2002). Even with low bid acceptance rates, their �rst bid can pro�t

disproportionately from an elevated second bid. This is not the case in DPAs. Our analysis shows that the

di�erence between the �rst and second bid is signi�cantly smaller when compared to UPA and the same

bid price strategy is applied more often. As the number of players increases and as prices approach the cap

or the �oor price, price di�erences between UPA and DPA diminish. With regard to asymmetric players,

our �ndings con�rm Kahn et al. (2001) who argue that smaller bidders are disadvantaged in DPAs as they

are likely to bene�t less from the exertion of market power by bigger players. In UPAs on the other side,

small players can free ride on the large players' bidding strategy and obtain signi�cantly higher pro�ts per

capacity owned.

Second, we compare the auction types with regard to their e�ciency. We �nd, that the results are

ambiguous and that the argument of Kahn et al. (2001) who claim that UPAs are always more e�cient as

in DPAs, some low cost bids might be rejected as bidders overestimate the market clearing price, cannot be
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con�rmed. While in the majority of cases their statement can be con�rmed, we have shown several examples

in which the e�ciency of UPAs is lower than in DPAs. This is particularly true for low demand to supply

ratios and for certain cost allocations among the players. Our results indicate that the common expectations

about e�ciency of MUMB UPAs might not be generally true. As bidders engage in bid shading and increase

prices of their second bids, UPA results are generally ine�cient as well.

Third, we are able to analyse the in�uence of published information concerning previous auctions on

average prices. For this purpose we introduce demand uncertainty in our model. Although the e�ect of

providing more information about the demand level of previous auctions is ambiguous with symmetric

players, prices tend to increase with asymmetric players with additional information. This is particularly

true if the demand levels are close to the pivotal level of the large player. This is due to the fact that the

large player aggressively di�erentiates its bidding strategy with respect to the sub demand levels as he knows

whether he is pivotal or not. Without additional information, the large player bids at lower prices as he has

to guess its strategic position. Again, di�erences get smaller when supply to demand ratios, the number of

players or symmetry among players increases.

Based on our simulation results we conclude the following: For markets with many participants and

limited market concentration, UPAs may be favourable compared to DPAs even though they might result

in slightly increased market prices. Typical issues with DPAs can be avoided when choosing UPAs. With

UPAs, players have lower transaction costs (in DPAs they need to forecast the marginal price) and smaller

players are disadvantaged as they bene�t less from the exertion of market power by bigger players. This

also leads to the fact that market entry of new players is less likely. Plus in general, e�ciency of UPAs is

higher, especially if there are many symmetric players.

Concerning markets with a small number of players and potentially few large players � which might

be the case in some balancing markets � our results indicate that DPAs are advisable if low prices are

the main objective. They limit the potential for the exertion of market power and result in lower average

market prices. The publishing of previous supply to demand rations should also be handled with care, as

our results indicate that additional information may facilitate strategic bidding behaviour. Coming back to

our introductory example concerning the changes in the German balancing markets, our analysis provides

some support to the choice by BNetzA not to disclose information about the supply to demand ratio of past

auctions. However, as the number of players increases25 and pivotal players disappear, a switch to UPA

may be advisable and the amount of information about past auction results should be increased.

25See Viehmann (2017) for the recent development of the number of balancing capacity providers in Germany.
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