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Optimal Allocation of Variable Renewable Energy Considering
Contributions to Security of Supply

Jakob Petera,∗, Johannes Wagnera

aDepartment of Economics and Institute of Energy Economics, University of Cologne, Vogelsanger Strasse
321a, 50827 Cologne, Germany.

Abstract

Electricity markets are increasingly influenced by variable renewable energy such as wind
and solar power with a pronounced weather-induced variability and imperfect predictability.
As a result, the evaluation of the capacity value of variable renewable energy, i.e. its con-
tribution to security of supply, gains importance. This paper develops a new methodology
to endogenously determine the capacity value in large-scale investment and dispatch models
for electricity markets. The framework allows to account for balancing effects due to the
spatial distribution of generation capacities and interconnectors. The practical applicability
of the methodology is shown with an application for wind power in Europe. We find that
wind power can substantially contribute to security of supply in a decarbonized European
electricity system in 2050, with regional capacity values ranging from 1 - 40%. Analyses,
which do not account for the temporal and spatial heterogeneity of the contribution of wind
power to security of supply therefore lead to inefficient levels of dispatchable back-up ca-
pacity. Applying a fixed wind power capacity value of 5% results in an overestimation of
firm capacity requirements in Europe by 66GW in 2050. This translates to additional firm
capacity provision costs of 3.8 bn EUR per year in 2050, which represents an increase of 7%.
Keywords: Reliability of supply, Capacity adequacy, Multi-regional power system, Wind
power, Power system modeling
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1. Introduction

The Paris climate agreement aims at holding global warming to well below 2 degrees
Celsius (United Nations (2015)), creating the need for a deep decarbonization of the global
electricity sector. Recent cost reductions suggest that the optimal pathway will to a sub-
stantial part be based on variable renewable energy sources (VRE). As a consequence, global
electricity markets are increasingly influenced by generation technologies based on VRE such
as wind and solar energy. Electricity generation from VRE differs from dispatchable power
generation in its pronounced dependency on weather conditions. These weather-induced
variations show spatial dependencies and are not perfectly predictable. Accordingly, there
arise important implications for reliability of supply in power systems as electricity is only
storable at comparatively high cost and the supply-demand balance has to be maintained
at all times in order to prevent outages.

Reliability of supply has always been a major concern in electricity systems as outages
incur high economic losses. With increasing shares of VRE, reliability issues gain further
importance due to the variability, spatial dependency and imperfect predictability of elec-
tricity generation based on VRE and the resulting risk of unavailability during times of stress
(e.g. Cramton et al. (2013)). VRE resources are typically less correlated on a wider geo-
graphical scope, which enables balancing effects because of imperfectly correlated generation
patterns at different locations. Hence, markets can benefit from these balancing effects via
interconnections and cross-border cooperation. Envisaged reliability levels can thereby be
reached at lower costs compared to reliability measures restricted to national borders (e.g.,
Cepeda et al. (2009) and Hagspiel (2017)). Against this background, the following research
question arises: What is the optimal mix and allocation of VRE capacity in order to benefit
from balancing effects both in generation and contribution to security of supply to reach an
envisaged reliability target?

Assessing the contribution of VRE to security of supply is complex, because of the
stochasticity of electricity generation based on weather-dependent resources. The ability of
an additional VRE generation unit to provide secure capacity depends on the correlation of
its electricity generation with electricity demand and with electricity generation from other
units. To give intuition for this dependency, consider a simple example for wind energy: An
electricity system has an off-peak demand of one and a peak demand of two with off-peak
periods being more frequent compared to peak demand situations. Additionally, there are
two possible sites A and B for investment into wind capacities. Wind generation at site
A is perfectly correlated with off-peak demand and wind generation at site B is perfectly
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correlated with peak demand hours. In this setting, wind capacities at site A generate
more electrical energy because off-peak situations are more frequent. Nevertheless, wind
investments at site B can be preferable because wind generation capacities at site B generate
electricity in the critical peak demand situations. Thus, one unit of wind capacity at site B
reduces the need for one unit of dispatchable capacity and therefore contributes to security of
supply. Now consider the situation where there is already one unit of wind capacity in place
at site B, which generates one unit of electricity in peak demand hours. The remaining
residual demand, which must be supplied by dispatchable generation capacity, is one in
off-peak and one in peak demand periods. As a result, installing one additional unit of
wind capacity at site B cannot contribute to security of supply because firm capacity is still
required in the off-peak demand period and thus cannot be substituted. However, if there
were wind capacities of one unit installed at both sites, investing in one additional unit of
wind capacity at site B would indeed contribute to security of supply.

The highly stylized example clarifies that the marginal contribution to security of supply
from additional generation capacities based on VRE depends on all existing installed ca-
pacities within the system, because these capacities and their weather-dependent generation
determine the critical residual demand situations. Typically, generation patterns of wind
and solar power plants at different locations are positively correlated. Therefore, the ability
of one unit of VRE generation capacity to substitute firm capacity, which is referred to as
its capacity value (or capacity credit)1, declines as the share of VRE in total generation in-
creases.2 Nevertheless, economic long-term simulation models for electricity markets, which
are widely used in scientific and political practice, often assign fixed exogenous capacity val-
ues to wind and solar generation and neglect cross-border effects for reasons of simplification
and computational tractability. Similarly, adequacy studies and capacity mechanisms often
do not or only crudely allow for participation of VRE and are often confined to national
borders.3

Against the described backdrop, this paper develops a new methodology to endogenously
determine the contribution of VRE to security of supply in a long-term partial equilibrium

1In literature, capacity value and capacity credit are used as synonyms. Throughout this paper we will
stick to the term capacity value. It is important not to confuse a technology´s capacity value with its
capacity factor describing its yearly average capacity utilization.

2See IRENA (2017) for an overview of empirical studies showing this decreasing return to scale effect.
3See e.g. Cepeda et al. (2009) and Hobbs and Bothwell (2017) for a discussion. An overview on how

U.S. and European capacity mechanisms credit VRE contributions to reliability is given in Byers et al.
(2018) and European Commission (2016a). Furthermore, there are efforts to coordinate European adequacy
assessments and foster cross-border cooperation (European Commission (2016b)).
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model for electricity markets. The proposed methodology builds on an iterative approach,
which captures the non-linear dependency of the capacity value of VRE on installed capacity
and its spatial distribution considering cross-border cooperation via interconnectors. The
methodology therefore determines cost-minimal investment into power plants taking into
account electricity generation as well as provision of security of supply of VRE, while keeping
computational tractability in a large-scale application. After introducing our methodology,
we apply it in a first step to a simple two-country example. Building on that, we extend it
to the European electricity system to determine an optimal decarbonization pathway until
the year 2050, starting from the existing power plant fleet. Our analysis focuses on wind
power, however the presented approach can be applied to all VRE technologies. We build
the analysis on a new dataset, which is based on meteorological reanalysis data featuring a
high spatial and temporal resolution. The data is therefore well suited to optimally capture
the stochastic properties of wind generation and the resulting contribution to security of
supply.

We show that the proposed methodology is capable to endogenously determine the capac-
ity value of wind power in large-scale investment and dispatch models for electricity markets.
The results of the large-scale application imply that wind power can substantially contribute
to security of supply in a decarbonized European electricity system cooperating with respect
to reliability, with an average wind power capacity value of 13% in 2050. Additionally the
results show that the capacity value of wind power is heterogeneous across different regions
and years, which is a result of varying wind conditions as well as increasing total installed
capacities and technological innovation over time. Existing modeling approaches, which
typically assign constant exogenous capacity values for wind power, therefore result in inef-
ficient levels of dispatchable capacities, which are required to guarantee security of supply in
electricity systems with high shares of VRE. In our application for the European electricity
system, the additional yearly costs for firm capacity provision4 when applying exogenous
fixed wind power capacity values of 5% compared to endogenous capacity values amount
to 1.5 and 3.8 bn EUR in 2030 and 2050, respectively, which represents additional costs of
3% and 7%. Finally our results suggest that European market integration can substantially
improve the contribution of wind power to security of supply due to cross-border balancing
effects.

Our paper is mainly related to two streams of literature. The first relevant stream

4The yearly costs to provide firm capacity are calculated by summing the annuitized investment costs
and the fixed operation and maintenance costs of all dispatchable power plants. Thereby, the fixed costs to
hold available dispatchable capacity are represented.
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examines system adequacy and reliability of supply in electricity systems. Reliability of
supply in electricity systems has been subject to extensive scientific research effort, both
from a technical as well as an economic point of view.5 In particular, the contribution
of individual technologies to system adequacy, i.e. the capacity value, has been a focus of
interest. The probability theory of the capacity value of additional generation for the cases of
statistical independence and dependence is presented in Zachary and Dent (2012). Based on
these theories, various contributions investigate empirical methods to evaluate the capacity
value of wind power in electricity systems.6 Cepeda et al. (2009) investigate the positive
implications of connecting different electricity systems on reliability and ways to internalize
cross-border effects in a two-zone model. Hagspiel et al. (2018) introduce a comprehensive
framework to investigate reliability in power systems consisting of multiple technologies and
interconnected regions. All the mentioned studies focus on static analyses for given power
systems. Consequently, the capacity value is not evaluated within a dynamic model, which
determines the optimal future structure of an electricity system.

The second relevant literature stream focuses on the analysis of electricity systems with
high shares of VRE based on long-term dynamic partial equilibrium models. Typical re-
search questions within this literature are optimal decarbonization pathways for electricity
systems or optimal allocation of renewable generation capacites. However, the contribution
of VRE to security of supply is often only crudely accounted for by assigning fixed exoge-
nous capacity values.7 Grave et al. (2012) address this issue by varying the capacity value
of wind power exogenously in order to determine sensitivities in the resulting amount of
required dispatchable back-up capacity. The endogenous dependency of the capacity value
on total installed capacity of VRE and the impact of interconnections are not accounted for.
Welsch et al. (2015) integrate a stepwise linear function for the capacity value into an opti-
mization model. As a result, the capacity value declines endogenously. However, balancing
effects of imperfectly correlated wind power generation in different geographical areas and
technological innovation over time are not captured by this approach. Hobbs and Bothwell
(2017) use a market equilibrium model for the ERCOT system to endogenously assess the
capacity value of wind and solar power. However, they apply a greenfield approach with a
limited regional representation of wind and solar power generation. The scalability of the

5Early contributions in the two fields include e.g. Billinton (1970) and Telson (1975).
6See e.g. Keane et al. (2011) for a discussion of different methodologies including capacity value approx-

imation techniques and Milligan et al. (2017) for a recent review of research into the capacity value of wind
power.

7See for example Hagspiel et al. (2014) or Fürsch et al. (2013).
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applied methodology to more complex models with various years and a higher geographical
resolution is computationally limited.

In summary, our contribution with respect to the above mentioned literature is to (i)
endogenously evaluate the capacity value of wind power within a dynamic investment and
dispatch model for electricity markets, while (ii) accounting for the statistical properties
of wind power in interconnected systems and (iii) keeping computational tractability in a
large-scale application.

The remainder of the paper is structured as follows. Section 2 introduces our method-
ology. Section 3 illustrates the proposed approach based on a simple example with two
countries. Section 4 discusses a large-scale application for the European electricity system.
Section 5 concludes.

2. Methodology

In order to develop a consistent economic framework to investigate the system adequacy
of future electricity systems and the contribution of VRE generation to reliability, we will
start with a brief revision of the reliability metrics, in particular the well-known loss of
load expectation, expected energy unserved and equivalent firm capacity measures, and
a definition of the capacity value (Section 2.1). We will then describe a framework to
calculate the contribution of a single supplier to reliability, i.e. its capacity value, based
on an optimization framework (Section 2.2). Subsequently, we will revisit the optimization
problem for planning and operation of power systems in order to show how the capacity value
of individual technologies is typically accounted for in long-term investment and dispatch
models (Section 2.3). Finally, we will discuss how the two economic modeling frameworks
are linked by means of an iteration procedure developed in this work (Section 2.4).

We will use the notation as listed in Table 1. Unless noted differently, we will use capital
letters for random variables, bold capital letters for sets, lower case letters for parameters
and bold lower case letters for optimization variables.

2.1. Reliability metrics

Different methodologies have been proposed to determine generation adequacy and the
capacity value of individual technologies. Hereby, the two measures loss of load expectation
(LOLE) and expected energy unserved (EEU) are often applied to depict the ability of
a system to cover expected load levels (Allan and Billinton (1996)). The contribution of
individual technologies to system adequacy, i.e. its capacity value, has been investigated
using different approaches, whereof the most commonly used are the effective load carrying
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Sets
i ∈ I Generation technologies
m,n ∈M Markets
t ∈ T, T Time (T: complete data set, T : time slices)
Random variables
L Load
X Availability of existing capacity
Y Availability of extra capacity
K Availability of import capacity
Parameters
LOLP Loss of load probability
LOLE Loss of load expectation
EEU Expected energy unserved
EFC Equivalent firm capacity
x̄ Nominal capacity of existing generator
x Availability of existing generator
ȳ Nominal capacity of extra generator
v Capacity value of extra capacity ȳ
k̄ Transmission capacity
η Transmission efficiency
l Load
lpeak Peak demand
δ Fixed costs
γ Variable costs electricity generation
Optimization variables
z Overall equivalent firm capacity needed
zy Equivalent firm capacity of extra capacity ȳ
u Load curtailment
k Capacity / electricity transmission between markets
x̄ Generation capacity
g Electricity generation

Table 1: Model sets, parameters and variables

capability (ELCC) and the equivalent firm capacity (EFC) approaches (Keane et al. (2011),
Madaeni et al. (2013), Zachary and Dent (2012)). Following Hagspiel et al. (2018), we apply
the EFC approach.8 Note that the EFC approach provides consistent results with the
ELCC approach (Amelin (2009)).

In the following, we will briefly revisit the derivation of the well-known LOLE and EEU

8Amelin (2009) define the equivalent firm capacity of a generating unit as the capacity of a fictitious
100% reliable unit, which results in the same loss of load probability decrease as the respective unit.
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measures. We define the loss of load probability (LOLP ) at a specific instant in time t as

LOLPt = P (Xt < Lt), (1)

i.e., as the probability that the available existing capacity Xt is smaller than load Lt

(Allan and Billinton (1996)).9

The well-known reliability level measure loss of load expectation is then derived by
summing up probabilities over some time-period T :

LOLE =
∑
t∈T

LOLPt. (2)

To calculate the expected energy unserved EEU , the LOLPs are weighted with the
expected load level that cannot be served:

EEU =
∑
t∈T

E(Lt −Xt) ∗ LOLPt. (3)

The contribution of individual technologies is then determined by applying the EFC
approach. Our focus of interest is the amount of equivalent firm capacity zy by which the
available existing capacity Xt can be reduced when installing some new capacity ȳ with
availability Yt ∈ [0, 1], such that the initial (target) reliability level EEU is achieved. Thus,
by replacing Xt by its equivalent (Xt + ȳYt − zy) and applying Equation (1), the modified
equation that needs to be solved for zy then writes as

EEU =
∑
t∈T

E(Lt − (Xt + ȳYt − zy)) ∗ P (Xt + ȳYt − zy < Lt). (4)

Based on the resulting zy, the capacity value v of a technology with capacity ȳ can be
calculated according to

v = zy

ȳ
(5)

with 0 ≤ v ≤ 1.
In practice, Equation 4 is typically solved by means of numerical iteration: after ȳ has

been added to the system, in each iteration step zy is increased by some small amount until
the reliability target EEU is reached.

The above equations describe a self-contained system without interconnections to neigh-
boring systems. In interconnected systems, the LOLP and LOLE depend on the statistical

9Note that in Equation (1), we implicitly assume that load is inelastic with no adjustment when capacity
is scarce, e.g., due to the lack of real-time pricing.
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characteristics of the random variables involved, i.e. their joint distributions. If we consider
dependent stochastic variables such as load and wind profiles in neighboring countries, the
problem becomes analytically highly complex and thus not tractable in a large-scale appli-
cation.10 Thus we apply a framework that endogenously determines the level of equivalent
firm capacity by means of numerical optimization, as described in the following section.

2.2. A framework for endogenous equivalent firm capacity in multiple interconnected markets

In contrast to the above introduced reliability metrics, which typically build upon exoge-
nously given existing capacities Xt and demand levels Lt, the framework at hand endoge-
nizes the level of equivalent firm capacity by minimizing the firm capacity z that needs to be
available in the system to achieve the target reliability level EEU . Following Hagspiel et al.
(2018), we formulate the deterministic equivalent of the probabilistic problem by replacing
probabilities and random variables by their deterministic counterpart based on data covering
a large range of possible outcomes, which is typically referred to as hindcast approach in
the literature. Hereby, the probability measure P models the distributions of the random
variables, approximated via sums over historic time series. The validity of the hindcast
approach may be justified by the central limit theorem (Zachary and Dent (2012)).

The general idea of the optimization framework is the following: A central authority
(social planner) minimizes the required firm capacity over all markets to reach a certain
market-specific target reliability level EEU , taking into consideration load, solar and wind
characteristics as well as interconnection constraints.11 Alternatively, the social planner
problem can be interpreted as a representation of multiple interconnected markets, which
perfectly cooperate with respect to reliability. The resulting planning problem can then be
formulated as the integrated optimization problem (6).12

The objective function (6a) minimizes the sum of firm capacity zm over all markets,
subject to four constraints: The adequacy constraint (6b) states that the required firm
capacity has to be greater or equal to the market-specific and time-varying load lm,t minus

10See Zachary and Dent (2012) for a thorough discussion of the probability theory of the capacity value
of additional generation considering independent and dependent variables.

11It is straightforward to reformulate the problem for reliability targets based on the LOLE measure
instead of EEU (see Hagspiel et al. (2018)). Note however, that, as this approach includes binary load
shedding variables, the problem becomes a mixed integer optimization problem as opposed to the linear
program optimization at hand.

12The reader is referred to Hagspiel et al. (2018) for a comprehensive derivation of the methodology. Note
that for notational simplicity, the capacity additions ȳ in Equation (4) were dropped and all capacities ex-
ogenously given to the system were aggregated by their nominal capacities x̄i and their capacity availabilities
xi,t.
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the load curtailment variable um,t, minus the sum of the available generation capacity, plus
the sum over electricity exchanges km,n,t and kn,m,t between market m and market n at
every instant of time t. Thereby, we charge electricity imports with an efficiency loss ηm,n in
order to account for transmission losses. The reliability constraint (6c) requires the sum of
load curtailment activities ut not to exceed a certain reliability target, specified as expected
energy unserved EEU within the considered period of time T . Hence, the load curtailment
variable ut allows for a relaxation of the load serving requirement (Equation (6b)) by shaving
off load peaks until the reliability level EEU is reached. And finally, the electricity exchange
constraint (6d) limits km,n,t to the installed transmission capacity k̄m,n.

min
∑
m

zm (6a)

s.t. zm ≥ lm,t − um,t −
∑
i∈I

x̄i,mxi,m,t

+
∑

n∈M
km,n,t −

∑
n∈M

ηm,nkn,m,t ∀m, t,m 6= n (6b)
∑

t

um,t ≤EEUm ∀m (6c)

km,n,t ≤ k̄m,n ∀m,n, t,m 6= n (6d)

for i ∈ I,m, n ∈M, t ∈ T.
Solving Problem (6) yields the required firm capacity in each market z+

m to reach the
specified level of reliability, assuming cooperation with respect to reliability. In order to
determine the capacity value of technology i in market m under perfect cooperation, we set
the corresponding capacity x̄i,m to zero and resolve the model, which yields z−m.

Based on the result we then calculate the technology- and region-specific capacity value
under perfect cooperation according to

vi,n,m = z−m − z+
m

x̄i,n

∀i,m, n. (7)

This framework can be applied to derive the local capacity value vi,m,m of technology i
with capacity x̄i,m with respect to market m where the technology is located (n = m), but
also to derive the cross-border capacity value vi,n,m of a technology x̄i,n located in market n
with respect to a neighboring market m.

Note that in this formulation, the capacity value represents the marginal contribution of
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a technology to reliability, given the contribution of all other technologies. Or, framed as
a coalition game, it depicts the marginal contribution of a single coalition member to the
total coalition of suppliers, e.g. wind and solar generators.13 Additionally, note that each
market m can consist of more than one region for solar and wind generation to account for
their spatial heterogeneity. Thereby, we implicitly assume no internal network constraints
inside a market.14

2.3. Accounting for the contribution to reliability in an investment and dispatch model
To pursue our objective of investigating allocational effects of different ways to account for

contributions to reliability, we apply an investment and dispatch model based on optimiza-
tion problem (8). The problem at hand is similar to the integrated problem for investment
and operation as formulated e.g. in Turvey and Anderson (1977). By assuming inelastic
demand, e.g. due to the lack of real-time pricing, and market clearing under perfect compe-
tition - which is common in electricity market modeling literature - we are able to treat the
problem as a cost minimization problem. It can be interpreted as a social planner problem
where a social planner with perfect foresight minimizes total system costs for investment in
generation capacity and the operation of generation and transmission between markets.

min TC =
∑
i,m

δi,mx̄i,m +
∑
i,m,t

γi,m,tgi,m,t (8a)

s.t. lm,t =
∑

i

gi,m,t +
∑

n

kn,m,t ∀m, t,m 6= n (8b)

gi,m,t ≤ xi,m,tx̄i,m ∀i,m, t (8c)

|km,n,t| ≤ k̄m,n ∀m,n, t,m 6= n (8d)

km,n,t = −kn,m,t ∀m,n, t,m 6= n (8e)

lm,peak ≤
∑
i,n

vi,n,mx̄i,n ∀m (8f)

for i ∈ I,m, n ∈M, t ∈ T .

13Such a coalition game, namely the allocation of the joint contribution of a set of multiple interdependent
suppliers to reliability has been analysed by Hagspiel (2018). He finds that the Shapley value represents
a unique additive consistent allocation rule. While the Shapley value represents the average marginal
contribution of a single supplier over all possible permutations to form a coalition, our approach captures
the marginal contribution of the analyzed supplier to the full coalition (see Equation (7)). Because of the
decreasing returns to scale of the capacity value with respect to total installed capacity, our approach can
be interpreted as a conservative estimate in comparison to the Shapley value.

14Our approach generally allows for consideration of internal network constraints. It could be extended
in this direction, e.g. by applying a load flow approach with multiple nodes per market.
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The objective function (8a) minimizes total system costs over all marketsm, technologies
i and time steps t. It consists of a fixed costs term and a variable costs term. Generation
capacity x̄, electricity generation g and transmission between markets k are optimization
variables. Additional generation capacities can be installed at the costs of δi,m and electricity
generation incurs variable costs of γi,m,t. The cost minimizing objective function is subject to
various constraints: The equilibrium constraint (8b) states that the load level lm,t has to be
satisfied at all times by the sum of generation in marketm and electricity exchanges between
markets m and n. Constraints (8c) and (8d) mirror that generation and transmission are
restricted by installed generation and transmission capacities.15 Furthermore, electricity
trades from market m to market n are necessarily equal to negative trades from market n
to market m (Equation (8e)). Finally, the peak capacity constraint (8f) requires the sum of
generation capacities x̄i,n weighted with their capacity values vi,n,m to be greater or equal
than the market-specific annual peak load lm,peak. Note that both local capacity (n = m)
as well as capacity from a neighboring market n can contribute to the peak constraint in
market m. The peak constraint is typically introduced in models that apply a time slices
approach in order to represent the full variability of demand and VRE supply, as well as
unavailabilities of dispatchable generation.

The investment and dispatch model (8) is formulated as a linear program. However, as
discussed above, the capacity value vi,n,m is a function of generation capacity x̄. Hence, if
the capacity value in the peak capacity constraint (8f) would be formulated as a function of
generation capacity x̄i,m, e.g. by applying the analytical expression introduced by Voorspools
and D’haeseleer (2006) for the capacity value of wind, the problem would become non-
linear. While solution algorithms exist to solve non-linear problems, the applicability of
non-linear problems in real-world, large-scale electricity market applications often suffers
from prohibitively high solving times. Alternatively, piece-wise linearization would represent
a way to deal with non-linear analytical expressions in linear problems. However, analytical
expressions so far only exist for systems without interconnections and are thus not suited
to address our research question. Against this background, we solve the non-linear problem
by means of iteration, as discussed in the following section.

15Note that in this formulation, we neglect a market’s internal transmission constraints. Like in the
capacity value framework introduced above, the model at hand could be extended to account for internal
transmission constraints, e.g. by applying a load flow approach with multiple nodes per market.
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2.4. A framework to endogenize the capacity value in a large-scale electricity market model

In order to endogenize the capacity value of VRE in a large-scale electricity market
model, we introduce the iteration algorithm depicted in Figure 1 and discuss its application
for the example of wind power: after running the investment and dispatch model (8) with
exogenous start values for the region-specific capacity values of wind generation, the capacity
value framework (6) is applied based on the resulting optimal region-specific wind genera-
tion capacities. In the next iteration step, the updated capacity values vi,n,m calculated in
Equation (7) are passed to the peak capacity constraint (8f) of the investment and dispatch
problem. Subsequently, updated capacity values are calculated considering the new wind
capacities. This iteration algorithm is continued until convergence is reached.

Note that the investment model is solved based on a dataset with reduced temporal
resolution (time slices) in order to keep the model computationally tractable. We apply a
two-stage spatial and temporal clustering algorithm in order to derive a reduced dataset,
which captures the relevant properties of wind and solar generation as well as load.16 The
capacity value on the other hand is calculated based on the full temporal resolution in order
to allow for a correct evaluation of security of supply.

Investment and
Dispatch Model

Capacity value
framework

Capacities

Complete timeseries
(wind, solar, load)

Time slices

Clustering 
(spatial & temporal)

Capacity
value

Figure 1: Iteration algorithm

The procedure depicted in Figure 1 successively linearizes the non-linear properties of the
capacity value by iteratively solving two corresponding linear problems. Hence, this novel
framework allows to endogenously account for the non-linear dependency of the capacity

16See section 4.2 and Appendix B for a description of the comprehensive high-resolution data set and the
clustering algorithm.
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value of wind power on the amount and spatial distribution of installed wind capacity, as
well as resulting system effects via interconnectors. Building on that, effects on system costs
and optimal allocation of capacities resulting from different ways of crediting the contri-
bution of wind power to reliability can be quantified. Despite the iterative linearization,
the non-linearity of the problem remains. As a result, existence and uniqueness of a global
optimum can not generally be guaranteed.17 In order to address this issue, we numerically
test optimality by comparing model runs for a wide range of start values.18

From a practical perspective, the social planner in the presented capacity value frame-
work can be interpreted as a central authority, e.g. the European Commission, which assesses
the required firm capacity in each market in order to reach market-specific target reliability
levels, taking into consideration load, solar and wind characteristics as well as intercon-
nection constraints. This centralized assessment of market-specific required dispatchable
capacity is then taken as a basis for the amount of capacity procurement in each market.
Consequently, the capacity value framework determines the required quantity of dispatch-
able generation capacity, while the specific cost-minimal structure of back-up capacities to
meet this requirement is determined in the investment and dispatch model.

In the following, we apply the presented methodology to a simple two-country system for
illustrative purposes (Section 3), followed by a large-scale application covering the European
electricity system (Section 4).

3. Illustrative example: Two-country system

In order to illustrate the basic functioning of the proposed methodology, this section
presents an application to a simple case with only two countries, namely France and Ger-
many. The example follows a greenfield approach, which optimizes the system configuration
in both countries for the year 2030. For reasons of simplification, only investments into gas-
fired power plants, battery storage and onshore wind power capacities are allowed with each
country consisting of only one wind region. The interconnection between both countries is
assumed to have a capacity of 5GW. The remaining data assumptions for example on costs,
electricity demand and CO2 reduction targets are equivalent to the large-scale application
and are described in detail in Section 4.2.

17Global unique optima can be guaranteed for convex minimization problems. A formal proof of the
convexity of the problem is out of the scope of the paper. Nevertheless the decreasing returns to scale of the
capacity value with respect to installed capacity, which is observed in empirical studies, suggest convexity.

18See Sections 3 and 4.
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By solving the integrated problem (6), it is assumed that the two countries perfectly
cooperate with respect to reliability. As such, they take full advantage of balancing effects
in capacity supply and demand. In this illustrative example, for simplification, the reliability
target expected energy unserved is set to perfect reliability (EEU = 0) in both countries,
which means that load must be fully served in all hours as no peak shaving is allowed.
Thus, the problem reduces to the analysis of the hour with peak residual load in each
country and derives the minimally required firm capacity, considering capacity exchanges
via the interconnector. The resulting firm capacity requirement is then applied as minimal
capacity procurement level in the electricity market investment and dispatch model (8).

We start the iteration by running the investment and dispatch model with a start value
of 5% for the local capacity value of wind power and 0% for cross-border contributions of
wind to security of supply. The resulting capacity values, installed capacities for wind power
and required firm capacity as well as total system costs are depicted in Figure 2 for the first
eight steps of the iteration. Figure 2(a) shows the local capacity value of wind power (e.g.
‘FR in FR’ for the capacity value of French wind power in France) as well as the cross-
border capacity value via the interconnector from France to Germany (‘FR in DE’) and vice
versa. In the first iteration step, the electricity market model determines the optimal wind
power capacities based on the start values for the wind power capacity values. The resulting
wind power capacities are then used in the capacity value framework to calculate capacity
values based on actual wind infeed and load time series. As shown in Figure 2(a), the local
capacity value of wind in Germany increases in the second iteration step, while the French
capacity value slightly decreases. Moreover, the cross-border capacity values both increase
to non-zero values.

Based on the updated capacity values the electricity market model determines new opti-
mal wind power investment, taking into consideration the adjusted contribution to security
of supply from wind power. As shown in Figure 2(b), optimal wind power capacities in-
crease in the second iteration step because of the higher capacity value. The corresponding
required firm capacity to reach the reliability target decreases, as shown in Figure 2(c).
Consequently, the required firm capacity provided by dispatchable capacities is reduced as
the contribution of wind power to security of supply is increased. In the third iteration, the
capacity values are slightly reduced because increased wind capacities decrease the relative
contribution to security of supply. After the fifth iteration, convergence is reached and the
model results remain constant in the following iterations.19

19In order to test for robustness, the calculations were conducted for a wide range of start values.
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(a) Capacity value of wind power in FR
and DE (national and cross-border)

(b) Installed wind power capacity in FR
and DE

(c) Required firm capacity in FR and
DE

(d) Total system costs for two-country
system FR-DE

Figure 2: Iteration results in 2030 for the illustrative two-country system FR-DE

The two country case shows the basic interactions of the key model variables throughout
the iteration process. In the following section, the methodology will be applied to a real-
world large-scale application. The basic logic of the model interactions is identical to the
discussion in this section.

4. Large-scale application: European electricity market

This section presents an application and extension of the previously developed method-
ology to the European electricity system. A large-scale investment and dispatch model for
the European electricity market is applied in order to determine the optimal pathway to a
low-carbon electricity system in 2050. Based on the presented methodology, the develop-
ment of regional capacity values of wind power over time and the corresponding implications
on optimal allocation of wind power capacities are assessed.
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The analysis is structured as follows: Sections 4.1 and 4.2 give a brief description of
the applied electricity market model as well as assumptions and data sources. Section 4.3
presents the model results.

4.1. Electricity market model and scenario definition

The applied model is a partial equilibrium model that determines the cost minimal con-
figuration of the European electricity system, considering investment decisions as well as
dispatch of power plants. Cost minimization over several years reflects perfect competition
and the absence of market distortions as well as perfect foresight as fundamental model
assumptions. The model is an extended version of the linear large-scale investment and
dispatch model presented in Richter (2011), which has been applied for example in Bertsch
et al. (2016) and Knaut et al. (2016). The basic model structure follows the same logic as
in Problem (8), however additional constraints are included in order to improve the repre-
sentation of politically implied restrictions and technical properties of electricity systems.
These constraints include for example ramping or storage constraints as well as politically
imposed CO2 reduction targets to decarbonize the power sector.20

The model represents a total of 27 European countries.21 Transmission between coun-
tries is represented by net transfer capacities (NTC), which are assumed to be extended
according to the ENTSO-E Ten-Year Network Development Plan 2018 (ENTSO-E (2018)).
The starting year of the model is 2015. Existing capacities in 2015 are based on a detailed
database developed at the Institute of Energy Economics at the University of Cologne, which
is mainly based on the Platts WEPP Database (Platts (2016)) and constantly updated.
Based on these start values, the model optimizes the electricity system until the year 2050.
The European CO2 reduction targets are implemented as yearly CO2 quotas, which impose
a reduction of emissions by 95% in 2050 compared to 1990 levels. Additional reduction
targets for the intermediate years are implemented with 21% reduction in 2020 compared to
2005 and 43% in 2030 compared to 2005. All values are based on official reduction targets
formulated by the European Commission.22 Investment into nuclear power is only allowed
for countries with no existing nuclear phase-out policies. Fuel costs and investment costs
for new generation capacities are based on the World Energy Outlook 2017 (International

20See Richter (2011) for a detailed description of the model.
21Austria (AT), Belgium (BE), Bulgaria (BG), Switzerland (CH), Czech Republic (CZ), Germany (DE),

Denmark (DK), Estonia (EE), Spain (ES), Finland (FI), France (FR), Great Britain (GB), Greece (GR),
Croatia (HR), Hungary (HU), Ireland (IE), Italy (IT), Lithuania (LT), Latvia (LV), Netherlands (NL),
Norway (NO), Poland (PL), Portugal (PT), Romania (RO), Sweden (SE), Slovenia (SI), Slovakia (SK)

22See https://ec.europa.eu/clima/policies/strategies for detailed explanations.
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Energy Agency (2017)). Yearly national electricity consumption is assumed to develop ac-
cording to the ENTSO-E Ten-Year Network Development Plan 2018 (ENTSO-E (2018)).
The detailed numerical assumptions are presented in Appendix C.

The country-specific reliability target in the capacity value framework of the large-scale
application is set to an EEU , which corresponds to a loss of load expectation of 3 hours
per year in every modeled country. This value is often applied in theory (e.g., Keane et al.
(2011)) as well as in practice (e.g., in the capacity markets in Great Britain or by the ISO
New England).23

4.2. Input data for variable renewable electricity generation and load

In addition to the assumptions described in the previous section, detailed data on
weather-dependent renewable energy sources are required in order to assess contributions
to security of supply of wind power generation and to generate robust estimates for the
capacity value. We apply a novel dataset for wind and solar power generation based on the
meteorological weather model COSMO-REA6. The data for wind power generation from
existing capacities is based on Henckes et al. (2018b). The wind speed data derived from the
weather model is combined with a detailed dataset of European wind parks, which includes
location, installed capacity, hub-height and turbine data in order to generate a consistent
hourly time series of wind power generation over 20 years (1995-2014).

The same methodology is extended in our application for potential future generation
capacities. We assume power curves based on state-of-the-art onshore and offshore wind
power plants for new capacity investment.24 These plants are assumed to be distributed on
a 24x24 km grid over whole Europe in order to determine wind generation data for potential
new generation investment. Again, a consistent hourly 20 year time series of wind power
generation is generated.

Even though solar power generation is not the focus of the present analysis we also
use high resolution hourly time series for solar power. The data is generated based on solar
irradiance data of COSMO-REA6 for the same 24x24 km grid over Europe as for wind power

23In European countries, reliability targets measured in LOLE generally range from 3 to 8 hours per year
(Table 6 in European Commission (2016a)). Note that in case of a loss of load event, the system operator
typically still has a number of options before finally resorting to selective disconnections, amongst others
asking generators to exceed their rated capacity, invoking demand side balancing reserves or reducing voltage
levels (Newbery (2016)). We estimate the EEU corresponding to LOLE = 3 in each country based on the
historical ordered residual load curve in each modeled country. The resulting EEU for all markets are listed
as shares of yearly demand in Table C.3 in Appendix C.

24The considered wind turbines are Enercon E-126 EP4 for onshore wind and Vestas V164 for offshore
wind. Power curves for both turbines were determined based on technical data on the manufacturer websites.
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generation. The methodology is described in detail in Frank et al. (2018) and Henckes et al.
(2018a).

In order to keep the large-scale investment and dispatch model computationally tractable,
the spatial and temporal resolution of wind and solar power generation data has to be
reduced. We apply a two-step clustering approach in order to accomplish this. In a first step
the spatial resolution is reduced by clustering the high resolution data into representative
wind and solar regions. The number of regions for onshore wind and solar is chosen based
on the surface area of each country. Additionally one offshore wind region with water depths
smaller than 50m for bottom-fixed offshore wind turbines and one region with water depths
between 50m and 150m for floating offshore wind turbines are considered. In total the
model consists of 54 representative regions both for onshore wind and solar power and 41
representative regions for offshore wind in Europe (see Table C.5 in Appendix C). A detailed
description of the spatial clustering methodology is presented in Appendix B.

Based on the spatially reduced data a temporal clustering is performed in order to identify
time slices, which allow to reduce the temporal resolution without losing the statistical
properties of weather-dependent wind and solar power generation and load. Load data
is based on hourly national vertical load25 data for all considered countries for the years
2011-2015 taken from ENTSO-E (2016). Note that these historical measurements - being
the result of a functioning electricity market - may include some price responsiveness of
consumers or load shedding. However, historical load represents the best approximation
available for the variable electricity demand over time. Additionally, price responsiveness
during times of scarcity is low (Lijesen (2007)), which justifies the assumption of inelastic
load. The historical load data is normalized and scaled based on the assumptions for total
yearly future electricity demand development in order to generate consistent time series.26

Each of the five years is then combined with the 20 years of renewable energy generation
data in order to get a good representation of the joint probability space, resulting in 100
synthetic years of hourly load and renewable energy data. Hereby, we assume stochastic
independence between load and wind.

Based on this dataset and the temporal clustering approach presented in Nahmmacher
et al. (2016), we generate 16 typical days for the time slices used in the investment and

25i.e., national net electricity consumption plus network losses.
26Scaling historical load time series implies that the temporal structure of electricity demand does not

change in the future. Consequently, possible changes in the demand structure as a result of increasing
electrification in the mobility or heating sector are not accounted for.

19



dispatch model.27 As depicted in Figure 1, these typical days are used as input data only
for the electricity market model while the capacity value calculations are based on the full
temporal resolution of the data set.

4.3. Results and discussion

This section presents the model results, which are determined based on the described
methodology and assumptions in an application for wind power. Section 4.3.1 presents the
resulting contribution of wind power to security of supply. Based on these results Section
4.3.2 discusses differences between the proposed optimization methodology and existing
modeling approaches, which do not account for the endogeneity of the capacity value of
wind power generation.

The applied iteration algorithm converges also in the large-scale application after only a
few iterations (see Figure A.1 in Appendix A). In order to check the presented results for
robustness we ran the model with a wide range of start values for the capacity value. All
robustness checks showed quick convergence and merely identical results.

4.3.1. Contribution of wind power to security of supply
The main novelty of the presented methodology is the explicit endogenous representation

of the contribution of wind power generation to security of supply in a large-scale model
for electricity markets. Figure 3 shows the resulting aggregated average national capacity
value of European wind power plants together with total installed wind power capacity in
Europe for the simulated years. The presented values can be interpreted as the average
share of wind power capacity in Europe that can be considered as firm capacity in the
respective year, assuming cooperation with respect to reliability by means of an efficient
usage of interconnectors.

The depicted results show that the contribution of wind power to security of supply
is above 10% in all considered model years. In 2015 the capacity value of wind amounts
to roughly 14% on average. Until 2020 this value only slightly decreases despite capacity
additions. The reason is that interconnections between European countries are extended
according to the Ten-Year Network Development Plan 2018 of ENTSO-E. As a result the
decline in average capacity value, which results from additional generation capacities and
decreasing returns to scale, is dampened by additional interconnectors. This dampening

27Nahmmacher et al. (2016) show in their analysis that, in investment models for electricity markets,
even less than 10 typical days are sufficient to obtain similar results to model runs with very high temporal
resolution.
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(a) Aggregated average capacity value
of wind power in Europe

(b) Aggregated installed wind capacity
in Europe

Figure 3: Average contribution of wind power to security of supply in Europe

effect emerges because we calculate the capacity value based on the ability of wind power to
provide secure capacity given the availability of interconnections to neighboring countries.
Consequently, as interconnector capacities increase, the ability of wind power to provide
secure capacity in combination with interconnectors also increases.

Remarkably, between 2020 and 2030 the average capacity value of European wind power
increases despite continued capacity additions. This effect can be explained by technological
innovation as a large share of the existing wind power plants reach the end of their technical
lifetime during this time span. Consequently, many old wind power plants with relatively
low rated capacities and hub heights are substituted by state-of-the-art wind turbines, which
enable more stable and reliable wind power generation on average. As a result the capacity
value increasing effect of technological innovation in combination with continued increased
market integration outweighs the decreasing effect of decreasing returns to scale. After 2030,
the two increasing effects are less pronounced because the wind power plant fleet is already
to a large part renewed and the extension of interconnectors is less pronounced. Additionally
total installed wind power capacity more than doubles from roughly 230GW in 2030 to over
560GW in 2050. Accordingly, the average capacity value of wind power decreases between
2030 and 2050.

In addition to the described average effects in Europe, the model results show a strong
heterogeneity across different regions. To illustrate this, Figure 4 shows the regional capacity
value in 2030 and 2050, based on color-coded maps. It is shown that the capacity credit
varies between 1% and 40% across countries and declines in most regions between 2030 and
2050. Interestingly this is not the case for all regions, for example in some regions in France

21



and Italy as well as some offshore regions in France and Norway, the capacity value remains
constant or even increases. In all mentioned regions, this can be explained by small installed
wind power capacities in 2030 and no or relatively small capacity additions between 2030
and 2050. Thus, no decreasing return to scale effect arises, which would reduce the capacity
value. At the same time, the temporal structure of residual load in neighboring regions
changes due to wind and solar capacity additions, increasing the value of the temporal wind
structure in the mentioned regions. It can be concluded that the differing temporal patterns
of wind power generation as well as the differing total installed capacities, technology mixes
and interconnection capacities lead to heterogeneous contributions of wind power to security
of supply across countries.

(a) Capacity value of wind power in 2030 (b) Capacity value of wind power in 2050

Figure 4: Regional capacity values of wind power in the European electricity system

Based on the market-specific capacity values the equivalent firm capacity of wind power
can be calculated. The results for all considered countries in 2050 are shown in Figure 5.
It differentiates between firm capacity that is provided by wind power plants within the
respective country and firm capacity that is provided cross-border via interconnections to
neighboring markets, given they cooperate with respect to reliability. Again it is apparent
that the contribution of wind power to security of supply varies substantially between coun-
tries depending on the capacity value and the installed capacities. In comparatively large
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Figure 5: National and cross-border equivalent firm capacity provision of wind power in European
countries in 2050

countries such as Germany, France or Great Britain the national equivalent firm capacity
of wind power amounts to more than 10GW. Additionally, it is shown that substantial
cross-border contributions are present in many countries. In Switzerland, for example, the
equivalent firm capacity provided by wind in neighboring countries amounts to more than
5GW. This is a result of increasing Swiss market integration and large installed wind power
capacities in neighboring countries, especially Germany and France.

4.3.2. Implications on electricity system configuration
As shown in the previous section, the contribution of wind power capacities to security

of supply can be substantial. Additionally the results show that the capacity value of wind
power is heterogeneous across countries and varies over time depending on the installed
capacity of wind power, the available transmission capacities between countries and tech-
nological innovations. In practice however, long-term scenarios of the electricity system are
typically based on the assumption of a fixed exogenous capacity value (e.g. 5% in Jägemann
et al. (2013)). Because of these modeling practices we analyze in this section how the results
of our proposed methodology differ from existing modeling approaches with fixed capacity
values for wind power. We thereby compare our model results to equivalent model runs with
fixed capacity values for wind ranging from 0% to 20%.

Figure 6 shows the difference in firm capacity requirements for European countries in
2050 for simulations applying exogenous wind power capacity values compared to simula-
tions applying endogenous capacity values, which account for their temporal and spatial
heterogeneity. Positive values imply additional firm capacity requirements with exogenous
capacity values. Applying fixed exogenous wind capacity values results in inefficient amounts
of firm capacity provision, with an overestimation of firm capacity requirements when ap-
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plying wind capacity values below 10% for most countries. In addition, the heterogeneity
of the capacity value across different countries implies that country- or even region-specific
evaluations of the capacity value are necessary in order to correctly estimate the required
dispatchable firm capacity.

Figure 6: Difference in firm capacity requirements in 2050: Endogenous wind power capacity values
vs. exogenous capacity values

The requirement for additional firm capacity translates into additional yearly costs for
its provision, i.e. annuitized investment costs as well as fixed operation and maintenance
costs. Typically, such additional dispatchable back-up capacity is provided by low-cost open-
cycle gas turbines. The additional yearly costs for firm capacity provision when applying
exogenous fixed wind power capacity values of 5% compared to endogenous capacity values
amount to 1.5 and 3.8 bn EUR in 2030 and 2050, respectively, which represents additional
costs of 3% and 7%.

In addition to cost differences the results of our modeling approach also differ in compari-
son to existing approaches with respect to the geographical distribution of the installed wind
power capacity. This is a result of the marginal local contribution of wind power to security
of supply, which is reflected in our modeling approach and is often neglected in existing
methodologies. To analyze the impact of this effect, Figure 7(a) shows the geographically
differentiated installed wind capacities in 2050 based on endogenous capacity value calcu-
lations. Figure 7(b) displays the regional differences in installed capacities compared to an
equivalent model run with fixed wind power capacity values of 5%. Green areas on the map
in Figure 7(b) indicate that more wind power capacities are installed when endogenously
calculating the contribution to reliability, red areas on the other hand indicate that less wind
power capacities are installed in the respective area.

The results illustrate that there are substantial regional differences between a model run
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with a constant capacity value of 5% and our methodology. The reason for the regional shifts
in wind power capacity is that when the contribution to security of supply is accounted for,
it can be cost optimal to prefer locations with relatively lower total wind power generation,
which instead have a higher capacity value. Consequently there is a trade-off between
electricity generation and contribution to security of supply of one unit of wind power
capacity. Because of the weather dependency of wind power generation this trade-off depends
on the wind conditions in a specific region and the correlations with demand and wind power
generation at other sites.

(a) Installed wind power capacity in 2050
based on endogenous capacity value cal-
culations

(b) Difference in optimal wind power ca-
pacity in 2050: Endogenous capacity val-
ues vs exogenous capacity values of 5%

Figure 7: Allocational effects of endogenizing the capacity value of wind power in investment and
dispatch models for the European electricity market

It can be seen from Figure 7 that there is for example a shift of offshore wind power
capacity from the Netherlands to German and Belgian offshore wind regions if the contri-
bution to security of supply is endogenously accounted for. Additionally, the results show
that there is less onshore wind power capacity installed in central Germany. Instead more
capacity is installed for example in Spain, Romania, Finland and Norway. Consequently,
the results suggest that wind power generation is shifted from Germany to other countries
in order to spread wind power plants over a wider area, and take advantage of differing wind
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conditions on a wider geographical scope.
More generally it can be concluded that there are regional as well as technological dif-

ferences regarding offshore and onshore wind power plants between our methodological ap-
proach and existing modeling approaches. Hence, our results suggest that the contribution
to security of supply should be considered in studies that analyze optimal locations of wind
power generation in electricity systems based on long-term investment models.

5. Conclusion

This article analyzes the contribution of wind power generation to security of supply in
electricity systems and develops a new methodology to endogenously determine the capacity
value of generation capacities based on variable renewable energy sources in large-scale
optimization models. Our novel framework allows to account for the non-linear dependency
of the capacity value of wind power on the amount and spatial distribution of installed
wind capacity, considering cross-border cooperation via interconnectors. Building on that,
we quantify differences in system costs and wind power capacity allocation in comparison
to existing modeling approaches, which typically assign fixed exogenous capacity values for
wind power.

We find, based on a large-scale application of the proposed methodology, that wind power
substantially contributes to security of supply in a decarbonized European electricity system
with capacity values between 1% and 40%. The regional capacity value of wind power
depends on the region-specific wind conditions, its correlation to other regions, as well as
on the installed wind power capacity and the capacity of interconnections to neighboring
markets. Assigning fixed and invariable capacity values therefore results in inefficient levels
of required back-up capacities in electricity systems with high shares of variable renewable
energy. We find that, for the European electricity system, the additional yearly costs for
firm capacity provision when applying exogenous fixed wind power capacity values of 5%
compared to endogenous capacity values amount to 1.5 and 3.8 bn EUR in 2030 and 2050,
respectively, which represents additional costs of 3% and 7%.

Our results imply that long-term scenarios for electricity systems should account for the
contribution of variable renewable energy sources to security of supply. Additionally our
results suggest that capacity mechanisms, which are being implemented in many countries
should allow for participation of generation capacities based on variable renewable energy
sources as well as cross-border contributions. However, the assigned capacity values should
be determined based on careful assessments of the statistical properties of the variable
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renewable energy generation and need to be regularly updated in order to account for changes
in the system configuration. Finally, our results show that market integration by increasing
interconnections between different countries increases the potential of variable renewable
energy sources to contribute to security of supply.

In future work our developed methodological approach could be extended to account for
the electrical properties of transmission lines by integrating a load flow model. Thereby,
internal transmission constraints could be accounted for. Additionally, other metrics for
reliability of supply could be integrated in our model. Finally, an application of our ap-
proach to solar power generation would be a substantial contribution to the understanding
of security of supply in electricity systems with high shares of generation based on variable
renewable energy sources.
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Appendix A. Convergence

Figure A.1 shows total system costs for each step of the iteration for different start
values for the capacity value. It can be seen that total system costs converge quickly to
very similar values independently of the start value. It is also apparent that changes in total
system costs are negligible after the third iteration. We abort the iteration after the tenth
step. The relative change in total system costs between the ninth and the tenth iteration
is less than 0.1%. The results for other start values within the depicted range were merely
identical and are therefore omitted in Figure A.1.

Figure A.1: Convergence of total system costs in large-scale application for different starting values

Appendix B. Spatial clustering methodology

The input data for wind and solar power generation is derived from the meteorological
reanalyis dataset COSMO-REA6. The data has a high spatial resolution with data points
on a 24x24 km grid over whole Europe. In order to keep the electricity market model
computationally tractable the spatial resolution has to be reduced. We apply a spatial
clustering methodology in order to construct representative regions, which optimally reduce
the spatial resolution. Our methodology consists of three basic steps:

1. Derive number of clusters per market and energy source
2. Apply the clustering algorithm
3. Determine regional potential for wind and solar power capacities
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In the first step we choose the number of clusters. We use a simple heuristic approach
based on the surface area of a country to determine the number of clusters for onshore wind
and solar power. The total surface are of each market is divided by 100’000 km2 and the
resulting number is rounded to determine the number of clusters. For offshore wind we
choose only one region per market for water depths below 50m and one region for water
depths between 50m and 150m. The results are presented in Table C.5.

In the second step we apply a k-means clustering algorithm in order to cluster the
data points into the number of chosen regions. Wind power and solar power are clustered
independently in order to capture the spatial properties of both energy sources. Based
on the clustered data points the energy output of one representative region is calculated
by averaging over all data points in a cluster. Figure B.2 shows exemplary the clustering
results for onshore wind and solar power in Germany. Each data point is represented by a
dot, while the color coding differentiates the resulting clusters.

(a) Wind onshore (b) Solar

Figure B.2: Exemplary results of spatial clustering for onshore wind power (a) and solar power (b)
in Germany

In the third step the potential for installed capacity in each region is calculated for wind
and solar power. The calculation is based on the country-level area potentials in Schmidt
et al. (2016). Based on the total area potentials we calculate the regional area potentials
with the ratio between the number of data points per region and the total data points in
the corresponding country, assuming an equal distribution.
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Appendix C. Numerical assumptions

Technology 2015 2020 2030 2040 2050

Wind onshore 1656 1602 1548 1512 1476
Wind offshore (bottom-fixed, <50m depth) 3493 3168 2473 2236 2061
Wind offshore (floating, >50m depth) 3749 3460 2581 2300 2099
Photovoltaics (roof) 1440 1152 972 882 792
Photovoltaics (ground) 1188 936 774 702 630
Biomass (solid) 3298 3297 3295 3293 3287
Biomass (gas) 2826 2826 2826 2826 2826
Geothermal 12752 10504 9500 9035 9026
Hydro (river) 5000 5000 5000 5000 5000
Compressed air storage 1100 1100 1100 1100 1100
Pump storage 2336 1237 1237 1237 1237
Battery 1000 1000 750 650 550
Nuclear 6253 5684 4832 4263 4263
OCGT 464 464 464 464 464
CCGT 1063 928 928 928 928
IGCC 2350 2350 2350 2300 2300
Coal 1957 1957 1957 1957 1957
Coal (advanced) 2152 2152 2152 2152 2152
Lignite 1596 1596 1596 1596 1596

Table C.1: Assumptions on generation technology investment costs (EUR/kW)
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Technology FOM costs
(EUR/kW/a)

Net efficiency
(-)

Technical
lifetime (a)

Wind onshore 13 1 25
Wind offshore (bottom-fixed, <50m depth) 93 1 25
Wind offshore (floating, >50m depth) 93 1 25
Photovoltaics (roof) 17 1 25
Photovoltaics (ground) 15 1 25
Biomass (solid) 120 0.30 30
Biomass (gas) 165 0.40 30
Geothermal 300 0.23 30
Hydro (river) 12 1 60
Compressed air storage 9 0.70 40
Pump storage 12 0.76 60
Battery 10 0.90 20
Nuclear 101-156 0.33 60
OCGT 19 0.28-0.40 25
CCGT 24-29 0.39-0.60 30
IGCC 44-80 0.46-0.50 30
Coal 44-60 0.37-0.46 45
Coal (advanced) 64 0.49 45
Lignite 46-53 0.32-0.46 45

Table C.2: Assumptions on techno-economic parameters of electricity generators
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Country 2015 2020 2030 2040 2050 EEU (‰)

AT 70 73 77 80 80 0,005
BE 85 87 89 90 90 0,008
BG 33 41 42 44 44 0,011
CH 63 62 58 56 56 0,006
CZ 63 69 71 74 74 0,007
DE 521 565 547 552 552 0,007
DK_E 13 15 17 18 18 0,014
DK_W 20 26 30 32 32 0,014
EE 8 9 10 11 11 0,015
ES 263 268 282 283 283 0,010
FI 82 90 94 96 96 0,007
FR 475 481 467 447 447 0,013
GB 333 328 322 313 313 0,010
GR 51 57 63 70 70 0,013
HR 17 19 22 24 24 0,010
HU 41 43 47 52 52 0,002
IE 27 31 36 38 38 0,010
IT 314 326 362 400 400 0,007
LT 11 12 13 15 15 0,006
LV 7 8 8 9 9 0,008
NL 113 115 119 122 122 0,006
NO 128 136 150 143 143 0,019
PL 151 163 207 253 253 0,006
PT 49 51 53 56 56 0,009
RO 55 58 64 70 70 0,007
SE 136 142 143 142 142 0,008
SI 14 13 17 20 20 0,007
SK 27 29 33 36 36 0,004

Table C.3: Assumptions on the future development of net electricity demand including network
losses (TWh) and the reliability target expected energy unserved EEU as share of yearly demand
(‰)

Fuel type 2015 2020 2030 2040 2050

Nuclear 3 3 3 3 3
Lignite 2 3 3 3 3
Coal 9 10 11 11 11
Oil 22 33 49 58 58
Natural gas 15 19 25 28 28

Table C.4: Assumptions on gross fuel prices (EUR/MWhth)
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Number of clusters

Country Wind onshore Wind offshore
(<50m depth)

Wind offshore
(>50m depth)

Solar

AT 1 0 0 1
BE 1 1 0 1
BG 1 1 1 1
CH 1 0 0 1
CZ 1 0 0 1
DE 4 1 0 4
DK_E 1 1 1 1
DK_W 1 1 1 1
EE 1 1 1 1
ES 5 1 1 5
FI 3 1 1 3
FR 6 1 1 6
GB 2 1 1 2
GR 1 1 1 1
HR 1 1 1 1
HU 1 0 0 1
IE 1 1 1 1
IT 3 1 1 3
LT 1 1 1 1
LV 1 1 1 1
NL 1 1 0 1
NO 4 1 1 4
PL 3 1 1 3
PT 1 1 1 1
RO 2 1 1 2
SE 4 1 1 4
SI 1 0 0 1
SK 1 0 0 1

Table C.5: Number of spatial clusters for VRE per country
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