
Eppelsheimer, Johann; Rust, Christoph

Conference Paper

The geographic reach of knowledge spillovers: A
functional regression approach with precise geo-
referenced data

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2019: 30 Jahre Mauerfall - Demokratie
und Marktwirtschaft - Session: Econometrics - Forecasting II, No. F18-V3

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Eppelsheimer, Johann; Rust, Christoph (2019) : The geographic reach of
knowledge spillovers: A functional regression approach with precise geo-referenced data,
Beiträge zur Jahrestagung des Vereins für Socialpolitik 2019: 30 Jahre Mauerfall - Demokratie
und Marktwirtschaft - Session: Econometrics - Forecasting II, No. F18-V3, ZBW - Leibniz-
Informationszentrum Wirtschaft, Kiel, Hamburg

This Version is available at:
https://hdl.handle.net/10419/203667

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/203667
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


The Geographic Reach of Knowledge Spillovers

A Functional Regression Approach with Precise Geo-Referenced Data

Johann Eppelsheimer∗ and Christoph Rust†

February, 2019

Version 0.4.4

Preliminary, not to be cited or circulated.

This paper applies functional regression to precise geo-coded register data to measure pro-

ductivity spillovers from high-skilled workers. We use a smoothing splines estimator to model

the spatial distribution of high-skilled workers as continuous curves. Our rich panel data allows

us to address spatial sorting of workers and the entanglement of spillover and supply e�ects with

an extensive set of time-varying �xed e�ects. Our estimates reveal that spillovers from high-

skilled workers attenuate monotonously with distance. E�ects disappear after approximately 20

kilometers. Furthermore, our �ndings illustrate the bene�ts of applying functional regression to

modern (spatial) economic data.
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1 Introduction

Workers interact with co-workers within and across �rms. Through these interactions they share

their knowledge, discuss ideas and adopt novel technologies. All these interactions potentially in-

crease the worker's productivity and are a major source of agglomeration economies (Acemoglu,

1996; Lucas, 1988; Marshall, 1890). Extensive empirical research underpins the existence of such

`knowledge spillovers' within prede�ned geographical boundaries (Cornelissen et al., 2017; Ci-

ccone and Peri, 2006; Moretti, 2004; Rauch, 1993). However, little is known about the exact

spatial extent of knowledge spillovers. Knowledge spillovers should diminish with distance for

∗Institute for Employment Research Nuremberg (IAB) (e-mail: johann.eppelsheimer@iab.de)
†University of Regensburg

1



several reasons. For instance, distance raises costs of planed social interactions, such as meetings.

Further, distance lowers the likelihood of random encounters. Moreover, considering informa-

tion �ows within a network of individuals, the likelihood of transmitting information between

individuals decreases with the number of intermediaries. Because distance should generally raise

the number of intermediaries also the information �ow between individuals should attenuate

with distance. Despite the relevance of knowledge spillovers for policy-makers and entrepreneurs

only recently available precise geo-data and methodological advances allow to measure the exact

spatial reach and intensity of these e�ects.

Previous empirical studies provide �rst evidence for spatially decreasing knowledge spillovers.

For instance, using cross-sectional data form the U.S. Rosenthal and Strange (2008) construct

concentric rings around workers that measure the concentration of human capital within 5, 5

to 25, 25 to 50 and 50 to 100 miles. To explore the attenuation of knowledge spillovers they

regress individual wages on the concentration of human capital within these rings. They �nd

that knowledge spillovers from rings closer by are notably larger than spillovers from rings fur-

ther out. Another study by Fu (2007) adopts the strategy of Rosenthal and Strange (2008) to

analyze cross-sectional data from the Boston metropolitan area. More precise geo-coded data

allows Fu (2007) to measure the concentration of human capital within �ner rings (i.e., 0-1.5,

1.5-3, 3-6 and 6-9 miles). Fu (2007) provides evidence that knowledge spillovers may already

decay after three miles. Although these studies present evidence for the spatial attenuation of

knowledge spillovers, the exact attenuation of e�ects remains unclear because the literature is

either constrained by relatively imprecise geo-data or speci�c data on a small area. Furthermore,

empirical evidence is restricted to cross-sectional data, which complicates causal inference. Addi-

tionally, the empirical literature mostly overlooks that spillover e�ects from high-skilled workers

are entangled with conventional labor market supply and demand e�ects (Katz and Murphy,

1992; Card and Lemieux, 2001; Borjas, 2003; Moretti, 2004; Ciccone and Peri, 2006).

In this paper we analyze the spatial reach and intensity of knowledge spillovers from high-

skilled workers by drawing on a large and novel administrative micro panel data set that features

the exact coordinates of nearly all German establishments and rich information on individual

workers over more than one decade. Our aim is to estimate spillovers from high-skilled workers

on individual wages.

In order to fully exploit the information that is given by the exact geocodes of the working

places, we take a fresh methodological approach to measure the magnitude of knowledge spillovers

with respect to distance in a continuous manner. Recently developed methodologies in Functional

Data Analysis (FDA) provide a particularly suitable framework for our purposes. FDA is a

branch in statistics devoted to the development of methods for random variables with a functional

nature, such as curves or surfaces over a continuous domain. Typical examples are temperature

curves, growth curves or the continuous evolution of stock prices over time. The main bene�t of

the functional view compared to a multivariate one is that data points which are located close to

each other are somehow related�using this information makes FDA more e�cient than standard

multivariate methodologies.

While statisticians employ FDA for a wide range of applications (see Ullah and Finch, 2013

for a systematic overview, readers with general interest in FDA are referred to the textbooks
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of Ramsay and Silverman 2005; Ferraty and Vieu 2006; Horváth and Kokoszka 2012 and Hsing

and Eubank 2015), FDA is still applied quite rarely in economic applications. This paper,

therefore, illustrates the potential of FDA in economic research with high-dimensional variables.

Our model framework relies on the functional linear regression model where a scalar outcome

variable (log-wage in our situation) is regressed on observations of a functional random variable

(share of high-skilled workers depending on distance to the focal worker). For our purposes,

we augment the classical scalar-on-function regression model to incorporate also further scalar-

valued explanatory variables and use an estimation procedure, suggested by Crambes et al.

(2009), that is based on smoothing splines. The smoothing splines estimator has the useful

property that it allows a spline-based expansion of the function-valued spillover parameter instead

of the classical representation in a function space spanned by the leading eigenfunctions of the

random curve's empirical covariance operator. As a consequence, the resulting estimate does

not depend on the correllation structure of the functional random variable and can be modeled

much more �exibly. We estimate a spatial spillover function by evaluating the distribution of

high-skilled workers every 500 meters within a range of 50 kilometers.

Two major challenges in identifying regional knowledge spillovers are confounding labor mar-

ket supply and demand e�ects and sorting of high-skilled workers into high-wage regions. We

address both problems with an extensive set of time-varying �xed e�ects.

If high- and low-skilled workers are imperfect substitutes, standard supply and demand mod-

els propose that an increase in the share of high-skilled workers raises (lowers) wages of high-

skilled (low-skilled) workers (see Ciccone and Peri 2006 and Moretti 2004 for detailed explanations

in our context). Thus, spillovers are potentially entangled with labor market supply and demand

e�ects. We disentangle spillover from supply and demand e�ects by exploiting the di�erent spa-

tial nature of the two e�ects. While supply and demand e�ects are plausibly common within

local labor markets (i.e., supply and demand e�ects originated in one part of the city uniformly

a�ect wages in the whole city), the intensity of spillover e�ects truly depends on distance (i.e.,

spillovers a�ect close neighbors more than distant neighbors). Thus, in the data, we are able to

purge spillover from supply and demand e�ects by eliminating variation that is common within

regional labor markets. To do so, we include time-varying labor-market-area-year �xed e�ects in

our econometric speci�cation (i.e., a speci�c intercept for every labor market area in every year).

Because supply and demand e�ects contrarily a�ect high- and low- skilled workers, we further

interact these labor-market-area-year �xed e�ects with a skill-dummy.

Following Cornelissen et al. (2017) who, in a related context, address worker sorting on the

�rm level (Abowd et al., 1999; Card et al., 2013), we deal with sorting of high-skilled workers into

high-wage regions (Acemoglu and Angrist, 2000) with a comprehensive set of �xed e�ects. In

particular, the above introduced labor-market-area-year �xed e�ects nullify unobserved regional

heterogeneity that might attract high-skilled workers, such as (changes in) average wages, general

labor-market conditions and amenities. Importantly, labor-market-area-year �xed e�ects also

cover temporal labor market shocks that might pull or push skilled workers into or out of regions

� a concern raised by Moretti (2004). Additionally, we account for locational advantages within

regions (e.g., proximity to infrastructure and facilities) and unobserved individual heterogeneity

with worker-�rm match �xed e�ects, respectively.
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In this general setting, we �nd that spillover e�ects indeed diminish with distance and a

positive spillover e�ect is measurable up to 20 kilometers for a given location. An increase of the

share of highly skilled workers within that region by one percentage point raises average wages

by 0.2 percent. The e�ect of an increase closer by (within the distance of up to 10km), however,

is double as high as the e�ect of an incease further away (between 10km and 20km). To the best

of our knowledge, we are the �rst to address this question in such a general context and provide

generalizable results. We believe that our results will be important not only for academia but

also of high relevance for professionals such as city planners.

The remainder of the paper is organized as follows. The next section explains the estimator

and our identi�cation strategy. Section 3 summarizes the data and the construction of the sample

for the empirical analysis. Section 4 presents our main �ndings, and section 5 concludes.

2 Estimation strategy

This paper seeks to measure the spatial attenuation and reach of knowledge spillover. Therefore,

we aim to describe the share of high-skilled workers around establishments as continuous curves

and model a spillover function that depends on distance. In the following we explain the esti-

mator, discuss statistical inference, and describe our representation of the share of high-skilled

workers as curves. Finally, we specify our identi�cation strategy that addresses endogenous

sorting of workers and confounding labor market supply and demand e�ects.

2.1 The estimator

A suitable modeling approach for the function-valued spillover function is available by recently

developed framework in Functional Data Analysis. In particular, we build on the smoothing

spline estimator in the functional linear regression model proposed by Crambes et al. (2009) in

order to estimate the functional spillover parameter. Since we also want to include additional

explanatory variables, we augment this estimator to incorporate also the e�ect of further scalar-

valued predictor variables. The classical functional linear regression model with a scalar response

is given by

Yi =

∫ 1

0
β(t)Xi(t) dt+ εi, (1)

where Yi is a scalar-valued dependent variable, Xi ∈ L2([a, b]) are iid distributed random func-

tions de�ned on a common domain which we set to [0, 1] without loss of generality. The error

term εi is independently distributed and has mean zero and homoscedastic variance (the latter

however can be relaxed). The function-valued coe�cient parameter β ∈ L2([0, 1]) gives the in-

�uence Xi has on Yi. Model (1) has received a lot of attention in the literature on Functional

Data Analysis (see Morris, 2015, for an overview). The classical estimation of β bases on the

Karhunen-Loève decomposition of the empirical covariance operator of the observed curves Xi

(also known as functional principal component (FPC) estimator) and therefore the expansion of

such an estimator β̂ heavily depends on the random curves' correlation structure. The approach

taken here di�ers in the way that the basis functions are independent of the curves Xi which

results in a more �exible function space for modeling β. Regularization in the situation of an

FPC based estimator in practice is done by truncating the Karhunen-Loève basis and therefore
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is of discrete nature while the smoothing spline approach reduces complexity by imposing a real-

valued penalty on a candidate's curvatures. From an asymptotic point of view, both estimators

have minimax-optimal convergence rates (Hall and Horowitz, 2007; Crambes et al., 2009), how-

ever, it turns out, that the estimator based on smoothing splines performs better in real data

examples of practical relevance.

In order to account for the in�uence of further (scalar-valued) explanatory variables, model (1)

can be augmented by writing

Yi =

∫ 1

0
β(t)Xi(t) dt+ Z ′iγ + εi, (2)

where Zi is a k-vector of explanatory variables and the coe�cient vector γ holds the corresponding

marginal e�ects.

In order to jointly estimate the slope parameters β and γ we augment the smoothing spline

estimator to incorporate also additional scalar-valued explanatory variables. Let X be the n× p
matrix holding all the n curves Xi(t) observed at the p grid values t1, . . . , tp and let Y be the

n-vector holding observations of the dependent variable. The penalizes least-square estimator of

β, evaluated at the grid values t1, . . . , tp and for given smoothing paramter ρ ∈ R+, is then given

by (
β̂(t1), . . . , β̂(tp)

)
=

1

n

(
1

np
X′X + ρA

)−1
X′Y, (3)

where the nonstandard penalty matrix A = P + pA∗ was introduced by Crambes et al. (2009)

and is a combination of a classical regularization matrix A∗ ∈ Rp×p and a nonstandard projection
matrix P ∈ Rp×p. The latter is introduced to ensure invertibility of X′X + ρA and is de�ned

by P = W(W′W)−1W′, where W = (tlj)j,l ∈ Rp×m and 2m is the polonomial order of the

employed spline basis. We model β as an expansion of cubic splines, thus, we set m = 2. The

regularization matrix A∗ is de�ned as usual by

A∗ = B(B′B)−1
(∫ 1

0
b(2)(t)b(2)(t)′ dt

)
(B′B)−1B,

where B denotes the p × p matrix of the p basis functions, evaluated at the p grid values, and

b(2)(t) is for given value of t ∈ [0, 1] a p-vector of second derivatives for each of the p basis

functions.

The estimator for β and γ in model (2) can be stated as follows: let XZ denote the compound

data matrix (X, pZ), where the matrix Z holds the sample values of the k additional scalar

explanatory variables. The compound estimator of β and γ is then given as follows:

β̂ =
(
β̂(t1), . . . , β̂(tp), γ̂1, . . . , γ̂k

)
=

1

n

(
1

np
X′ZXZ + ρAZ

)−1
X′ZY, (4)

where the extended penalty matrix AZ is constructed by appending k zero columns and k zero

rows to A

AZ =

(
A 0

0 0

)
∈ R(p+k)×(p+k),
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since additional variables do not load into the roughness penalty.

The estimator, however, depends on a choice of the smoothing parameter ρ which controls

the complexity of the resulting estimate of the function-valued slope parameter β. The speci�c

value of ρ, however, has no direct interpretation with respect to the complexity of β̂. A well-

established and interpretable measure for the complexity of the estimate β̂, though, is given by

the so-called e�ective number of degrees of freedom (edf), de�ned by

edf(ρ) = Tr
(
Hρ

Z

)
, (5)

where Hρ
Z = (np)−1XZ

(
(np)−1X′ZXZ + ρAZ

)−1
X′Z is the hat matrix of model (2), also called

smoother matrix in the context of smoothing spline estimation. One now can prede�ne a value

for edf and use (5) to determine the corresponding value of the smoothing parameter ρ. In

practice, when there is no prior knowledge on how complex the estimate should be, ρ is often

obtained by minimizing a Generalized Cross-Validation criterion. Crambes et al. (2009) propose

to use

GCV(ρ) =
1
n

∥∥Y −Hρ
ZY
∥∥2(

1− 1
n Tr

(
Hρ

Z

))2 . (6)

In our situation, however, it is reasonable to choose the �rst approach and use a prede�ned

number of e�ective degrees of freedom, because theory suggests a monotonically declining e�ect

over distance, the resulting estimate therefore should not be very demanding in terms of degrees

of freedom. Later on, we will also show, that our choice is in line with the complexity chosen by

GCV.

2.2 Inference

In order to construct a con�dence band around the estimate of β and obtain t-statistics for

the elements of γ, one can follow the classical approach lined out in Ramsay and Silverman

(2005), equation (15.16) and compute an approximation of the variance-covariance matrix of the

compound estimator by

Var
(
β̂
)

=
1

n2

(
1

np
X′ZXZ + ρAZ

)−1
X′ZΩ̂XZ

(
1

np
X′ZXZ + ρAZ

)−1
, (7)

with Ω̂ being an appropriate estimator for the variance-covariance matrix of the error term ε.

This general formulation explicitly allows to robustify inference, for instance compute clustered

standar-errors. Con�dence Intervals (CI) can then be built by taking the square-root of the

corresponding diagonal entry of Var
(
β̂
)
and multiplying it with normal quantiles for a given

signi�cance level; t-statistics can be computed as usual.

2.3 Calculation of curves

One essential part of our analysis is based on the representation of the density of high-skilled

workers for each individual and distance as random curves. These functions are not directly

observed and have to be calculated from geocoded workplace data. We prede�ned an equidistant
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grid for distance values t1, . . . , tp, to compute the value of the functions Xi at these values in the

following way (based on local kernel smoother/local high-skilled density):

Xi(tj) =

∑n
l=1 1{di,l∈[tj−h;tj+h]∧hsl}∑n
l=1 1{di,l∈[tj−h;tj+h]}

, (8)

where 1{expr} is the indicator function, evaluating to one if expr is true end zero otherwise. di,l

is the euclidean distance on the earth surface between worker i and worker j, and hsl evaluates

to true if worker l is a high-skilled worker, false otherwise. Put di�erently, the value of the

curve Xi at point tj is given by the share of high-skilled workers on all workers in the distance

window [tj − h, tj + h], where h is a prede�ned bandwidth. To balance analytical precision

and computational costs we chose a bandwidth of h = 250 meters and calculate Xi(tj) up to a

distance of tj = 50 kilometers.

We measure the density of high-skilled workers as shares instead of e.g., the absolute number

of high-skilled workers or high-skilled workers per square meter for the following reasons. Firstly,

because the geographic area covered by [tj−h, tj +h] increases with distance tj also the absolute

number of high-skilled workers that could potentially populate that area increases with distance.

Thus, using absolute numbers, the intensity of high-skilled workers would increase with distance

by de�nition and would therefore not not give comparable values across space. Secondly, as the

data shows, the proportion of inhabited land decreases with tj . As knowledge transfers appear

only in inhabited areas, using high-skilled workers per square meter would decrease the intensity

of human capital with distance by construction. Thus, also high-skilled workers per square meter

would not su�ce to study the intensity of high-skilled workers across distance. Contrarily, the

number of workers within [tj − h, tj + h] is a reasonable unit of measurement of the de facto

populated area, which, thinking of skyscrapers, not only covers actual land use but also intensity

of land use. Therefore, we measure the intensity of human capital as high-skilled workers relative

to the total number of workers (i.e., we take the share of high-skilled workers).

2.4 Identi�cation

Having explained the estimator, we will now address confounding labor market demand and

supply e�ects and endogenous sorting of individuals.

The empirical literature has established that high- and low-skilled labor are imperfect sub-

stitutes (e.g., Autor et al., 2008; Ciccone and Peri, 2005; Card and Lemieux, 2001; Krusell et al.,

2000). As Acemoglu and Angrist (1999), Moretti (2004) and Ciccone and Peri (2006) illustrate,

changes in the supply of high-skilled labor therefore entail a market mechanism that a�ects

wages. In particular, due to labor market demand and supply e�ects an increase in the share of

high-skilled workers in the labor market depresses wages of high-skilled workers and raise wages

of low-skilled workers.

So far, the overall supply of high-skilled labor lr is part of the error term of equation (2):

εi = ui + lr. Obviously, a change in the share of high-skilled workers Xi(t) at some distance t

translates into a change in the overall supply of high-skilled workers within in the local labor

market lr. Thus, equation (2) yields a biased estimate of β(t). More precisely, ignoring lr in

equation (2) exerts a uniform shift of β(t). The direction of the shift depends on the relative
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amount of high- and low-skilled workers in the labor market and the elasticity of substitution

between the two groups.

To disentangle knowledge spillover from labor market supply and demand e�ects we exploit

the di�erent spatial nature of the two e�ects. On the one hand, the intensity of knowledge

spillover should decay with distance. We therefore expect larger spillovers from close neighbors

than from distant neighbors. On the other hand, labor market supply and demand e�ects

plausibly a�ect the local labor market uniformly. Thus, independent of the exact location, a shift

in the supply of high-skilled labor a�ects wages within a local labor market homogeneously. We

are thus able to nullify labor market supply and demand e�ects by eliminating all variation that

is common within local labor markets without removing intra-regional variation from knowledge

spillovers.

As labor market supply and demand shifts vary over time and the direction of the shift

idiosyncratically a�ects high- and low-skilled individuals we expand equation (2) with time-

varying labor-market-area �xed e�ects for each skill group πrys (i.e., an intercept for each labor

market area and skill group in every year). Our full estimation equation is:

Yifyro =

∫ 1

0
β(t)Xfy(t) dt+ Z ′iγ + θif + τy + ωo + πrys + uifyro. (9)

Here Yifyro is the individual log-wage of worker i in year y and Xfy(t) is the share of high-

skilled workers, described as a continuous curve around the workplace that depends on distance

t. β(t) is the associated spillover function we aim to retrieve from the data. The model holds

constant time-varying observable individual, establishment and regional characteristics Ziy as

well as a series of �xed e�ects. θif is a worker-�rm match �xed e�ect, τy is a year �xed e�ect

and ωo is an occupation �xed e�ect.

Another challenge in identifying regional knowledge spillovers is endogenous sorting of workers

(Acemoglu and Angrist, 2000). In our application sorting threatens identi�cation on two levels:

�rst, on the level of treated individuals (i.e., individuals whose wages we observe), second, on the

treatment level itself (i.e., the spatial density of high-skilled workers). Inspired by Cornelissen

et al. (2017) we deal with worker sorting with an exhaustive set of �xed e�ects.

Although, the empirical literature �nds that workers do not sort into cities based on their

(unobserved) abilities (De la Roca and Puga, 2017; Glaeser and Mare, 2001), there is evidence

of ability-driven sorting of workers into �rms (Card et al., 2013; Abowd et al., 1999). If more

productive �rms locate in neighborhoods with high concentrations of human capital, sorting of

workers would create a spurious relationship between wages and the local share of high-skilled

workers. Thus, to ensure that neither sorting of workers nor sorting of �rms biases our estimates

we include worker-�rm match �xed e�ects (θif ) in our model. Worker-�rm match �xed e�ects

additionally eliminate other unobservable characteristics of workers and �rms, such as personal

traits and locational advantages (e.g., proximity to infrastructure).

Furthermore, high-wage areas might attract high-skilled workers, which would reverse the

direction of causality in equation (9). However, as worker-�rm match �xed e�ects (θif ) nullify

permanent locational advantages they also eliminate general push- and pull factors that might

draw high-skilled workers into high-wage regions. Moretti (2004) additionally raises the concern

that also temporal shocks in the local labor market might a�ect the concentration of high-skilled
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workers. We address this issue with time-varying labor-market-area �xed e�ects (πrys). Because

time-varying labor-market-area �xed e�ects remove temporal variation in the supply of high-

skilled labor they also remove supply changes due to temporal shocks.

In summary, equation (9) allows us to estimate knowledge spillover that are unrelated to labor

market demand and supply e�ects and endogenous sorting of individuals. The remaining varia-

tion of Xfy(t) in equation (9) stems from temporal intra-regional changes in the concentration

of high-skilled workers.

3 Data and descriptive statistics

3.1 Data

For our empirical analysis we combine administrative data on almost all German �rms and rich

data of a representative sample of workers over a period of 15 years. Our panel data includes exact

geo-coordinates of establishments and therefore allows to describe the distribution of high-skilled

workers as geospatial functions around workers. Within a distance 50 kilometers we evaluate the

share of high-skilled workers every 500 meters.

Two of our main meso-level data sources are the Establishment History Panel (BHP 7516)

and IEB GEO from the Institute for Employment Research (IAB).1 The Establishment History

Panel comprises all German establishments with at least one employee on June 30 each year.

Among others, the dataset gives establishment-level information on the number of employees and

the number of employees with tertiary education. To measure the distribution of high-skilled

workers we classify employees with a degree from a university or a degree from a university of

applied science as high skilled.2

We expand the dataset with exact geo-coordinates from IEB GEO. IEB GEO is a novel

data source that stores addresses of establishments in the Establishment History Panel between

2000 and 2014 as geo-coordinates. In Germany �rms are obliged to register at least one of

their establishments per municipality and industry. In general, the registration of one establish-

ment per municipality gives a detailed description of the geographic landscape of workplaces.

In some cases, however, �rms might actually have multiple establishments within the same in-

dustry within one municipality, which they do not report. In these cases we cannot ascertain

that individuals work where they are registered. We therefore exclude the following chain-store

industries from our data: construction, �nancial intermediation, public service, retail trade, tem-

porary agency work and transportation. With the remaining set of establishments we compute

the density of high-skilled workers as geospatial functions around establishments as described in

Section 2.3.

For the econometric analysis of knowledge spillovers we merge the constructed geo-spatial

functions of high-skilled workers with micro-level data from the Sample of Integrated Labour

Market Biographies (SIAB 7514).3 The Sample of Integrated Labour Market Biographies is a 2%

1For a detailed description of the Establishment History Panel refer to Schmucker et al. (2016)
2There are are two types of universities in the German tertiary education system: traditional universities and

universities of applied science (Fachhochschulen). Compared to traditional universities, universities of applied
science focus more practical topics than traditional universities. Universities of applied science usually also have
a stronger focus on engineering and technology. Both kinds of universities award bachelor's and master's degrees.

3For a detailed description of the Sample of Integrated Labour Market Biographies see Antoni et al. (2016)
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random sample of social security records. To join the individual-level data to the establishment-

level data we transform the spell dataset into a yearly panel with June 30 as reference date.

Because employers face legal sanctions in case of misreporting information on wages in Ger-

man social security data is highly reliable in general. One limitation, however, is that around 10%

of earnings are right-censored at the social security maximum. Therefore, we impute top-coded

wages following Dustmann et al. (2009) and Card et al. (2013) (see Appendix A for details).

Further, we improve information on education following Fitzenberger et al. (2005) and restrict

the sample to full-time workers between 18 and 64. As we are only interested in e�ects on indi-

viduals in regular employment we exclude apprentices, interns, marginal employed workers and

trainees. The �nal dataset consists of 3,498,536 observations from 539,179 individuals between

2000 and 2014.

We complete our dataset with additional regional information. First, we use the de facto

standard de�nition of local labor-market-areas in Germany from Kosfeld and Werner (2012).

The authors use factor analysis on commuter �ows to identify local labor-market-areas in Ger-

many. Their goal is to design areas with strong internal commuter links but clear detachment

from other areas. They partition Germany into 141 local labor-market-areas. Second, because

labor-market-areas consist of multiple counties (Stadt- und Landkreise, NUTS-3) we further add

county-level indicators on population density, unemployment and number of hotel beds (as proxy

for amenities) from the Federal Institute for Research on Building, Urban A�airs and Spatial

Development to our dataset.

3.2 Descriptive statistics

For each workplace in our data we compute a geo-spatial function that relates the share of high-

skilled workers to distance. Figure 1 illustrates the resulting curves. The light gray functions

are 100 random examples and give an impression of the variability in the data. The blue curve

shows the average share of high-skilled workers around establishments and the dark blue curves

indicate the pointwise standard deviation around the mean. Although, individual curves have

strong variation, the average share of high-skilled workers around workplaces is stable in space.

On average the share of high-skilled workers is 17% in the direct neighborhood of establishments

and gradually declines to 14.5% 50 kilometers away. It is apparent from the graph that there is

no inherent distance at which the share of high-skilled workers suddenly falls. Instead, irregular

city sizes and distances between settlements lead to an even mean of the intensity of human

capital over the whole domain. Similarly, also the standard deviation is relatively steady in

space. See Appendix B for examples of curves.

Note that the slight decline of the standard deviation is an artifact of the computation of

curves. The lower value at the end of the domain is due to a larger area for which the point in

the curve is computed as a mean, therefore lower variation as a result of in general more single

observations (workers) used to compute one point of the curve.

To gain a �rst impression of the relationship between individual earnings and the spatial

concentration of human capital, Figure 2 shows the correlation between log wages and the share

of high-skilled workers in distance windows [t − 500, t],∀t ∈ {500, 1000, ..., 50000}. While the

magnitude of the ordinary correlation has no direct interpretation, the declining trend signals

10



Figure 1: Geo-spatial functions of the share of high-skilled workers
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The �gure shows the pointwise mean (blue line) and standard deviation (dark blue lines) of the share of
high-skilled workers around workplaces. Throughout the paper we describe the share of high-skilled workers
as geo-spatial functions that map the share of high-skilled workers to the distance from a workplace. The
graph also illustrates the variability of the geo-spatial functions with 100 randomly selected curves (gray
lines). Each gray line depicts the geo-spatial distribution of high-skilled workers around an establishment.

that the relationship between income and the spatial concentration of high-skilled labor decays

with distance.4

One reason why the magnitude of the correlation coe�cients has no direct interpretation is

the spatial autocorrelation of values of the geo-spatial function of high-skilled workers. Figure 3

illustrates this issue. The graph shows the correlation between the share of high-skilled workers

at three selected measurement points with the remaining 99 measurement points. For instance,

the �rst panel presents the correlation of the share of high-skilled workers 0 to 0.5 kilometers

away from workplaces and all other measurement points. Naturally, the correlation between

measurement points attenuates with distance. Thus, close by measurement points have high

correlation and distant measurement points have low correlation. While ordinary correlations

ignore spatial autocorrelation, standard OLS regression is in principle able to orthogonalize

covariates. However, as we will discuss in the next section, strong correlation within such a

broad feature space makes OLS practically unfeasible.

Appendix C provides summary statistics on individual wages and the remaining dataset.

4For two reasons the magnitude of the correlation between wages and the share of high-skilled workers in
some distance window has no direct interpretation. First, the bandwidth of the distance window determines the
strength of the correlation. We could, for instance, shrink the correlation coe�cient to arbitrarily small values
by decreasing the bandwidth of the distance window. Second, the ordinary correlation does not partial out
the relationship between wages and other distance windows than the focal one. Naturally, neighboring distance
windows are (spatially auto-) correlated.
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Figure 2: Correlation of individual wages and the regional share of high-skilled workers
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The �gure illustrates the correlation between log wages and the share of high-skilled workers in distance
windows [t− 500, t], ∀t ∈ {500, 1000, ..., 50000}. The graph suggest that the correlation between individual
earnings and the intensity of human capital attenuates with distance. Note that the magnitude of the
correlation coe�cients cannot be interpreted directly.

4 Results

4.1 Main �ndings

Estimation results for the slope-valued spillover-coe�cient of the �nal model are given in Figure 4

and Figure 5. In this model, we include �xed e�ects for worker-�rm combinations and time-

varying combinations of labor-market-area and skill levels but also occupation �xed e�ects (see

also section 2.4). The remaining variation, thus, stems from intra-regional changes of the share

of high-skilled workers. Figure 4 shows results for an unrestristricted estimate (ρ = 0), the result

coincides with a standard OLS regression, although being scaled by the number of discretizuation

points as it is an approximation of the integral by a Riemann sum. Con�dence bands are

computed via equation (7) where we cluster on the �rm level and compute clustered standard

errors according to Abadie et al. (2017).

The unpenalized estimate does not reveal a signi�cant relationship between the share of

highskilled workers at any distance and the point estimate possesses a wiggly behaviour over the

whole domain. This in general indicates imprecise estimate which in our situation is a conse-

quence of both high correlation in the curves between adjacend grid points (multicollinearity)

and a weak association between the remaining variation in the curves and the outcome variable

after controlling for the full set of �xed e�ects. As a result, the con�dence band includes the null

everywhere.

Things change once a penelty on the curvature of β(t) is introduced. We choose the penalty

such that the resulting curve has a �exibility comparable to a parabola (three degrees of freedom)

but may stay �at over some interval. The most appropriate estimate in our view is given with
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Figure 3: Spatial autocorrelation at selected measurement points
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The graphs shows the spatial autocorrelation of the geo-spatial functions of high-skilled workers at di�erent
measurement points. For instance, the panel in the middle shows the correlation of the share of high-skilled
workers 24.5 to 25 kilometers away from workplaces with the share of high-skilled workers at the other 99
measurement points. The focal points in the remaining two panels are 0 to 0.5 and 37 to 37.5 kilometers,
respectively. As is typical with functional data, values close to the focal point have high correlation. The
correlation declines with distance from the focal point. Note that the selected three focal points well
illustrate the general pattern of the underlying three dimensional correlation function.

degrees fo freedom taking values between 2 (linear function) and 3 (parabola). In Figure 5 we

choose 2.5; the results under di�erent choices are qualitatively equivalent but of course more

�exible.

As Figure 5 illustrates, the spillover e�ects decay with distance. According to our estimate,

the spatial reach of human capital spillovers a�ects wages up to a distance of 15 km. The

magnitude of the total e�ect is in line with a classical estimate on the county level but somwhat

smaller compared to results obtained by Moretti (2004). Accordingly, an evenly distributed

increase of human capital by onepercentage point raised average wages by 0.2 percent. However,

if the increase in human capital is closer by, the e�ect is obviously larger. If the increase occurs

within 5km, its e�ect on wages will be double as high as if the increase would occur between

5km and 10 km.

If one does not include �xed e�ects for combinations between labour-market-area, time and

skill, the estimated e�ect still includes conventional labor market supply/demand e�ects on the

level of labor-market-areas and time which go in potentially di�erent directions for the two

skill levels. The resulting estimate is given in Figure 6 and the main di�erence compared to

Figure 5 is given by a globally higher-valued function (scaling of the axis) and a measurable

e�ect up to 30km. From a theoretical perspective, it is not clear at all, how supply/demand

e�ects within a labor market in�uence average wages. Theoretically, a higher supply of high-

skilled workers increases wages of low-skilled workers but decreases wages of the high skilled, (for

details see Moretti, 2004). The upward-shift obtained without labour-market-area-year-skill �xed

e�ects suggests that the total e�ect due to the labor market mechanism is positive which implies

that the positive e�ect on low-skilled waged outweights the negative wage e�ect for high-skilled

workers.

Ignoring match-speci�c worker-�rm �xed e�ects (Figure 7), which also capture location spe-

ci�c productivity, the estimated spillover parameter is shifted upwards once again. This shift

can be related to sorting of high-skilled workers into regions with location-speci�c advantages.
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Figure 4: Unpenalized estimation result for model (9). Included �xed e�ects: individual�
�rm, labor-market-area�year�skill, year�occupation.

4.2 Simulation study

As the estimation approach chosen in this paper is not so well-established in the econometric

literature, the following results of a simulation exercise are meant to evaluate the statistical

properties of our estimation framework in �nite samples. As we will show, the wiggly estimate

of the unrestricted estimate is a direct result of a too �exible �t. Furthermore, we will show,

that our inference procedure produces reliable results.

In the �rst set up, we evaluate the estimator's properties in a situation where the DGP

is exactly the one we obtain from our �nal estimate (see Figure 7). To make the situation

comparable to our particular case, we simulate data based on our �nal model (equation (9)). To

make the situation comparable to our particular real application, we directly take the observed

curves (measuring high-skilled density at given distance from the focal observation) and all other

covariates where the respective e�ects on the outcome variable are taken from the estimate that

belongs to Figure 7. The structure of the simulation sample (sample size, number of �rms,

number of workers per �rm etc.), therefore, is the same as in the original sample. Simulated

observations of the dependent variable are then obtained by adding iid draws from N(0, σ̂2u),

where σ̂u is the standard error of residuals obtained from the estimate of model (9). For this

setup, we simulate 1000 replications to assess the estimator's statistical properties.

The results obtained from this exercise are summarized in Figure 8 which shows on top of

the simulated estimates also the pointwise mean curve over all replications and the function β(t)

of the DGP used to generate the data. As it is in general the case for penalized estimation

(or nonparametric), one can observe that the mean function deviates from the original one in

particular at regions where the original has a more complex structure, i.e. where it possesses

a stronger curvature, that is, possesses a bias. In general, however, the estimated curves well

resembles the original. In particular, there is no replication that deviates substantially or has a
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Figure 5: Penalized estimation result for model (9). Included �xed e�ects: individual��rm,
labor-market-area�year�skill, year�occupation.

completely wrong shape. One inherent property of the estimator, therefore, is that it would never

produce an estimate whith regions being statistically di�erent from zero where the true curve

is zero in a wider neighborhood. Therefore, if one believes that the function corresponding to

the true spillover mechanism is monotonically decreasing and is zero beyond a certain distance,

the regularized estimation is able to capture this structure well. To put this more formally,

such shrinkage-type estimators aim to solve the bias-variance-tradeo�, thus, produce estimates

that are optimal with respect mean prediction error which translates for linear estimators to

optimal estimation with respect to mean estimation error. Consequently, our estimator would

produce misleading results only if the true mechanism is much more complex (non mononotonic

behaviour, which is very unlikely).

As a direct consequence of the locally biased estimate, the con�dence bands fail to fully (on

whole domain) cover the true curve with correct probability (i.e. at least nominal con�dence

level). As Figure 9 illustrates, the coverage probability is in particular low at regions, where the

estimator has a large bias. This would be only a problem if this inference approach rejected a

correct local null. This, indeed, turns out to be the case, but only in regions adjacent to regions

where the null is not correct. The local inference procedure, thus, is less reliable in neighborhoods

where the true curve has a strong curvature.

The implications for our estimation results are as follows. If the true mechanism is not too

complex, the estimate is reliable and the con�dence bands in general reliably indicate a signi�cant

local in�uence of the functional regressors on the scalar outcome variable. However, considering

the exact location, where the spillover function is no longer distinguishable from zero, inference is

less precise and it seems reasonable to choose a threshold somewhat smaller than indicated by our

estimate. With the experience from the simulation exercise, a reasonable value for the present

case is 18km. For smaller values, our estimate suggests a statistically signi�cant in�uence; for a
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Figure 6: Penalized estimation result for model (9). Included �xed e�ects: individual,
labor-market-area�year�skill, industry, occupation.

distance larger than 18km, a signi�cant contribution no longer can be measured.

5 Conclusion

In this paper we estimate the spatial reach of spillovers from human capital density, an important

source of long-run economic growth. By drawing on precisely geocoded register data and employ-

ing regression models for functional data, we are able to estimate the spatial extent of spillovers

in a continous manner. The rich panel data allows us to control for important confounders such

as spatial sorting and classical demand and supply e�ects.

We �nd economically signi�cant spillover e�ects from high-skilled workers. Moreover, our

estimates reveal that spillover e�ects linearly decay with distance and vanish after approximately

20 kilometers. In line with our expectations, spillovers from close neighbors are notably larger

than spillovers from distant neighbors. An evenly distributed increase of the share of high-skilled

workers of 10 percentage points (one standard deviation) raises individual wages by 2%.
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Appendix

A Imputation of wages

A common limitations of social security data is the right-censoring of earnings. To address this

issue we follow Dustmann et al. (2009) and Card et al. (2013) and impute censored wages with

a two-step procedure.

In the �rst step, we group observations by year, East and West Germany, and three levels

of education (i.e., no vocational training, vocational training and degree from a university or

university of applied science). Within each group we �t a Tobit model with the following list

of explanatory variables: age, age2, tenure, tenure2, work experience, (work experience)2, �rm

size, indicators for gender, older than 40 years and foreign. Additionally, we include interaction

terms of age and age2 with the indicator variable older than 40. On the county level we further

include the predictors: population density, unemployment rate, number of hotel beds and share

of high-skilled workers. With the parameters from the Tobit estimates (β̂) we impute wages by

Xβ̂ + σ̂Φ−1 [k + u(1− k)], where σ̂ is the estimated standard error of the regression, Φ is the

standard normal density, u is a random value from a uniform distribution between zero and one,

k = Φ
[
(c−Xβ̂)/σ̂

]
and c is the censoring point.

In the second step, we compute life-time average wages of each worker and �rm, excluding

the focal period. For workers and �rms with only one observation we assign the sample mean.

With the period speci�c life-time average wages as additional predictors, we repeat the Tobit

estimates. Finally, we impute censored wages by Xβ̂ + σ̂Φ−1 [k + u(1− k)].

B Examples of geo-spatial functions of high-skilled workers

In the paper we describe the distribution of high-skilled workers as continuous curves. More

precisely, we de�ne geo-spatial functions that map the share of high-skilled workers to the distance

from the workplace. To illustrate these functional objects Figure B.1 gives four randomly drawn

examples. In each of the four graphs, red lines represent the share of high-skilled workers around

an establishment. The light blue lines in the background indicate the pointwise mean and

standard deviation in our dataset. For instance, in the �rst panel we see a high concentration of

skilled labor of 30% in the close neighborhood of the workplace. Between 5 and 15 kilometers

distance, the share of high-skilled workers declines to 15%. After a dip around 25 kilometers

away from the workplace, the share of high-skilled workers raises again. At the end of the domain

the share of high-skilled workers is around 15%.

C Summary statistics

The dataset for our econometric analysis covers 15 years and consists of 3.5 million records of

540,000 workers. Table B1 summarizes the dependent variable (log wage) and numerical control

variables. In the data the mean daily wage is 111 Euros and the �rst and second quartile range

from 68 to 129 Euros. The average individual in the dataset is 41 years old and has a work

experience of 15 years. The median population density in the dataset is 119 inhabitants per

square kilometer (exp(4.78)). Furthermore, 36% of the observations are from females and 7% are
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Figure B.1: Examples of geo-spatial functions of the share of high-skilled workers
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The �gure shows the distribution of high-skilled workers around four randomly drawn workplaces (red lines).
The light blue lines indicate the pointwise mean and standard deviation of the share of high-skilled workers
in the dataset. Throughout the paper we describe the share of high-skilled workers as geo-spatial functions
that map the share of high-skilled workers to the distance from a workplace.

Table B1: Summary statistics

Mean Std. Dev. 25th Perc. Median 75th Perc.

daily wage 111.37 78.05 68.17 94.64 129.02
daily log wage 4.55 0.56 4.22 4.55 4.86

age 41.14 10.65 33.00 41.00 49.00
work experience (days) 5528.31 3305.44 2860.00 5105.00 7974.00

tenure (days) 3059.98 2796.97 883.00 2160.00 4398.00
log �rm size 4.68 2.10 3.14 4.63 6.10

log popoulation density 3.71 2.38 0.97 4.78 5.66
log hotel beds 3.16 0.70 2.68 3.14 3.53

unemployment rate 8.74 4.11 5.60 7.90 11.00

The table presents summary statistics of wages and (numerical) control variables. The underlying dataset
contains 3,498,536 observations of 539,179 individuals over a period of 15 years. Regional characteristics
come from 402 counties.

from workers with foreign nationality. The proportion of low-, medium- and high-skilled workers

are 8%, 73% and 19%, respectively.
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