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Simple Bayesian and Ex-Post Equilibria in Combinatorial Auctions∗

Marion Otta

aSchool of Business and Economics, RWTH Aachen University, Germany, marion.ott@rwth-aachen.de

Abstract

This paper derives Bayesian equilibria under general conditions for a broad family of
sealed-bid combinatorial auction formats under incomplete information. Equilibria are
constructed by linking an equilibrium of the combinatorial auction format to an equilib-
rium of its single-unit version, thereby providing a closed-form expression if the single-unit
version has one. Auction formats that share the same single-unit version, like the Vick-
rey auction and all bidder-optimal core-selecting auctions, have common equilibria for
any number of items and bidders. Furthermore, if an ex-post equilibrium exists in the
single-unit version of an auction then the auction format has an ex-post equilibrium in the
combinatorial auction. We characterize the ex-post equilibria for a subfamily of auctions.

Key words: Combinatorial auction, Bayesian equilibrium, equilibrium existence, ex-post
equilibrium

1. Introduction

Equilibria in combinatorial auctions with incomplete information are often hard to

find.1 This paper identifies equilibria under general conditions for a broad family of sealed-

bid combinatorial auction formats. Equilibria are derived by linking an equilibrium in the

corresponding single-unit auction to an equilibrium of the combinatorial auction. Thus,

equilibria in combinatorial auctions exist for any number of bidders and items if they exist

in the corresponding single-unit auction.

Our construction works as follows. Assume that a seller can restrict the set of bundles on

which bids are allowed to any set that contains the bundle of all items. Take a combinatorial

∗We thank Thomas Kittsteiner for helpful comments.
1There are exceptions. For example, in Vickrey auctions with private values, truthful bidding is a

weakly dominant strategy, and ex-post equilibria in such auctions have been characterized by Holzman and
Monderer (2004). In core-selecting auctions, Bayesian equilibria for small numbers of bidders and items
under specific assumptions on valuations have been identified, e.g., by Sano (2011, 2012), Beck and Ott
(2013), Goeree and Lien (2016), Bosshard et al. (2017), and Ausubel and Baranov (2018).
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auction format that can be applied to any such restriction on bids. Take any assumption

under which the auction has an equilibrium when the items are sold only as a bundle, i.e.,

when only bids on the bundle of all items are allowed. Such an auction is a single-unit

auction. This paper shows how to construct an equilibrium for any restriction on bids

from the equilibrium of this single-unit version of the auction. In such an equilibrium,

bidders bid only on the bundle of all items, although they are allowed to bid on further

bundles. The findings imply that combinatorial auctions with identical single-unit version

share equilibria for any restriction on bids.

Furthermore, the ex-post equilibrium property transfers from the single-unit version of

an auction to the combinatorial auction. That is, if an ex-post equilibrium exists in the

single-unit auction, then an ex-post equilibrium exists also in the combinatorial auction

for any restriction on bids. This permits identification of a simple equilibrium that is an

ex-post equilibrium in a family of combinatorial auction formats that includes Vickrey and

bidder-optimal core-selecting auctions.

Our equilibria run counter to one of the motivations for conducting a combinatorial

auction with package bids. Bidders do not submit bids on subsets of items, thereby re-

moving their opportunity for complementing one another. Such equilibria may appeal to

bidders if evaluating bundles is costly, if spite motives make bidders refuse to support a

potential opponent, or if bidders’ payoffs are higher than in other equilibria. The efficiency

of the equilibria that we construct is generically low because bidders whose valuations

complement each other do not express this in their bids.

The results hold under mild assumptions. We require that a bidder values the full set

of items no less than subsets thereof, i.e., we require a weak version of free disposal. In

addition, our analysis focuses on auctions that request a bidder’s bid on the bundle of all

items to be no lower than his bids on other bundles, assign items by maximizing the sum

of bids, and apply a payment rule with the following properties. It determines the same

sum of payments (i.e., revenue) for all tied assignments and charges no payment if the bid

associated with the assigned bundle is zero.

We exemplarily apply our results to the pay-as-bid auction and to a family of auctions

that includes bidder-optimal core-selecting auctions and the Vickrey auction. For this

family of auctions we derive a necessary and sufficient condition for our simple equilibrium

to be an ex-post equilibrium. To do so, we apply new necessary or sufficient conditions for

ex-post equilibria in this family of auctions and in all core-selecting auctions.

Reducing the gap of knowledge about combinatorial auctions and single-unit auctions is
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important because combinatorial auctions are widely applied. Auctions that are analyzed

in this paper have been used, for example, to procure bus or flight services (Cantillon and

Pesendorfer, 2006; Letchford, 1996; Lunander and Lundberg, 2012), generation capacity

(Moreno et al., 2010; Mastropietro et al., 2014), school meal provision (Epstein et al.,

2002; Olivares et al., 2012), and transportation services (Caplice and Sheffi, 2003), as well

as to assign telecommunications spectrum licenses (Ausubel and Baranov, 2017).

2. Model

We consider a setting with one seller of a set of items K = {1, . . . , k}, k ≥ 1, and a set

of bidders N = {1, . . . , n}, n ≥ 2. The seller, 0, chooses an auction format and determines

a set of bundles P ⊆ 2K \ ∅ on which bidders are allowed to bid.2 We assume that bids on

the bundle of all items, K, are always allowed: K ∈ P .

Before the auction, each bidder i receives a signal θi ∈ Θi ⊆ [0, 1]2
K

, where Θi denotes

i’s type space. Let θ = (θ1, θ2, . . . , θn), θ ∈ Θ = ×i∈NΘi.

Each bidder i has a valuation vi(y, θ) for each bundle y ∈ 2K , with the normalization

vi(∅, θ) = 0 for all θ ∈ Θ. Let vi(θ) = (vi(y, θ))y∈2K and denote the matrix of these

valuations by v(θ) = (v1(θ), v2(θ), . . . , vn(θ)). We impose the assumptions that the empty

bundle has the lowest value and the bundle of all items has the highest value, vi(∅, θ) ≤
vi(y, θ) ≤ vi(K, θ) for all y ∈ 2K , θ ∈ Θ, i ∈ N .3 Bidder i’s utility is ui(vi(y, θ)− pi) from

receiving bundle y ∈ 2K at the price pi, and u′i > 0.

A bidder i places bids on the bundles in P . For ease of notation, bids on all other

bundles are defined as being equal to zero: bi(y) = 0 for all bundles y /∈ P , i ∈ N .4 Denote

the vector of i’s bids by bi = (bi(y))y∈2K . Let b = (b1, b2, . . . , bn) denote the matrix of all

bidders’ bids and let bS denote the matrix of bids of the subset of bidders S ⊆ N , with the

simplified notation b−i = bN\{i}. Let b(y) = (b1(y), b2(y), . . . , bn(y)) denote the vector of

bids for the bundle y ∈ 2K . Feasible bids on all bundles y ∈ P are required to satisfy the

condition 0 ≤ bi(y) ≤ bi(K).5 Let B denote the set of feasible bid matrices b if P = 2K \ ∅.
Let B(P ) ⊆ B denote the set of feasible bids when a restriction P applies, where the only

2Our results extend to the case that different bidders are allowed to bid on different bundles.
3This is a weak version of free disposal : vi(y, θ) ≤ vi(y′, θ) for all y ⊂ y′, y, y′ ∈ 2K , θ ∈ Θ, i ∈ N .
4Payoffs and revenue in all our auctions will be the same whether we restrict assignments to bundles in

P or we allow only zero bids on bundles not in P .
5A more restrictive and more common requirement on the bidding language is that bids for supersets of

items are weakly increasing (e.g. Nisan, 2006).
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difference between B and B(P ) is that bids on bundles y /∈ P are set to zero.

The assignment x = (x0, x1, x2, . . . , xn) assigns bundles to bidders and the seller. The

set of feasible assignments in an auction with restriction P is written as

X(P ) = {x | xi ∈ P ∪ ∅∀i ∈ N, xi ∩ xj = ∅ ∀i 6= j ∈ N ∪ {0},∪ni=0 xi = K} .

The set of optimal assignments X̂ given bids by a set of bidders S ∈ 2N \ ∅ is written as

X̂(bS) = arg max
x∈X(P )

∑
i∈S

bi(xi).

A sealed-bid combinatorial auction format A is a mechanism that can be applied to

any restriction on allowed bids P . For all P ⊆ 2K \ ∅, K ∈ P , the auction format

A(P ) = (x(·), p1(·), p2(·), . . . , pn(·)) collects bids b ∈ B(P ) and consists of the assignment

rule x(b) = (x1(b), x2(b), . . . , xn(b)) that chooses an assignment in X(P ) and of a payment

rule that determines the payment by bidder i, pi(b).
6 Apart from potential randomization

to break ties between assignments, auctions A are deterministic mechanisms. Thus, the

payment pi(b) is deterministic once the assignment is chosen. In slight abuse of notation,

if necessary, we address the payment that would result if a tie was broken in favor of

assignment x by pi(b, x).

We analyze the following family A of sealed-bid combinatorial auction formats.

Definition 1. The family of auction formats A consists of all sealed-bid combinatorial

auction formats A that, for every set of bundles P ⊆ 2K \ ∅ and every b ∈ B(P ), randomly

select an assignment x(b) ∈ X̂(b), and have a payment rule with the following properties:

(a) Take any b ∈ B(P ) and x, x′ ∈ X̂(b). Then,
∑

i∈N pi(b, x) =
∑

i∈N pi(b, x
′).

(b) If x is the chosen assignment and bi(xi) = 0 then pi(b, x) = 0.

Auction formats in family A determine successful bids by maximizing the sum of bids,

x(b) ∈ X̂(b), and by breaking ties by randomizing over assignments in X̂(b).7 Furthermore,

6Note that the auction cannot use information on valuations vi(y, θ) to determine assignments or pay-
ments.

7Our results hold for any way of breaking ties.
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(a) revenues are independent of how ties are resolved and (b) bidders that receive a bundle

for which they bid zero, including losing bidders, pay nothing.

The family A contains most sealed-bid combinatorial auction formats that have been

studied in the literature. Define the function w as the maximum reported value that the

coalition of the bidders S ⊆ N and the seller can generate by trading the items in K:

w(b∅) = 0 and ∀S ∈ 2N \ ∅ : w(bS) = max
x∈X(P )

∑
i∈S

bi(xi).

The most famous auction formats in family A are the Vickrey auction, for which

∀i ∈ N : pVi (b) := w(b−i)−
∑
j 6=i

bj(xj(b)),

and the pay-as-bid (or first-price) auction, for which

∀i ∈ N : pPABi (b) := bi(xi(b)).

Increasingly popular are core-selecting auctions.8 Core-selecting auction formats select

outcomes such that reported quasi-linear payoffs bi(xi(b)) − pi(b) (i.e., payoffs calculated

assuming valuations equal bids) are in the reported core, which holds iff x(b) ∈ X̂(b) and

payments fulfill9

∀S ∈ 2N \ ∅ :
∑
j∈S

bj(xj(b)) ≥
∑
j∈S

pj(b) ≥ w(bN\S)−
∑
i∈N\S

bi(xi(b)). (1)

An important subclass of core-selecting auctions are the bidder-optimal core-selecting (BOCS)

auctions. A BOCS auction selects payments pBOCS(b) such that there does not exist any p

that fulfills conditions (1) with pi ≤ pBOCSi (b) for all i ∈ N and the inequality being strict

for at least one i ∈ N .

8For their motivation and for design variants, see, e.g., Parkes and Ungar (2000); Ausubel and Milgrom
(2002); Day and Raghavan (2007); Day and Milgrom (2008); Erdil and Klemperer (2010); Day and Cramton
(2012). Goeree and Lien (2016) call them core∗-selecting auctions to emphasize that they may not have
the core-selecting property with respect to true values in equilibrium.

9For a more detailed derivation see, e.g., Beck and Ott (2018). Note that the pay-as-bid auction is a
core-selecting auction and is the bidder-pessimal core-selecting auction because it selects payments at the
bidder-pessimal frontier of the reported core. Also note that not all core-selecting auctions are members of
family A because some core-selecting payment rules violate condition (a) of Definition 1.
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Let βi(θi) = (βi(y, θi))y∈2K denote a strategy of bidder i, which provides a bid for

each type θi ∈ Θi and each bundle y ∈ P and zero bids for the bundles y /∈ P . Let

β(θ) = (β1(θ1), β2(θ2), . . . , βn(θn)) ∈ B(P ) for all θ ∈ Θ. The equilibrium concepts used

are the Bayesian(-Nash) equilibrium, which is a profile of bidding strategies βi(θi) that are

mutual best responses, and the ex-post equilibrium, which is a profile of bidding strategies

βi(θi) that are mutual best responses at the interim stage and even after bidders learn the

others’ bids (for formal definitions see, e.g., Krishna, 2009).

3. Bayesian and ex-post equilibria of combinatorial auctions

The first result provides an equilibrium of auctions in family A for any set of allowed

bids P under mild conditions. It allows for interdependent values and affiliated signals.

Appendix A contains all proofs.

Proposition 1. Take any auction format A ∈ A. A profile β is a Bayesian equilibrium in

auction format A for all P ⊆ 2K \ ∅, K ∈ P , if for P = {K} β is a Bayesian equilibrium

with |X̂(β(θ))| = 1 for almost all θ ∈ Θ.

Proposition 1 demonstrates how to derive an equilibrium for any restriction P on bids

from knowledge about an equilibrium in the single-unit version, P = {K}, of an auction.

These equilibria have a simple structure, with positive bids only for the bundle K. In what

follows, denote by β̃ strategy profiles of the form

∀i ∈ N, ∀θi ∈ Θi : β̃i(y, θi) =

0 for y ∈ 2K \K

β̃i(K, θi) for y = K,
(2)

i.e., profiles with β̃i(y, θi) = 0 for all y ∈ 2K \K and θ ∈ Θ.

The bidding strategies β̃ essentially reduce the combinatorial auction to a single-unit

auction of the bundle K, thereby solving the coordination problem of bidders in a combi-

natorial auction. If his opponents bid only on K, a bidder has no partner with whom to

complement to be a stronger competitor for the remaining bidders. He can win a subset

of K on his own only at the same price as K. As a consequence, a bid only on K is among

his best responses to the others’ bids. Strategies of the type β̃i run counter to one of

the motives for conducting combinatorial auctions, which is to allow bidders to join forces
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to win items, but they make use of another motive, which is to allow bidders to express

preferences for bundles of items.

Proposition 1 involves a no-tie condition, |X̂(β(θ))| = 1 for almost all θ ∈ Θ. If a tie

had positive probability in the equilibrium β, then a bidder i in an auction with P 6= {K}
facing the opponents’ strategies β̃−i might want to bid to tie with his own bid, e.g., by

bidding β̃i(y, θi) = βi(K, θi) for some bundle y 6= K with vi(y, θ) = vi(K, θ), thereby

increasing his chance to get one of his most valuable bundles. If vi(y, θ) < vi(K, θ) for

all y ∈ 2K \ K applies or if i does not know vi(y, θ) but assigns positive probability to

vi(y, θ) < vi(K, θ), then Proposition 1 holds without assuming no ties.

The decision in an equilibrium β̃ to bid zero for all y 6= K is ex-post optimal. That

is, if β̃i is not an ex-post best response to β̃−i, an optimal ex-post revision of β̃i requires

only a change of β̃i(K, θ). The ex-post property of an equilibrium in a single-unit auction,

P = {K}, therefore transfers to β̃ in any associated combinatorial auction with P ⊆ 2K \∅.

Proposition 2. Take any auction format A ∈ A. A profile β is an ex-post equilibrium in

auction format A for all P ⊆ 2K \ ∅, K ∈ P , if for P = {K} β is an ex-post equilibrium

with |X̂(β(θ))| = 1 for almost all θ ∈ Θ.

Auction formats with ex-post equilibria of the form β̃ include those in the following

family, which contains the Vickrey auction and all BOCS auctions. Let p̂BOCSi (b) be

payments chosen by some BOCS auction. Denote by B the family of auction formats in A
that choose payments pi(b) ∈

[
pVi (b), p̂BOCSi (b)

]
for all b ∈ B(P ), all P , and all i ∈ N . All

auction formats in family B have the same single-unit version, the second-price sealed-bid

auction. Assume the bidders’ valuations for the bundle of all items depend only on the

own signal, vi(K, θ) = vi(K, θi). Then, in all auctions in B, the following is a symmetric

ex-post equilibrium:

∀i ∈ N, ∀θi ∈ Θi : β̃i(y, θi) =

0 for y ∈ 2K \K

vi(K, θi) for y = K.
(3)

4. Properties of the equilibrium β̃

This section gives examples of equilibria β̃ of the form in (2) in pay-as-bid auctions and

discusses properties and appeal of equilibria β̃ in pay-as-bid, core-selecting, and Vickrey

auctions.
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Applications to the pay-as-bid auction. Assume each bidder i’s valuation for the bundle K

depends only on a component θi,K of i’s signal, i.e., vi(K, θ) = vi(K, θi,K) for all θ ∈ Θ,

and that the bidders’ signals θi,K are independently distributed according to the same ab-

solutely continuous distribution, F := Fi = Fj , with full support on [0, θ̄] for all i, j ∈ N .

Proposition 1 and results on the single-unit first-price auction (e.g., by Riley and Samuel-

son, 1981) imply that when bidders are risk-neutral, an equilibrium β̃ in a combinatorial

pay-as-bid auction is

∀i ∈ N, ∀θi ∈ Θi : β̃i(y, θi) =

0 for y ∈ 2K \K

vi(K, θi,K)−
∫ vi(K,θi,K )

0 F1,n−1(z)
F1,n−1(vi(K,θi,K)) dz for y = K,

where F1,n−1 denotes the highest order statistics of n− 1 distributions F .10

More generally, Proposition 1 extends the existence conditions for monotone pure-

strategy equilibria in the first-price auction with asymmetric bidders and independent

private values or affiliated one-dimensional signals and interdependent values (e.g. Lebrun,

1996; Reny and Zamir, 2004) to the combinatorial pay-as-bid auction.

Revenue equivalence. Proposition 1 implies that two combinatorial auctions inA have equi-

libria with the same expected revenue if their single-unit versions have revenue equivalent

equilibria.

Efficiency. An undesirable property of equilibria β̃ is their typically low efficiency. Call

an assignment x̂ ∈ arg maxx∈X(P )

∑
i∈N vi(xi, θ) constrained ex-post efficient. Such assign-

ments are associated with efficient payoffs given the constraints imposed by P .

Corollary 1. An equilibrium β̃ of the form in (2) is not constrained ex-post efficient if

∃θ ∈ Θ :
{
x̂
∣∣ x̂ ∈ arg max

x∈X(P )

∑
i∈N

vi(xi, θ)
}
∩
{
x̂
∣∣∃i : x̂i = K

}
= ∅.

The probability of an efficient allocation in the equilibrium β̃ may be zero. Consider an

example with n ≥ k bidders in which each bidder has a strictly positive value for one and

only one of the k items and each item is desired by at least one bidder. Assigning all items

to one bidder is not efficient, but only such assignments occur in the equilibrium β̃.

10This equilibrium is symmetric even when bidders are asymmetric with respect to vi(y, θi) for y 6= K.
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Equilibrium selection and coordination on β̃. Equilibrium strategies of the form β̃i may be

dominated or undominated for P 6= K, depending on the auction format and the valuation

setting. In the Vickrey auction with private values, reporting β̃i in (3) is weakly domi-

nated by reporting the true values, whereas in the pay-as-bid auction, whether equilibrium

strategies β̃i are dominated depends on the valuation structure. If there exists a bundle

y ∈ P with vi(y, θi) = vi(K, θi), then an equilibrium strategy β̃i in a pay-as-bid auction

is weakly dominated by a strategy that replaces the bid β̃i(y, θi) = 0 on y by a bid of

size β̃i(K, θi). If, however, vi(K, θi) − β̃i(K, θi) > vi(y, θi) for all y 6= K, then there is

no strategy that differs only in the bids on bundles y 6= K that makes bidder i better off

than β̃i, and, because any dominating bid must be a best response to β̃−i, a bid that in-

volves βi(K, θi) 6= β̃i(K, θi) cannot dominate β̃i(K, θi) if any best response to β̃−i involves

β̃i(K, θi). With interdependent values, bidders cannot report their (unknown) values in

the Vickrey auction, they do not have a dominant strategy, and, if vi(y, θ) < vi(K, θ) for

all y ∈ P and θ, placing positive bids on bundles y may result in not winning K although

it is the desired bundle given the opponents’ strategies and although β̃i would win K.

In the equilibria β̃, bidders believe that opponents bid positively only on K. Assume a

bidder i cannot exclude that the opponents tremble, but he believes that they do not bid

sufficiently much on bundles other than K to successfully complement with one of them.

Then, choosing β̃i is also a best response for bidder i if vi(y, θ) < vi(K, θ) for all y ∈ P and

θ, so β̃i is robust to such trembles by the opponents.

In some settings, coordination on an equilibrium of the form β̃ appears natural. If

bidders are symmetric in their valuations for the bundle K but otherwise asymmetric, with

diverse assignments possibly being efficient, the symmetry in K may act as a coordination

device on a symmetric equilibrium β̃.

Coordination on β̃ is more likely if the equilibrium appeals to bidders, for example

because it is costly to evaluate bundles, bidders have spite motives and want to avoid

supporting a potential opponent’s success in the auction, or bidders have payoff advantages

from playing β̃.11

11For example, three bidders with values (vi({A}, θi), vi({B}, θi), vi({A,B}, θi))i∈{1,2,3} =
((1, 1, 1), (1, 1, 1), (1, 1, 2)) pay a total of 2 in the equilibrium with truthful reporting in any auction
A ∈ B whereas the total payments are 1 and all bidders are weakly better off in the equilibrium
β̃(θ) = ((0, 0, 1), (0, 0, 1), (0, 0, 2)).
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Ex-post equilibria. We will identify properties of strategy profiles that are necessary or

sufficient for an ex-post equilibrium in auction formats in family A and will use these

properties to provide a necessary and sufficient condition such that strategies β̃ form an

ex-post equilibrium in auction formats in family B.

The properties that we will use are the bidders-are-substitutes condition (BAS) by

Bikhchandani and Ostroy (2002) on bids,

∀S ⊂ N : w(b)− w(bN\S) ≥
∑
i∈S

[w(b)− w(b−i)], (BAS)

and the constrained ex-post efficiency condition (CE) on the assignment, given bids b ∈
B(P ):

∀i ∈ N : x(b) ∈ arg max
x∈X(P )

vi(xi, θ) +
∑
j 6=i

bj(xj , θ)

 . (CE)

In an assignment that fulfills CE, each bidder contributes his maximum to the total value

when the other bidders’ contribution is measured by their reported values. Note, an as-

signment may fulfill CE although being inefficient. Efficiency is constrained both by being

conditional on values only for bundles in P and by being conditional on opponents’ bids

rather than values. We say a strategy profile β satisfies BAS or CE if it satisfies the

condition for all θ ∈ Θ.

Lemma 1. Any strategy profile β̃ of the form in (2) satisfies BAS.

The following lemma clarifies for core-selecting auction formats and auction formats in

family B the relationship between the ex-post equilibrium property, BAS, and CE.

Lemma 2. Take any auction format A ∈ A with a restriction P and any feasible strategy

profile β in this auction.

(i) If A is a core-selecting auction and β an ex-post equilibrium then β satisfies BAS and CE.

(ii) If A ∈ B and β satisfies BAS and CE then β is an ex-post equilibrium. If β violates

CE, then it is not an ex-post equilibrium.

(iii) If A is a Vickrey auction, then β is an ex-post equilibrium iff it satisfies CE.

A BOCS auction is a core-selecting auction and a member of B, therefore, β is an ex-post

equilibrium in a BOCS auction if and only if it satisfies BAS and CE. Furthermore, if β is
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an ex-post equilibrium in a BOCS auction then it is an ex-post equilibrium in every BOCS

auction.

For strategy profiles β̃, Lemmas 1 and 2(ii) imply the following.

Proposition 3. Take any auction format A ∈ B with a restriction P . Strategy profile β̃

of the form in (2) is an ex-post equilibrium iff it satisfies CE.

This finding implies that all equilibria of the single-unit Vickrey auction have an associated

ex-post equilibrium β̃ in all auctions in family B for all P .12

The BAS is relevant in the auction formats of family B because if and only if bids satisfy

the BAS, then Vickrey payments fulfill the core constraints (1). If Vickrey payments fulfill

(1), then they are the unique bidder-optimal payments in the reported core (Ausubel and

Milgrom, 2002; Bikhchandani and Ostroy, 2002). This implies that any BOCS auction

with a bidding space B(P ) such that all bids b ∈ B(P ) satisfy the BAS is equivalent to the

Vickrey auction with the same bidding space B(P ). Therefore, with such a bidding space,

truthful bidding – only on the bundles in P and only if feasible under B(P ) – is another

ex-post equilibrium (in this case, a dominant strategy equilibrium) in all auction formats

in family B.13

5. Conclusion

We conclude that findings on equilibrium existence in single-unit auctions transfer to

combinatorial auctions under mild assumptions. Furthermore, a combinatorial auction has

an ex-post equilibrium if the associated single-unit auction has one. To show this, we make

use of equilibria with a specific structure. In these equilibria, all bidders – although some

of them may be complements to each other by their valuations – claim through their bids

that they are substitutes. These equilibria have generically a low efficiency but may have

payoff advantages for the bidders. Rejecting these prevalent equilibria may require stronger

criteria than dominance or ex-post best responses.

12For private values, Blume and Heidhues (2004) characterize all equilibria of the single-unit Vickrey
auction.

13Relatedly, Sano (2011) shows for a private valuations setting with single-minded bidders (i.e., each
bidder desires one bundle, which can be the same or a different bundle than that desired by competitors)
that if and only if a “my rival’s rival is my rival” condition is fulfilled for each bidder for all feasible bids,
then all bidders have a weakly dominant strategy to bid their valuation in any BOCS auction.

11
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A. Proofs

Proof of Proposition 1: Denote by β̂ a Bayesian equilibrium in auction format A ∈ A
with positive bids allowed only on the single unit, P = {K}, and with no tie for almost all

θ ∈ Θ, which exists by assumption. We have to show that β̂ is a Bayesian equilibrium in

auction format A with P ⊆ 2K \ ∅, K ∈ P . Note that β̂, by being feasible when P = {K},
has the form

∀i ∈ N, ∀θi ∈ Θi : β̂i(y, θi) =

0 for y ∈ 2K \K

β̂i(K, θi) for y = K.

Suppose P 6= {K} and bidders choose β̂. Because β̂(θ) has positive bids only for K and

there is no tie for almost all θ ∈ Θ, the auction assigns for all θ all items to one of the bidders

and for almost all θ there is no tie. Furthermore, bidder i’s expected utility from β̂(θ) is

the same in auctions A(P̂ ) and A(P ). Because β̂i(θi) is bidder i’s best response to β̂−i(θ−i)

in A(P̂ ), β̂i(θi) must give bidder i in A(P ) his highest expected utility among all strategies

with βi(y, θi) = 0 for all y 6= K and all other strategies with that he wins K or nothing.

If bidder i in A(P ) deviates unilaterally to a strategy β′i(θi) 6= β̂i(θi) with β′i(θi) ∈ B(P )

for all θi, he may be assigned a bundle y /∈ {∅,K} only if β′i(y, θi) = β′i(K, θi) for some

y 6= K. Then, β′i is successful (i.e., bidder i receives a bundle) iff β̂i is successful, and if

β′i is successful then there is a tie between assignments in which i receives K or subsets

thereof. His payment is the same for any bundle he might be assigned in such a tie because

he is the only bidder that may have a strictly positive payment as β̂j(xj(β̂(θ)), θj) = 0

implies pj(β̂(θ), x(β̂(θ))) = 0 for all j 6= i (by property (b) from Definition 1) and because

total payments from tied assignments are the same (by property (a) from Definition 1).

Given that his payments are the same, bidder i is not better off when receiving y than

when receiving K because vi(y, θ) ≤ vi(K, θ) for all θ ∈ Θ, and the unilateral deviation

cannot be profitable. �

Proof of Proposition 2: Suppose auction format A ∈ A with bids only on the single unit

P = {K} has an ex-post equilibrium β̂ in which ties have zero probability. By Proposition

1, β̂ is a Bayesian equilibrium of auction format A if P 6= {K}. Suppose P 6= {K} and

14



bidders choose β̂. To prove that β̂ is an ex-post equilibrium, repeat the arguments from the

proof of Proposition 1 replacing “best-response” by “ex-post best response” and “expected

utility” by “ex-post utility”. �

Proof of Lemma 1: Applied to a strategy profile β̃ of the form in (2), BAS is

∀θ ∈ Θ, S ⊂ N : w(β̃(θ))− w(β̃N\S(θ)) ≥
∑
i∈S

[w(β̃(θ))− w(β̃−i(θ))]

⇐⇒ ∀θ ∈ Θ, S ⊂ N : max
i∈N

β̃i(θ)− max
i∈N\S

β̃i(θ) ≥
∑
i∈S

[max
j∈N

β̃j(θ)− max
j∈N\{i}

β̃j(θ)]. (4)

This holds because if ∃k : k ∈ S ∧ k ∈ arg max
i∈N

β̃i(θ) then (4) is

β̃k(θ)− max
i∈N\S

β̃i(θ) ≥ β̃k(θ)− max
j∈N\{k}

β̃j(θ) ⇐⇒ max
i∈N\S

β̃i(θ) ≤ max
j∈N\{k}

β̃j(θ)

and if @k : k ∈ S ∧ k ∈ arg max
i∈N

β̃i(θ) then (4) is

max
i∈N

β̃i(θ)− max
i∈N\S

β̃i(θ) = 0 =
∑
i∈S

[max
j∈N

β̃j(θ)− max
j∈N\{i}

β̃j(θ)].

�

Proof of Lemma 2: A profile β is an ex-post equilibrium iff β(θ) is a full-information Nash

equilibrium for every θ ∈ Θ. Fix θ = θ̂. In all auction formats in (i) to (iii), given β−i(θ̂−i),

bidder i’s bid is a best response iff x(β(θ̂)) ∈ arg maxx∈X(P )

(
vi(xi, θ̂)+

∑
j 6=i βj(xj , θ̂j)

)
and

he pays pVi (β(θ̂)). We show this by generalizing Theorem 1(a) by Beck and Ott (2018) to

any restriction P . Then, we connect these two conditions to CE and BAS for the auction

formats in (i) to (iii).

Consider bidder i and opponents’ bids β−i(θ̂−i). In all auction formats in (i) to (iii),

bidder i’s payoff is bounded above by maxx∈X(P )

(
vi(xi, θ̂)+

∑
j 6=i βj(xj , θ̂j)

)
−w(β−i(θ̂−i)).
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For every βi(θ̂i) with β(θ̂) ∈ B(P ),

vi(xi(β(θ̂)), θ̂)− pi(β(θ̂)) ≤ vi(xi(β(θ̂)), θ̂)− pVi (β(θ̂)) (5)

= vi(xi(β(θ̂)), θ̂) +
∑
j 6=i

βj(xj(β(θ̂)), θ̂j)− w(β−i(θ̂−i)) (6)

≤ max
(bi,β−i(θ̂−i))∈B(P )

vi (xi(bi, β−i(θ̂−i)), θ̂)+
∑
j 6=i

βj

(
xj(bi, β−i(θ̂−i)), θ̂j

)− w(β−i(θ̂−i))

(7)

= max
x∈X(P )

vi(xi, θ̂) +
∑
j 6=i

βj(xj , θ̂j)

− w(β−i(θ̂−i)) (8)

Inequality (5) holds because, given a β(θ̂) ∈ B(P ), payments in all auction formats in (i)

to (iii) weakly exceed Vickrey payments. Equality (6) holds by the definition of Vickrey

payments. Inequality (7) is by maximization, and (8) holds because all auction formats in

(i) to (iii) choose a bid-maximizing assignment among feasible assignments in X(P ).

The inequality in (5) holds with equality iff pi(β(θ̂)) = pVi (β(θ̂)). The inequality in (7)

holds with equality iff x(β(θ̂)) ∈ arg maxx∈X(P )

(
vi(xi, θ̂) +

∑
j 6=i βj(xj , θ̂j)

)
. Therefore,

bidder i’s payoff equals the upper bound iff these two conditions hold.

We will show that a bidder can get arbitrarily close to the upper bound. Let v̂i(y, θ̂) =

vi(y, θ̂)∀y ∈ P and v̂i(y, θ̂) = 0 ∀y /∈ P . Note, x(β(θ̂)) ∈ X̂(v̂i(θ̂), β−i(θ̂−i)) is equivalent

to x(β(θ̂)) ∈ arg maxx∈X(P )

(
vi(xi, θ̂) +

∑
j 6=i βj(xj , θ̂j)

)
. Consider βi(θ̂i) with βi(K, θ̂i) =

w(β−i(θ̂−i))−
∑

j 6=i βj(xj(vi(θ̂), β−i(θ̂−i)))+ε for ε ≥ 0, βi(xi(v̂i(θ̂), β−i(θ̂−i)), θ̂i) = βi(K, θ̂i),

and βi(y, θ̂i) = 0 for all y ∈ P \{K,x(v̂i(θ̂), β−i(θ̂−i))}. That is, bidder i bids zero for every

bundle except the bundle K and the bundle he would win, given P , if he bid truthfully.

With this bid, x(v̂i(θ̂), β−i(θ̂−i)) is in X̂(β(θ̂)) if ε = 0 and is the unique optimal assignment

(i.e, x(v̂i(θ̂), β−i(θ̂−i)) = X̂(β(θ̂))) if ε > 0. When bidder i wins xi(v̂i(θ̂), β−i(θ̂−i)), his pay-

ment must be within ε of his Vickrey payment because his bid for this bundle, which is the

upper bound on his payment in any auction in (i) to (iii), equals his his Vickrey payment

plus ε.

Since bidder i can get a payoff arbitrarily close to the upper bound (8) for all β−i(θ̂−i) in

all auctions in (i) to (iii), βi(θ̂i) is a best response iff the two conditions pi(β(θ̂)) = pVi (β(θ̂))

and x(β(θ̂)) ∈ arg maxx∈X(P )

(
vi(xi, θ̂) +

∑
j 6=i βj(xj , θ̂j)

)
are satisfied. Thus, β is an ex-

post equilibrium iff the auction chooses such assignment and payments for all i ∈ N and
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all θ ∈ Θ. The requirement on the assignment is exactly CE.

In a Vickrey auction, payments equal pVi (β(θ)) for all β and all θ by the rules of the

auction. This proves part (iii). It remains to show the connection between BAS and

payments pVi (β(θ)) in the auctions in (i) and (ii). A core-selecting auction must satisfy all

constraints in (1). Payments pVi (β(θ)) for all i ∈ N satisfy the constraints in (1) iff BAS

holds: ∀θ ∈ Θ, S ⊂ N∑
i∈S

[
w(β−i(θ))−

∑
j∈N\{i}

βj(xj(β(θ)), θj)
]
≥ w(βN\S(θ))−

∑
i∈N\S

βi(xi(β(θ)), θi)

⇐⇒ w(β(θ))− w(βN\S(θ)) ≥
∑
i∈S

[
w(β(θ))− w(β−i(θ))

]
.

This proves part (i). If payments pVi (β(θ)) for all i ∈ N satisfy the constraints in (1), they

are the unique bidder-optimal payments in the reported core. (To see this, combine Ausubel

and Milgrom (2002), Theorem 6, with the equivalence of reported payoffs in the core and

constraints in (1) plus x(β(θ)) ∈ X̂(β(θ)).) Thus, any BOCS auction chooses payments

pVi (β(θ)) for all i ∈ N iff these payments satisfy all constraints in (1). Any auction in B
must then choose payments pVi (β(θ)) for all i ∈ N because pVi (β(θ)) = pBOCSi (β(θ)) for all

i ∈ N and all BOCS auctions. This proves part (ii).

�
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