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Abstract

We revisit the question whether U.S. fiscal policy in the pre-Volcker period was active

or passive. To determine the policy stance, we estimate a DSGE model with monetary

and fiscal policy interactions employing a sequential Monte Carlo algorithm (SMC)

for posterior evaluation. In contrast to previous studies, we do not have to treat the

different policy regimes as distinct models, which have to be estimated separately.

Instead, the SMC enables us to estimate the DSGE model over its entire parameter

space to determine the prevailing policy mix. Our findings attribute the leading role

to the fiscal authority, while the monetary authority accommodated its actions. For

active monetary/passive fiscal policy, or passive monetary/passive fiscal policy we find

no evidence in the data.
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1 Introduction

It is not since the recent economic crisis in the Eurozone that macroeconomists have put

the interaction of monetary and fiscal policy on their research agenda. Questions like, “How

does the transmission of monetary and fiscal policy work?”, or, “How can inflation be sta-

bilized?”, are only some of the classical macroeconomic issues of importance for which the

exact empirical characterization of the prevailing monetary-fiscal policy regimes is essential.

Interestingly, for one historical episode, which is very instructive to all these questions, the

debate about the monetary-fiscal policy mix is still unsettled. This episode is usually re-

ferred to as the Great Inflation of the 1960s and 1970s in the U.S.. In our study, we revisit

this episode and determine the interaction of monetary and fiscal policy in the pre-Volcker

period by estimating a DSGE model with three distinct monetary/fiscal policy regimes with

a sequential Monte Carlo algorithm (SMC). Compared to previous studies, which estimated

each possible policy regime as a distinct model, employing a SMC enables us to estimate the

DSGE model over its entire parameter space. We find that during the pre-Volcker period

the fiscal authority played the lead role and monetary policy acted passively.

The insight that monetary and fiscal policy are not independent from each other and

have to be studied jointly has meanwhile a long tradition in modern macroeconomics and

goes back to Leeper (1991), Sims (1994), Woodford (1996), and Cochrane (2001). While

an active policy authority is able to realize its agenda, the passive authority is reduced to

accommodate the counterparts’ actions. The literature largely agrees that monetary policy

in the pre-Volcker period was passive. Clarida et al. (2000) and Mavroeidis (2010) estimate

monetary policy reaction functions. Lubik and Schorfheide (2004) consider a monetary

DSGE model that allows for indeterminacy, Boivin and Giannoni (2006) combine evidence

from vector autoregressive and general equilibrium analysis and Coibion and Gorodnichenko

(2011) include the trend level of inflation into their study to come to a similar conclusion.

Concerning the stance of fiscal policy, however, the evidence is mixed. While Bhattarai et al.

(2016) find that the fiscal authority was passive and strongly increased taxes to debt, Sims
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(2011) and Bianchi and Ilut (2017) attribute fiscal policy the leading role.

To shed more light on this classical debate, we revisit the question whether U.S. fiscal

policy was active or passive during the pre-Volcker period with a novel empirical toolkit. In

particular, the SMC algorithm, established in the DSGE literature by Herbst and Schorfheide

(2014, 2015) allows us to create new perspectives on an old question. Previous studies that

relied on Bayesian-estimated DSGE models with distinct monetary/fiscal policy regimes,

treated each regime as a different model. To determine the prevailing policy mix, typically

each regime was successively imposed by estimating a restricted parameter space, draws

from the corresponding posterior density were generated by a MCMC algorithm, usually the

Random-Walk Metropolis-Hastings algorithm (RWMH), and finally the fit of each model

was compared by a model selection criterion. We argue that employing a SMC algorithm

for drawing conclusions on the stance of monetary and fiscal policy is beneficial in three

dimensions. First, the SMC is able to deal with difficult posterior surfaces, an outcome

that a priori cannot be excluded in the case of a DSGE model with monetary-fiscal policy

interactions. Due to this feature the SMC enables us to estimate the DSGE model over

its entire parameter space such that the most likely policy regime is directly determined by

the data. Second, the SMC is amenable to parallelization and, thus, especially for larger

DSGE models, computationally attractive. Third, the SMC can be easily initialized by

taking independent draws from the prior density. A time-consuming search for a mode is

not necessary.

The remainder of this paper is structured as follows. Section 2 describes the DSGE model

with monetary-fiscal policy interactions. In Section 3, we outline the empirical analysis. We

specify the SMC algorithm used for posterior sampling and discuss our estimation results.

The final section concludes the study.
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2 A DSGE model with monetary and fiscal policy in-

teractions

In this section, we outline the DSGE model with monetary-fiscal policy interactions, char-

acterize its distinct monetary-fiscal policy regimes, and present the solution method for the

model.

2.1 Model description

We use the DSGE model set up in Bhattarai et al. (2016). It features a complete description

of fiscal policy, a time-varying inflation and debt-to-output target, partial dynamic price

indexation, and external habit formation in consumption. We here present only the first-

order approximations of the model equations that determine equilibrium dynamics. For a

detailed analysis of the model’s characteristics, we refer the reader to the original study.

Consumption behavior of households is given by the consumption Euler equation:

Ĉt =
ā

ā+ η
EtĈt+1 +

η

ā+ η
Ĉt−1 −

(
ā− η
ā+ η

)(
R̂t − Etπ̂t+1

)
+

ā

ā+ η
Etât+1−

− η

ā+ η
ât +

(
ā− η
ā+ η

)
d̂t,

(1)

where Ĉt is aggregate consumption, R̂t is the interest rate on government bonds, ât is the

growth rate of technology, π̂t is the inflation rate, and d̂t stands for preferences.1 The param-

eters ā and η denote the steady-state value of at and external habit formation, respectively.

The New Keynesian Phillips curve is denoted by

1We define the log-linear deviation of a detrended variable from its corresponding steady state as X̂t =
lnXt − lnX̄. Only the fiscal variables b̂t = bt − b̄, ĝt = gt − ḡ, τ̂t = τt − τ̄ , and ŝt = st − s̄ are normalized by
output and linearized around their steady states.
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π̂t =
β

1 + γβ
Etπ̂t+1 +

γ

1 + γβ
π̂t−1 + κ

[(
ϕ+

ā

ā− η

)
Ŷt −

η

ā− η
Ŷt−1 +

η

ā− η
ât−

−
(

ā

ā− η

)(
1

1− ḡ

)
ĝt +

(
η

ā− η

)(
1

1− ḡ

)
ĝt−1

]
+ ût,

(2)

where Ŷt is aggregate output, ĝt represents the government spending-to-output ratio, and ût

can be interpreted as cost-push shock. The parameters β, γ, ϕ and ḡ are, respectively, the

discount factor, the degree of price indexation, the inverse of the Frisch elasticity of labour

supply, and the steady-state value of government spending. Furthermore, κ := (1−αβ)(1−α)

α(1+ϕθ̄)(1+γβ)
.

α stands for the degree of price rigidity in the economcy and θ̄ for the steady-state value of

the elasticity of substitution between intermediate goods.

Monetary policy is characterized by the following rule:

R̂t = ρRR̂t−1 + (1− ρR)
[
φπ(π̂t − π̂∗t ) + φY (Ŷt − Ŷ ∗t )

]
+ εR,t. (3)

π̂∗t is the inflation target, and Ŷ ∗t is potential output. The idiosyncratic monetary policy

shock εR,t is assumed to evolve as i.i.d. N(0, σ2
R). The parameters ρR, φπ and φY represent,

respectively, interest rate smoothing, responses to deviations of inflation from its target, and

responses to deviations of output from its natural level.

The fiscal authority sets lump-sum taxation by a rule:

τ̂t = ρτ τ̂t−1 + (1− ρτ )
[
ψb(b̂t − b̂∗t−1) + ψY (Ŷt − Ŷ ∗t )

]
+ ετ,t. (4)

τ̂t stands for the tax-revenue-to-output ratio, b̂t is the debt-to-output ratio, and b̂∗t is the

debt-to-output ratio target. The non-systematic tax policy shock ετ,t is assumed to evolve

as i.i.d. N(0, σ2
τ ). The tax policy rule features tax smoothing (ρτ ), and systematic reactions

of tax revenues to deviations of lagged debt from its target (ψb) and to deviations of output

from natural output (ψY ).
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The government spending rule is modeled as

ĝt = ρgĝt−1 − (1− ρg)χY
(
Ŷt−1 − Ŷ ∗t−1

)
+ εg,t. (5)

ĝt stands for the government spending-to-output ratio. The exogenous shock to governement

spending εg,t is assumed to follow an i.i.d.-process with N(0, σ2
g). ρg represents smoothing in

government purchases, and χY is the response of government spending to the lagged output

gap. Under the assumption of flexible prices, the natural level of government spending is:

ĝ∗t = ρgĝ
∗
t−1 + εg,t. (6)

The governement budget constraint is given by:

b̂t =
1

β
b̂t−1 +

b̄

β

(
R̂t−1 − π̂t − Ŷt + Ŷt−1 − ât

)
+ ĝt − τ̂t + ŝt. (7)

ŝt is the ratio of government transfers to output and the parameter b̄ is the steady-state

value of the debt-to-output ratio.

The aggregate resource constraint is given by:

Ŷt = Ĉt +
1

1− ḡ
ĝt. (8)

The natural level of output is:

Ŷ ∗t =
η

ϕ (ā− η) + ā
Ŷ ∗t−1 +

ā

[ϕ (ā− η) + ā] (1− ḡ)
ĝ∗t −

η

[ϕ (ā− η) + ā] (1− ḡ)
ĝ∗t−1−

− η

ϕ (ā− η) + ā
ât.

(9)

Finally, six additional exogenous shocks drive economic fluctuations. They are all as-

sumed to evolve according to univariate AR(1) processes.

Preferences evolve as
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d̂t = ρdd̂t−1 + εd,t with εd,t ∼ i.i.d. N(0, σ2
d). (10)

Technology evolves as

ât = ρaât−1 + εa,t with εa,t ∼ i.i.d. N(0, σ2
a). (11)

Mark-up shocks are assumed to follow

ût = ρuût−1 + εu,t with εu,t ∼ i.i.d. N(0, σ2
u). (12)

Governement transfers are given by

ŝt = ρsŝt−1 + εs,t with εs,t ∼ i.i.d. N(0, σ2
s). (13)

The inflation target evolves as

π̂∗t = ρππ̂
∗
t−1 + επ,t with επ,t ∼ i.i.d. N(0, σ2

π). (14)

The debt-to-output ratio target follows

b̂∗t = ρbb̂
∗
t−1 + εb,t with εb,t ∼ i.i.d. N(0, σ2

b ). (15)

2.2 Policy regimes

A unique equilibrium of the economy arises if either monetary policy is active while fiscal

policy is passive (regime M) or monetary policy is passive while fiscal policy is active (regime

F). If both monetary and fiscal policy are passive multiple equilibria exist (indeterminacy).

No stationary equilibrium exists if both authorities act actively (explosiveness). The bound-

aries of the four distinct policy regimes can be characterized analytically in Bhattarai et al.
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(2016)’s model. In particular, monetary policy is active if

φπ > 1− φY

(
1− β̃
κ̃

)
, (16)

where β̃ = γ+β
1+γβ

and κ̃ = (1−αβ)(1−α)

α(1+ϕθ̄)(1+γβ)

(
1 + ϕ+ χY

1−ḡ

)
, while fiscal policy is active if

ψb <
1

β
− 1. (17)

2.3 Model solution under determinacy and indeterminacy

We collect the parameters of the loglinearized model in the vector ϑ with domain Θ and

solve the system of equations for its state-space representation.2 Under determinacy (regime

F, regime M), we employ the solution algorithm for linear rational expectations models of

Sims (2002) which expresses the model solution as

zt = Γ∗1(ϑ)zt−1 + Ψ∗(ϑ)εt. (18)

Under indeterminacy, we apply the generalization of this procedure suggested by Lubik and

Schorfheide (2003, 2004):

zt = Γ∗1(ϑ)zt−1 +
[
Γ∗0,ε(ϑ) + Γ∗0,ζ(ϑ)M̃

]
εt + Γ∗0,ζ(ϑ)Mζζt. (19)

Equation 19 illustrates that indeterminacy changes the nature of the solution in two dimen-

sions. First, the transmission of fundamental shocks εt is no longer uniquely determined as it

additionally depends on the matrix M̃ . Second, an exogenous sunspot shock ζt, unrelated to

the fundamental shocks εt, potentially affects the dynamics of the model variables zt. Thus,

indeterminacy introduces additional parameters.

We denote the standard deviation of the sunspot shock as σζ and normalize as Lubik

2More details on the implementation of the model solution are given in Appendix A.
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and Schorfheide (2004) Mζ to unity. Also in accordance with Lubik and Schorfheide (2004),

we replace M̃ with M̃ = M∗(ϑ) + M to prevent that the transmission of fundamental

shocks changes drastically when the boundary between the determinacy regimes and the

indeterminacy regime is crossed. Around this boundary, small changes in ϑ should rather

leave the propagation mechanism of structural shocks unaffected. That is why we choose

M∗(ϑ) such that the impulse responses ∂zt/∂ε
′
t become continous on the boundary. The

vector M , in contrast, which determines the relationship between fundamental shocks and

forecast errors, is estimated. It can be interpreted to capture agents’ self-fulfilling beliefs and

consists of the following entries: M =
[
Mgζ ,Mdζ ,Maζ ,Muζ ,Msζ ,MRζ ,Mτζ ,Mπζ ,Mbζ

]
. For

the parameters in M we choose priors centered around zero and thus let strictly the data

decide how indeterminacy changes the transmission mechanism of structural shocks.

To compute the matrix M∗(ϑ) which guarantees continuous model dynamics on the

boundary, we proceed in several steps. First, we construct for every parameter vector ϑ ∈ ΘI

(indeterminay) a reparametrized vector ϑ∗ = g∗(ϑ) that lies on the boundary between the

indeterminacy and the determinacy regimes. Then, M∗(ϑ) is chosen by a least-squares

criterion such that the impulse responses ∂zt
∂ε′t

(ϑ,M) conditional on ϑ resemble the impulse

responses conditional on the vector on the boundary ∂zt
∂ε′t

(g∗(ϑ)). The DSGE model with

monetary-fiscal policy interactions presented in subsection 2, however, gives rise to two

different determinate solutions (regime F and regime M) which are generally characterized

by different transmission mechanisms. To deal with this ambiguity, we proceed as follows:

1. For every ϑ ∈ ΘI we construct a vector ϑM = gM(ϑ) that demarks the boundary

between regime M and the indeterminacy regime and a vector ϑF = gF (ϑ) that lies

on the boundary to regime F. The function gM(ϑ) is obtained by replacing φπ in the

vector ϑ with

φ̃π = 1− φY

(
1− β̃
κ̃

)
. (20)
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The function gF (ϑ) is obtained by replacing ψb in the vector ϑ with

ψ̃b =
1

β
− 1. (21)

2. We solve the model successively with the reparametrized vectors ϑM and ϑF and com-

pute

MM(ϑ) =
[
ΓM0,ζ(ϑ)′ΓM0,ζ(ϑ)

]−1
ΓM0,ζ(ϑ)′

[
ΓM0,εg

M(ϑ)− ΓM0,ε(ϑ)
]

, and (22)

MF (ϑ) =
[
ΓF0,ζ(ϑ)′ΓF0,ζ(ϑ)

]−1
ΓF0,ζ(ϑ)′

[
ΓF0,εg

F (ϑ)− ΓF0,ε(ϑ)
]

. (23)

3. To choose the M∗(ϑ) that minimizes the discrepancy between ∂zt
∂ε′t

(ϑ,M) and ∂zt
∂ε′t

(g∗(ϑ)),

we compute the distances to the respective boundaries as

DM =
[
ΓM0,εg

M(ϑ)− ΓM0,ε(ϑ)
]
− ΓM0,ζ(ϑ)MM(ϑ), and (24)

DF =
[
ΓF0,εg

F (ϑ)− ΓF0,ε(ϑ)
]
− ΓF0,ζ(ϑ)MF (ϑ). (25)

4. As in our model all fundamental shocks are assumend to be independent from each

other, we compute the Euclidean norm of each column in D∗, sum them up, and finally

choose the M∗(ϑ) that corresponds with3

min

[
9∑
j=1

||dMj ||2,
9∑
j=1

||dFj ||2

]
.

3For matrix D∗ = (d∗ij), its i-th row and j-th column are denoted by d∗i and d∗j , respectively.
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3 Empirical analysis

In this section, we present the empirical model analysis. First, we outline how we estimate

the model. We describe the prior distributions and the dataset, and illustrate the procedure

for posterior sampling. Finally, we present the parameter estimates and discuss the posterior

probabilities of the distinct policy regimes.

3.1 Estimation strategy

We use Bayesian methods and combine our priors with the likelihood of the model solu-

tion, calculated by the Kalman filter to construct the posterior distribution of the model

parameters.

Prior distributions and calibrated parameters

In line with Bhattarai et al. (2016), we fix a few model parameters. We calibrate the inverse

of the Frisch elasticity of labour supply to ϕ = 1 and the steady-state value of the elasticity

of substitution between goods to θ̃ = 8, since they cannot be separately identified from the

Calvo parameter α. We also fix the parameters measuring the persistence of the time-varying

policy targets to ρπ = ρb = 0.995.

Table 1: Prior distributions

Prior
Parameter Range Distribution Mean SD 90 percent int.
Monetary policy
φπ, interest rate response to inflation R

+ N 0.8 0.6 [0.14, 1.84]
φY , interest rate response to output R

+ G 0.3 0.1 [0.16, 0.5]
ρR, response to lagged interest rate [0, 1) B 0.6 0.2 [0.24, 0.9]

Fiscal policy
ψb, tax response to lagged debt R N 0 0.1 [−0.16, 0.16]
ψY , tax response to output R N 0.4 0.3 [−0.1, 0.9]
χY , govt spending response to
lagged output

R N 0.4 0.3 [−0.1, 0.9]

11



Table 1: Prior distributions - continued

Prior
Parameter Range Distribution Mean SD 90 percent int.
ρg, response to lagged govt spending [0, 1) B 0.6 0.2 [0.24, 0.9]
ρτ , response to lagged taxes [0, 1) B 0.6 0.2 [0.24, 0.9]

Preference and HHs
η, habit formation [0, 1) B 0.6 0.2 [0.24, 0.9]
µ := 100(β−1 − 1), discount factor R

+ G 0.25 0.1 [0.11, 0.44]

Frictions
α, price stickiness [0, 1) B 0.5 0.1 [0.33, 0.67]
γ, price indexation [0, 1) B 0.6 0.2 [0.24, 0.9]

Shocks
ρd, preference [0, 1) B 0.6 0.2 [0.24, 0.9]
ρa, technology [0, 1) B 0.4 0.2 [0.1, 0.76]
ρu, cost-push [0, 1) B 0.6 0.2 [0.24, 0.9]
ρs, transfers [0, 1) B 0.6 0.2 [0.24, 0.9]
σg, govt spending R

+ Inv. Gamma 0.1 4 [0.65, 0.24]
σd, preference R

+ Inv. Gamma 0.3 4 [0.19, 0.72]
σa, technology R

+ Inv. Gamma 0.5 4 [0.32, 1.17]
σu, cost-push R

+ Inv. Gamma 0.04 4 [0.026, 0.094]
σs, transfers R

+ Inv. Gamma 0.08 4 [0.052, 0.188]
σR, monetary policy R

+ Inv. Gamma 0.15 4 [0.098, 0.353]
στ , tax R

+ Inv. Gamma 0.2 4 [0.13, 0.48]
σπ, inflation target R

+ Inv. Gamma 0.003 4 [0.002, 0.007]]
σb, debt/output target R

+ Inv. Gamma 0.05 4 [0.033, 0.118]

Steady state
a := 100(ā− 1), technology R N 0.55 0.1 [0.38, 0.71]
π := 100(π̄ − 1), inflation R N 0.8 0.1 [0.63, 0.96]
b := 100b̄, debt/output R N 35 2 [31.71, 38.3]
τ := 100τ̄ , tax/output R N 25 2 [21.73, 28.27]
g := 100ḡ, govt spending/output R N 22 2 [18.81, 25.31]

Indeterminacy
σζ , sunspot shock R

+ Inv. Gamma 0.2 4 [0.13, 0.48]
Mgζ R N 0 1 [−1.64, 1.64]
Mdζ R N 0 1 [−1.64, 1.64]
Maζ R N 0 1 [−1.64, 1.64]
Muζ R N 0 1 [−1.64, 1.64]
Msζ R N 0 1 [−1.64, 1.64]
MRζ R N 0 1 [−1.64, 1.64]
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Table 1: Prior distributions - continued

Prior
Parameter Range Distribution Mean SD 90 percent int.
Mτζ R N 0 1 [−1.64, 1.64]
Mπζ R N 0 1 [−1.64, 1.64]
Mbζ R N 0 1 [−1.64, 1.64]

Note: The Inverse Gamma prior distributions have the form p(x|ν, s) ∝ x−ν−1e−νs
2/2x2 ,

where ν = 4 and s is given by the value in the column denoted as “Mean”.

Table 1 specifies the prior distributions. They extend over a broad range of parameter

values. As we initialize the SMC algorithm from the prior, we carefully tailored a prior

that results in realistic model implications, but nevertheless remains agnostic about the

prevailing policy regime.4 In the following, we discuss only the key parameters of our analysis.

Particularly, the policy parameters in the monetary and fiscal policy rule φπ and ψb play a

central role in our analysis as they determine the policy regime. For φπ we choose a Normal

distribution restricted to the positive domain with an implied 90% probability interval from

0.14 to 1.84, while for ψb the interval extends from -0.16 to 0.16. Our choice is motivated by

the consideration to construct prior distributions that yield more or less equal probabilities

for regime F and indeterminacy. Especially, as we initialize the SMC algorithm from the

prior we do not want to impose artificially a certain policy regime before confronting the

model with the data. The implied prior probabilities of the policy regimes presented in

Table 2 support our choice. Regime F and the indeterminacy regime receive almost identical

support.

A second group of parameters we want to discuss are those necessary to characterize the

indeterminacy model solution. For the parameters in the matrix M , representing agents’

self-fulfilling beliefs, we choose priors centered around zero in order to let the data decide if

and how indeterminacy changes the propagation mechanism of the fundamental shocks. The

prior of the sunspot shock’s standard deviation σζ is also identical to Lubik and Schorfheide

4In Appendix B we show results from a prior predictive analysis. In particular, we take 20,000 draws
from the prior, simulate the model’s observables and plot these simulated time series against the actual data
from 1960:Q1 to 1979:Q2 that we use for estimating the model.
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Table 2: Prior probability of pre-Volcker policy regimes

Regime M Regime F Indeterminacy Explosiveness

Probability 19.67 30.5 29.14 20.69

Note: The prior probabilities of the policy regimes were obtained from a prior

predictive analysis. We drew ϑ 20,000 times from the priors specified in Table 1,

solved the model with each draw and computed the shares of each policy regime.

(2004).

Data

We fit the loglinearized DSGE model to six quarterly U.S. time series and estimate the model

for the pre-Volcker sample 1960:Q1 to 1979:Q2.5 The list of observables includes output,

inflation, nominal interests rates, the tax-revenue-to-output ratio, the market value of the

government debt-to-output ratio, and the government spending-to-output ratio.

Sequential Monte Carlo posterior sampling

We calculate the likelihood function of the model solution over the determinacy and inde-

terminacy region of the parameter space as

p(Y |ϑ,M) = {ϑ ∈ ΘD}pD(Y |ϑ) + {ϑ ∈ ΘI}pI(Y |ϑ,M),

where Y is the relevant data and h(x) = {x ∈ X} is the indicator function that is one if

x ∈ X and zero otherwise. We are interested in the posterior density p(ϑ,M |Y ), which is

5For the estimation we use the dataset of Bhattarai et al. (2016) downloaded from the supplemental
material of their study https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:
10.7910/DVN/OHUWKM. More details on the data and the corresponding measurement equations are given
in Appendix C.
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given by

p(ϑ,M |Y ) =
p(Y |ϑ,M)p(ϑ,M)

p(Y )
, where p(Y ) =

∫
p(Y |ϑ,M)p(ϑ,M)dϑdM . (26)

p(ϑ,M) stands for the prior density, and p(Y ) represents the marginal data density.

Posterior inference in DSGE models relies on sampling techniques as the moments of

p(ϑ,m|Y ) cannot be characterized in closed forms. For our application, we choose the

sequential Monte Carlo algorithm introduced to the DSGE literature by Creal (2007) and

further enhanced and theoretically justified by Herbst and Schorfheide (2014, 2015).6 Three

considerations make the SMC algorithm our prefered choice. First, the SMC is able to deal

with difficult posterior surfaces, an outcome that a priori cannot be excluded in the case

of the DSGE model with monetary-fiscal policy interactions. Due to this feature, we do

not have to adopt the common estimation approach, which implies solving and estimating

the model separately for each policy regime, and finally comparing the model fit across

regimes. Rather, we let the SMC algorithm explore the entire parameter space such that the

most likely policy regime is directly determined by the data. Second, the SMC is amenable

to parallelization and, thus, especially for larger DSGE models, computationally attractive.

Third, the SMC can be easily initialized by taking independent draws from the prior density.

A time-consuming search for a mode is not necessary.

The basic concept of the SMC relies on importance sampling, which means that the

posterior p(ϑ,M |Y ) is approximated by an easy-to-sample proposal, or source density. How-

ever, in the high-dimensional parameter space of DSGE models good proposal densities are

difficult to obtain. That is why the SMC constructs proposal densities sequentially. More

precisely, the algorithm draws from a sequence of bridge densities that link a known starting

distribution with the targeted posterior density. A meaningful starting distribution con-

stitutes the prior p(ϑ,M). The bridge distributions, in contrast, differ in the amount of

6Chopin (2002), Del Moral et al. (2006), and Creal (2012), among others, provide further details on SMC
algorithms.
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information from the likelihood they contain. At each stage of the algorithm an increment

of the likelihood is added to the proposal density. At the moment the full information from

the likelihood has been released, an approximation of the posterior is obtained. In particular,

the sequence of n distributions is given by

pn(ϑ,M |Y ) =
[p(Y |ϑ,M)]δnp(ϑ,M)∫
p(Y |ϑ,M)δnp(ϑ,M)dϑdM

, n = 1, ..., Nδ. (27)

We follow Herbst and Schorfheide (2014) and choose the tuning parameter δn as an increasing

sequence of values such that δ1 = 0 and δNδ = 1. The length of this sequence coincides

with the number of importance samplers. At the first stage of the algorithm, p1(ϑ,M |Y )

is the prior density p(ϑ,M). At the last stage, the final proposal density pNδ(ϑ,M |Y )

constitutes the posterior p(ϑ,M |Y ). In particular, our tempering schedule {δn}Nδn=1 is given

by δn = ((n− 1)/(Nδ − 1))λ. The tuning parameter λ determines how much information

from the likelihood is incorporated in each proposal density.

In a nutshell, the SMC draws in Nδ stages sequentially N parameter vectors ϑi, i =

1, ..., N from the proposal densities and assigns them with importance weights W̃ i. Each of

the i pairs (ϑi, W̃ i) is known as particle, and the set of particles {(ϑi, W̃ i)}Ni=1 approximates

the density in iteration. Each stage of the SMC consists of three steps. First, in the correction

step of stage n, the particles of the previous stage {(ϑin−1, W̃
i
n−1)}Ni=1 are reweighted to correct

for the difference between pn−1(ϑ,M |Y ) and pn(ϑ,M |Y ). The second step, the selection step,

controls the accuracy of the particle approximation. Whenever the distribution of weights

becomes too uneven, systematic resampling restores a well-balanced set of particles. In the

last step, the mutation step, the particle values are propagated around in the parameter

space by MMH iterations of a RWMH algorithm with Nblocks random blocks. The particles’

new location determines the updated density pn(ϑ,M |Y ).7

To estimate the model, we choose the following tuning parameters for the SMC. We use

N = 20, 000 particles, Nδ = 600 stages, λ = 2.4, Nblocks = 10, MMH = 3. As suggested by

7A more detailed description of the SMC algorithm is given in Appendix D.
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Herbst and Schorfheide (2014), λ was determined by examining the particle degeneracy after

the first piece of information of the likelihood was added to the prior density in n = 1. We

increased λ till at least 80% of the total number of particles (16,000) was retained. To choose

Nblocks and MMH , we monitored the acceptance rate in the mutation step in preliminary runs.

Nblocks = 10 and MMH = 3 ensured a stable acceptance rate of 25% without down-scaling

the proposal variance too much.

3.2 Results

We start our discussion with the posterior probabilities of the policy regimes in the pre-

Volcker period. As Table 3 shows, we find with 99.8 % nearly perfect empirical support for

regime F. The indeterminacy regime, as well as regime M, receive no support from the data.

Table 3: Posterior probability of pre-Volcker policy regimes

Regime M Regime F Indeterminacy Explosiveness

Probability 0.2 99.8 0 0

Note: To obtain the posterior probabilities, we solved the model with each of the

20,000 particles and computed the shares of each policy regime.

The posterior mean estimates presented in Table 4 provide further evidence for this

finding. In line with the corresponding literature, we find with φπ = 0.37 that monetary

policy in the pre-Volcker period was passive. The fiscal authority, however, played the lead

role during this period. With ψb = −0.045 fiscal policy is characterized as active. Although

we allow for indeterminacy in our estimation approach, the mix of passive monetary and

passive fiscal policy is not supported by the data. Except σζ , all parameters related to

the indeterminacy regime are insignificant.8 Thus, our results are in line with the findings

of Sims (2011) and Bianchi and Ilut (2017) who also provide evidence for a leading fiscal

8In Appendix E we present for all estimated parameters plots of their corresponding prior and posterior
densities.
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authority in the U.S. during the 1960s and 1970s.

Table 4: Posterior distributions for estimated parameters

Posterior
Parameter Mean SD 90 percent credible set
Monetary policy
φπ, interest rate response to inflation 0.37 0.14 [0.12, 0.6]
φY , interest rate response to output 0.46 0.1 [0.29, 0.65]
ρR, response to lagged interest rate 0.32 0.13 [0.12, 0.57]

Fiscal policy
ψb, tax response to lagged debt -0.045 0.02 [-0.08, -0.012]
ψY , tax response to output -0.49 0.26 [-0.95, -0.09]
χY , govt spending response to
lagged output

-0.45 0.15 [-0.7, -0.19]

ρg, response to lagged govt spending 0.86 0.03 [0.8, 0.91]
ρτ , response to lagged taxes 0.71 0.05 [0.6, 0.79]

Preference and HHs
η, habit formation 0.6 0.1 [0.43, 0.77 ]
µ := 100(β−1 − 1), discount factor 0.18 0.09 [0.05, 0.36]

Frictions
α, price stickiness 0.7 0.07 [0.57, 0.82]
γ, price indexation 0.15 0.1 [0.02, 0.34]

Shocks
ρd, preference 0.59 0.1 [0.42, 0.75]
ρa, technology 0.29 0.18 [0.03, 0.62]
ρu, cost-push 0.47 0.14 [0.18, 0.66]
ρs, transfers 0.18 0.13 [0.02, 0.49]
σg, govt spending 0.25 0.03 [0.2, 0.32]
σd, preference 1.01 0.35 [0.5, 1.7]
σa, technology 0.55 0.16 [0.31, 0.87]
σu, cost-push 0.13 0.03 [0.08, 0.2]
σs, transfers 1.15 0.21 [0.81, 1.53]
σR, monetary policy 0.17 0.03 [0.12, 0.23]
στ , tax 0.83 0.12 [0.64, 1.06]
σπ, inflation target 0.008 0.006 [0.001, 0.02]
σb, debt/output target 0.2 0.13 [0.04, 0.44]

Steady state
a := 100(ā− 1), technology 0.38 0.1 [0.2, 0.55]
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Table 4: Posterior distributions for estimated parameters - continued

Posterior
Parameter Mean SD 90 percent credible set
π := 100(π̄ − 1), inflation 0.87 0.09 [0.59, 1.14]
b := 100b̄, debt/output 35.62 3.11 [30.41, 40.63]
τ := 100τ̄ , tax/output 24.58 0.24 [24.53, 25.44]
g := 100ḡ, govt spending/output 24.57 0.14 [24.17, 24.99]

Indeterminacy
σζ , sunspot shock 0.36 0.21 [0.11, 0.76]
Mgζ 0.17 2 [-3.12, 3.43]
Mdζ 0.07 2.04 [-3.22, 3.46]
Maζ 0.15 2.1 [-3.28, 3.65]
Muζ 0.16 2.04 [-3.13, 3.5]
Msζ 0.29 1.91 [-2.79, 3.62]
MRζ -0.52 2.09 [-3.91, 3.01]
Mτζ 0.17 2.33 [-3.54, 4.01]
Mπζ 0.21 1.57 [-2.29, 2.92]
Mbζ 1.22 2.23 [-2.48, 4.67]
Log Marginal data density -608.49

Note: Means, standard deviations and estimates of the log marginal data density are
for one run of the SMC algorithm with N = 20, 000, Nδ = 600, λ = 2.4, Nblocks = 10,
and MMH = 3. The log marginal data density is obtained as a by-product during
the correction step of the SMC algorithm, see Herbst and Schorfheide (2014) for
further details.

4 Conclusion

Was U.S. fiscal policy in the pre-Volcker period active or passive? We revisit this classical

question of modern macroeconomics with a novel empirical toolkit. Using a SMC algorithm,

we are able to estimate a DSGE model with monetary-fiscal policy interactions over its

entire parameter space. Our empirical findings strongly support a setting in which the fiscal

authority played the leading role in the period of the Great Inflation and the monetary

authority acted passively.
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Appendix A Implementation of the model solution

The linear rational expectation form of the DSGE model presented in Section 2 is given by

Γ0(ϑ)zt = Γ1(ϑ)zt−1 + Ψ(ϑ)εt + Π(ϑ)ηt. (28)

z is the vector of state variables, the vector ε includes the exogenous variables, and η is a

vector of expectation errors. To apply the solution algorithm of Sims (2002), we define for a

generic variable x̂t the corresponding one-step-ahead rational expectations forecast error as

ηx,t = x̂t−Et−1[x̂t]. In our application, the vectors of the general model form are defined as:

zt = [ĉt π̂t ât R̂t d̂t Ŷt ĝt ût π̂
∗
t Ŷ

∗
t τ̂t b̂t b̂

∗
t ŝt ĝ

∗
t ĉt−1 π̂t−1 ĝt−1 Ŷt−1]′,

εt = [εg,t εd,t εa,t εu,t εs,t εR,t ετ,t επ,t εb,t]
′, and

ηt = [ηc,t ηπ,t]
′.
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Appendix B Prior implications

Here, we show results of a prior predictive analysis. In particular, we take 20,000 draws from

the prior and simulate with these draws 20,000 times the model’s observables.
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Figure 1: Simulated model observables vs. real data for the period 1960:Q1 to 1979:Q2. The
bold yellow line shows the actual time series we use for estimating the model. The blue and
the red line show the 90% intervall of the simulated time series.
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Appendix C Data description

We use the dataset of Bhattarai et al. (2016). Unless otherwise noted, the data is retrieved

from the National Income and Product Accounts Tables published by the Bureau of Economic

Analysis. All time series in nominal values are converted to real values by dividing them by

the GDP deflator.

Per capita output: Per capita output is the sum of personal consumption of nondurables

and services, and government consumption divided by civilian noninstitutional pop-

ulation. Civilian noninstitutional poulation is taken from the FRED database of the

Federal Reserve Bank of St. Louis.

Inflation: The gross inflation rate is the annualized GDP deflator.

Interest rate: The annualized nominal interest rate is the effective federal funds rate from

the FRED database of the Federal Reserve Bank of St. Louis.

Tax revenues: The tax-revenues-to-output ratio is defined as the sum of current tax re-

ceipts and contributions for government social insurance divided by output.

Government debt: Government debt corresponds to the market value of privately held

gross federal debt, retrieved from the Federal Reserve Bank of Dallas. The government

debt-to-output ratio is obtained by dividing the series by output.

Government spending: The government spending-to-output ratio is defined as govern-

ment consumption divided by output.
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The relationship between observables and model variables is given by



100×∆ln Outputt

Inflt (%)

Interstt (%)

TaxRevt (%)

GovDebtt (%)

GovSpendt (%)


=



a

4π

4(a+ π + µ)

τ

b

g


+



Ŷt − Ŷt−1 + ât

4π̂t

4R̂t

τ̂t

b̂t

ĝt


. (29)
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Appendix D SMC algorithm

This appendix completes the technical description of the implemented SMC algorithm. In

terms of exposition and notation it draws heavily on Herbst and Schorfheide (2014, 2015)

and Bognanni and Herbst (2018).

Appendix D.1 SMC with likelihood tempering

1. The SMC is initialized by drawing the particles of the first stage (n = 1; δ1 = 0) from

the prior density.9

ϑi1
i.i.d.∼ p(ϑ) i = 1, ..., N .

In the first stage, each particle receives equal weight such that W i
1 = 1.

2. Recursions:

for n=2:Nδ

1. Correction: Reweight the particles from stage n − 1 by defining the incremental

and normalized weights as

w̃in = [p(Y |ϑ)]δn−δn−1 , W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, ..., N .

2. Selection: Check particle degeneracy by computing the effective sample size

ESSn =
N

1
N

∑N
i=1(W̃ i

n)2
.

The ESS monitors the variance of the particle weights. The larger this variance,

the more inefficient runs the sampler. If the distribution of particle weights be-

comes too uneven, resampling the particles helps to improve accuracy.

if ESSn < N/2

9To ease notation in Appendix D, we assume that the parameters in M are part of ϑ.
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Resample the particles via systematic resampling and set the weights to uniform

W i
n = 1, ϑ̂in ∼ {ϑ

j
n−1, W̃

j
n}j=1,...,N i = 1, ..., N .

else

W i
n = W̃ i

n, ϑ̂in = ϑin−1, i = 1, ..., N

end if

3. Mutation: Propagate each particle {ϑ̃iN ,W i
n} via MMH steps of a RWMH with

Nblocks random blocks. See Appendix D.2 for further details.

end for

3. Process posterior estimates.

Appendix D.2 Mutation step

In this section, we specify the RWMH sampler we use for particle mutation. In accordance

with Herbst and Schorfheide (2014) and Bognanni and Herbst (2018) the RWMH steps

in our application are characterized by the following two features. First, we reduce the

dimensionality of the parameter vector ϑ by spliting it into Nblocks blocks, thus making it

easier to approximate the target density in each of the RWMH’s MMH steps.10 Second,

we scale the variance of the proposal density adaptively. Let Σ̂n be the estimate of the

covariance of pn(ϑ|Y ) after the selection step, and cn be a scaling factor. We set cn as a

function of the previous stage’s scaling factor cn−1, and the average empirical acceptance

rate of the previous stage’s mutation step Ân−1. We target an acceptance rate of 25 %

and hence increase cn if the acceptance rate in stage n − 1 was too high, and decrease cn

10Chib and Ramamurthy (2010) and Herbst (2012) provide evidence that parameter blocking is benefical
for estimating DSGE models.
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if it was too low. In particular, the functional form is given by ĉn = ĉn−1f(Ân−1), where

f(x) = 0.95 + 0.1 e16(x−0.25)

1+e16(x−0.25) .

1. In every n stage after the selection step, create a random partitioning of the param-

eter vector ϑ into Nblocks. b denotes the block of the parameter vector such that ϑib,n

refers to the b elements of the ith particle, and ϑi<b,n denotes the remaining partitions.

2. Compute an estimate of the covariance of the parameters as

Σ̂n =
N∑
i=1

W i
n(ϑ̂in − µ̂n)(ϑ̂in − µ̂n)′ with µ̂n =

N∑
i=1

W i
nϑ̂

i
n.

The covariance for the bth block is given by

Σ̂b,n = [Σ̂n]b,b − [Σ̂n]b,−b[Σ̂n]−1
−b,−b[Σ̂n]−b,b,

where [Σ̂n]b,b refers to the bth block of Σ̂n.

3. MH steps:

for m=1:MMH

for b=1:Nblocks

1. Draw a proposal density ϑ∗b ∼ N(ϑim−1,b,n, c
2Σ̂b,n).

ϑ∗ = [ϑim,<b,n, ϑ
∗
b , ϑ

i
m−1,>b,n] and ϑim,n = [ϑim,<b,n, ϑ

i
m−1,≥b,n].

2. With probability

α = min

{
[p(Y |ϑ∗)]δnp(ϑ∗)

[p(Y |ϑim,n)]δnp(ϑim,n)
, 1

}
,

set ϑim,b,n = ϑ∗b . Otherwise, set ϑim,b,n = ϑim−1,b,n.

end for

end for
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Appendix E Prior and posterior densities

Here, we show the prior and posterior densities of the estimated model parameters.
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Figure 2: Prior and posterior densities of the estimated model parameters. The blue bold
line depicts the posterior density, the black line the prior density.
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