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Abstract

We formally define Markov quantal response equilibrium (QRE) and
prove existence for all finite discounted dynamic stochastic games. The
special case of logit Markov QRE constitutes a mapping from precision
parameter λ ∈ R+

0 to sets of logit Markov QRE. The limiting points of this
correspondence are shown to be Markov perfect equilibria. Furthermore, the
logit Markov QRE correspondence can be given a homotopy interpretation.
We prove that for all games, this homotopy contains a branch connecting the
unique solution at λ = 0 to a unique limiting Markov perfect equilibrium.
This result can be leveraged both for the computation of Markov perfect
equilibria, and also as a selection criterion.
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1 Introduction

Economic environments are typically not stable, but highly dynamic. Current
choices do not only carry immediate consequences, but also shape the options
available in the future. Examples include pricing, the accumulation or depletion
of resources, savings or capacities, as well as entering legal obligations through
contracts. Intertemporal tradeoffs are clearly reflected in partial and general equi-
librium analysis, where dynamic programming is ubiquitous.

However, when one looks at the analysis of strategic interaction, the picture
changes. The most prominent models here are either one-shot games, or at best
repeated games – incorporating some dynamics between the players, but assuming
an essentially state-less world in which the only lasting consequences of actions
stem from the reactions of others.

This limitation is not due to a lack of theoretical concepts. Dynamic interaction
among forward-looking economic agents can be modeled as a dynamic stochas-
tic game, a broad class of games dating back to Shapley (1953) – generalizing
both repeated games (by introducing states) and Markov decision processes (by
introducing strategic interaction). The class of games covers essentially any game
of complete information. Interestingly, Shapley’s treatment predates Bellman’s
famous results on dynamic programming (Bellman, 1954).

But dynamic stochastic games are generally difficult to solve. Analytical solutions
are generally not available. This is true for dynamic programming problems as
well – but here, powerful numerical methods are available. Unfortunately, these
methods are not readily transferable to dynamic games: They are iterative in
nature, and typically do not converge when strategic interaction is present. De-
veloping well-suited numerical methods is thus a crucial step to enable economists
to analyze strategic interaction in general dynamic environments.

The most common solution concept is Markov perfect equilibrium (Maskin and
Tirole, 1988a,b), a refinement of subgame perfect Nash equilibrium in which strate-
gies are conditional on the current state of the game, independent of past plays.

The most famous algorithms to compute Markov perfect equilibria are due to
Pakes and McGuire (1994, 2001). The algorithms are based on value function
iteration, but are not guaranteed to converge. In fact, they only allow to find
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Markov perfect equilibria in pure strategies. If there exists no Markov perfect
equilibrium in pure strategies, value function iteration cycles and fails to converge.

Up to now, to the best of our knowledge, there exists only one algorithm able
to compute Markov perfect equilibria in potentially mixed strategies. It is pro-
posed by Herings and Peeters (2004) and based on homotopy continuation. The
method resembles the famous linear tracing procedure (Harsanyi, 1975; Harsanyi
and Selten, 1988). It starts at arbitrary prior beliefs about other players’ strategies
and gradually transforms beliefs until equilibrium beliefs are obtained. However,
convergence is only guaranteed for generic games. Convergence fails if, at some
intermediate belief along the homotopy path, the set of Nash equilibria is infinite.
This may very well happen in applications. Harsanyi and Selten themselves were
aware of this problem. In order to ensure uniqueness of best responses, they devise
the logarithmic tracing procedure which adds a logarithmic penalty term, forcing
strategies towards the centroid.

In this paper, we propose a homotopy method to compute Markov perfect equi-
libria that is guaranteed to converge for all finite dynamic stochastic games. As
a byproduct, we propose a selection criterion for Markov perfect equilibria that
is guaranteed to select a unique equilibrium. The algorithm is based on a logit
quantal response framework (McKelvey and Palfrey, 1995). As a foundation, we
provide a formal extension of quantal response equilibrium (QRE) to the domain
of dynamic stochastic games. Furthermore, we establish results existence and
convergence to Markov perfect equilibria.

1.1 Related Literature

The following paragraphs summarize the most important references for the con-
cepts we draw upon. Stochastic games and equilibria in Markov strategies find
extensive formal treatments in Mertens et al. (2015), or in the monographs by
Filar and Vrieze (1997) and Basar and Olsder (1999). A comprehensive, general
introduction to the homotopy method is given by Zangwill and Garcia (1981),
who focus on the mathematical foundation of this technique. Allgower and Georg
(1990) complement this with a thorough treatment of its efficient and stable algo-
rithmic implementation. An overview of its applications in computational game
theory is due to Herings and Peeters (2010); this includes in particular the tracing
homotopy for dynamic stochastic games by Herings and Peeters (2004) themselves.
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The homotopy we propose is based on the concept of quantal response equilibrium
(QRE), first formulated for normal-form games by (McKelvey and Palfrey, 1995)
and subsequently extended to extensive-form games as agent QRE in (McKelvey
and Palfrey, 1998). A recent overview over applications and findings is provided
by Goeree et al. (2016). While QRE is originally a behavioral solution concept, the
classical solution concepts typically arise as limiting cases, which can be utilized for
computational purposes. Turocy (2005) is the first to suggest a homotopy based
on the QRE correspondence, first for normal-form games. This is extended to
extensive-form games in Turocy (2010), suggesting the computation of sequential
equilibria using agent QRE as homotopy. While the concept of logit Markov QRE
and an according homotopy are first introduced by Breitmoser et al. (2010), an
explicit formal treatment is yet to be introduced in the literature. This is done
in the present paper. Specifically, we provide a formal definition of Markov QRE
and prove its existence for all finite dynamic stochastic games. Furthermore, we
show that there exists a unique principal branch connecting the centroid of the
strategy simplex to a unique limiting Markov perfect equilibrium.

The remainder of this paper is organized as follows. Section 2 familiarizes the
reader with dynamic stochastic games, Markov perfect equilibrium and homotopy
continuation. Section 3 introduces the concept of Markov quantal response equilib-
rium and establishes existence. Particular attention is devoted to the special case
of logit Markov QRE. Limiting points of the logit Markov QRE correspondence are
shown to be Markov perfect equilibria. Section 4 describes the homotopy method
that can be used to trace the logit Markov QRE homotopy. Finally, section 5
states and proves our main result, namely that the homotopy method converges
to a unique Markov perfect equilibrium for any dynamic stochastic game. Sec-
tion 6 summarizes and concludes the paper.

2 Prerequisites

In this section, we briefly review the fundamentals of dynamic stochastic games,
Markov perfect equilibrium and homotopy continuation.
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2.1 Dynamic Stochastic Games

A dynamic stochastic game (Shapley, 1953) is a sequence of normal-form games
embedded in a dynamic system. Each period, the corresponding game is charac-
terized by a state which is determined stochastically. Players obtain payoffs in the
current game and exert influence on the likelihood of upcoming states. Finally, all
players seek to maximize the expected present values of their streams of payoffs.

Definition 1. Dynamic stochastic game.
A dynamic stochastic game G is a tuple G =

〈
S, I,A,U ,Φ,Φ0, δ

〉
with

S: set of states,

I: set of players,

A =
(
As

)
s∈S

=
(
As,i

)
s∈S,i∈I

: action sets,

U =
(
us,i(as)

)
as∈As,s∈S,i∈I

: payoff functions us,i : As → R,

Φ =
(
φs→s′(as)

)
as∈As,s,s′∈S

: state transition probabilities φs→s′ : As → ∆(S),

Φ0 =
(
φs0

)
s0∈S

: probability distribution P ∈ ∆(S) over initial state s0,

δ =
(
δi
)
i∈I

: discount factors.

We restrict our attention to finite dynamic stochastic games in discrete time, time
runs in discrete periods t ∈ N0 and the sets of states, players and actions are all
finite. As usual, payoffs and state transitions extend to mixed strategy profiles.
Bold symbols indicate vectors or multidimensional arrays and index −i denotes
all players except player i.

2.2 Markov Perfect Equilibrium

The most common solution concept for dynamic stochastic games is Markov per-
fect equilibrium. Markov perfect equilibrium is a refinement of subgame perfect
Nash equilibrium, in which all players are limited to the use of Markov strategies.
Markov strategies, in turn, restrict players to condition their responses exclusively
on the current state of the game, not on the history of plays.1

1Markov perfect equilibrium is formally introduced in Maskin and Tirole (1988a,b, 2001),
but the corresponding concept is already present in Shapley (1953) under the name “stationary
equilibrium”.
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Definition 2. Markov strategy.
A Markov strategy σi(s) for player i ∈ I is a function σi : S → ∆(As,i) on the
domain of states, mapping state s to probability distribution P over state-specific
actions As,i such that σi(s, as,i) = P(as,i|s).

Definition 3. Markov perfect equilibrium.
A Markov perfect equilibrium (σ∗i )i∈I is a Nash equilibrium in Markov strategies.

The existence of Markov perfect equilibria in dynamic stochastic games has long
been established in the literature (Fink, 1964; Takahashi, 1964; Sobel, 1971). Fur-
thermore, by a straightforward application of Bellman’s principle of optimality
(Bellman, 1954), Markov perfect equilibria admit the following recursive represen-
tation.

Theorem 1. Recursive representation of Markov perfect equilibrium.
A Markov strategy profile (σ∗i )i∈I constitutes a Markov perfect equilibrium if and
only if

1. for all players i ∈ I, there exist state value functions V ∗i : S → R such that

V ∗i (s) = max
as,i∈As,i

us,i(as,i,σ∗s,−i) + δi
∑
s′∈S

φs→s′(as,i,σ∗s,−i) · V ∗i (s′)

holds for all states s ∈ S and

2. for all states s ∈ S, strategy profile (σ∗s,i)i∈I constitutes a Nash equilibrium
of the normal-form game with action space As and payoffs

ũs,i(as) = us,i(as) + δi
∑
s′∈S

φs→s′(as) · V ∗i (s′)

for as ∈ As and all players i ∈ I.

Proof. See for example (Doraszelski and Escobar, 2010, p. 374). �

In dynamic stochastic games, decision making is based on

ũs,i(σs,V i) = us,i(σs) + δi
∑
s′∈S

φs→s′(σs) · Vs′,i,

the present value of payoffs including subsequent course of play. However, the
subsequent course of play depends on the strategy profile of all players. Therefore,
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strategies and decision-relevant payoffs are interdependent. As a consequence,
Markov perfect equilibria can be found by solving for equilibrium strategies σ∗

and equilibrium state values V ∗ simultaneously, i.e. by solving the following system
of equations for all s ∈ S and i ∈ I:

σ∗s,i ∈ argmax
σs,i∈∆(As,i)

ũs,i(σs,i,σ∗s,−i,V ∗i ),

V ∗s,i = max
σs,i∈∆(As,i)

ũs,i(σs,i,σ∗s,−i,V ∗i ).

Due to the maximization operators, the above system is generally very difficult
to solve.2 We will solve it by first rewriting the equations in terms of quantal
response analysis and then applying homotopy continuation.

2.3 Homotopy Continuation

Homotopy continuation methods constitute a numerical solution method suited
for high-dimensional, non-linear systems of equations. Compared to most other
numerical methods, it has the major advantage of working globally. Iterative
Newton-methods for example are only locally convergent, meaning they require
a good initial approximation to produce a solution at all. In contrast, homotopy
methods arrive at solutions without such a priori knowledge, rendering them an
exceptionally powerful tool. In this section, we will briefly sketch the procedure,
as a basic understanding is necessary for the following parts of this paper.

The method generally proceeds in two steps: First the formulation of a suitable
homotopy function, which implicitly defines a curve from a starting point to the
desired solution; and then the numerical traversal along this curve until the solu-
tion is obtained. Intuitively, this resembles “bending” the problem until an easy
solution is readily available, then reverting it back to the original form, while
holding on to the solution.

More concretely, suppose one wants to find a solution x∗ to F (x) = 0, where
2Pakes and McGuire (1994, 2001) approach the system by means of value function iteration,

i.e. by repeatedly solving for equilibrium strategies and updating the resulting state values.
However, the procedure is not guaranteed to converge and, at best, pure-strategy equilibria can
be found. Herings and Peeters (2004) solve the system by replacing each optimization with the
corresponding Karush-Kuhn-Tucker conditions and performing a transformation of variables to
make the resulting equations differentiable. We solve the system by quantal response analysis.
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F : Rn → Rn is a high-dimensional, nonlinear mapping. One constructs a function
G : Rn → Rn, such that a solution x0 ∈ G−1(0) is known or trivially obtained.
Then, a homotopy parameter λ ∈ [0, λ̄] with λ̄ ∈ (0,∞] is introduced to construct
a homotopy function H(x, λ) : Rn×R→ Rn, with H(x, 0) = G(x) and H(x, λ̄) =
F (x). If H is constructed properly, it thus offers a continuous transformation of
the hard problem F (x) = 0 into the trivial one G(x) = 0 and vice versa. The
set of solutions H−1 = {(x, λ)|H(x, λ) = 0} then contains a curve connecting
the known solution (x0, 0) to the desired solution (x∗, λ̄). Tracing this curve to
arrive at the latter is the second part of the method. This is done numerically, as
described in Eibelshäuser and Poensgen (2019).

The homotopy path might have turning points in the sense that the homotopy pa-
rameter λ is not monotonously increasing along the path, as illustrated in figure 1.
Therefore, it is generally not possible to follow the path by naively increasing λ.
Instead, it is convenient to parameterize the homotopy function in terms of the
path length parameter τ ∈ R+

0 such that H
(
y(τ)

)
= 0. For details, see (Zangwill

and Garcia, 1981, pp. 25 ff.).

Figure 1: Turning Points of Homotopy Path

λ

x

λ̄

x0

x∗

H−1

3 Markov Quantal Response Equilibrium

In the quantal response framework, players are assumed to perceive payoffs only
with some noise. In the resulting quantal response equilibrium (QRE) (McKelvey
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and Palfrey, 1995), players’ actions appear stochastic and the probability of play-
ing a particular action is related to its true payoff. This idea can be generalized
to dynamic games by treating players at different decision nodes as independent
agents. The corresponding equilibrium concept is called agent quantal response
equilibrium (McKelvey and Palfrey, 1998). Finally, in the context of dynamic
stochastic games with states as decision nodes, the corresponding equilibrium
concept is called Markov quantal response equilibrium (Breitmoser et al., 2010).

3.1 Definition

In the context of dynamic stochastic games, players decide on optimal actions
based on payoffs including continuation values. Specifically, let

ũs,i,a(σs,−i,V i) = us,i(a,σs,−i) + δi
∑
s′∈S

φs→s′(a,σs,−i) · Vs′,i

denote the expected payoff from playing action a for player i in state s, given state
values and strategies of the other players. In the quantal response framework,
agent (s, i) ∈ S × I is assumed to perceive payoffs ũs,i,a(σs,−i,V i) as

ûs,i,a(σs,−i,V i) = ũs,i,a(σs,−i,V i) + εs,i,a

with noise εs,i,a. The error vector εs,i = (εs,i,a)a∈As,i is assumed to be distributed
according to a joint distribution with zero mean and density function fs,i(εs,i).
Let

Rs,i,a =
{
εs,i ∈ R|As,i| : ûs,i,a(σs,−i,V i) > ûs,i,a′(σs,−i,V i) ∀ a′ ∈ As,i

}
denote agent (s, i)’s response set of action a, specifying the realizations of εs,i such
that agent (s, i) perceives action a as the one with the highest payoff. Then, the
probability that player i in state s plays action a is given by the probability mass
of the corresponding response set.

Definition 4. Markov quantal response equilibrium.
A Markov quantal response equilibrium is a strategy profile σ∗ such that

σ∗s,i,a =
∫

Rs,i,a

fs,i(ε) dε.
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Proving the existence of Markov QRE’s in dynamic stochastic games is a straight-
forward application of Brouwer’s fixed-point theorem.

Theorem 2. Existence of Markov quantal response equilibrium.
Every dynamic stochastic game G has a Markov quantal response equilibrium.

Proof. Similar to (McKelvey and Palfrey, 1995, theorem 1), with minor modifica-
tions. A Markov quantal response equilibrium σ∗ is part of a fixed-point (σ∗,V ∗)
of the function g(σ,V ) =

(
gσ(σ,V ), gV (σ,V )

)
with

gσs,i,a(σ,V ) =
∫

Rs,i,a

fs,i(ε) dε != σs,i,a

gVs,i(σ,V ) = ũs,i(σs,V i) != Vs,i

for all states s, players i and actions a. Since strategies and state values are
bounded, i.e.

σs,i,a ∈ [0, 1]

Vs,i ≤
∞∑
t=0

δti ·max
s,i,a
{us,i,a} = 1

1− δi
·max
s,i,a
{us,i,a} < ∞

Vs,i ≥
1

1− δi
·min
s,i,a
{us,i,a} > −∞

for all s, i and a, the domain of g is compact. Furthermore, since the distribution
of noise ε has a density, g is continuous. By Brouwer’s fixed-point theorem, g has
a fixed-point. �

For the remainder of this paper, we focus on the logit version of Markov QRE.

3.2 Logit Markov Quantal Response Equilibrium

The most popular special case of quantal response is logit choice (Luce, 1959).
Logistic rules of choice in the quantal response context arise from noise that is
independent and identically distributed according to a Gumbel distribution with
parameter λ ∈ R+

0 (extreme value distribution of type I).3 The corresponding
3The Gumbel distribution has cumulative distribution function F (ε) = e−e−λε . The parame-

ter λ ∈ R+
0 controls the variance of the distribution. For λ = 0, the variance in infinite, and for

λ→∞, the variance tends to zero.
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equilibrium can be expressed in closed form.

Theorem 3. Logit Markov quantal response equilibrium.
A logit Markov quantal response equilibrium σ∗ is a solution to the following sys-
tem of equations for all s ∈ S, i ∈ I and a ∈ As,i:

σ∗s,i,a = eλ·ũs,i,a(σ∗s,−i,V
∗
i )∑

a′∈As,i
eλ·ũs,i,a′ (σ∗s,−i,V

∗
i ) ,

V ∗s,i =
∑

a′∈As,i
σ∗s,i,a′ · ũs,i,a′(σ∗s,−i,V ∗i ).

Proof. The derivation of the logit formula for equilibrium strategies is identical
to the famous derivation by McFadden (1973). The formula for equilibrium state
values immediately follows from the definitions of ũs,i and ũs,i,a which can be
combined to write

ũs,i(σs,V i) =
∑

a′∈As,i
σs,i,a′ · ũs,i,a′(σs,−i,V i).

�

Theorem 2 guarantees the existence of logit Markov QRE for any λ ∈ R+
0 .

3.3 Convergence to Markov Perfect Equilibrium

The noisiness of a logit Markov QRE is parameterized by λ ∈ R+
0 which can

be interpreted as the precision of the perception of payoffs. When λ = 0, the
equilibrium is fully noisy and mixing is uniform over actions, i.e. centroid strategies
σ∗s,i,a = 1

|As,i| for all s, i and a. If a logit Markov QRE converges as λ → ∞, the
limit point is a Markov perfect equilibrium.

Theorem 4. Limiting Markov perfect equilibria.
Let σ∗∗ be the limit point of some logit Markov QRE σ∗(λ), i.e.

σ∗∗ = lim
λ→∞

σ∗(λ).

Then σ∗∗ is a Markov perfect equilibrium.
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Proof. By contradiction, similar to (McKelvey and Palfrey, 1995, theorem 2), with
minor modifications. Suppose σ∗∗ is not a Markov perfect equilibrium. Then,
according to theorem 1, σ∗∗ cannot be a Nash equilibrium of the normal-form
game with payoffs ũs,i,a(σ∗∗s,−i,V ∗∗i ). Therefore, there exists an agent (s, i) ∈ S× I
and actions a, a′ ∈ As,i such that

lim
λ→∞

ũs,i,a
(
σ∗s,−i(λ),V ∗i (λ)

)
> lim

λ→∞
ũs,i,a′

(
σ∗s,−i(λ),V ∗i (λ)

)

and σ∗∗s,i,a′ > 0. Since ũs,i,a
(
σ∗s,−i(λ),V ∗i (λ)

)
is continuous in λ, there exist ε > 0

and λ̄ ∈ R+
0 such that for all λ > λ̄ we have

ũs,i,a
(
σ∗s,−i(λ),V ∗i (λ)

)
> ũs,i,a′

(
σ∗s,−i(λ),V ∗i (λ)

)
+ ε.

But then we must have σ∗s,i,a′(λ) λ→∞−→ 0, which contradicts σ∗∗s,i,a′ > 0. �

4 Homotopy Method

Theorem 4 suggests that Markov perfect equilibria can be found by starting at
any logit Markov QRE and then letting λ→∞. Provided the limit point exists,
it is guaranteed to be a Markov perfect equilibrium. We will prove the existence
of the limit point later on in this paper – with arguments based on the homotopy
interpretation of the logit Markov QRE correspondence.

The intuition for the homotopy method is as follows. We are interested in the
complicated problem of finding Markov perfect equilibria. To do so, we solve
the simple problem of finding a logit Markov QRE and then distort the solution
into a Markov perfect equilibrium of the complicated problem. Specifically, the
homotopy method proposed in this paper takes as starting point the unique logit
Markov QRE at λ = 0 and follows the implied path to the limiting Markov perfect
equilibrium.

4.1 Intuition

As noted by Turocy (2005), logit QRE define a homotopy between replicator
dynamics at λ = 0 and best response dynamics at λ → ∞. To see that within
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our context of dynamic stochastic games, write a logit Markov QRE σ∗ in the
following short form

σ∗s,i,a = eλ·ũs,i,a∑
a′∈As,i

eλ·ũs,i,a′

and take the partial derivative with respect to λ to get

∂σ∗s,i,a
∂λ

= σ∗s,i,a · E
[
∆ũs,i,a

]
︸ ︷︷ ︸

replicator dynamics

+ λ · σ∗s,i,a · E
[
∆∂ũs,i,a

∂λ

]
︸ ︷︷ ︸
best response dynamics

,

where

E
[
∆ũs,i,a

]
:=

∑
a′∈As,i

σ∗s,i,a′ ·
(
ũs,i,a − ũs,i,a′

)

denotes the expected utility difference from playing action a relative to the other
actions and analogously for E

[
∆∂ũs,i,a

∂λ

]
.

As is standard, the replicator dynamics term updates equilibrium strategies based
on payoff differences across actions. On the other hand, the best response dynamics
term updates equilibrium strategies based on anticipated best response behavior
of opponents. As λ grows large, the best response term takes over, leading to a
Markov perfect equilibrium.

Our homotopy method is strikingly similar to the famous linear tracing procedure
due to Harsanyi (1975); Harsanyi and Selten (1988). This procedure can be inter-
preted as a homotopy from best responses of prior beliefs to actual best responses.
Both the tracing procedure as well as our logit Markov homotopy method start
at trivial strategies and follow the equilibrium until best response dynamics are
reached. However, the two methods generally differ – even in 2x2 normal-form
games (Zhang and Hofbauer, 2016).

4.2 Logit Markov QRE Homotopy

We call the homotopy between the initial logit Markov QRE and the limiting
Markov perfect equilibrium logit Markov QRE homotopy. The homotopy path is
given by the roots of a suitable homotopy function H : Rn+1 → Rn, i.e. H(y) = 0,
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where n = ∑
s∈S

∑
i∈I

(
|As,i|+ 1

)
denotes the number of equations characterizing logit

Markov QRE. The function H can be constructed explicitly based on the system
of equations given in theorem 3, i.e.

Hσ
s,i,a(σ,V , λ) = − σs,i,a + eλ·ũs,i,a(σs,−i,V i)∑

a′∈As,i
eλ·ũs,i,a′ (σs,−i,V i)

,

HV
s,i(σ,V , λ) = −Vs,i +

∑
a′∈As,i

σs,i,a′ · ũs,i,a′(σs,−i,V i)

for all s, i and a.

The Jacobian matrix J : Rn+1 → Rn × Rn+1 of the homotopy function is defined
by

J(y) = ∂H(y)
∂y

.

An explicit derivation of H and J including a convenient transformation of vari-
ables is provided in appendix A.

The functions H and J comprise the main information about the logit Markov
homotopy. Based on the explicit construction of the two function, we can make
statements about the properties of the homotopy path.

5 Limiting Equilibrium

In this section, we state and prove our main result. First, we define the limiting
logit Markov QRE in terms of the principal branch of the logit Markov QRE ho-
motopy. Secondly, we prove the existence and uniqueness of the principal branch.
Finally, we prove that the unique limiting point of the principal branch is indeed
a Markov perfect equilibrium for any dynamic stochastic game.

5.1 Definition

The limiting logit Markov QRE is defined as the limit point of the principal branch
of the logit Markov quantal response homotopy. The principal branch H0, in
turn, is defined as the part of the homotopy path that passes through the centroid
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strategies at λ = 0 and continues smoothly thereafter.

Definition 5. Principal branch.
Let the homotopy function H

(
y(τ)

)
be parameterized by the path length parameter

τ ∈ R+
0 with λ(τ = 0) = 0 and let t

(
y(τ)

)
denote a tangent at point y(τ). Then,

the principal branch H0 is defined as

H0 :=
{
y ⊆ H−1(0)

∣∣∣∣∣ y smoothly connected to y(τ = 0),

t
(
y(τ̃)

)
unique for almost all τ̃ ∈ R+

0 ,

∀ τ̃ ∈ R+
0 ∃ tangent t′ : lim

τ→τ̃+
t′
(
y(τ)

)
= ± lim

τ→τ̃−
t
(
y(τ)

)}
.

The definition of the principal branch comprises sufficient properties to guarantee
convergence to a unique limiting point. The corresponding principal branch is
smooth, as illustrated in figure 2. Provided the principal branch exists and is
unique, proving the uniqueness of the limiting equilibrium is fairly straightforward.

Figure 2: Smooth Principal Branch

λ

(σ∗,V ∗)

logit Markov QRE
MPE*

MPE

MPE

Note that the principal branch is required to have a unique tangent at almost
all points. This definition excludes multi-dimensional segments (“areas”) of the
path, i.e. the path is required to be one-dimensional. Furthermore, at the isolated
points where the tangent is not unique, must exist a smooth continuation with
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same or opposite sign. This describes the situation in which the principal branch
is crossed by one or more auxiliary paths. At the corresponding crossing point,
the tangent of the principal branch is not unique. However, accounting for the
potential change in direction, the principal branch continues smoothly after the
crossing point, which is illustrated in figure 3.

Being one-dimensional with only isolated crossing points and smooth continua-
tions, the principal branch is guaranteed to lead to a unique limiting point – the
limiting Markov perfect equilibrium. Now, we formalize this argumentation.

Figure 3: Simple Bifurcation Point on Principal Branch

H0

rank
(
J(y)

)
< n

Definition 6. Limiting logit Markov quantal response equilibrium.
The limiting logit Markov quantal response equilibrium σ∗∗ is defined as the limit
point of the principal branch, i.e.

σ∗∗ := lim
τ→∞

σ∗
(
λ(τ)

)
for

(
σ∗
(
λ(τ)

)
,V ∗

(
λ(τ)

)
, λ(τ)

)
∈ H0.

5.2 Existence and Uniqueness of Principal Branch

Proposition 1. Existence and uniqueness of principal branch.
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For all finite dynamic stochastic games G, there exists a unique principal branch
H0 of the logit Markov QRE homotopy.

Proof. Since H is a continuous function, the homotopy path H−1(0) is upper
hemi-continuous and tangents exist. Furthermore, due to the pre-image theo-
rem (Guillemin and Pollack, 2016, p. 21), the homotopy path H−1(0) is a one-
dimensional manifold for regular points y ∈ Rn+1 where the Jacobian matrix has
full rank rank

(
J(y)

)
= n.

The remainder of the proof proceeds in three steps. First, we show that there
are only finitely many irregular points ỹ ∈ Rn+1 where the Jacobian matrix has
not full rank, i.e. rank

(
J(ỹ)

)
< n. Secondly, we show that at all irregular points

ỹ ∈ Rn+1, exists a unique smooth continuation. Finally, we show that exists a
unique starting point of the principal branch at λ = 0.

Step 1: Irregular points ỹ ∈ Rn+1 with rank
(
J(ỹ)

)
< n require that multiple sub-

determinants of the Jacobian matrix are zero, i.e. that exist two distinct indices
k 6= l ∈ {1, . . . , n} such that det

(
J (−k)(ỹ)

)
= det

(
J (−l)(ỹ)

)
= 0, where J (−k)

denotes the Jacobian matrix without its k-th column. However, as is evident from
the explicit derivation of the Jacobian in appendix A, all sub-determinants of the
Jacobian are finite polynomials in log-strategies β, eβ, V and λ and, as such, only
have a finite number of roots.4 Therefore, there can only be finitely many irregular
points on the homotopy path H−1(0).

Step 2: Since there are only finitely many irregular points ỹ = y(τ̃) on the ho-
motopy path, all irregular points must be “simple bifurcation points” (Allgower
and Georg, 1990, chapter 8) where multiple one-dimensional segments cross. By
Lyapunov-Schmidt reduction one can decompose H−1(0) into the different seg-
ments and formally show that the tangents on both sides of simple bifurcation
points point in same or exactly opposite directions, i.e.

lim
τ→τ̃+

t
(
y(τ)

)
=
∣∣∣ lim
τ→τ̃−

t
(
y(τ)

)∣∣∣
(Allgower and Georg, 1990, theorem 8.1.14). Furthermore, it is not possible that
two crossing segments are tangent or that there are multiple smooth continuations.

4The fact that eβ appears in the polynomial along with β itself poses no problem because eβ

is a strictly increasing function. One can think of the sub-determinants of J as finite polynomials
in β, z, V and λ. The polynomials clearly have finitely many roots. Now restrict z = eβ and
the number of roots cannot increase.
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This is because tangents span the kernel of J(ỹ). The dimension dim
(
ker

(
J(ỹ)

))
of the kernel corresponds to the number of segments present at point ỹ. Hence
tangents must be independent and strictly cross (Keller, 1987, lemma 5.20). There-
fore, when accounting for the potential change in direction, the principal branch
is well-defined, unique and can be traversed smoothly.

Step 3: Finally, we show that exists a unique starting value y(λ = 0) =
(
σ∗,V ∗, 0

)
.

The corresponding equilibrium strategies involve uniform mixing

σ∗s,i,a(λ = 0) = 1
|As,i|

.

The corresponding state values satisfy

V ∗s,i(λ = 0) = ūs,i + δi · φ̄s→s′ ·
∑
s′∈S

Vs′,i,

where

ūs,i = 1
|As|

∑
as∈As

us,i(as) and φ̄s→s′ = 1
|As|

∑
as∈As

φs→s′(as)

denote average payoff and average transition probabilities, respectively. Accord-
ingly, initial state values can be found by solving a sequence of linear systems of
equations, one system for each player, of standard form M i · V ∗i = bi with

(
I|S| − δi · φ̄

)
︸ ︷︷ ︸

=:M i

·V ∗i = ūi︸︷︷︸
=:b

.

Each system has a unique solution because det(M i) 6= 0 for all discount factors
δi ∈ [0, 1) and all transition matrices Φ.

This completes the proof. �

5.3 Existence and Uniqueness of Limiting Equilibrium

The main result of this paper is stated in theorem 5.

Theorem 5. Uniqueness of limiting logit Markov QRE.
Every finite dynamic stochastic game G has a unique limiting logit Markov QRE
which constitutes a Markov perfect equilibrium of G.
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Proof. We know from proposition 1 that the logit Markov QRE homotopy of any
finite dynamic stochastic game G has a unique principal branch. The principal
branch is one-dimensional and smooth and has a unique starting point for λ = 0
involving centroid strategies. It remains to show that the limit point of the branch
exists and that it is indeed a Markov perfect equilibrium. This is done by proving
the existence of a limit point together with λ(τ) τ→∞−→ ∞. Then the result follows
from theorem 4.

The proof for existence of a limit point and λ(τ) τ→∞−→ ∞ proceeds in three steps.
First, since there is a unique solution y(λ = 0) =

(
σ∗,V ∗, 0

)
, we have

∂λ

∂τ

∣∣∣∣∣
τ=0
6= 0.

Thus, if the sign of path length parameter τ is chosen appropriately, λ increases
initially. Then, we have λ > 0 on the entire path. Otherwise there would have to
be a second solution to y(λ = 0) =

(
σ∗,V ∗, 0

)
. Secondly, the domain of

(
σ∗,V ∗

)
is bounded (see proof of theorem 2), so the principal branch may either converge
with λ→∞ or cycle. Thirdly, to exclude cycling, we show that there are finitely
many turning points in all variables yk where ∂yk

∂τ
switches sign. Turning points

are roots of det
(
J (−k)(y(τ))

)
, but we have already shown in proposition 1 that

there are finitely many of them. So the principal branch must converge to a limit
point

(
σ∗∗,V ∗∗

)
with λ(τ) τ→∞−→ ∞.

This completes the proof. �

The main idea of the proof is illustrated in figure 4.

6 Conclusion

In this paper we have given a definition of Markov quantal response equilibria and
shown existence for all finite dynamic stochastic games. The according correspon-
dence can be given a homotopy interpretation. As we demonstrate, the solution
space includes a uniquely defined principal branch, connecting the unique solution
at λ = 0 to a single limiting Markov perfect equilibrium.

This main result of the current paper opens two avenues. First, the uniqueness of
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Figure 4: Limiting Markov perfect equilibrium

λ

(σ∗,V ∗)

(σ∗∗,V ∗∗)

the principal branch suggests that it can be used as an equilibrium selection crite-
rion. Second, numerical traversal of the principal branch can be used to efficiently
compute at least one Markov perfect equilibrium of any dynamic stochastic game.
This traversal is possible since the principle branch, as we have shown, contains
as irregular points at most a finite number of simple bifurcations, which pose no
obstacle for numerical continuation.

An implementation of the described homotopy method – consisting of the con-
struction of the Markov QRE homotopy function and its subsequent traversal
using predictor-corrector steps – is given by the Python program dsGameSolver .
Subject to the usual limitations of numerical computation, it can in principle
solve any finite game falling under the broad class of dynamic stochastic games;
a detailed documentation is given in Eibelshäuser and Poensgen (2019).
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A Derivation of Homotopy

The homotopy function H characterizing the logit Markov quantal response homo-
topy is constructed explicitly based on the system of equations given in theorem 3,
i.e.

σs,i,a = eλ·ũs,i,a(σs,−i,V i)∑
a′∈As,i

eλ·ũs,i,a′ (σs,−i,V i)
,

Vs,i =
∑

a′∈As,i
σs,i,a′ · ũs,i,a′(σs,−i,V i)

for all s, i and a.

There are two types of equations: strategy equations and state value equations.
The state value equations are innocuous. The strategy equations, on the other
hand, involve the exponential of the homotopy parameter λ. Since we would like to
take λ towards infinity, the corresponding exponentials might become very large.
Therefore, we follow Turocy (2005, 2010) and perform two transformations on the
strategy equations. First, we introduce a reference action and, secondly, we take
the logarithm.

For each state-player tuple (s, i), we divide the strategy equations by the equation
of reference action a = 0, leading to

σs,i,a>0

σs,i,0
= eλ[ũs,i,a(σs,−i,V i)−ũs,i,0(σs,−i,V i)].

Taking the logarithm yields

log(σs,i,a>0)− log(σs,i,0) = λ
[
ũs,i,a(σs,−i,V i)− ũs,i,0(σs,−i,V i)

]
.

Finally, applying the substitution βs,i,a := log(σs,i,a), but still writing σs,i,a = eβs,i,a

for better readability, we define the strategy and state value equations as follows.

Hσ
s,i,0(β,V , λ) = 1−

∑
a∈As,i

σs,i,a

Hσ
s,i,a>0(β,V , λ) = −

[
βs,i,a − βs,i,0

]
+ λ

[
ũs,i,a(σs,−i,V i)− ũs,i,0(σs,−i,V i)

]
HV
s,i(β,V , λ) = −Vs,i +

∑
a∈As,i

σs,i,a · ũs,i,a(σs,−i,V i)

25



Due to the normalization by reference action a = 0, the corresponding strategy
equations have been replaced by an equation ensuring that action probabilities
sum up to one.

The final homotopy function is obtained by stacking all components, i.e.

H(β,V , λ) =
Hσ(β,V , λ)
HV (β,V , λ)

 ,
and given in terms of log-strategies β.5

The components of the Jacobian matrix

J(β,V , λ) =


∂Hσ

s,i,a(β,V ,λ)
∂βs′,i′,a′

,
∂Hσ

s,i,a(β,V ,λ)
∂Vs′,i′

,
∂Hσ

s,i,a(β,V ,λ)
∂λ

∂HV
s,i(β,V ,λ)
∂βs′,i′,a′

,
∂HV

s,i(β,V ,λ)
∂Vs′,i′

,
∂HV

s,i(β,V ,λ)
∂λ


are given as follows.

Partial derivatives of Hσ:

∂Hσ
s,i,0(β,V , λ)
∂βs′,i′,a′

=

−σs,i,a
′ if s′ = s and i′ = i,

0 else,

∂Hσ
s,i,0(β,V , λ)
∂Vs′,i′

= 0,

∂Hσ
s,i,0(β,V , λ)

∂λ
= 0,

∂Hσ
s,i,a>0(β,V , λ)
∂βs′,i′,a′

=



1 if s′ = s, i′ = i, a′ = 0,

−1 if s′ = s, i′ = i, a′ > 0,

λ
[
∂ũs,i,a(σs,−i,V i)

∂βs′,i′,a′
− ∂ũs,i,0(σs,−i,V i)

∂βs′,i′,a′

]
if i′ 6= i,

0 else,

5For computational purposes, it might be preferable to state the homotopy function in terms
of tensor products. The corresponding derivation is done in Eibelshäuser and Poensgen (2019).
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∂Hσ
s,i,a>0(β,V , λ)
∂Vs′,i′

= λ

[
∂ũs,i,a(σs,−i,V i)

∂Vs′,i′
− ∂ũs,i,0(σs,−i,V i)

∂Vs′,i′

]
,

∂Hσ
s,i,a>0(β,V , λ)

∂λ
= ũs,i,a(σs,−i)− ũs,i,0(σs,−i).

Partial derivatives of HV :

∂HV
s,i(β,V , λ)
∂βs′,i′,a′

=


σs,i,a′ · ũs,i,a′(σs,−i,V i) if s′ = s, i′ = i,∑
a′′∈As,i

σs,i,a′′ ·
∂ũs,i,a′′ (σs,−i,V i)

∂βs,i′,a′
if s′ = s, i′ 6= i,

0 else,

∂HV
s,i(β,V , λ)
∂Vs,i

=



−1 + ∑
a′′∈As,i

σs,i,a′′ ·
∂ũs,i,a′′ (σs,−i,V i)

∂Vs,i
if s′ = s, i′ = i,

∑
a′′∈As,i

σs,i,a′′ ·
∂ũs,i,a′′ (σs,−i,V i)

∂Vs′,i
if s′ 6= s, i′ = i,

0 else,

∂HV
s,i(β,V , λ)
∂λ

= 0.

Underlying partial derivatives of expected payoffs:

∂ũs,i,a(σs,−i,V i)
∂βs′,i′,a′

=


∑

as,−i∈As,−i
as,i′=a′

∏
i′′∈I
i′′ 6=i

σs,i′′,as,i′′ · ũs,i,a(as,−i,V i) if s′ = s, i′ 6= i,

0 else,

∂ũs,i,a(σs,−i,V i)
∂Vs′,i′

=


∑

as,−i∈As,−i

∏
i′′∈I
i′′ 6=i

σs,i′′,as,i′′ · δi · φs→s′(a,as,−i) for i′ = i,

0 else.
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