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Abstract

Economists tend to assume that agents maximize their expected utility. However, many

different experiments have questioned expected utility maximization by showing that human

behavior can be characterized as random. This paper proposes Thompson Sampling as a

theory of human behavior across very different situations of dynamic strategic interaction in

economics. Thompson Sampling means that agents, having limited information about their

environments, update their subjective belief distributions in a Bayesian way and subsequently

make a random draw from the posterior. Conditional on that random draw, agents optimize.

While Bayesian reasoning has often been shown to be at odds with agents’ behavior even

in simple environments, using data on experimental games, this paper shows that Bayesian

sampling as in Thompson’s proposal is a better description of agents’ decision-making than

commonly used theories of decision-making in economics such as Nash equilibrium, standard

Bayesian learning and quantal response equilibrium (QRE) - above all in complex environ-

ments with many possible actions.
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stochastic choice

JEL Classifications: C91, C92, D84, E37

1 Introduction

Economists tend to believe that agents act optimally, in the sense that they choose the actions that

maximizes their expected payoff. A natural question is how agents may acquire such information.

Even undergraduate textbooks teach that equilibrium is reached by a long dynamic adjustment

process in which players learn about their environment and other agents’ strategies that is often

described as Bayesian (see e.g. Osborne (2003), p. 132). Different subdisciplines in economics

- such as behavioral game theory, experimental economics, behavioral economics - as well as a

large literature in psychology attach a lot of attention to this learning process and whether optimal

outcomes are attained at least in the long run. There is a myriad of different models where learners

are confronted with uncertainty (e.g. McKelvey and Palfrey (1995); Gilboa and Schmeidler (1995);

Fudenberg and Levine (1998); Brock and Hommes (1997); Roth and Erev (1998); Camerer and

Ho (1999); Anufriev and Hommes (2012)).

Economists usually assume that, under uncertainty, people make decisions by maximizing

their expected utility. However, the theory of expected utility maximization did not fare well.

Not only have the axioms of expected utility been seriously questioned, but also simple individual

decision-making experiments in psychology where the principles of learning were tested reject the

notion of expected utility maximization. Many experiments have shown that human behavior

can more accurately be characterized as random. These experiments represented simple tasks like

predicting whether the next card would be red or blue or whether a light at the end of a tunnel

would appear on the left or the right. (Vulkan (2000) for a survey.) The data have repeatedly

demonstrated that subjects match the underlying probabilities, i.e. if p denotes the probability

that the outcome is left, then subjects would, after an initial learning phase choose Left with

probability p. This kind of behavior has not only been found in humans but also in animals like

rats, pigeons and bumblebees: instead of choosing source exclusively, animals are found to adopt

an adaptive sampling strategy, even though there are opportunity costs to sampling like travel

time. (See e.g. Keasar et al. (2002))

The idea of probability matching is old and dates back to Thompson (1933), who proposed it
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as a solution to the exploration-exploitation trade-off in bandit-type tasks. Thompson Sampling

means that decision-makers randomize actions based on the probability that this action is believed

to be optimal when faced with an uncertain environment. Thompson Sampling consists of three

steps: first, after obtaining new information, the agents updates her prior subjective probability

distribution in a Bayesian way to yield a posterior; second, in lieu of making optimal use of the

posterior, which means calculating the expected value, the agent makes a random draw from the

posterior; third, the agent treats the random draw as the truth and responds optimally to it.

Bayesian explanations have been popular in cognitive science, since many complex concepts

such as perception, (e.g. (Frisby and Stone, 2013)) psychophysics, (e.g. Wolpert (2007)) language,

(Chater and Manning, 2006) motor control (Treutwein, 1995) etc. have been successfully mod-

eled in a Bayesian way. On the other hand, many experimental studies have shown that human

decisions are at odds with the Bayesian approach; and a large psychological literature shows that

the Bayesian approach of representing all possible probabilities and making exact calculations is

infeasible for any physical system, including the human brain.1. Thompson Sampling resolves

this apparent paradox: even if the brain is Bayesian, it need not calculate probabilities. Instead

the brain can be interpreted as sampling from the Bayesian posterior. For a Thompson Sampler,

knowledge of the entire distribution is not necessary, since it can work with a partition of this pos-

terior distribution. This sampling is consistent with the availability heuristic, i.e. estimating the

probability of an event by generating plausible examples in one’s mind. (Tversky and Kahneman,

1973) This rule of thumb can be interpreted as a product of Thompson sampling.

This paper considers the use of Thompson Sampling as a descriptive theory for decision-making

in economics. The particular appeal of Thompson Sampling is quite multifarious, encompassing

both positive and normative as well as computational aspects. Computationally, it is appealing

because of its simplicity and tractability, which is why it is nowadays frequently used for online

learning problems. On the positive side, it has been shown to describe subjects’ behavior well in

experimental bandit tasks (Speekenbrink and Konstantinidis, 2015; Gershman, 2018) and other

individual decision-making setups (e.g. Wozny et al. (2010).) Furthermore, it is consistent with

neuroscientific evidence, because it has been shown that different areas of the brain are activated

for learning than for information acquisition, so that it is possible that they are entirely different,

e.g. one being optimal, the other one being based on heuristics. (O’Doherty et al., 2004; Behrens

1West and Stanovich (2003) provide a evidence for a positive association between cognitive abilities and utility
maximization.
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et al., 2007; Payzan-LeNestour and Bossaerts, 2015) Importantly, however, Thompson Sampling

has normative appeal. While Thompson Sampling is not optimal in the sense that it maximizes

expected utility, it has been shown to be regret minimizing in the bandit literature. (May et al.,

2012; Agrawal and Goyal, 2012a,b; Kaufmann et al., 2012; Scott, 2010; Chapelle and Li, 2011). In

contrast to that, full Bayesian approaches like the Gittins index (Gittins, 1979) display a positive

probability of converging to a suboptimal slot machine even when allowing for an exploration

phase.2 (Brezzi and Lai, 2000) Moreover, it has been shown to ensure that the agents asymp-

totically learns to act optimally in a more general class of stochastic environments that may be

non-Markovian, non-ergodic and partially observable. (Leike et al., 2018)

In order to evaluate Thompson Sampling empirically, one needs to consider its falsifiable

predictions. Thompson Sampling has the following implications: (1) People’s behavior is stochastic

due to the random nature of the samples drawn. (2) While there is noise in individual behavior,

the average decisions may be correct. This generates the “wisdom of crowds”. (3) The distribution

of actions is non-stationary over time and across setup, since actions are guided by samples from

the posterior. (4) Thompson Sampling should explain behavior in complex tasks particularly well.

(1) has been corroborated by a wide range of experiments and has triggered the development

of a large stochastic choice literature, starting with Block and Marshak (1960) and McFadden

(1974). Experimental evidence for (2), the “wisdom of crowds”-effect has been provided for

example by Nagel and Vriend (1999) and DellaVigna (2018). Since (1) and (2) can be well

captured by idiosyncratic exogenous shocks, which have successfully been introduced into a wide

range of theories in macroeconomics, microeconomics and econometrics, they would by themselves

not warrant the introduction of a new modeling approach like Thompson Sampling. (3) and (4)

are far less obvious. Especially (4) can have implications for economics, since markets and the

economy in general are large, complex systems of interacting agents.

This paper thus considers datasets where agents strategically interact. Since Thompson Sam-

pling is a cognitive model, I use laboratory data where the cognitively driven randomness from

subjects is observed and potential other drivers of randomness are eliminated. Experimental data

2To see this intuitively, suppose that the gambler initially assigns priors so that the estimated winning probability
of every slot machine is 50 %. Further, suppose that the gambler happens to start playing with a slot machine
whose true winning probability is 60 %. Bayesian learning typically ensures that the gambler’s estimate of this
slot machine’s winning probability converges to the true value. As the estimated winning probability of this slot
machine would then be higher than the estimated winning probability for any other slot machine, the gambler would
keep playing with that slot machine. By doing so, she might neglect the fact that the true winning probability of
another slot machine is higher.
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on games is consistent with the four hypotheses: first, the randomness observed in games, in par-

ticular, has motivated the development of stochastic equilibrium concepts such as quantal response

equilibrium (QRE) (McKelvey and Palfrey, 1995; Goeree et al., 2016). Second, the “wisdom of

crowds” effect has been observed in games (e.g. (Nagel and Vriend, 1999)). Importantly, data on

experimental games also displays evidence for (3), since many experiments have found that the

distribution of decisions of human subjects is not stationary over time and across setups (see e.g.

(McKelvey and Palfrey, 1995; Dufwenberg et al., 2007)) being reflected by structural breaks in the

exogenous parameters of QRE. Data in this literature is also consistent with (4), since subjects

clearly learn over time in some setup while they do not learn in other datasets.

Thompson Sampling is tested by evaluating its in-sample fit and predictive ability in two ex-

emplary games that represent varying degrees of complexity: 2x2 games, which can be thought of

as “small world”, and beauty contest games with incomplete information, which can be thought

of as “large world.” For the “small world” 2x2 game, I take the large dataset with 10 different

constant sum games by (Erev et al., 2002) with full information. For the “large world”, I take the

dataset by Heemeijer et al. (2009). In this beauty contest experiments with incomplete informa-

tion, being often called “learning-to-forecast experiment” (Marimon and Sunder, 1994), agents are

asked to forecast prices in two different markets: one in which forecasting decisions are strategic

substitutes and one in which forecasting decisions are strategic complements. Subjects are never

informed about the functional form of the underlying laws of the market.

In the dataset by Erev et al. (2002), there is a lot of randomness. However, decisions do not

converge to the mixed strategy equilibrium over time the patterns of decisions change markedly

over time. This can be considered to be evidence of (4). Thompson Sampling is at least found

to provide a better fit than the mixed strategy equilibrium and Bayesian learning with shocks.

However, Thompson Sampling is not significantly better than QRE.3 This is unsurprising, since,

if agents have difficulty into make the right decisions an environment, their behavior can be

interpreted as random and thus be represented by exogenous shocks.

3Learning rules such as reinforcement learning (Roth and Erev, 1998) and experience-weighted attraction
(Camerer and Ho, 1999) require a discrete action space. While these models can still be applied to continu-
ous decision problems by discretization of the space, the bin size is an arbitrary decision and introduces a dilemma.
Small bin sizes have two disadvantages: first, computations are slowed down and have been found not to converge.
Second, because only a small part of the action space is “reinforced” after every feedback, even choices that are
close to previous choices but do not coincide with them may be penalized by model selection criteria. On the
other hand, a big bin size implies an imprecise approximation and imprecise predictions. See Arifovic and Ledyard
(2004) for more details. Moreover, Hopkins (2002) shows that reinforcement and fictitious play, being a particular
Bayesian model, “are far more similar than were thought.”
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However, Thompson Sampling delivers both a better in-sample fit and superior predictive

ability to QRE and Bayesian learning in the “large world”, being represented by the dataset by

Heemeijer et al. (2009). In this beauty contest experiments with incomplete information, being

often called “learning-to-forecast experiment” (Marimon and Sunder, 1994), in which agents are

asked to forecast prices in two different markets: one in which forecasting decisions are strategic

substitutes and one in which forecasting decisions are strategic complements. Subjects are never

informed about the functional form of the underlying laws of the market. In the market with

strategic substitutes, dynamics quickly converge to the fundamental and noise tends to fade,

while in the market with strategic complements, dynamics do not converge to the equilibrium

and display persistent fluctuations. In the learning-to-forecast experiment, noise patterns exhibit

significant differences both between treatments and over time. Thus the better in-sample fit and

the better out-of-sample forecasts of Thompson Sampling are unsurprising.

For a Thompson Sampler knowledge of the entire distribution is not necessary, since it can

work with a partition of this posterior distribution.

Thompson Sampling can also explain a number of biases that are well-known in behavioral

economics.4 First of all, it is intuitive that Thompson Sampling can explain biases that have

made their way into the vernacular like “cherry picking” (or “confirmation bias”) and relying on

“anecdotal evidence.” Yet, Thompson Sampling can also explain the base-rate fallacy, i.e. the

finding that people tend to ignore general information in favor of specifics. Fully taking into

account base rates would require exploring the entire probability space, being computationally

burdensome. Another well-known bias is the conjunction fallacy, i.e. people usually attach a

higher probability to “Linda is a bank teller and is active in the feminist movement” than to

“Linda is a bank teller.” (Tversky and Kahneman, 1983) This is inconsistent with probability

theory, but not inconsistent with Thompson Sampling, since through making details salient the

sampler can be guided away from probability peaks. Moreover, Thompson Sampling provides an

explanation for the St. Petersburg paradox, i.e. the puzzle that individuals are not willing to pay

an infinite amount for a game in which a fair coin is tossed at each stage and the reward is doubled

every time heads appears. (Bernoulli, 1954) If individuals sample in their heads, they may draw

a small value as an estimate for the winning amount.

Experiments where subjects are asked to predict between left or right or the kind of questions

4See Sanborn and Chater (2016) for a detailed survey.
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testing biases such as the base-rate neglect and conjunction fallacy represent very simple and

intuitive tasks. Yet, violations of basic probability theory are consistently observed. If Bayesian

statistics do not work in such simple setups, how will they have a chance to work in richer, more

complex setups? Savage (1954) thus proposed restricting Bayesian statistics to “small worlds.”

However, Thompson Sampling invalidates this argument, since rich, complex environments are

the ones where Thompson Sampling is most effective. Simpler but more abstract problems hinder

the search through sampling due to a restriction of the outcome space. A smaller outcome space

is associated with less contextual cues, giving fewer hints where to search. Consider the following

example (Sanborn and Chater, 2016): it can be extremely challenging to solve a jigsaw puzzle

which is uniformly white, while solving a big jigsaw with a colored photograph can be easier,

because the sampler can be guided by the context provided and even by past experience from

real-world scenarios.

An important implication of Thompson Sampling is that behavior is stochastic due to the

random nature of the samples drawn. This can explain the noise in individual behavior, although

the average decisions may be correct resulting in the “wisdom of crowds”, which has been ob-

served in some experiments. This contrasts to economic models, which are usually deterministic

– both equilibrium and non-equilibrium models. However, there is overwhelming evidence in both

individual decision-making experiments and in the experimental game theory literature. Random-

ness in economics has motivated the introduction of random shocks, which are widely used across

the field in macroeconomics, econometrics as well as in microeconomics through the use of the

random utility model . However, many experiments have found that the distribution of decisions

of human subjects is not stationary over time and across setups (see e.g. (McKelvey and Palfrey,

1995; Dufwenberg et al., 2007)) which is why structural breaks have been found in the exogenous

parameters of quantal response. An endogenous distribution of decisions is implied by Thompson

Sampling, since the probability distribution from which agents sample is updated in a Bayesian

way.

This paper thus shows the use of Thompson Sampling as a novel descriptive and predictive

theory in economics. The cornerstone of economics can be considered to be strategic interaction

with other individuals in markets. This paper thus investigates the empirical fit and the predictive

ability of Thompson Sampling to games, which has, to the best of my knowledge, not yet been

done. This paper shows that Thompson Sampling is widely applicable to very different setups.
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Based on the hypothesis above that Thompson Sampling should be particularly effective in large,

complex tasks, Thompson Sampling is applied to two datasets that can be considered extreme

opposites: 2x2 games, which can be thought of as “small world”, and beauty contest games with

incomplete information, which can be thought of as “large world.”

For the “small world” 2x2 game, I take the large dataset with 10 different constant sum

games by (Erev et al., 2002). There is a lot of randomness, which is inconsistent with the mixed

strategy equilibrium. Furthermore, there is no evidence that agents the patterns of decisions

change markedly over time. This is unsurprising, as a space with two actions is a small action

space, which provides limited scope for changes in the variance of decisions, so that behavior can

be well fit with exogenous shocks. Nevertheless, Thompson Sampling is at least found to provide

a better fit than the mixed strategy equilibrium and Bayesian learning with shocks. However,

Thompson Sampling is not significantly better than QRE.5

2 General model

I take the version of Thompson Sampling outlined by Chapelle and Li (2011) and modify it

for interactive games. We start with the simplest case of a simultaneous-move game with full

information about payoffs, where the only uncertainty are opponents’ action. After that, we extend

this setting to more general cases, e.g. simultaneous-move games with incomplete information.

Simplest case Assume there is a finite set of players I = {1, 2, ..., n}. A given player is referred

to as i ∈ I, while this player’s opponents are referred to as −i. The game has either a finite or

an infinite number of rounds. A particular round is referred to as t ∈ N. In every round t, every

player i simultaneously chooses a specific action ait ∈ Ai out of a set of actions Ai, which can be

either a continuous or a discrete action space.

There is a payoff mapping of the form ui : Ai × A−i → R, giving von Neumann-Morgenstern

utility uit to each player i in every period t. At the beginning of period t, player i does not know

5Learning rules such as reinforcement learning (Roth and Erev, 1998) and experience-weighted attraction
(Camerer and Ho, 1999) require a discrete action space. While these models can still be applied to continu-
ous decision problems by discretization of the space, the bin size is an arbitrary decision and introduces a dilemma.
Small bin sizes have two disadvantages: first, computations are slowed down and have been found not to converge.
Second, because only a small part of the action space is “reinforced” after every feedback, even choices that are
close to previous choices but do not coincide with them may be penalized by model selection criteria. On the
other hand, a big bin size implies an imprecise approximation and imprecise predictions. See Arifovic and Ledyard
(2004) for more details. Moreover, Hopkins (2002) shows that reinforcement and fictitious play, being a particular
Bayesian model, “are far more similar than were thought.”
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the opponents’ actions a−it , so that she must form beliefs about them. The expected utility is given

by Eui : Ai × ∆(A−i) → R, where ∆ is the set of all possible probability distributions. ∆(A−i)

thus denotes the set of probability distributions over opponents’ play. The (joint) probability

of i’s opponents’ play in period t is given by a probability distribution σ−it ∈ ∆(A−i). σ−it is a

probability density if A−i is continuous and a probability mass function if A−i is discrete.

Because −i moves simultaneously to i, σ−it is unknown to player i, so that she has a subjective

probability distribution over opponents’ play in t, denoted σ̂−it , which may be different from the

objective probability distribution σ−it . While σ̂−it can be allowed to vary over time through a

deterministic process, in the simplest case it is stationary like in the fictitious play model (Brown,

1951). Thus, solely for the purpose of notational convenience, we write σ̂−i.

Let i’s subjective distribution σ̂−i : Θ→ R+ where θi ∈ Θ (Θ ⊂ R) is an exogenous parameter

that defines that distribution. Thompson Sampling, like fictitious play, assumes that agents are

uncertain about which θi best describes opponents’ play and they update it based on past play,

using Bayes’ rule. Denote the prior of player i at the beginning of period t over θi by Di
t−1(θi).

Suppose player i observes opponents’ play in t to be a−it , then at the end of period t, she updates

her prior by Bayes’ rule in order to obtain the posterior:

Di
t(θ

i) =
σ̂−i(a−it |θi)Di

t−1(θi)

σ̂−i(a−it )
(1)

The next decision player i faces is the choice of her action ait+1 in period t + 1. A widely used

assumption for decision-making in game theory is “rationalizability”, being a weaker assumption

than Nash equilibrium and only requiring that agents best-respond to any belief. In contrast to

Nash equilibrium, this belief may not be objectively correct.

However, a best response requires laying out the complete game tree, which is computationally

infeasible beyond setups with few rounds. (See e.g. Woodford (2018).) Setups in which learning

by agents is analyzed usually contain many rounds. Thus, following a large literature in behavioral

game theory, it is assumed that players give an asymptotically myopic best response, so that they

choose the action that maximizes their immediate payoff. (See Fudenberg and Kreps (1993) for a

discussion on myopia.)

Standard Bayesian learning corresponds to the case where ait+1 = arg maxEt(uit+1|σ̂−i). This

is where Thompson Sampling differs from pure Bayesian learning. The myopic best response of
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pure Bayesians implies (i) that player i makes optimal use of the posterior given her beliefs, so

that her estimate of θi is Eit(θ−i). This requires player i to calculate an integral or a weighted sum

of all possible outcomes, using the entire posterior. Therefore, (ii) play of player i is deterministic.

Thompson Sampling represents a more coarse version that only makes use of a part of the

posterior.6 Specifically, Thompson Sampling corresponds to the case where each ait+1 ∈ Ai is

chosen according to the probability of maximizing Et(ui|σ̂−i). This is equivalent to making a

random draw from the posterior.7 (See e.g. Chapelle and Li (2011).) Hence player i’s estimate of

θ−i is a random draw θ̃it+1 ∼ Dt(θ
i), implying that player i’s decision can be viewed as stochastic

from an analyst’s point of view. Instead of a best response, player i gives a conditional best

response based on the random draw. Conditionally on the random draw θ̃it+1, player i’s myopic

best response would be: ait+1 = arg maxE(uit+1|σ̂−i(θ̃it+1)).

Thompson Sampling thus consists of three steps: first, the player updates her subjective

probability distribution in a Bayesian way; second, the player makes a random draw from the

posterior; third, conditionally on that random draw, the player applies a (myopic) best response.

Given that both Thompson Sampling and Bayesian learning assume that actions are myopic

best responses to some belief, one can say that both concepts are consistent with myopic ratio-

nalizability.

More general case The previous subsection describes Thompson Sampling under particular as-

sumptions of the information set. This section relaxes these assumptions and describes Thompson

Sampling for arbitrary information sets.

A particularly realistic case is that agents may have some uncertainty about payoff mappings.

Thus, a payoff-relevant state ωt ∈ Ω can be introduced, being chosen by “nature” at the beginning

of round t and being disclosed to a subset of players. The payoff function is then a mapping

ui : Ai × Ω × A−i → R. One can partition the domain of the payoff function into the domain of

knowns, Ki, and the domain of unknowns, Γi. To apply Thompson Sampling, one must assume

6Previous papers introduced calculation costs into agents’ decision-making such as Evans and Ramey (1992).
Alaoui and Penta (2016) relate calculation cost to limited reasoning as described by “level k.”

7The number of random draws could be an exogenous variable over which the mean is calculated. One draw
is chosen for several reasons: first, the interpretation of probability matching would no longer hold. Second, if
the number of draws is small, one would have to calculate the convolution (distribution of the sum of random
variables) of Dt, which is intractable for a wide range of distributions. If the number of draws is large, the resulting
distribution converges to a normal distribution by the Central Limit Theorem. Denoting the number of random
draws by ν, the variance of the asymptotic distribution is given by 1

νσ
2. This is undesirable for two reasons: (i) ν

and σ2 would hardly be identifiable; (ii) this can be summarized by one parameter, redefined as σ2. In this light
the empirical application in section 4 can be interpreted as agents making a large number of draws.
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that the domain of unknowns is non-empty. For example, if the player knows only her own action

but is neither informed about the state ω nor about opponents’ actions a−it , then Ki = Ai and

Γi = Ω × A−i. Let σγ
i

t ∈ ∆(Γi) be the objective joint distribution over the unknowns. Denote

player i’s subjective distribution by σ̂γ
i

t and let θi be the (vector of) exogenous parameters defining

the distribution. Furthermore, the player receives observable signals, generated by a function

Zi : Ai × Ω × A−i → R. Denote the vector summarizing the available signals for player i at the

end of period t by zit. For example, if the payoff uit is observable, then zit may contain uit.
8

Thompson Sampling implies applying the three steps outlined above. First, the player updates

her subjective probability distribution using Bayes’ rule and the new information zit:

Dt(θ
i) =

σ̂i(zit|θi)Di
t−1(θi)

σ̂γi(zit)
(2)

Second, player i makes a random draw from the posterior: θ̃it+1 ∼ Dt(θ
i). Third, player i applies

a best response conditional on the random draw. In case the player is myopic and only maximizes

immediate payoffs, she would choose: ait+1 = arg maxE(uit+1|σ̂γ
i
(θ̃it+1)).

2.1 Relation to the previous literature

This section explores the precise relationship between Thompson Sampling and previous models

of decision-making. Table 1 gives a non-exhaustive overview of some frequently used models

in the literature. This table shows that those models can be classified along two dimensions:

the manner of belief formation and how people select their actions. Since the main novelty

of Thompson Sampling is how agents use their belief distribution to select their actions, the

discussion is organized along action selection. Table 1 shows two main ways of action selection:

optimal and through a random utility model. The relationship between Thompson Sampling and

the random utility model is discussed below.

Optimal action selection The novelty of Thompson Sampling is how agents use their belief

(distribution). The assumption that agents update beliefs in a Bayesian way has been used

by previous approaches such as fictitious play (Brown, 1951) or internal rationality (Adam and

Marcet, 2011). Similarly to equilibrium models such as Nash equilibrium or rational expectations,

8Section 4 provides an example, where uit is a deterministic function of the actual signal so that uit does not
contain any additional information.
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these models are deterministic, assuming that agents select the optimal action conditional on

their beliefs. Randomness in these models does not occur other than due to deterministic (and

optimal) responses to exogenous randomness in fundamentals. Thompson Sampling assumes that

agents select the optimal action conditionally on a random draw from the posterior. This renders

Thompson Sampling a stochastic models. Furthermore, since the Bayesian posterior is constructed

from past data of the environment, the randomness evolves endogenously.

Random utility models No matter how beliefs are formed, a model can be augmented by

introducing an exogenous random component determining agents’ choice (second row center). A

popular way of doing so is the random utility model. The generalized random utility model9 is

commonly defined as a probability measure D on a set of utility functions. (Gul and Pesendorfer,

2006)

The simplest case, being referred to as standard random utility model here, has been assumed

to be additive in two terms: U i
t = V i

t + εit, where V i
t is a deterministic part that varies over

time and εit is an i.i.d. random shock being drawn from a static distribution D(εi), where D

is often specified as type I extreme value.10 In this sense, the standard random utility model

can be considered a static model. There have been many proposals regarding the specification

of V i
t in the learning literature. Quantal response equilibrium (QRE) (McKelvey and Palfrey,

1995) is a specific hypothesis, purporting that this part is calculated rationally in the sense that

V i(.) is the expected value of the payoff, given equilibrium beliefs about other players’ actions.

Other approaches, including reinforcement learning (Roth and Erev, 1998), heuristic-switching

(Brock and Hommes, 1997) and experienced-weighted attraction learning (EWA) (Camerer and

Ho, 1999), assume a boundedly rational way of calculating V i(.), not using the assumption of

equilibrium beliefs.

While i.i.d. random errors from a static distribution can be considered a convenient statis-

tical assumption, researchers have provided different motivations for relaxing this assumption.11

One important violation of i.i.d. is heteroskedasticity of the perturbations. If heteroskedasticity

9There is no clear consensus in the literature on the use of the term random utility model. Thus, the term
generalized random utility model is borrowed from Walker and Ben-Akiva (2002), encompassing all models where
the definition given by Gul and Pesendorfer (2006) applies. This includes but is not limited to the standard
random utility model defined below, models with flexible disturbances like random parameter models and latent
class models.

10An alternative specification in the previous learning literature is a power probability specification. For a
discussion of the relative merits and drawbacks of the power and the logit specifications, see Camerer and Ho
(1999).

11See e.g. Louviere and Eagle (2006), Train (2009) or Fiebig et al. (2010) for an overview.
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is ignored, it can have severe consequences such as inconsistent parameter estimates and biased

forecasts. (Louviere and Eagle, 2006) Explicitly modeling this heteroskedasticity only solves the

problem if it is correctly specified. Otherwise, augmenting the model for heteroskedasticity comes

at the additional expense of increased complexity. This is why authors such as Louviere and Eagle

(2006) propose that “without theory to suggest how components of variance differ by individu-

als, markets, contexts, experiments, etc, adding higher moments to choice models is probably a

bad idea” and “[a] better way forward is to develop theory and methods to capture variability

differences.”

Absence of a compelling theory about how the moments of the distribution of utility may

evolve over time motivated Frick et al. (2017) to provide the first analysis of the fully general,

non-parametric form of a dynamic version of the random utility model where the distribution Di
t

is time-varying. They provide the axiomatic characterization, also considering the case where Di
t

depends on past choices.

Another questionable feature of a random utility model with i.i.d. shocks has been found

by Apesteguia and Ballester (2017). They show that every i.i.d. random utility model implies

non-monotonic risk preferences, i.e. there is a range of parameters where the probability of

making a riskier choice increases in the level of risk aversion. They show that monotonicity is,

however, preserved in random parameter models, in which the randomness is introduced through

stochastic parameters in the utility function. This relaxes the strong i.i.d. assumption of the

utility perturbations and introduces correlation over actions.

Thompson Sampling is related to Frick et al. (2017), as it also embarks on the idea of an

endogenous distribution Di
t. It proposes a specific theory that retains computational simplicity

and tractability by linking the randomness in choice to the Bayesian posterior, summarizing

information acquired about the environment. Moreover, it preserves monotonic risk preferences,

as it belongs to the random parameter class of models: the randomness comes from drawing the

parameter θi, which enters the subjective payoff consideration for every possible action of the

player and thus introduces correlated perturbations.

2.2 Evaluating Thompson Sampling

In order to evaluate Thompson Sampling empirically, one needs a benchmark model against which

one could potentially reject Thompson Sampling. I use two criteria for choosing this benchmark
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Exogenous
trembles

quantal response
equilibrium

Bayesian learning with
exogenous shocks

reinforcement learning
EWA
heuristic switching

Optimal response
to sample from
posterior

N/A Thompson Sampling N/A

Table 1: Thompson Sampling in comparison to previously used approaches

model: first, just as Thompson Sampling, the benchmark model should also allow for stochasticity.

Second, since Thompson Sampling is widely applicable, the benchmark model should also be

widely applicable. One could certainly test Thompson Sampling against many specific models

in many specific contexts. However, if a model has been developed for a specific context, it

would be less surprising if that specific model provided a better fit for the context it has been

developed for than Thompson Sampling. In fact, once one departs from calculating V (.) rationally,

there is a myriad of possible specifications. Even though models like reinforcement learning and

experience-weighted attraction have foundations in psychology, many different versions of them

are available and have been used in the previous literature. I focus on the comparison between

Thompson Sampling and QRE: QRE has been widely applied for all kinds of games as well as in

macroeconomics (Costain and Nakov, 2015), and uses a non-arbitrary belief structure by assuming

consistent beliefs. Thompson Sampling has the advantage that it is easier to implement, as QRE

requires an (often intractable) fixed point calculation.

Table 1 highlights that quantal response equilibrium differs from Thompson Sampling in two

vital dimensions: while Thompson Sampling is a non-equilibrium concept, QRE is an equilibrium

concept. The second dimension is the error structure, which is i.i.d. over actions in all known

empirical applications of QRE due to practical limitations. (Goeree et al., 2016, p. 48) Thompson

Sampling is a simple way to introduce correlated shocks through random draws from the posterior.

While the distribution of the errors is arbitrary, it is usually taken as as logit for QRE. (See Camerer

and Ho (1999) for a discussion of different error structures.) However, logit is not a convenient

specification for Bayesian learning due to intractability. (See e.g. Koop and Poirier (1993).) To

disentangle whether any difference between Thompson Sampling and QRE comes from the way

beliefs are specified or from the error structure, I also provide a step in between with Bayesian

learning in the same way as specified for Thompson Sampling and a logit error structure, labeled
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as “Bayesian logit” (second row center). The approach labeled as “logit” can be considered to

be a hybrid between Thompson Sampling and QRE, since it uses the logistic error structure of

QRE but estimates expected payoff using Bayesian learning, being the same way of updating

as Thompson Sampling. Below I briefly review quantal response equilibrium for the unfamiliar

reader and provide an exposition for the Bayesian logit approach.

Quantal response equilibrium (QRE) McKelvey and Palfrey (1995) assume that the deter-

ministic part of the random utility function is the expected payoff. Calculation of the expected

payoff requires specifying subjective beliefs of every player about the distribution of other players’

actions a−it . McKelvey and Palfrey (1995) assume that these subjective beliefs are consistent with

the actual probability distribution of other players under the quantal response equilibrium hy-

pothesis. Hence, the expected payoff is only conditioned on a player’s own action and the correct

probability distribution12 of others σ−i

V i(ait = aij) = Et− 1(uit|ait = aij, σ−i) (3)

Perhaps the most common distribution, particularly in the literature applying QRE to a continuous

action space (see Goeree and Holt (2005) for an overview), is a type I extreme value distribution,

resulting in the logit version of QRE. Less common is a multinomial probit specification due

to practical limitations. (See Cameron and Triverdi (2005) and Train (2009) for a discussion.)

Furthermore, the results are generally very similar between logit and probit. (See e.g. Long

(1997), p. 83, Greene (2002), p. 667, or Gill (2001), p.33.)

Assuming a type I extreme value distribution, the probability of choosing any action aij is

given by the logit model:

P (ait = aij) = P (U i
t (a

i
t = aij) ≥ U i

t (a
i
t = aik),∀k ∈ Ji) =

exp(λE(uit|ait = aij, σ−i))∑Ji
k=1 exp(λE(uit+s|ait = aik, σ−i))

(4)

Bayesian logit While quantal response equilibrium (QRE) is an equilibrium concept in which

subjective beliefs coincide with objective beliefs, this assumption can be relaxed in favor of non-

equilibrium beliefs about other players’ probability of play σ̂−i or a perceived law of motion

(PLM) about how the (market) outcomes are generated that may not coincide with the actual law

12As every player i forms consistent beliefs and rationally calculates the reward, the past does not play any role.
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of motion (ALM).13 Those non-equilibrium beliefs σ̂−i may contain states θi that are unknown to

agent i and about which she forms beliefs, Di
t(θ

i). It is assumed that as new information becomes

available, the decision-maker updates Di
t(θ

i) in a Bayesian way. Like in QRE, the decision-maker

does not best respond to those beliefs but instead trembles when choosing the action. It has been

shown that fictitious play corresponds to Bayesian learning with Dirichlet priors, which is the

multivariate generalization of the beta distribution. (DeGroot, 1970) Thus, this class of models

comprises stochastic fictitious play, which has frequently been used in the previous behavioral

game theory literature. (See e.g. Fudenberg and Kreps (1993), Fudenberg and Levine (1998),

Cheung and Friedman (1997), Goeree and Holt (1999).)

Given Bayesian beliefs, an agent calculates the expected reward

V i(ait = aij) = Et−1(uit|ait = aij, σ̂−i(θi)) (5)

For the same reasons as stated above for the application of QRE, a type I extreme value distribution

is specified, so that the probability distribution over the action space is given by the logit model:

P (ait = aij) = P (U i
t (a

i
t = aij) ≥ U i

t (a
i
t = aik),∀k ∈ Ji) =

exp(λE(uit|ait = aij, σ̂−i))∑Ji
k=1 exp(λE(uit+s|ait = aik, σ̂−i))

(6)

This is why this model is referred to as the Bayesian logit.

3 Application to 2x2 games

3.1 Dataset

10 constant-sum games from Erev et al. (2007) are taken (payoffs shown in table 2), in which each

subject played 500 periods of only one of these games against the same opponent. Every game is

played by nine pairs, so that this dataset contains altogether 90,000 observations. The numbers

in each cell represent the probabilities that players win a fixed lottery prize υ, set to $0.04, on

each trial. For instance, if ROW plays T and COL plays L, player 1 will win υ with the specified

probability PROW
1 , while player 2 will win υ with probability PCOL

1 ≡ 1−PROW
1 . Such a design has

the advantage to control for risk preferences (see e.g. Roth and Malouf (1979).) Each player knew

13PLM and ALM is the terminology used by the macroeconomic learning literature. See for example Evans and
Honkapohja (2001).
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the probabilities in the payoff matrix of the game she played. She was also informed about the

action the other player has chosen and therefore of the probability with which her opponent won

the lottery prize. The player also knew whether or not she herself received the prize. However,

players were not informed whether the opponent received the lottery prize or not.

Game Payoff matrix Game Payoff matrix

L R L R

1
T .77 .35 6 T .46 .54
B .08 .48 B .61 .23

L R L R

2
T .73 .74 7 T .89 .53
B .87 .20 B .82 .92

L R L R

3
T .63 .08 8 T .88 .38
B .01 .17 B .40 .55

L R L R

4
T .55 .75 9 T .40 .76
B .73 .60 B .91 .23

L R L R

5
T .50 .64 10 T .69 .05
B .93 .40 B .13 .33

Table 2: Games in Erev et al. (2007)

The dynamic patterns of four of those games are shown in figure 1. It is of particular interest

whether the noise patterns are similar over time and across those ten games.

Sign tests do not reject the hypothesis that the variance in the first 75 % of the rounds is the

same as in the last 25 % of the rounds for nine out of ten games. (p-values > 0.05)1415

Different degrees of volatility across games are expected due to different Nash equilibria. For

example, if the mixed strategy Nash equilibrium is 50-50, then equilibrium play, involving play

of both actions with equal frequencies, has a greater variance than for a Nash equilibrium 80-20,

where one action is played much more often than the other.

14The exception is game 1, displaying weak evidence of declining variance for the row player (p-value: 0.0898)
and stronger evidence for the column player (p-value: 0.0195).

15A potential concern is that there are only nine independent observations for each game, which leads to low
power of statistical tests. Yet, the results are robust to pooling over games, since sign tests based on 90 independent
observations obtain insignificant results for both player 1 (p-value: 0.5203) and player 2 (p-value: 0.3912).
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Figure 1: Constant-sum one-stage 2x2 games with full information played over 500 rounds from
Erev et al. (2007): the proportion of T-choices for ROW and L-choices for COL is grouped in
blocks of 25 periods

3.2 Theory

There are n = 2 players, row (ROW) and column (COL). The set of actions for both players is

Ai with two actions ai,1, ai,2. (For example, aROW,1 = T, aROW,2 = B, aCOL,1 = L, aCOL,2 = R.)

The game is repeated τ rounds, indexed by t = 1, 2, ...τ. The probability distributions of play

are σit = (pit(a
i,1), pit(a

i,2)) = (pit(a
i,1), 1− pit(ai,2)), with pit(a

i,1) denoting the objective probability

that player i plays ai,1 in period t. The payoff uit is given by a von-Neumann-Morgenstern payoff

matrix in table 3.16

16As it is relevant for the subsequent applications, the payoffs could also represent lotteries: for example, if both
players play L, ROW receives a fixed payoff υ with probability PR1 , while COL does with probability PC1 .
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COLUMN

aCOL,1 aCOL,2

R
O

W aROW,1 PROW
1 , PCOL

1 PROW
2 , PCOL

2

aROW,2 PROW
3 , PCOL

3 PROW
4 , PCOL

4

Table 3: Exemplary payoff matrix

Under full information about the opponent’s past play and the payoffs, any player i’s only

unknown at time t is the opponent’s contemporaneous action a−it . However, she observes all past

actions directly so that they constitute the observed signals z∗,i(a−it ) = a−it .

3.2.1 Beliefs about the other player’s action

I closely follow the literature on fictitious play in specifying agents’ beliefs. By construction of the

setup, the players move simultaneously in any period t. Thus, player i does not know the objective

probability distribution of her opponent’s play σ−it . Hence, she must guess a subjective likelihood

σ̂−it with parameters θi. While many candidates for σ̂−it would be possible, for this application I

specify it as a Bernouilli distribution, denoted Ber. Like in fictitious play, this implies a stationary

distribution, so that players do not take into account that other players learn over time.17 There

is one unknown parameter θi = p−i(a−i,1), corresponding to the probability that player −i plays

a−i,1, which defines a Bernouilli distribution Ber(p−i(a−i,1)).

Player i has to form beliefs Di
t(p
−i(a−i,1)) about the unknown parameter p−i(a−i,1). While be-

liefs can in principle be specified as an arbitrary probability distribution, I assume thatDi
t(p
−i(a−i,1))

corresponds to a beta distribution:

p−i(a−i,1) ∼ B(α−it−1, β
−i
t−1) (7)

where α−it−1 represents the number of previous trials in which the opponent -i indeed played a−i,1.

β−it−1 represents the number of previous trials in which the opponent played a−i,2.

A beta distribution is chosen for several reasons: first, it is the conjugate prior of the Bernouilli

distribution, meaning that under a Bernouilli distributed outcome the posterior distribution is of

17Possible reasons may be cognitive costs or overconfidence, meaning that the player assumes that she is more
sophisticated than her opponent. (See e.g. Camerer et al. (2004).) See also Fudenberg and Levine (1998) for a
discussion.
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the same family as the prior distribution. Second, the beta distribution is truncated to the unit

interval so that it seems a natural choice for the distribution of a probability value.

3.2.2 Choosing an action

A rational learner would simply use the mean from the posterior distribution as an estimate for

p−i(a−i,1) so that

ERt−1p
−i(a−i,1) =

α−it−1

α−it−1 + β−it−1

(8)

This has been known as fictitious play (Brown, 1951) in the literature and would result in a

deterministic choice conditional on the history of data. However, under Thompson Sampling

agents make a random draw from the posterior. The posterior conditional on the history up to

period t-1 is given by (7), from which the agent makes a random draw denoted by p̃−it (a−i,1).

Once agents made this draw, the choice of the player can be determined as being the optimal one

conditional on p̃−it (a−i,1).

The player uses her estimate of the probability that the other player plays a−i,1, p̃−it (a−i,1), to

determine whether she herself plays ai,1 or ai,2. Without loss of generality, consider the row player

ROW, using the payoffs from table 3: With p̃COLt (L) as her estimate for the column player to play

L, the row player’s discounted expected payoffs are, for instance, if she plays L:

E(uROWt |aROWt = L,Ber(p̃COLt (L))) =PROW
1 · p̃COLt (L)t + PROW

2 · (1− p̃COLt (L)) (9)

Hence, it is easy to see that the row player plays L if E(uROWt |aROWt = L,Ber(p̃COLt (L))) >

E(uROWt |aROWt = R,Ber(p̃COLt (L))) and R if E(uROWt |aROWt = R,Ber(p̃COLt (L))) > E(uROWt |aROWt =

L,Ber(p̃COLt (L))).

The probability that the row player’s choice ai(t) is L is given by

pROWt (L) =


1− Ip(aCOLt−1 , b

COL
t−1 ) if PROW

1 − PR
2 − PROW

3 + PROW
4 > 0

Ip(a
COL
t−1 , b

COL
t−1 ) otherwise

(10)

where Ip is the “regularized incomplete beta function”, the c.d.f. of the beta function.
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3.2.3 Belief updating

After both players have made their choices, those choices are observed by the other player -i.

Hence, every player i uses these observations to update her old beliefs Dt−1(p−i(a−i,1)).

A specific property of the beta distribution is that Bayesian updating, as generally formulated

by equation (1), implies adding 1 to α−it−1, if she observes the opponent playing a−i,1 in period t

and adding 1 to β−it−1, if she observes the opponent playing a−i,2 in period t. Hence:

α−it =


α−it−1 + 1 if a−it = a−i,1

α−it−1 if a−it = a−i,2
(11)

β−it =


β−it−1 + 1 if a−it = a−i,1

β−it−1 if a−it = a−i,2
(12)

The beta distribution B(α−it , β
−i
t ) constitutes player i’s posterior belief Di

t(p
−i(a−i,1)).

Generalization of Bayesian updating The unknown parameters are the priors at the begin-

ning of the game α−i0 and β−i0 . Estimating those parameters under pure Bayesian belief updating

yields extremely high parameter estimates. A wide range of applications not only in the decision-

making but also in the behavioral game theory literature explores the hypothesis of players having

biased perceptions when updating. (Fudenberg and Levine, 1998; Roth and Erev, 1998; Camerer

and Ho, 1999) The approach taken here follows Goeree et al. (2007), who develop a generaliza-

tion of Bayesian updating, and Moreno and Rosokha (2016), who generalize their framework to a

setting with many time periods.

Bayes’ rule as given by equation (1) can more generally be written as

Di
t(θ

i) =
(σ̂−i(a−it |θi)))ξ

t
Di
t−1(θi)

(σ̂−i(a−it ))ξt
(13)

The appeal of this specification is its flexibility given by the parameter ξ, which captures the

perceived number of signals. Pure Bayesian learning is nested by setting ξ = 1. If the agent

after observing the next signal acts as if she observed two signals, then ξ = 2. Values of ξ > 0

can be interpreted as limited memory, since agents pay more attention to more recent signals.

Conversely, values of ξ < 0 can be interpreted as underweighting of the signal or “conservatism
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bias.” To distinguish between old and more recent periods, following Moreno and Rosokha (2016),

the weight of the signal in a period t is ξt, meaning that each new signal has ξ times the weight

of the previous signal.

This implies an updating rule of

α−it =


α−it−1 + ξt · 1 if a−it = a−i,1

α−it if a−it = a−i,2
(14)

β−it =


β−it−1 + ξt · 1 if a−it = a−i,1

β−it−1 if a−it = a−i,2
(15)

3.2.4 Initial priors

A remaining question is how to specify the initial priors. Equations (38) and (39) highlight that

beliefs must be initialized by specifying α−i0 and β−i0 . Those parameters reflect the numbers trials,

in which the opponent played a−i,1 or a−i,2 respectively, in a hypothetical sample that players have

in mind before starting to play the actual game. α−i0 , β
−i
0 contain two pieces of information: the

odds ratio that the opponent plays a−i,1 as opposed to a−i,2, which is reflected by the ratio
α−i
0

β−i
0

as

well as the sample size of this prior “hypothetical sample” N ≡ α−i0 + β−i0 . A high magnitude of

N reflects a high degree of confidence in the priors and the observed play of the opponent in the

game plays less of a role. Conversely, if the magnitude of N is low, the 1’s that are added during

the play carry more weight.

There is no consensus in the literature on how to initialize priors. (See e.g. Williamson (2010)

for a discussion.) Thus, in a first step the priors have been estimated for Thompson Sampling and

the Bayesian logit together with the exogenous parameters. Since different information was given

to the subjects in each of the 10 games (e.g. games differ in the payoff matrices), it is plausible

that the priors differ over the games. Since the payoff matrices are asymmetric, the priors for

TS are allowed to differ for ROW and COL. However, following e.g. Camerer and Ho (1999), the

priors were restricted to be the same across all players of the same type.

The data display stark differences in initial play. It would thus be incorrect to use the initial

conditions of one game to predict the dynamics of another game. However, if the variation in the

priors is not understood, this will present an obstacle to forecasting the dynamics of new games

ex-ante. Thus, the estimates of the prior parameters have been investigated for regularities.
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For Thompson Sampling and the Bayesian logit, the mean estimates p̂−i0 (L) =
α−i
0

β−i
0 +α−i

0

have

been found to be relatively close to the Nash equilibria of every game.18 Priors being close to

the mixed strategy equilibrium are sensible in the context of Thompson Sampling. The reason is

that they induce about equal payoff associated with each of the two actions so that the player’s

decisions more likely look like a mixed strategy.

The prior probabilities p̂−i0 (L) =
α−i
0

β−i
0 +α−i

0

thus have been restricted to the Nash equilibria, so

that the only unknown parameter is the “prior” sample size, being denoted by N .

3.3 Empirical evaluation

3.3.1 Methodology

The initial conditions (or priors) are estimated together with the rationality parameter λ. The

initial priors are assumed to be the same within every type of player to save degrees of freedom.

Moreover, the parameters are assumed to be stationary over time, which can be considered rea-

sonable, as the environment to which the subjects are exposed is stationary over time by design

of the experimenter (apart from other agents’ behavior, which is endogenous in the behavioral

models I consider.)

One could estimate the parameters using the entire sample. However, fitting a model in-

sample carries the peril of overfitting (see e.g. Leamer (1978)), meaning that the parameter

estimates are driven by noise in the calibration dataset. This is a particular concern if models

with different numbers of parameters are compared, since models with more exogenous parameters

might have an advantage in fitting the data. A popular way to guard against overfitting is the

adoption of information criteria, such as the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC). (Akaike, 1974; Schwarz, 1978) However, it has been shown that the

model selected by the BIC does not necessarily have the best out-of-sample predictability (see e.g.

Hansen (2010)). In fact, the ultimate test of a model is considered to be (pseudo) out-of-sample

forecasting. (Chatfield, 1996; Stock and Watson,2015, p. 613) This is a common methodology both

in microeconomics (e.g. Camerer and Ho (1999)) and macroeconomics (see Clark and McCracken

18For Thompson sampling the median deviations from Nash equilibrium for the row players (−2.53 · 10−6) and
the column players (−1.56·10−7) were insignificantly different from zero (p-value Wilcoxon signed-rank test: 0.6250
for ROW; 0.8457 for COL.) For the Bayesian logit the median deviations from Nash equilibrium for the row players
(−0.0426) and the column players (0.0061) were also insignificantly different from zero. (p-values of Wilcoxon
signed-rank tests: 0.2754 for ROW; 0.5566 for COL). Separate statistical tests need to be conducted for the row
and the column player, as otherwise the independence assumption that is required for the Wilcoxon signed-rank
test would be violated.
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(2013)). Moreover, models with more free parameters do not necessarily provide better out-of-

sample forecasts than models with fewer parameters.

To test the models’ predictive performance, a cross-validation procedure is adopted. This

means that the sample is divided into two parts: one part is the training sample, being used

to estimate the model parameters. Those estimates are then used to predict the datapoints

of the second part of the sample, the validation sample. Cross-validation is a powerful tool,

because several partitions can be used and the results of several validation samples usually render

conclusions about model evaluation more robust.

To assess the in-sample fit, I use the in-sample likelihood and two measures penalizing models

with extra exogenous parameters: the AIC and the BIC. For out-of-sample forecasting, the BIC is

commonly not used, since models with more free parameters generally do not have any advantage

when forecasting out-of-sample. Thus, I focus on the log-likelihood (LL) as a loss function for the

validation sample:

LL =
T∑
t=1

nv∑
i=1

ln(f(ait)) (16)

where nv denotes the number of subjects in the validation sample. The likelihood is an appropri-

ate measure, since the models provide density forecasts due to their stochastic nature. Density

forecasts give forecasts of all values that the variable of interest can take with a likelihood measure.

A further question is whether a generalization criterion (see Busemeyer and Wang (2000))

should be used so that the learning parameters are not only stable over time but also stable over

games. If the learning parameters differed a lot across games, the natural question that would

arise would be: what drives this difference in the learning parameters? Thus, it would be desirable

to obtain estimates that are stable over setups so that one could predict the behavior in games

a priori before collecting data. The conjecture that the learning parameters should be stable

over environments provides a motivation for using the 10 different games as 10 partitions of the

sample so that 10-fold cross-validation is used. Cross-validation with 10-20 breaking points has

been recommended, since too many breaking points lead to a high variance and thus inefficient

estimates. (Kohavi, 1995) This means that the exogenous parameters are estimated nine times,

always leaving out one of the games. The game left out is then used for pseudo out-of-sample

prediction.
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This procedure also has the advantage that it provides a jackknife estimate of the standard

error. Since 10-fold cross-validation provides 10 different parameter estimates, standard errors

can be estimated by calculating the sample standard deviation of the distribution of parameters

obtained.

QRE Applying QRE is straightforward. The logit equations constitute two equations with two

unknown probabilities for every λ. Solving for these probabilities can be included in any search

algorithm, finding the λ-parameter, which maximizes the log-likelihood of the training sample.

TS Thompson Sampling has one free parameter: N . The restrictions α−i0 = p−i,∗ · N and

β−i0 = (1 − p−i,∗) · N respectively have been imposed, where p−i,∗ denotes the equilibrium play

of L or T depending on the opponent and N the size of the “hypothetical” sample that players

have in mind before playing. Note that the one exogenous parameters for Thompson Sampling is

introduced to pin down the initial prior. For the learning process itself, no exogenous parameter

is necessary.

Logit The logit approach uses the same error structure as QRE (with one exogenous parameter)

but Bayesian learning. To be consistent, Bayesian learning has been specified the same way as

in Thompson Sampling with a Bernouilli likelihood and a Beta prior. This results in two free

parameters: N the “prior” sample size, the same exogenous parameter as in Thompson Sampling,

as well as the λ-parameter, capturing the precision (inverse variance) of the action selection.

3.3.2 Estimation results

Model comparison Regarding in-sample fit, Thompson Sampling, Bayesian learning and QRE

all perform better than Nash equilibrium and a random uniform. These results are robust to pe-

nalizing them according to their number of exogenous parameters. Notably, Thompson Sampling

despite having one parameter less than Bayesian learning Thompson Sampling provides the better

in-sample fit. Amongst all models, the best in-sample fit is provided by QRE. This is unsurprising,

given some results in the previous literature. Haile et al. (2008) show that QRE is not falsifiable in

any normal form game, if the i.i.d. assumption of the perturbations is slightly relaxed. However,

even imposing the i.i.d. assumption can explain a large set of outcomes. Furthermore, the logit

version of QRE does not rule out much in 2x2 games. However, Haile et al. (2008) argue that
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in games with more than two actions the results that a logit-QRE can rationalize is considerably

more limited. Hence, the test on a dataset with a large action space presented later is particularly

important.

TS Logit QRE Random Nash
TS - - - - -
Logit Tie (0.0588) - - - -
QRE QRE (0.0069) QRE (0.0093) - - -
Random TS (0.0051) Logit (0.0069) QRE (0.0051) - -
Nash Tie (0.2041) Tie (0.1676) QRE (0.0124) Tie (0.4473) -

Table 4: 2x2 games: Preferred model for out-of-sample forecasting by the Wilcoxon signed-rank
tests in pairwise comparison (p-values in parentheses)
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Figure 2: 2x2 games: Likelihoods of validation samples

Turning to out-of-sample predictions, table 4 reports the results of Wilcoxon signed-rank tests

that compare the out-of-sample performance of the models pairwise and figure 2 shows the likeli-

hoods obtained from the cross-validation procedure. Thompson Sampling, the Bayesian logit and
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QRE all provide better forecasts than random decision-making (choosing each action with a 50 %

probability) in nine out of ten games. Hence, signed-rank tests reject the hypothesis that a random

uniform predicts observed behavior equally well as all three models examined. Furthermore, all

three models predict better than Nash equilibrium. Random does better than Nash equilibrium

in six out of ten games. Hence, there is no evidence that Nash equilibrium predicts behavior

better than random. Yet, only QRE does significantly better than Nash equilibrium, while for

the other two models there is no clear evidence that they outperform Nash equilibrium. The out-

of-sample predictive ability of Thompson Sampling can be improved if the model is augmented

by psychological theories as it has been done in the behavioral game theory literature before.

(See Appendix .) If more parameters are added to Thompson Sampling it delivers approximately

equal out-of-sample predictions to QRE. A better fit cannot necessarily be expected: as there was

no heteroskedasticity detected in the dataset, Thompson Sampling does not have a comparative

advantage here.

Parameters Table 5 reports the maximum likelihood parameters estimated as well as the jack-

knife standard errors. The following observations stand out:

Observation 1. The priors for successes and failures TS take very high values, while they take

low values for the Bayesian logit.

The magnitudes of α−i0 and β−i0 reflect the sizes of a hypothetical sample before playing the

game. A large number implies a high degree of confidence in the priors and the observed play of

the opponent in the game plays less of a role. Conversely, if the magnitude of α−i0 and β−i0 is low,

the 1’s that are added during the play carry more weight.

For TS, α−i0 and β−i0 have particularly high magnitudes. This implies that individuals hardly

revise their beliefs through the behavior observed from the opponent. These results hence postulate

only a limited role of learning and that play is rather determined by (almost) fixed beliefs at the

beginning of the respective game. This can be explained by the observation that in this dataset

behavior in 2x2 games frequently shows a particular degree of inertia.

For the Bayesian logit, the initial sample takes rather low values, being about 4 on average.

The difference to TS can be explained by the fact that the type I extreme value distribution used

for the logit has heavy tails and thus easily predicts large shocks in the action space; conversely, TS

postulates randomness in the beliefs so that small shocks around the knife-edge value of opponents’
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probability of play suffice to create variation in players’ action selection.

Size of hypothetical
prior sample

Rationality parameter

N λ
Logit 4.04 3.50

(1.15) (0.16)
TS 432,597.88 -

(40,824.77)
QRE 6.31

(0.26)
standard errors in parentheses

Table 5: MLE estimates

4 Application to expectation formation

Experiments have shown that, even in the presence of a unique equilibrium, learning dynamics on

a continuous action space depend on the kind of feedback in the underlying system (Camerer and

Fehr, 2006; Hommes, 2013): if there is negative feedback, i.e. choices are strategic substitutes,

dynamics converge very likely and fast to the equilibrium; if there is positive feedback, i.e. choices

are strategic complements, dynamics converge less likely and slowly to the equilibrium. The

reason is that under strategic substitutes, agents are induced to choose opposite actions to other

agents. Hence, rational agents would do the opposite of less rational agents and thus eventually

dominate the market. Conversely, under strategic complements, agents are induced to coordinate,

so that rational agents are induced to mimic less rational agents. Hence, non-rational behavior

can dominate the market.

A challenge in the literature was to find a model that endogenously predicts these dynamics.

Anufriev and Hommes (2012) propose a heterogeneous-agent model where agents endogenously

choose between different forecasting rules, and according to Hommes (2013), a homogeneous fore-

casting rule that endogenously predicts these dynamics is yet to be found. Thompson Sampling

is a tractable, homogeneous behavioral rule that can fill this gap. Using the experimental data by

Heemeijer et al. (2009), I show that Thompson Sampling can predict both the dynamics in both

kind of situations: situations with negative feedback like the Cobweb model and situations with

positive feedback like an asset market.
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4.1 Dataset

I take the dataset of Heemeijer et al. (2009). The setup is a learning-to-forecast game in the spirit

of Marimon and Sunder (1994), where subjects are only paid for their forecasting performance but

market outcomes are determined by the computer. n = 6 participants are asked to form beliefs

about the realization of a market price for 50 periods. After the six participants have typed their

beliefs for the price in period t into the computer interface, the mean over the individual beliefs

pe,it (corresponding to the actions) for the price realization in period t are inserted into a price

adjustment equation:

pt =c+ b
1

n

n∑
i=1

pe,it + εt (17)

c, b represent exogenous parameters and εt ∼ N(0, 1
4
) represents a stochastic shock. Equation

(17) (including the shock realizations εt) is never disclosed to the participants. In fact, this setup

represents a beauty-contest game with an interior solution and stochastic shocks.

Heemeijer et al. (2009) calibrate the parameters c, b different in their two treatments: in the

treatment with strategic complements, the parameters are set to c = 20
21
· 3 and b = 20

21
, while

the treatment with strategic substitutes, these parameters are set to c = 20
21
· 123 and b = −20

21
.

Heemeijer et al. (2009) show that the pricing equation under strategic substitutes can be derived

as the reduced-form equation of a Cobweb model, while the pricing equation under strategic

complements can be derived as the reduced-form equation of an asset market setup.

It can easily be verified that this implies a unique fundamental pf = 60 as well as a unique

rational expectations equilibrium.19 Participants are rewarded according to a quadratic distance

equation:

uit = max{0, 1300− 1300

49
(pt − pe,it )2} (18)

The results of the different experimental groups are displayed in figures 3 and 4. For strategic

substitutes, Heemeijer et al. (2009) find quick convergence to the fundamental, while for strategic

complements, there is no evidence for convergence.20 However, coordination in the strategic

19The rational expectations equilibrium is a constant, since the shock is only realized at the end of a period.
20The explosive dynamics in group 5 of the strategic complements treatment are caused by one individual

forecasting 5250 for period 8. This likely represent a typo and the subject may have intended to forecast 52.50.
Because of this outlier, group 5 has been excluded from the estimation.
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complement treatment occurs fast, while it is slow in the strategic substitutes treatment. Heemeijer

et al. (2009) find a significantly higher standard deviation for periods 2-7 in the strategic substitute

treatment than in the strategic complement treatment. After period 7, coordination is high in

both treatments. Sign tests indicate that the variance in subjects’ forecasts in the first 38 rounds

(75 % of the sample) is higher than in the last 12 rounds (25 %) for both the strategic substitute

(p-value: 0.0156) and complement treatment.21 (p-value: 0.0078)
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Figure 3: Strategic substitutability sessions
from Heemeijer et al. (2009)
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Figure 4: Strategic complementary sessions
from Heemeijer et al. (2009)

4.2 Theory

Suppose agents do not know the price adjustment equation (17). Following Evans and Honkapohja

(2001), I assume that they nevertheless perceive the law of motion of the prices to follow the

same functional form as under rational expectations. However, consistently with the information

structure in the experiment, they do not know the parameters.22 means that players perceive that

the prices pt are drawn from a normal distribution with a fixed mean p∗ so that the perception

for player i of the form:

pt ∼ N(p∗, σ2) (19)

or alternatively: pt = p∗ + ηt with ηt ∼ N(0, σ2) (20)

21This result is based on treating 1 single observation causing the big spike in group 3 period 49. Not excluding
that observation would render the test for strategic substitutes insignificant. (p-value: 0.1094)

22This is the natural starting point, since any misperception about the underlying law of motion in the boundedly
rational models, i.e. Thompson Sampling and Bayesian learning, would make it harder to disentangle whether
differences to the equilibrium models come from learning or the misperception.
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p∗ is unknown and corresponds to the variable or state θi (∀i ∈ I) that needs to be learned.

For technical simplicity, I assume that the variance σ2 is known (or the player believes to know

the variance).23 ηt can been seen as the (perceived) stochastic part in determining pt from the

perspective of the subjects.

Consider a period t where each player i needs to forecast pt given past data until period t-1.24

Given (19), the optimal forecast is Et−1pt = p∗. However, the challenge is that p∗ is unknown. The

price realizations pt are observed by the player and thus constitute “signals” or “measurements”

of p∗.

Since p∗ is unknown, the player has to form a prior belief about it in any period t. While

this prior could in principle take any form, it is, for technical simplicity, assumed to be Gaussian

N(p̄∗t−1, ρt−1). Suppose a new observation pt just became available. With pt, the prior can be

updated in a Bayesian way to obtain the posterior N(p̄∗t , ρt). The Bayesian update is given by the

Kalman filter (Kalman, 1960). The Kalman filter uses a filtering equation of the form:

p̄∗t = p̄∗t−1 + gt(pt − p̄∗t−1) (21)

where gt is the gain parameter.25 Bayesian learning optimally determines gt using the Kalman

filter (Kalman, 1960), which minimizes the expected loss between the price to be forecast, pt+1,

and the posterior mean, p̄∗t :

κt ≡ arg min
gt

Et[p̄∗t−1 + gt(pt − p̄∗t−1)− pt+1]2 =
ρt−1

ρt−1 + σ2
(22)

Equation (22) implies that the findings documented 2x2 games that agents attach declining weights

on new observations is already ingrained in Bayesian learning with a Gaussian prior. At the same

time, equation (22) predicts that agents discount old observations.

The variance of p̄∗t , denoted by ρt, is obtained as

ρt = (
1

ρt−1

+
1

σ2
)−1 (23)

23The variance σ2 is not necessarily the same as the variance of the exogenous ε-shocks.
24pt is yet unknown at the beginning of period t, as it depends on pet , the forecast that has to be submitted in

period t.
25Specification (21) is the cornerstone the adaptive learning class of models. Several proposals have been made

regarding the specification of the gain gt such as least square learning or constant gain learning. (See Evans and
Honkapohja (2001) for an overview.) Constant gain learning has been shown to be an approximation to Kalman
filtering. (Evans et al., 2010)
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An optimizing Bayesian agent would forecast Etpt+1 = Etp∗ = p̄∗t , which results in a deterministic

model. However, an agent using Thompson Sampling proceeds through the three steps (Bayesian

updating, random draw, myopic best response) in the theory section. To instantiate her belief

about p∗, she makes a random draw p̃∗t from the posterior N(p̄∗t , ρt). Conditionally on p̃∗t , she

chooses pe,it+1 as to maximize her expected reward of the next period. Using (20), the expected

reward can be written as:

Et(uit+1|N(p̄∗t , ρt)) = Et[max{0, 1300− 1300

49
(p̃∗t + ηt − pe,it+1)2}] (24)

which implies an optimal action of pe,it+1 = p̃∗t . Once every individual has made her choice, the

average price forecast in period t + 1, pet+1 ≡ 1
n

∑n
i=1 p

e,i
t+1, can be obtained and pt+1 can be

calculated and announced to the players. The same steps are then repeated: pt+1 is then used to

obtain a new posterior from which a random draw is made to obtain the forecast for period t+2

etc..

To uniquely determine the distributions that generate the individual beliefs, the prior mean

p̄∗0, the prior variance ρ0 and the variance of the perceived shock, σ2, need to be calibrated. A

question is whether one should allow for different priors like for the 2x2 games. The learning-

to-forecast experiment deals with incomplete information, where subjects receive only qualitative

instructions. The only quantitative instruction that is given in both treatments is: “The price(and

your prediction)can never become negative and lies always between 0 and 100 euros in the first

period.” Thus, it is reasonable to assume that subjects have the same initial priors.

4.3 Methodology

The methodology to empirically evaluate Thompson Sampling relative to other approaches of en-

dogenous noise is similar to the one used for 2x2 games. A cross-validation procedure is employed,

in which the data is divided into k independent subsamples, of which k-1 are used as a training

sample to estimate the parameters and one subsample is used for validation. I use every indepen-

dent experimental group as one subsample. Having identified one group as an outlier that would

distort the estimation, this gives k=12 subsamples. Since a Kolmogorov-Smirnov test does not

reject the hypothesis that first-period play follows the same distribution (p-value: 0.538) for both

treatments, one can plausibly assume that initial play is independent of the treatment.
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To compute the likelihood of QRE and the Bayesian logit on the continuous action space

numerically, a discrete approximation to the continuous functions has been provided, i.e. the space

has been divided up into bins so that each bin can be mapped to an action and thus a probability

of this bin being chosen.26 I divide the space up into 100 equal intervals:27 [0, 1), [1, 2), ..., [99, 100].

As exemplified below, the Bayesian logit corresponds to a particular case of adaptive learning with

shocks. The specifics of how each model is applied in every case are exemplified in the following

subsections.

QRE To the best of my knowledge, this is the first application of QRE to a learning-to-forecast

design.28 A preliminary question is whether λ is stable over time. In a multinomial logit regression

on time dummies, using a categorical variable containing each unit from 0-100 as the dependent

variable, this hypothesis could not be rejected. To make the calculation simpler, I assume the mid-

point of each interval is used for payoff consideration, which is pe,ij − 0.5 for pe,ij = 1, 2, 3, ...., 100.

With the payoff function given in (3), the expected payoff is29

E(uit|p
e,i
t =pe,ij, P r(pet )) =

100∑
pej=1

Pr(pet = pej)·(1− 1

49
((c+ b · (pej − 0.5)− (pe,ij − 0.5))2 + 0.25)) (25)

where the last term comes from the variance of the exogenous disturbance εt ∼ N(0, 0.25). For

every λ, a fixed point is defined for the probability distribution Pr(pe,it = pe,ij).30 This fixed

point is obtained through value function iteration. Since (25) contains the average action pej

and the convolution (distribution of the sum of random variables) of a logit rule does not have a

closed-form solution, the probability distribution of the average was simulated in every iteration

of the search algorithm by making 6 draws from the estimate of the probability distribution in

the current iteration of the algorithm, calculating the mean and repeating that procedure 2,000

26This requires caution, since a discretized space implies a probability mass function for QRE and Logit instead
of a density function. However, if the bins are chosen to be of equal size, the probability of each action corresponds
to its density so that Pr(ait) = f(ait). Since under the division of bins used here, QRE, the Bayesian logit and TS
all create densities, their log-likelihoods are comparable.

27Less than 1 % of all price forecasts are greater than 100.
28QRE has previously been applied to the p-beauty contest game by Breitmoser (2012), who uses a similar

methodology to this paper.
29Following other examples in the experimental literature such as Anufriev and Hommes (2012), I assume that

subjects consider the payoffs without the truncation at zero for the sake of analytical tractability.
30For the treatments with the robot traders, pej takes into account the choices of these computerized traders.

Taking into account nt explicitly would require solving the fixed point problem for a wide range of values for pt−1

and thus makes the computational problem disproportionately more burdensome.
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times. The obtained frequencies for the mean can then be used as a good approximation of the

distribution of the mean choice. The approximated distribution was then inserted into the right-

hand side of the logit rule to calculate the individual probabilities. The algorithm would stop once

this resulting probability is consistent with the probability used for simulating the distribution.

The λ that maximizes the log-likelihood was yielded by embedding the fixed-point problem into

a derivative-free simplex search algorithm. (Nelder and Mead, 1965)

TS As exemplified in section 4, there are three prior parameters that need to be calibrated for

the purpose of Bayesian updating: p̄∗0, ρ0, σ
2.

Logit Agents have the same Gaussian perception as in Thompson Sampling given in (20). This

perception (or belief structure) is used for the calculation of the expected payoff for a particular

forecast pe,i, V (.) = E(uit|N(p̄∗t , ρt), p
e,i
t = pe,i), in the logit expression, where the payoff is given

by equation (18).

Proposition 2. The expected payoff for a particular forecast pe,i conditional on the perception in

(20) is given by

Et(uit|N(p̄∗t , ρt), p
e,i
t = pe,i) = 1300− 1300

49
[σ2 + ρt−1 + p̄∗

2

t − 2p̄∗tp
e,i + pe,i

2

] (26)

where p̄∗t−1 denotes the expectation of p∗ and ρt the posterior variance using information up to

period t-1.31

Proof. See Appendix 6.2.

Equation (26) reveals why the Bayesian logit predicts no heteroskedasticity in behavior. The

probability of choosing a price prediction pe,i over any alternative price prediction p̂e,i is determined

by the cardinal differences in utility u(pe,i)− u(p̂e,i). It is easy to see that ρt−1, the only possible

source of volatility differences, cancels out. The only dynamic effect is through the agent’s estimate

p̄∗t , which affects the mean of the agent’s choice over time but not the variance.

Analogously to Thompson Sampling, p̄∗t is updated using the Kalman filter as in equation (21)

and ρt is updated as in equation (23). Since the Kalman filter is an adaptive filter, the Bayesian

logit corresponds to a particular case of adaptive learning with exogenous shocks. The expected

31The max(.) is ignored here for analytical tractability. Only few forecasts (approx. 6.2 %) yielded a payoff of
zero.
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payoff is inserted into the logit equation. The integral of exp(λEt(uit|N(p̄∗t , ρt), p
e,i
t = pe,i)) has

been evaluated by a discrete approximation, dividing the action space from 0 to 100 up into equal

bins.32 Altogether, three parameters need to be estimated for the Bayesian logit: the two initial

priors from Thompson Sampling, p̄∗0, ρ0, the perceived noise variance σ2, as well as the rationality

parameter λ from the logit distribution.33

4.4 Estimation results

Model comparison Rational expectations has not been used as a benchmark, since it implies

deterministic choices, which would correspond to a likelihood of zero for the slightest deviation.

Strictly spoken, rational expectations can therefore be ipso facto rejected, although the results

by Heemeijer et al. (2009) clearly indicate that rational expectations can be considered a good

long-run predictor under strategic substitutes.

In terms of in-sample comparison, there is a clear ranking between the models. Thompson

Sampling provides the best fit; the Bayesian logit provides the second-best fit; QRE provides the

third-best fit and all three models beat a random uniform. This ranking is preserved under the

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). All differences

are significant both for the in-sample likelihoods and the BICs. The in-sample statistics and the

results of the statistical tests are shown in appendix 6.1.2.

The ranking between the models that has been established in-sample is preserved for out-of-

sample predictions, the toughest test. Figure 5 shows the resulting out-of-sample likelihoods and

table 6 shows the results for the pairwise Wilcoxon signed-rank tests. The following observations

stand out:

Observation 3. All three models perform significantly better than a random draw on the interval

[0,100].

Observation 4. Thompson Sampling provides the best out-of-sample fit.

Observation 5. Both Thompson Sampling and the Bayesian logit provide a better out-of-sample

fit than QRE.

32The midpoint of every interval has been used for expected payoff calculation.
33Note that ρt, σ

2 do not only appear as constants in the expected payoff but also in the Kalman gain so that
they determine p̄∗t .
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Figure 5: Learning to forecast: Likelihoods of validation samples
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The fact that Thompson Sampling provides better out-of-sample predictions in 11 out of 12

groups renders it the preferred model by the signed-rank test.

Both the Bayesian logit and Thompson Sampling predict significantly better than QRE. Since

the characteristic feature of QRE is equilibrium beliefs, this finding can be interpreted as evidence

against equilibrium beliefs.

TS Logit QRE Random
TS - - - -
Logit TS (0.0121) - - -
QRE TS (0.0121) Logit (0.0278) - -
Random TS (0.0029) Logit (0.0048) QRE (0.0029) -

Table 6: Learning to forecast: Preferred model for out-of-sample forecasting by the Wilcoxon
signed-rank tests in pairwise comparison (p-values in parentheses)

Parameters

Observation 6. For TS, the initial prior mean p̄∗0 is near the fundamental value.

The prior mean p̄∗0 in the logit specification is closer to the initial prices of most groups. Since

the value of λ implies a high error variance, large shocks are likely to occur so that individual

forecasts being very different from the starting prices can easily be explained.

prior mean prior variance noise variance rationality
p̄∗0 ρ0 σ2 λ

Logit 43.03 148.23 26.26 0.48
(0.88) (0.47) (3.64) (0.05)

TS 62.38 145.12 1,171.14 -
(0.39) (10.29) (133.99)

QRE - - - 0.22
(0.06)

standard errors in parentheses

Table 7: Learning-to-forecast experiment: MLE parameter estimates

4.5 Endogenous noise variance

As shown by equation 23, the series of posterior variances is deterministically pinned down. As

Thompson Sampling introduces randomness through sampling from the posterior, there are by

design no differences in randomness across environments - only over time. Predictions of the
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dynamics across environments are, however, particularly useful, since they may allow an ex-ante

assessment of policies before they are implemented. For example, if a policy can be assessed as

undesirable ex-ante, one could both save potential implementation costs and prevent its negative

effects. I show that Thompson Sampling can be used as a model to make predictions across

environments. For the current application, this requires relaxing the assumption that agents

know the noise variance σ2.

Conceptually, the case of both unknown mean and variance is not different from the case with

only an unknown mean. For the sake of tractability, a conjugate prior is used for a Gaussian

distribution with unknown mean and variance. In the exposition of this conjugate prior, I closely

follow Hoff (2010). In the previous section, the conjugate prior for the mean p∗ was a normal

of the form N(p̄∗0, ρ0). One can consider a prior variance of ρ0 = σ2/κ0, which gives p̄∗0 and κ0

the interpretation of the mean and sample size of a prior sample that agents have in mind at the

beginning. For σ2, a conjugate prior is needed that is defined on the interval (0,∞). It turns out

that the conjugate prior for the precision, 1
σ2 , is the gamma-distribution, so that the conjugate

prior for an unknown variance is the inverse gamma distribution. (See e.g. Gelman et al. (2013).)

One can adopt the following parameterization

σ2 ∼ inverse-gamma(
υ0

2
,
υ0

2
σ2

0) (27)

υ0 corresponds to the size of a prior (hypothetical) sample that agents have in mind before playing

and σ2
0 corresponds to the sample variance of this prior sample. Distributions of this family have

an expected value being E(σ2) = υ0/2
υ0/2−1

σ2
0 for this parameterization.

Since it is implausible that agents use fewer observations to estimate the variance than the

mean (or vice versa) when a hypothetical, prior sample of a specific size is available, I impose the

restriction that κ0 = υ0. This assumption is frequently made in practical applications of Bayesian

learning with unknown mean and variance of a Gaussian distribution and is referred to as Hoff’s

conjugate prior. (Hoff, 2010) This also has the advantage that the number of exogenous parameters

is reduced to three: p̄∗0, υ0 and σ2
0. Bayes’ rule implies that these parameters are updated after
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period t the following way (see Hoff (2010) for derivations):

p̄∗t =
υ0p̄
∗
0 +

∑t
s=1 ps

υ0 + t
(28)

υt =υ0 + t (29)

σ2
t =

1

υt
[υ0σ

2
0 + (t− 1)δ2

t +
υ0t

υt
(
1

t

t∑
s=1

ps − p̄∗0)2] (30)

where δ2
t =

∑t
s=1(ps− 1

t

∑t
w=1 pw)2

t−1
is the sample variance. It is easy to see that (28) is the sample

mean of prior and actual observations and (29) is the cumulative sample size of actual and prior

observations. In (30), the terms in the square brackets capture the “prior sums of squared devi-

ations plus the data sum of squared deviations.” The term υ0σ
2
0 corresponds to the prior sums

of squares and the term (t − 1)δ2
t to the data sums of squares. The third term is slightly more

tedious to interpret: it is an estimate of the variance using the prior mean p̄∗0 and the observations

from the data, being information that ought to also be used for the posterior.

The Bayesian logit adds trembles in the action spaces but otherwise makes optimal use to form

the beliefs. Thus, the estimate for the mean in period t is given by Et(p
∗) = p̄∗t , the estimate

for the variance of pt by Et(σ
2) = σ2

t
υt/2
υt/2−1

and the estimate for the posterior variance of p∗ by

ρt = Et(σ2)
υt

. These derivations can be inserted into equation (26), which is then used to calculate

the likelihood for the Bayesian logit.

Under Thompson Sampling, agents draw a value for the variance from the inverse-gamma

distribution, conditional on which they draw a value for the mean from the normal distribu-

tion. From the observed data, there is no possibility to directly infer agents’ estimate for the

unknown variance. Thus, in order to apply Thompson Sampling the unknown variance needs to

be marginalized out to yield a marginal posterior. A marginal posterior is defined as g(p∗|p̄∗t , υt) =∫
h(p∗, σ2|p̄∗t , υt)∂σ2. Drawing an estimate for the mean from the marginal posterior is isomorphic

to drawing the variance from the inverse-gamma distribution and drawing the mean from the

normal. Hoff (2010) shows that the marginal posterior distribution of p∗ at time t can be obtained

in a closed form:
p∗−p̄∗t
σt/
√
υt

follows a t-distribution with υt degrees of freedom. We apply the following

theorem (see e.g. Hoff (2010), p.231):

Theorem 7. If a random variable X has density function f(x) and y = r(x) is a continuous

transformation that is either strictly increasing or strictly decreasing, then Y = r(x) has density
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function

g(y) = f(s(y))|∂s(y)

∂y
| (31)

where s(y) = r−1(y) is the inverse function of r(x).

Denoting Xt =
p∗−p̄∗t
σt/
√
υt

so that p∗ = σ/
√
υt · Xt + p̄∗t , one can establish by using the above

theorem that the marginal posterior of p∗ is a non-standard student distribution:

g(p∗|p̄∗t , υt, st) =
Γ((υt + 1)/2)
√
πυtΓ(υt/2)st

(1 +
((p∗ − p̄∗t )/st)2

υt
)−(υt+1)/2 (32)

where Γ(.) is Euler’s Gamma function and st ≡ σt/
√
υt. To implement Thompson Sampling, a

subjective estimate p̃∗,it is drawn from this marginal posterior.

Methodology Just as in section 4.3, three parameters need to be estimated for TS (p̄∗0, υ0, σ2
0)

and four for the Bayesian logit (p̄∗0, υ0, σ2
0, λ). Looking at equation (26) and recalling that the

probability of choice in a logit model is determined by the utility differences, it becomes apparent

that an endogenous noise variance σ2
t does not explain variance in behavior over time and across

setups. The only restriction that has been made for the estimation is that υ0 ≥ 2, since a sample

of only one observation would automatically yield a variance estimate of zero.

4.5.1 Estimation results

TS Logit QRE Random
TS - - - -
Logit TS (0.0060) - - -
QRE TS (0.0060) Logit (0.0278) - -
Random TS (0.0029) Logit (0.0029) QRE (0.0029) -

Table 8: Learning to forecast with endogenous variance: Preferred model for out-of-sample fore-
casting by the Wilcoxon signed-rank tests in pairwise comparison (p-values in parentheses)

Model comparison Appendix 6.1.3 shows the in-sample statistics (likelihoods, AICS and BICs)

as well as the results of the test comparing the measures. Similar to the case with the Kalman

filter, there is a clear ranking. Thompson Sampling provides the best in-sample fit, no matter

whether measured by the in-sample likelihood or whether a penalty criterion like AIC or BIC is
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Figure 6: Learning to forecast with endogenous variance: Likelihoods of validation samples

used. The second best fit is given by the Bayesian logit, which provides a significantly better fit

than QRE. All three models provide a significantly better fit than a random uniform.

A Wilcoxon signed-rank test over the experimental groups reveals that the empirical fit of

TS with endogenous noise variance is better than the standard case with constant noise variance

(p-value: 0.0188). Figure 6 shows the out-of-sample fits. Thompson Sampling provides a better

fit than both QRE and the Bayesian logit in all groups except for group 11. Table 6 shows the

results of pairwise Wilcoxon signed-rank tests.

Observation 8. The empirical out-of-sample fit of TS is significantly better than the Bayesian

logit and QRE.

Parameters As shown in table 9, the estimates for the rationality parameter λ are similar to the

standard Kalman filtering case. Likewise, the value for the prior mean for Thompson Sampling is

robust to incorporating Bayesian learning about the variance.
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prior mean prior sample variance rationality prior sample size
p̄∗0 σ2

0 λ υ0

Logit 56.51 903.27 0.45 21.04
(2.79) (10.72) (0.05) (20.80)

TS 63.16 2,220.10 - 14.14
(0.37) (282.44) (0.84)

QRE 0.22 -
(0.06)

standard errors in parentheses

Table 9: Learning-to-forecast with endogenous variance: MLE parameter estimates

The estimates for the variance in the endogenous variance case are higher than in the constant

variance case. This is because an endogenous variance is flexible enough to allow, for example,

for a high variance at the beginning, which declines as time passes. A (misspecified) constant

variance not only has to account for observations with high variance at the beginning but also

observations with low variance later on. Hence, this explains why the estimate of a variance that

is forced to be constant is lower than the initial value of endogenous variance.

5 Discussion

This paper has introduced Thompson Sampling, a learning mechanism that has previously mainly

been applied to the bandit problem, as a tractable theory of endogenous randomness into interac-

tive games in economics. By applying Thompson Sampling to 2x2 games and learning-to-forecast

experiments, it has been shown that Thompson Sampling is applicable for very different types

of setups. Another virtue of Thompson Sampling is the simplicity to implement it for predictive

purposes in the context of very different setups. Moreover, a potential advantage of Thomp-

son Sampling is that it can produce individual differences without specifying many exogenous

parameters.

The empirical result of this paper is that Thompson Sampling can explain the emergence of

different dynamic patterns significantly better than other models. The fit of Thompson Sampling

to experimental settings with changing dynamics and noise patterns opens up several directions

of future research.

First, this paper only considers Thompson Sampling as a positive theory. Hence, future re-

search could investigate whether Thompson has any normative appeal in games.

Second, experimental data have their limitations, as they represent artificial environments
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with a relatively small number of independent observations. Hence, it would be intriguing to test

Thompson Sampling for different datasets that may contain observational data.

Third, a specific theory about agents’ priors has been applied to 2x2 games in this paper,

making use of the equilibria and level-1 play for initialization. While this theory is backed by the

data, there is certainly potential for more research on modeling and explaining agents’ prior belief

formation.

Fourth, Thompson Sampling can potentially have numerous policy implications. The fact that

Thompson Sampling provides an empirically valid and tractable description of individual beliefs

may open up several directions for future research: in finance and macroeconomics, policy anal-

ysis can be conducted under the assumption that agents’ belief formation process corresponds

to Thompson Sampling instead of rational expectations. Into the bargain, the implications of

Thompson Sampling for games, firm and consumer behavior, political economy as well as mecha-

nism design can be explored.
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6 Appendix

6.1 In-sample fit

6.1.1 2x2 games
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Figure 7: 2x2 games: Likelihoods of the in-sample fits (individual behavior)
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Figure 8: 2x2 games: Akaike Information Criteria (AICs)
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Figure 9: 2x2 games: Bayesian Information Criteria (BICs)
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In-sample likelihood:

TS Logit QRE Random Nash

TS - - - - -

Logit TS (0.0069) - - - -

QRE QRE (0.0051) QRE (0.0051) - - -

Random TS (0.0051) Logit (0.0051) QRE (0.0051) - -

Nash TS (0.0051) Logit (0.0051) QRE (0.0051) Random (0.0051) -

Akaike Information Criterion (AIC):

TS Logit QRE Random Nash

TS - - - - -

Logit TS (0.0069) - - - -

QRE QRE (0.0051) QRE (0.0051) - - -

Random TS (0.0051) Logit (0.0051) QRE (0.0051) - -

Nash TS (0.0051) Logit (0.0051) QRE (0.0051) Random (0.0051) -

Bayesian Information Criterion (BIC):

TS Logit QRE Random Nash

TS - - - - -

Logit TS (0.0069) - - - -

QRE QRE (0.0051) QRE (0.0051) - - -

Random TS (0.0051) Logit (0.0051) QRE (0.0051) - -

Nash TS (0.0051) Logit (0.0051) QRE (0.0051) Random (0.0051) -

Table 10: 2x2 games: Preferred model by the Wilcoxon signed-rank tests in pairwise comparison
for different measures of the in-sample fit (p-values in parentheses)
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6.1.2 Expectation formation: Kalman filter

1 2 3 4 5 6 7 8 9 10 11 12

Group to be predicted (left out)

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

Lo
g-

lik
el

ih
oo

d

104 In-sample Log-likelihood

Strategic substitutes Strategic complements

Bayesian logit
Thompson sampling
QRE
Random [0,100]

Figure 10: Learning to forecast: Likelihoods of in-sample fits
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Figure 11: Learning to forecast: Bayesian Information Criterion (BIC) of in-sample fits

57



1 2 3 4 5 6 7 8 9 10 11 12

Group to be predicted (left out)

2

2.2

2.4

2.6

2.8

3

A
ka

ik
e 

In
fo

rm
at

io
n 

C
rit

er
io

n 
(A

IC
)

104 Akaike Information Criterion (AIC)

Strategic substitutes Strategic complements

Bayesian logit
Thompson sampling
QRE
Random [0,100]

Figure 12: Learning to forecast: Akaike Information Criterion (AIC) of in-sample fits
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In-sample Likelihood:

TS Logit QRE Random

TS - - - -

Logit TS (0.0022) - - -

QRE TS (0.0022) Logit (0.0022) - -

Random TS (0.0022) Logit (0.0022) QRE (0.0022) -

Akaike Information Criterion (AIC):

TS Logit QRE Random

TS - - - -

Logit TS (0.0022) - - -

QRE TS (0.0022) Logit (0.0022) - -

Random TS (0.0022) Logit (0.0022) QRE (0.0022) -

Bayesian Information Criterion (BIC):

TS Logit QRE Random

TS - - - -

Logit TS (0.0022) - - -

QRE TS (0.0022) Logit (0.0022) - -

Random TS (0.0022) Logit (0.0022) QRE (0.0022) -

Table 11: Learning to forecast: Preferred model by the Wilcoxon signed-rank tests in pairwise
comparison for different measures of the in-sample fit (p-values in parentheses)
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6.1.3 Expectation formation: Endogenous noise variance
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Figure 13: Learning to forecast: Likelihoods of in-sample fits with endogenous variance
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Figure 14: Learning to forecast: Bayesian Information Criterion (BIC) of in-sample fits with
endogenous variance
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Figure 15: Learning to forecast: Akaike Information Criterion (AIC) of in-sample fits with en-
dogenous variance
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In-sample Likelihood:

TS Logit QRE Random

TS - - - -

Logit TS (0.0022) - - -

QRE TS (0.0022) Logit (0.0022) - -

Random TS (0.0022) Logit (0.0022) QRE (0.0022) -

Akaike Information Criterion (AIC):

TS Logit QRE Random

TS - - - -

Logit TS (0.0022) - - -

QRE TS (0.0022) Logit (0.0022) - -

Random TS (0.0022) Logit (0.0022) QRE (0.0022) -

Bayesian Information Criterion (BIC):

TS Logit QRE Random

TS - - - -

Logit TS (0.0022) - - -

QRE TS (0.0022) Logit (0.0022) - -

Random TS (0.0022) Logit (0.0022) QRE (0.0022) -

Table 12: Learning to forecast with endogenous variance: Preferred model by the Wilcoxon
signed-rank tests in pairwise comparison for different measures of the in-sample fit (p-values in
parentheses)
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6.2 Proof of Proposition 2

Proof. Using (18), is:

uit = 1300− 1300

49
(pt − pe,it )2 (33)

Under Gaussian perception given by (20), the score can be written as

uit = 1300− 1300

49
(p∗ + ηt − pe,it )2 (34)

The expected value under this perception is

Et(uit|N(p̄∗t , ρt), p
e,i
t = pe,i) = 1300− 1300

49
Et{(p∗ + ηt − pe,i)2|pe,it = pe,i}︸ ︷︷ ︸

≡ξt+1

(35)

Focusing only on the term ξt+1, we obtain

ξt+1 ≡Et{(p∗ + ηt − pe,i)2|pe,it = pe,i}

=Et{(p∗ − pe,i)2}+ Et{η2
t }

=Et{p∗
2 − 2p∗ · pe,i + pe,i

2}+ σ2

=ρt−1 + p̄∗
2

t−1 − 2p̄∗t−1 · pe,i + pe,i
2

+ σ2 (36)

where the last line uses the fact that V ar(µ) = E(µ2)− (E(µ))2.

6.3 Augmenting Thompson Sampling for 2x2 games

Two ways of augmenting Thompson Sampling are considered: first, allowing decision-makers to

weigh present observations differently from past observations; second, considering a more refined

theory of the priors.

Generalization of Bayesian updating The unknown parameters are the priors at the begin-

ning of the game α−i0 and β−i0 . Estimating those parameters under pure Bayesian belief updating

yields high parameter estimates. A wide range of applications not only in the decision-making

but also in the behavioral game theory literature explores the hypothesis of players having biased

perceptions when updating. (Fudenberg and Levine, 1998; Roth and Erev, 1998; Camerer and
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Ho, 1999) The approach taken here follows Goeree et al. (2007), who develop a generalization of

Bayesian updating, and Moreno and Rosokha (2016), who generalize their framework to a setting

with many time periods.

Bayes’ rule as given by equation (1) can more generally be written as

Di
t(θ

i) =
(σ̂−i(a−it |θi)))ξ

t
Di
t−1(θi)

(σ̂−i(a−it ))ξt
(37)

The appeal of this specification is its flexibility given by the parameter ξ, which captures the

perceived number of signals. Pure Bayesian learning is nested by setting ξ = 1. If the agent

after observing the next signal acts as if she observed two signals, then ξ = 2. Values of ξ > 0

can be interpreted as limited memory, since agents pay more attention to more recent signals.

Conversely, values of ξ < 0 can be interpreted as underweighting of the signal or “conservatism

bias.” To distinguish between old and more recent periods, following Moreno and Rosokha (2016),

the weight of the signal in a period t is ξt, meaning that each new signal has ξ times the weight

of the previous signal.

This implies an updating rule of

α−it =


α−it−1 + ξt · 1 if a−it = a−i,1

α−it if a−it = a−i,2
(38)

β−it =


β−it−1 + ξt · 1 if a−it = a−i,1

β−it−1 if a−it = a−i,2
(39)

6.3.1 Initial priors

In section 3.2, the learning rules have been treated to be the same across all games. Since there

are 9 pairs playing every game, 9 estimations have been conducted in every game, leaving out

one pair at the time. This procedure has the advantage that jackknife estimates for the standard

errors are obtained as the sample standard deviation of the estimates.

The data display stark differences in initial play. It would thus be incorrect to use the initial

conditions of one game to predict the dynamics of another game. However, if the variation in the

priors is not understood, this will present an obstacle to forecasting the dynamics of new games

ex-ante. Thus, the estimates of the prior parameters have been investigated for regularities.
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While the estimates of these parameters for Thompson Sampling have a low variance, the

estimates of the priors for the Bayesian logit have a high variance. For Thompson Sampling, the

mean estimates p̂−i0 (L) =
α−i
0

β−i
0 +α−i

0

have been found to be relatively close to the Nash equilibria of

every game. Yet, one-sample Wilcoxon signed-rank tests find significant deviations from the Nash

equilibria.34 Since the estimates are, however, in any case still close in magnitude to the relative

frequency predicted by the Nash equilibria, it has been investigated whether they deviate from

the Nash equilibria in a predictable manner.

Costa-Gomes and Weizsäcker (2008) and Fudenberg and Liang (2017) investigate first-period

play, finding that players believe others to act like level-1 players in the initial round of a game.

Costa-Gomes and Weizsäcker, however, find that there is a lot of stochasticity in behavior. The

term “level 1” can be traced back to the literature on finite depth of reasoning, starting with

Stahl (1993) and Nagel (1995),35 and means that players give a (myopic) best response to random

play. For example, in a 2x2 game level 1 thinking means believing that the opponent plays each

action with a probability of 50 % and choosing a best-response according to that. A level-2 player,

anticipating that agents may think that way, best responds to level-1 play etc.

I formulate a theory of noisy level-1 play. Consider for example the row player that needs to

form beliefs about the initial probability of the column player playing left as opposed to right:

pCOL0 (L). Denote the Nash equilibrium pCOL,∗(L) and remember that in the Nash equilibrium,

players mix their play so that every player (correctly) believes that she cannot predict her oppo-

nent. If players suspect to more likely observe a level-1 response from their opponents, this is no

longer true. Without loss of generality, suppose further that the level-1 response of column is L.

If the row player believes that her opponent most likely plays a level-1 response, she would expect

that the column player “overplays” L with respect to equilibrium, so that p̂COL0 (L) > pCOL,∗(L).

This prediction can be tested using the estimates of p̂COL0 (L). For every estimate of p̂COL0 (L), there

are two possible outcomes: either the sign of the bias δ = p̂COL0 (L)− pCOL,∗(L) is in the direction

(> 0 or < 0) that level 1 would predict or it is not. If beliefs about initial play were unrelated

to level 1, then about 50 % of the biases would be in the direction predicted by level 1 and 50 %

would not be. This hypothesis can be tested using a one-sided binomial test. Using the estimates

34For Thompson Sampling, the p-value for the row player is < 0.05 except for games 9 (p-value: 0.2305) and
10 (p-value: 0.1406). For the column player, the p-value is < 0.01 in all games except for 3 (p-value: 1.0000), 6
(p-value: 0.2500), 7 (p-value: 0.3008) and 10 (p-value: 0.2500). For the Bayesian logit, the p-value for the row
player is < 0.05 except in games 6 (p-value: 0.7383), 8 (p-value: 0.1289) and 9 (p-value: 0.3125). The p-value for
the column player is < 0.01 in all games except for 7 (p-value: 0.0898) and 9 (p-value: 0.0547).

35See Nagel et al. (2016) for a historical survey of level k.
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of all 90 subject pairs to provide sufficient power to the test, the null hypothesis can be rejected in

favor of beliefs about the opponent being biased towards level-1 play for Thompson Sampling for

both the row (p-value: 0.0000) and the column player (p-value: 0.0042). Similar results hold for

the Bayesian logit (row: p-value: 0.0000; column: p-value: 0.0005). A purely Bayesian approach

without any stochasticity would deterministically predict the row player in the above example

to best-respond to level-1 play, being known as “level 2”. However, a Thompson Sampler draws

her estimate p̂COL0 (L) from a beta distribution, which introduces randomness in her play. This is

consistent with Costa-Gomes and Weizsäcker observing stochasticity in their experimental data.

Based on the above results, the following formal theory is proposed for the initial priors for

the row player (analogously for the column player):

αROW0 =


(pCOL,∗(L) + δ) ·N if level 1 predicts aCOL0 = L

(pCOL,∗(L)− δ) ·N if level 1 predicts aCOL0 = R

(40)

βROW0 =


(1− (pCOL,∗(L) + δ)) ·N if level 1 predicts aCOL0 = L

(1− (pCOL,∗(L)− δ)) ·N if level 1 predicts aCOL0 = R

(41)

pCOL,∗(L) is the probability of the column player playing L predicted by the Nash equilibrium. N

the size of the “hypothetical” sample that players have in mind before playing. If N is high, the

weight to accumulated experience during the game is low and players are very confident about

their priors.

δ ≥ 0 is the bias from Nash equilibrium, incorporating the fact that players believe that their

opponents might be level-1 thinkers. Suppose, without loss of generality, that the column player’s

level-1 response is L. If the row player believes that the column player most likely engages in level-1

thinking, it is reasonable for a player to believe that the opponent “overplays” L with respect to

equilibrium, so that (pCOL,∗(L) + δ).

TS Thompson Sampling has three free parameters corresponding to N, ξ, δ. N is the size of a

“hypothetical” sample players have in mind before starting to play the game, ξ captures the weight

given to a new signal. δ, being defined as p̂COL(L)− p̂COL,∗(L) for the row player (analogously for

the column player p̂ROW (T )− p̂ROW,∗(T )), is the amount by which the perceived initial probability

of the opponent playing L (T ) is biased towards level 1.

67



Logit As the logit approach uses the same error structure as QRE (with one exogenous param-

eter) but the Bernouilli specification of TS (four exogenous parameters), the logit approach has

four free parameters: N, ξ, δ as in Thompson Sampling as well as the λ-parameter.36

36An unrestricted estimation chooses negative parameter values for δ in four out of the 10 estimations. Restricting
the parameter values to be positive or δ = 0 does not substantially change the out-of-sample predictions and only
worsens the in-sample fit. Thus, the unrestricted estimation results are reported.
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