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Abstract

We study the origins of labor productivity growth and its differences across
sectors. In our model, sectors employ workers of different occupations and vari-
ous forms of capital, none of which are perfect substitutes, and technology evolves
at the sector-factor cell level. Using the model we infer technologies from US data
over 1960-2017. We find sector-specific routine labor augmenting technological
change to be crucial. It is the most important driver of sectoral differences, and
has a large and increasing contribution to aggregate labor productivity growth.
Neither capital accumulation nor the occupational employment structure within

sectors explains much of the sectoral differences.
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1 Introduction

The fact that labor productivity growth is different across sectors is well known. Av-
erage annual labor productivity growth between 1960 and 2017 in the US, for in-
stance, was 2.49% in the goods sector, much higher than the 1.53% in low-skilled
and the 0.72% in high-skilled services. However, there is no consensus on the ori-
gins of these differences. We study the drivers of sectoral labor productivity growth
in a production-side framework. What sets our framework apart from the literature is
that (i) we consider various types of occupational labor as distinct production factors,
(ii) technological change is sector-and-factor specific, and (iii) we infer the evolution of
the sector-and-factor specific technologies over time directly from the data. Our results
show that technological change has been very far from neutral. That we do not impose
that sectoral technological change is factor-neutral, nor that factor-specific technologi-
cal change is uniform across sectors, turns out to be crucial. Technologies have evolved
at very differential rates, both across factors within each sector and across sectors for a
given occupation or type of capital. In particular, amongst the labor-augmenting tech-
nologies those augmenting routine occupations have been growing the fastest in all
sectors, but at very different rates: at 5.59% per year in goods, at 2.92% in low-skilled
services and at 1.32% in high-skilled services.

Through a series of counterfactual simulations, we study the role of technological
change and of inputs in labor productivity growth. We find that the single most im-
portant driver of sectoral labor productivity growth differences are the sector-specific
growth rates of routine labor augmenting technologies. Without sector-specific rou-
tine labor augmenting technological change, labor productivity growth would have
been almost equalized across sectors. Specifically, this type of technological change
explains at least 59 percent of labor productivity growth in low-skilled services, 74
percent in goods and 21 percent in high-skilled services. Our result that sectoral dif-
ferences in technological change are crucial therefore lends support to the mechanism
of Ngai and Pissarides (2007). Moreover, in terms of labor productivity growth in the
aggregate, we show that the contribution of routine labor augmenting technological

change is large and increasing over time. In its absence aggregate growth would have



been lower by about a third between 1960-1990, and there would have been hardly
any growth over 1990-2017.

These counterfactuals also allow us to evaluate the role of various other channels
proposed in the literature for sectoral productivity growth differences. As suggested
by |Acemoglu and Guerrieri| (2008), differential capital intensities and capital accumu-
lation could be driving the faster productivity growth in the goods sector. While we
find that capital accumulation contributes to labor productivity growth (without it
growth would have been 39 percent lower on average), it does not generate the sec-
toral differences observed in the data. Instead, we confirm the finding of Herrendorf,
Herrington, and Valentinyi (2015), that differences in labor-augmenting technologi-
cal progress across sectors are crucial. In principle, such sectoral differences could be
driven by differences in sectoral intensities in occupational employment and techno-
logical change specific to occupations, as suggested by Duernecker and Herrendorf
(2016), |[Lee and Shin| (2017). However, in our framework we show that this is not
the case, and that there are substantial sectoral differences in occupation-augmenting
technological change.

In the public debate there is a growing concern about the effects of routinization
and of new technologies on the labor market, and in particular on wage inequality
and unemployment. To mitigate these — potentially detrimental — effects, active la-
bor market policies, such as training programs targeted at workers of specific occu-
pations, and policies aiming at maintaining certain industries have been advocated.
However, a better understanding of the nature of technological change is required
to inform this debate and to evaluate such policies. Our framework is useful in this
context, as it identifies the differential paths of the various sector-and-factor specific
technologies. We believe this is a necessary first step in understanding the drivers
of labor demand for workers in various occupations and sectors. Our finding that
occupation-augmenting technological change varies across sectors suggests that poli-
cies that target specific occupations or specific industries might be less suitable than
sector-occupation specific policies.

In our model we consider different occupations as distinct labor inputs for a vari-

ety of reasons. First, given that occupations entail very different tasks, they are most



likely not perfect substitutes. This implies that using the simple summation of hours
worked within a sector might not capture labor’s true contribution to a sector’s out-
put. The second reason is that occupations are likely to use different technologies,
which might grow at different rates. This implies that differences in the occupational
composition of sectors — a feature of the data which we show in section 2| — might af-
fect average sectoral labor productivity growth (Duernecker and Herrendorf| (2016),
Lee and Shin| (2017)). Third, the effects of new technologies and of the accumulation
of (different types of) capital on the various occupations might depend on the tasks
performed by that occupation, in particular on their routine content and cognitive re-
quirements. As routine tasks are repetitive and easy to computerize, improvements
in ICT knowledge or capital are likely to substitute for routine workers (Autor, Levy,
and Murnane (2003)). This so-called routinization hypothesis is the main explanation
for employment polarization, the shift out of routine occupations into manual (non-
routine non-cognitive) and abstract (non-routine cognitive) jobsﬂ In our analysis we
therefore differentiate between manual, routine and abstract labor inputs.

Our model also features capital inputs, as the accumulation of capital potentially
is another important driver of labor productivity growth. If capital intensities dif-
fer across sectors, capital deepening induces structural transformationf as argued by
Acemoglu and Guerrieri (2008), and results in sectoral differences in the growth of la-
bor productivity. As our model features capital inputs, we are able to evaluate the role
of this channel. Similarly to Aum, Lee, and Shinl (2018) and Eden and Gaggl| (2018),
we distinguish between ICT and non-ICT capital, and allow for them to have different
degrees of substitutability with the various types of labor.

While observing factor inputs and output allows the computation of a neutral pro-

ductivityf] it is not possible to infer factor-augmenting technologies without making

!In fact, Acemoglu and Autor|(2011) argue that labor market polarization warrants to move beyond
models that distinguish only between skilled and unskilled workers. In Barany and Siegel| (2018) we
documented that labor market polarization in the United States started as early as 1950/1960.

2That differential sectoral intensities in production factors complementary with labor, coupled with
aggregate growth in these factors, could lead to structural transformation was first proposed by Caselli
and Coleman|(2001) in the context of human capital.

This is how total factor productivity (for instance at the sectoral level) is extracted; note that
changes in measured TFP might actually be driven by technological change augmenting only one indi-
vidual factor of production.



assumptions about the structure of production. Assuming a nested CES production
function in all sectors and perfect competition, we infer from firm optimality condi-
tions the sector-specific factor-augmenting technology parameters in each period. The
share of income going to each factor of production and factor prices pin down rel-
ative technologies within each sector. The evolution of real value added by sector
pins down the within sector changes in technology over time. To implement this, we
combine data from the U.S. Bureau of Economic Analysis (BEA) and EU KLEMS 2017
to get sectoral value added and its components, sectoral prices, sectoral employment
and capital (by type). Importantly, we need information on the occupations of workers
within each sector, which is not available from the BEA or EU KLEMS. For this we use
the US Census and American Community Survey (ACS) data between 1960 and 2017.

Aum et al.|(2018) also model sectoral production as a function of occupational la-
bor and ICT and non-ICT capital, but the focus of their paper and their modeling
choices are quite different to ours. They find in their calibrated model that comput-
erization and routinization are distinct and important drivers of the recent produc-
tivity slowdown, but that sectoral TFP differences have only a limited role. We rely
on factor income shares (among other observables) from the data to infer technolo-
gies, and while we also find a distinct role for improvements in routine-labor and
ICT capital augmenting technologies, our results highlight that sectoral differences in
factor-augmenting technological change are important.

Similarly to Katz and Murphy|(1992) and Krusell, Ohanian, Rios-Rull, and Violante
(2000) we assume a (nested) CES production function with different types of labor
inputs. Both these papers focus on skilled and unskilled labor and impose a specific
process for factor-biased technological change — this is what allows them to estimate
the elasticity of substitution. In contrast, we consider occupational labor inputs and
we do not impose any restrictions on technological change. Similar in methodology
to|Caselli (2005) and [Caselli and Coleman|(2006), we extract factor productivities from
the data taking values for the elasticities from the literature. Our methodology is also
close to Buera, Kaboski, and Rogerson| (2015) in relying on optimality conditions to

infer technological change from the data. We find that technological change is very far



from neutral, echoing the general conclusions of |Caselli (2016)

Our paper relates to the recent literature that connects the phenomena of struc-
tural change and polarization across occupations. Duernecker and Herrendorf (2016)
show in a two-sector two-occupation model that unbalanced occupational productiv-
ity growth by itself provides dynamics consistent with structural change and with the
trends in occupational employment. |Lee and Shin (2017) allow for occupation-specific
productivity growth and find that their calibrated model can quantitatively account
for polarization as well as for structural change, and in an extension find a limited
role for sector-specific technological change. In Barany and Siegel (2018) we show that
forces behind structural change, i.e. differences in productivity growth across sectors,
lead to polarization of wages and employment at the sectoral level, which in turn im-
ply polarization in occupational outcomes. Relative to these papers, the key difference
is that we do not a priori restrict technological change to be biased in a particular way,
and we find that technological change has been biased both across occupations and
across sectors. Moreover, we establish that the growth of sector-occupation technolo-
gies is very well approximated by the sum of sector-specific and occupation-specific
components.

Several papers have emphasized the role of sectoral productivity differences for ag-
gregate productivity (e.g. Duarte and Restuccia (2010), Duernecker, Herrendort, and
Valentinyi (2017), and Duarte and Restuccial (2019)). We add to this literature in two
ways. First, we analyze the driving forces behind sectoral labor productivity growth.
Second, we study the role of sectoral inputs and technologies in aggregate labor pro-
ductivity growth. We find that also in the aggregate, technological change is much
more important than input use for labor productivity growth. Moreover, we show
that the contribution of labor-augmenting — and in particular sector-specific routine-
augmenting — technological change has increased over time.

The paper proceeds as follows: section [2]shows the facts about sectoral production
on which we base our analysis. Section [3|introduces the production-side framework

used to infer technologies and explains its implementation. In sectiond|we analyze the

*While Caselli investigates technological biases across labor and capital, and across workers of dif-
ferent education or experience, we consider biases across different factors of production (including
occupations and different types of capital).



role of inputs and technologies in labor productivity growth through counterfactuals.
In section 5] we demonstrate that our results are robust to alternative values for the
elasticities of substitution and when controlling for workers” human capital. The final

section concludes.

2 Factor use and factor income shares by sector

In this section we describe the data used to inform our specification of the sectoral
production functions. From this data we will also infer — using our model’s opti-
mality conditions — the evolution of the sector-specific factor augmenting technolo-
gies. We combine data from the U.S. Bureau of Economic Analysis (BEA) on sectoral
value added and its components, on sectoral prices, on sectoral employment, and on
tixed assets, with data on the allocation of capital across sectors from EU KLEMS2017.
To get more detailed information on the occupations of workers within each sector,
we use US Census and American Community Survey (ACS) data between 1960 and
2017 from IPUMS, provided by Ruggles, Alexander, Genadek, Goeken, Schroeder, and
Sobek! (2010). Since we draw on various data sources which are based on different in-
dustry classification systems, we map the fine industries of each system into our broad
sector categories, as explained in detail in Table in the appendix.

We use annual data on nominal value added, real value added and prices by indus-
try from the BEA f|We group all non-service industries into the goods sector, and sim-
ilarly to much of the recent literature on structural transformation, we break services
into two, based on the skill or education level of workers in the industryﬁ It is com-
mon to split services, as already in 1947 the service industries as a whole constituted
around 60 percent of total value added. We aggregate real value added and price data
on fine industry categories into our three broad sectors — low-skilled services, goods,

and high-skilled services — using the cyclical expansion procedure, as for example in

°The industry categories in this dataset are based on the North American Industry Classification
System (NAICS)).

®Services are split based on whether they are high- or low-skilled in Buera and Kaboskil (2012),
whether they are low- or high-productivity growth in Duernecker et al.| (2017), or whether they are
traditional/modern services in |Duarte and Restuccial (2019). While these splits are based on different
criteria, in practice the overlap between such classifications is substantial.



Herrendorf, Rogerson, and Valentinyi (2013). The left panel of Figure [I| shows the
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Figure 1: Nominal value added, real value added and prices

Notes: Authors’ own calculations based on Value Added by Industry data from the BEA for the years
1947-2017.

evolution of (nominal) value added shares, which displays structural transformation:
the share of value added produced in high-skilled services increased steadily from the
1940s, the share produced in goods steeply declined, and in low-skilled services it also
declined albeit at a lower rate. The evolution of real value added by sector (depicted
in the middle panel) together with the evolution of sectoral employment gives us sec-
toral labor productivity growth. The steady increase in the nominal value added share
in high-skilled services can be reconciled with its lower growth in real terms vis-a-vis
low-skilled services by the steep increase in the relative price of high-skilled services,
as shown in the right panel.

We next investigate the use of various factor inputs and their income shares in each
sector. As a first step, we calculate the share of sectoral income paid to capital (© ;) and
to labor (1 — © ), using data on the Components of Value Added by Industry from the

BEA. We calculate the labor income share asf|

Compensation of employees in sector J
Gross value added in sector .J '

1-6,=

The difficulty is that for the period before 1987 this data is only available based on
the Standard Industrial Classification (SIC), whereas for the period post 1997 it is only

"This definition of the labor income share excludes proprietors’ income. We choose to do this for
two reasons. First, |[Elsby, Hobijn, and Sahin| (2013) call this the unambiguous part of the labor income
share. Second, we take data on workers from the Census and the ACS, and there we only include
employees, which makes this definition of labor income share consistent with our approach there.
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Figure 2: Labor income share by sector

Notes: Compensation of employees relative to gross value added in a sector calculated from Compo-
nents of Value Added by Industry data provided by the BEA for 1947-2017.

available based on the NAICS classification of industries. Therefore we have to com-
bine these two data sources based on different industry classification systems. While
the individual industries are not the same in these two classifications, when we ag-
gregate them up to our three broad sectors, the two give similar results for the period
of the overlap. As the NAICS data was introduced in 1997, we use the (native) SIC
data until 1997, and the NAICS data from that point onwards | Figure[2] plots the evo-
lution of the labor income share by sector as well as for the aggregate economy. The
labor income share in the economy as a whole increased until the early 1970s, which
was followed by a virtually equal reduction thereafterf| There are two important ob-
servations. First, there are substantial sectoral differences in the labor income share.
For most of the period between 1947 and 2017 the goods sector had the highest labor
income share, while high-skilled services had the lowest labor income share. The sec-
ond thing to note is that these labor income shares are far from constant: following a

common increasing trend until the 1970s, the labor income share declined steeply in

#Herrendorf et al. (2015) also combine data on the labor income and employment shares across
different industries based on the SIC and the NAICS classification.

9When comparing this series with the widely noted decline in the labor income share (Elsby et al.
(2013) and |Karabarbounis, Loukas and Neiman, Brent| (2014) for example), it is important to bear in
mind that we exclude proprietors” income from labor income. Since proprietors” income has been falling
throughout this period, and especially until the 1970s, it roughly offsets the increase in the aggregate
labor income share until the 1970s, and makes the subsequent decline slightly more pronounced.

9



the goods sector, declined slightly in low-skilled services, whereas it stayed roughly
constant in high-skilled services. Thus to be able to replicate these patterns, we need
sectoral production functions which allow the labor income share to change over time,
e.g. not of the Cobb-Douglas form.

We next analyze the use of capital. In our analysis we distinguish between two
types of capital, ICT and non-ICT, as discussed in the introduction. The BEA Fixed
Asset Accounts contains annual data on the nominal stock and on chain-type quantity
indices of various types of capital for the entire period of our analysis. When con-
structing computer capital from the BEA we include Information processing equipment
and Software, while traditional capital comprises of all other non-residential capital||
Starting from data on these finer categories of capital we calculate quantity and price
indices for our two aggregates using the cyclical expansion procedure. Figure 3/in the
left and middle panel shows the evolution of the real quantity and price of ICT and
non-ICT capital in the US economy between 1960 and 2017. The left panel shows that
ICT capital grew much faster over this period than traditional capital. The huge im-
provement in ICT technology is reflected in the steep fall of ICT prices from the 1980s

and the steep increase in ICT capital from the 1990s onwards.
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Figure 3: Real quantity and price of ICT and traditional capital, and allocation of ICT
capital across sectors

Notes: The left and middle panels are computed based on data from the BEA Fixed Asset Accounts,
while the data for the right panel is calculated from EU KLEMS.

In order to measure the allocation of computer capital across sectors we use data

from EU KLEMS 2017. The EU KLEMS 2017 release contains annual data on various

Traditional capital consist of Industrial equipment, Transportation equipment, Other equipment, Nonres-
idential structures, Research and development and Entertainment, literary, and artistic originals, as well as all
non-residential government fixed assets except for Software, which is included in ICT capital.
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types of capital by industry (based on the International Standard Industrial Classifi-
cation of All Economic Activities (ISIC)) from 1970 onwards. When constructing the
allocation of computer capital across sectors from the EU KLEMS data we include the
following categories: Computing equipment, Communications equipment, and Computer
software and databases. The right panel in Figure 3| shows the fraction of nominal com-
puter capital stock in each sector, and shows that most of the computer capital stock is
in the high-skilled service sector, with a roughly equal quantity in low-skilled services
and goods. Note that data on the allocation of computer capital across sectors is only
available between 1970 and 2015. To infer technologies from the data, as detailed in
the next section, we impute values for this allocation in 1960 and in 2017. Since the al-
location across sectors seems quite flat between 1970 and 1978 and between 2010 and
2015, we impose the 1970 values for 1960, and the 2015 values for 2017.

Finally, we break down employment and labor income within each sector by oc-
cupation. As discussed in the introduction, we believe that in order to understand
what is driving sectoral labor productivity growth it is crucial to differentiate between
occupations. Since the national accounts do not contain any information on the oc-
cupation of workers within industries, we turn to the decennial US Census and ACS
data between 1960 and 2017 from IPUMS, provided by Ruggles et al.| (2010), which
contains information on the occupation of workers. We follow the classification of oc-
cupations into three categories by |Acemoglu and Autor| (2011): manual (non-routine
non-cognitive), routine (both cognitive and non-cognitive) and abstract (non-routine
cognitive). We implement this classification by relying on a harmonized and balanced
panel of occupational codes as in/Autor and Dorn! (2013) and Barany and Siegel (2018).
We then classify each worker into one of these three broad occupations and into one
of the three sectors defined earlier[] Given this classification we can calculate the
share of hours worked by occupation o workers within a sector J. We measure sec-
toral employment shares and overall employment growth using Full Time Equivalent
(FTE) employees by industry provided by the BEA[? To get the employment share of

a sector-occupation cell, /,;, we multiply the within-sector hours share of occupation

lGee Appendix for more details on the classification of occupations and Table|A1|for industries.
12As for the data on the components of value added, we again have to combine data based on two
different industry classification systems (SIC until 1998, NAICS afterwards).

11



o (from the Census/ACS) by the employment share of sector J in the economy (from

the BEA). We also calculate the labor income share of occupation o in sector .J as:

0 = earnings of occupation o workers in sector J
OJ = .

(1)

earnings of sector J workers
Relative average occupational wages within sectors can then be calculated as
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Figure 4: Sector-occupation income shares, hours shares, and relative wages

Notes: Sectoral employment shares are based on BEA data on full time equivalent workers. The data
on occupational employment, income and wages is taken from IPUMS US Census data for 1960, 1970,
1980, 1990, 2000 and the American Community Survey (ACS) for 2010 and 2017. For three broad sectors
(low-skilled services, goods, high-skilled services) and three occupational categories (manual, routine,
abstract), this figure plots in the top row the evolution of employment shares in sector-occupation cells,
as well as in sectors (dark gray dotted lines), in the middle row each occupation’s share in sectoral labor
income, and in the bottom row the ratio of manual to routine wages and of abstract to routine wages
within the given sector.
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Figure[dshows the employment share of each sector (I ;) and of each sector-occupation
cell (I,;, in the top row), as well as within each sector the labor income share of each
occupation (f,,, in the middle row) and the average wage of abstract and manual rel-
ative to routine occupations (w,;/w,; and wy,;/w,; in the bottom row)@

Clearly, the share of labor income earned by routine workers declined in each sector
(as seen in the middle row). This is driven by the falling employment share of routine
workers (plotted in the top row), and by their wages which tend to fall relative to the
other occupations (bottom row). Note that the relative average hourly wages are not
equalized across sectors.

The top row of Figure 4 demonstrates that all of the three sectors employ workers
in each of the three occupations, but at different intensities. It is therefore a possibility
that the observed sectoral differences in labor productivity growth are due to differ-
ences in occupational labor input use. Note that the goods sector is the most intensive
in routine workers, while high-skilled services is the most intensive in abstract work-
ers. Now suppose that technological change increased routine workers” productivity
the most, but equally across sectors. It is then conceivable that the differences in oc-
cupational intensities generate the sectoral differences in measured labor productivity
growth (in terms of all workers), especially the high growth in goods. Moreover, the
observed slowdown in aggregate productivity growth could be driven by the contrac-
tion of routine employment in all sectors. We evaluate the role of these mechanisms in

section 4]

3 A production side framework

In order to study the drivers of sectoral labor productivity growth, we specify a pro-
duction side framework. We assume a relatively flexible CES functional form for sec-
toral production, which allows matching the data — especially the time varying factor

income shares — we documented in the previous section. Note that with CES produc-

13In section 5.3l we consider a variant of this framework where we control for observable character-
istics of workers (as one might be concerned that these are confounding the patterns of average wages).
Note, the income shares we show here are informative even if there is heterogeneity amongst workers
in terms of their human capital.

13



tion functions relative factor prices in equilibrium depend both on relative supplies
and on relative productivities. This means the framework does not hard-wire where
changes in relative wages are stemming from. Another advantage of the CES frame-
work is that it is relatively simple and does not require too many parameters (as ar-
gued in Krusell et al.| (2000)). As discussed in the introduction, we consider as inputs
manual, routine and abstract occupational labor, as well as computer and traditional
capital. We back out the path of factor-augmenting technologies from each sector’s
optimality conditions, conditional on values for the various elasticities of substitution,
using data on sectoral growth rates, value added, quantities and prices of factor in-
puts. It is important to note that we conduct this exercise making assumptions about
the production side of the economy only. We do not need to take a stance on where the
demand for goods and services stem from, since observing the sectoral value added
is sufficient. Similarly, observing the quantities and prices of factors employed in pro-
duction is sufficient and we do not need to model capital accumulation or labor supply
choices. The method in this exercise is similar to Buera et al.| (2015), but with a very
different focus. We allow for heterogeneity in labor across occupations and want to

identify the drivers of sectoral labor productivity growth.

3.1 Sectoral production

Firms in sector J combine occupational labor (manual, routine and abstract), computer
capital and traditional capital as inputs according to the following CES production

function:

plc—1)

ogc(p—1) (p—1)o
p—1 gc—1 oc—1 oc— a=2
YJﬂf = ( Z (OéO(LtloJ’t) pp —+ (av-J,tlrJ,t) oc + (Oéc(]’tCJ’t) oc } ( l>p> + (OékJ,th,t) 7

o=m,a

(2)

In this formulation [, is occupation o € {m,r, a} labor, ¢, is computer capital and k
is traditional capital used in sector J, and oy, > 0 is a sector-specific factor-augmenting
technology term for each production factor, all in period ¢. The production function is

of a nested CES form, where the most inner level is the combination of routine labor
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and computer capital with an elasticity of substitution o.. Next the different types
of labor, including the most inner routine aggregate, are aggregated according to an
elasticity of substitution p, and the outer-most layer combines aggregate labor and
traditional capital with a substitution elasticity o. Each CES-layer of the production
function allows for factor income shares (at the sectoral level) to change over time
which is one of the salient features we have documented in the data in the previous
section. The most inner nest of the production function for . > 1 reflects the idea that
ICT is a good substitute for routine workers (which is the consensus in the literature,
e.g. Autor et al[(2003), /Autor and Dorn (2013)). The aggregator of occupational labor
inputs is based on the notion that workers in different occupations perform different
tasks and are thus imperfect substitutes in production, as for instance emphasized in
a task-based model of the labor market (see |Acemoglu and Autor| (2011)). For p €
(0,1) occupational inputs are complements, and if ICT capital substitutes for routine
workers, it complements workers of other occupations, as in Autor and Dorn (2013).
™

It is worth to note that the initial value of technology « ; reflects the initial produc-
tivity as well as the intensity at which sector J uses input f, whereas any subsequent
change over time, as+/a ., reflects sector-factor augmenting technological changeﬂ
This formulation is very flexible as it does not impose any restrictions on the nature
of technological change. In particular, it does not require taking a stance on whether

labor-augmenting technological change is specific to sectors or occupations/ It also

4Gince there is no hard evidence on elasticities of substitution between occupational labor inputs,
for simplicity we assume that they are combined in the CES aggregator in this ‘symmetric’ way with a
common elasticity. It is worth to note that our framework could easily accommodate other nestings of
occupational labor inputs and capital.

15 An alternative, isomorphic way of writing the production function in () is

plo—1)

p—1 ge—1 ge—1 o—1

gclp—1) (p=1)o
p=1 (oc—Dp
Yy = [( Z Tog(Aogilost) 7 Trj(Argilrgs) oc + xeg(Acgicas) o } ' > + xr g (Akgike) @

o=m,a

where x;; are constant weights and Ay, are sector-factor technologies that can change over time.

n
The two formulations are equivalent since one can rewrite af 5+ = xF A+ (Where 7 is the relevant
elasticity depending on the layer of the CES nest). In this sense the oy terms comprise of a fixed
weight and a changing sector-specific factor augmenting technology. We are interested in changes in
technology over time, which — due to the weights being constant — are equal in the two formulations,
Alogayyy = Alog Ayyy.
161t is easy to conceive that some technologies improve a given occupation’s productivity in a similar
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allows for systematic co-movements and can capture general purpose technologies,
sector-specific innovations, occupation-biased technological change, or changes spe-

cific to the sector-factor cell.

3.2 Inferring factor-augmenting technologies

The assumptions about the production side of the economy allow us to infer factor-
augmenting technologies (the o ;,s) from observables. In addition to the sectoral pro-
duction functions, we assume that there is perfect competition in all markets, such that
firms take prices as given.

Here we describe in detail how we can back out the factor-augmenting technolo-
gies from the data. First, using optimality conditions for production in each sector we
express relative factor-augmenting technologies within a sector and period. Second,
we derive how the growth of sectoral value added pins down the evolution of tech-
nologies within each sector over time In what follows, where possible, we omit the
time ¢ subscripts to simplify the notation.

In line with the data we have shown in Figure |, we assume that wages are sector-
occupation specific, we denote these by w,;. Assuming further that the rental rates
of computer (R.) and traditional capital (Ry) are equalized across sectors, the profit

maximization problem of firms in each sector is

max pyY; — Z Woslos — Recy — Riky,

{los}cr.ks

subject to (2), where p; denotes the price of sector .J output. Optimal input use in each

way regardless of the sector of work. For example an accountant’s productivity has increased by the
advent of computers, though potentially more so in sectors characterized by larger firms. There are
also occupations which — though similar — perform different tasks depending on the sector of work.
Ford’s Model T is a good example: by introducing the moving assembly line in production, rather
than the then usual hand crafting, the productivity of workers directly producing the car increased,
later leading to a spillover to workers in other car producers. This did not have a concurrent effect on
other production workers. In this sense the introduction of assembly lines in car manufacturing can be
regarded as a sector-occupation-specific productivity change.
7The derivations can be found in appendix

16



sector has to satisfy the following first order conditions:

glij Y (LAY 0] 1 —w, =0 for o€ {m,a}, ®
ng = pyYF (AT RAES T 05 1 — g =0, @
g_g = Yy (LAY T RAJES T a5 ¢ — R =0, ©
g_::j —psY7 s k)7 — Ri=0, ©

where we define the routine aggregate as RA = (apgl, J)U%l + (esey) %" and the labor
P—2 —1

aggregate as LA = (apmlmy) 7 + (Qaslas) ™ . [RA]U<—1 ;.

Inferring technologies within sectors. We can express the relative optimal demand
for factor inputs from the first order conditions as a function of relative factor prices
and relative technologies. We invert these to express relative technologies in terms of
relative wages, rental rates and relative factor incomes within sectors.

The first order conditions on manual and abstract labor, (3), pin down the optimal

laJ W g P Qg g Pl
lmJ (waJ> (amJ ( )

It is optimal to use more abstract relative to manual labor in sector J if the relative

relative labor use as:

manual wage, wy,;/w,y, is higher. Additionally, if the term (o /qms)” ~1is larger it
is optimal to use relatively more abstract labor in that sector. Multiply the above by

Wy / W,y and re-arrange to get:

_1 _1
UmJg  WmnJg <melmJ) el _ Wmyg (QmJ) Pl (8)
- - )
7%} W g waJlaJ Wag eaJ

where 0,,; = (Wimlms)/ (D, Woslos) is the share of labor income in sector J that is

going to manual workers. Equation (8) shows that conditional on p, observing the
relative wage and the relative income share of manual and abstract workers within
a sector, both shown in Figure |4:L allows us to infer relative occupation-augmenting

technologies in that sector.
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Similarly, from the first order conditions on routine labor and computer capital,
and (5), we can express the relative demand for these factors, and consequently their

relative « as well:

Qg Rc ®cJ > ﬁ
— , 9
apy Wy ((1 —0,)0,; ®)

where O©.; = (R.c;)/(psY) is the share of income in sector J paid to computer capital,
and ©; = (R.c; + riky)/(psYs) is the share of income in sector J paid to both types
of capital. This expression is very similar to the one in (8), except that it is a different
elasticity of substitution that is relevant.

Expressing the remaining two relative technology levels within sectors, o,.;/m,
and /o, follows a similar principle, but is slightly more convoluted, and we
delegate the details of these derivations to appendix Here we only explain the
intuition. First, from the optimal use of routine labor relative to ICT capital, we ex-
press RA, the routine aggregate, in terms of routine labor only. This then allows us
to express the optimal use of manual relative to routine labor within a sector, which,

multiplied by w, ;/wy,s, gives us the relative technologies as:

1 P—0Oc
m m Hm p—1 @C (oc—1(p—1)
OmJ _ W, J < J> [1 + ( J)e J} P . (10)

arg  Wrg \ O 1-0,

Next we express LA, the labor aggregate, in terms of manual labor only, which
again allows us to express the optimal use of manual labor relative to traditional capi-

tal. Multiplying this by relative factor prices and re-arranging we get:

1 1 o p
Qg Ry, 1 \7 T [/O;—06.,\" 1 O.; \FUe-D

- - 1 : 11
OmJ W, J <9mj> ( 1—@J ) ( _'_]-_@J) ( )

Thus, we showed how to infer all relative technologies within a sector and a period

from observables, conditional on the elasticities p, 0. and ¢. Taking for example oy, as
the base technology, all other factor-augmenting technologies in sector J are propor-
tional to ay;, where the proportionality depends on observables in the data, and on

the values of the three substitution elasticities.
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Inferring technologies over time. The last step is to pin down the evolution of the as
over time in each sector, as well as the initial values of the technologies. Until now we
did not index any variable by time, as we explained how to infer the relative as within
a period. Plugging all the optimal relative input use expressions in (2) sectoral output

can be expressed as:

1 o1
Y = k _— )
Jit A JtRJ ¢ (@J,t — @cJ,t>

The evolution of the «y;, over time is then given by:

Qg ko < Ot — Ocsy ) o=t
)

_ 12
Q7,0 T kj+ \©s0— Ocro (12)

where v, denotes the growth of sectoral real value added between the initial and pe-
riod ¢ in the data. Again in equation all right-hand side variables can be observed
in the data, and hence, conditional on o, this equation gives us the growth rate of
over time.

Finally, we need to pin down the initial level of as. It is important to note that
these have no impact on our conclusions regarding the drivers of sectoral labor pro-
ductivity growth; they only matter for the growth rate of labor productivity in the
aggregate economy/"¥| We infer these initial as from initial sectoral prices. Using the
above expression for sectoral output in the first order condition on traditional capital
we get:

R0

apgo = —— (00— 0cs0)" 7. (13)
PJo

Equations (8), (9), (10), (11), and describe how to infer factor-augmenting
technologies in each sector and in all periods. Note that equations (8) to are im-
plied by firms’ cost minimization and therefore would still hold if there were imperfect
competition in product markets. As such, our conclusions about the drivers of sectoral
labor productivity growth would also hold if firms were charging — potentially time-

varying — mark-ups.

8Even for this, only the relative initial as matter, i.e. we could normalize one of the sectors’ a0
without loss of generality.
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3.3 Implementation

To infer the sector-specific factor-augmenting technologies from the data using equa-
tions (8) to (13), we need the value of three elasticities. First, we need the elasticity
of substitution between non-ICT capital and the labor aggregate, 0. The overwhelm-
ing majority of studies which estimate the elasticity of substitution between capital
and labor from aggregate data finds values below one, see Table 1 in [Le6n-Ledesma,
McAdam, and Willman| (2010) for a recent summary@ Lawrence (2015) obtains esti-
mates ranging from 0.27 to 0.96 for this elasticity in the (total) manufacturing sector.
Obertield and Raval| (2014) follow a more micro approach, and estimate the elasticity
of substitution between capital and labor in the US manufacturing sector by aggre-
gating the actions of individual plants, and find a value around 0.7. Closest to our
setup with sectoral CES production functions is |Herrendort et al. (2015), though we
differentiate between various types of occupational labor. While they find differences
across sectors, they report for the aggregate economy an elasticity of 0.84. We take this
value for our baseline parametrization, but in the robustness checks of section 5.2 we
also explore model variants with sector-specific elasticities.

Second, we need the elasticity of substitution between computer capital and rou-
tine labor, o.. While the literature has argued that routine labor and computer capital
are very good substitutes, there are surprisingly few estimates of this elasticity. [Eden
and Gaggl (2018) estimate a CES production function differently nested to ours, where
the elasticity of substitution between computer capital and routine labor is not con-
stant, but it ranges between 2.14 and 3.27. /Aum et al.| (2018) calibrate industry specific
elasticities between ICT capital and all types of occupational labor and find values be-
tween 1.21 and 1.84. As our baseline we set o, = 2, in the mid-range of these estimates.

Third, we need the elasticity of substitution between the different occupations and
the routine aggregate, p. Goos, Manning, and Salomons| (2014) estimate an elasticity
of substitution of 0.9 between 21 occupations, Lee and Shin (2017) calibrate p = 0.70

and Aum et al.| (2018) calibrate 0.81 both among 10 occupations, and Duernecker and

PThese studies estimate jointly the elasticity of substitution and a constant growth rate of (either
Hicks-neutral or factor-augmenting) technological change. As discussed in the introduction, since we
do not impose any restrictions on how technologies evolve over time we cannot identify both technolo-
gies and elasticities from the data.
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Herrendorf (2016) calibrate an elasticity of 0.56 between 2 occupations. It is likely that
the more coarse the occupation categories are, the lower is the elasticity of substitution.
In our model with three occupational categories we therefore set p = 0.6. While we use
these values for the three elasticities as our baseline, we conduct in section 5| extensive
robustness checks, also with respect to these elasticities.

To infer the evolution of technologies over time we need the following measures
from the data for every period: sector-occupation specific wage rates (w,;;), rental
rates for traditional and computer capital (R, and R.;), the income share of occupa-
tions within sectors (6,,.), the share of sectoral value added paid to computer capital
(Ocs,), and to both types of capital together (0 ), the quantity of traditional capital by
sector (k,), the per worker growth rate of sectoral value added (v,,), as well as sectoral
prices in the initial period (p;). In Section we showed 0,;, © 4, ps1, and v, calcu-
lated as the growth rate of real value added in sector J (shown in Figure|l)) divided by
the growth rate of full time equivalent workers from the BEA. Note that without loss
of generality we normalize all our quantity measures by the FTE workforce, i.e. we
use employment shares, the stocks of ICT and traditional capital per worker, growth
of real value added in each sector per worker, and nominal value added per worker.
In the quantitative analysis rather than using workers’ self-reported income from the
Census/ACS, we use the following accounting identity to obtain sector-occupation
wage rates, w, -

woJ,tloJ,t = Ytnom : VAJ,t(l - @J,t)eoJ,tu

where Y, is nominal GDP per worker in year ¢t and V' A, is the share of value added
produced in sector J (shown in Figure [I). This accounting identity ensures that the
sum of all income paid to workers of different occupations within a sector is equal to
the nominal labor income in that sector. Note that relative occupational wages within
a sector are the same as those calculated from the micro data (see equation and
the discussion that follows in appendix[A.2). Using similar accounting identities and
a no arbitrage condition, we obtain Ry, R.; and ©.;, from the data shown in Figure
and 3|as explained in appendix These accounting identities ensure that the sum

of all factor incomes is equal to nominal value added.
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4 The role of changing technologies and input use

Table [I| shows the average annual growth rate of sector-factor augmenting technolo-
gies between 1960 and 2017, as well as for two sub-periods, 1960-1990 and 1990-2017.
Technological change has been uneven, within each sector across factors, as well as
for a given factor across sectors. Nonetheless some patterns can be discerned. Look-
ing at the average growth rates over the entire period, it is obvious that among all
occupations routine labor had the highest productivity growth in all sectors, between
1.32 and 5.59 percent annually. Technological change augmenting manual labor was
much more modest and less dispersed across sectors, with rates between 0.25 and 0.67
percent. Finally, technological change augmenting abstract labor varied across sec-
tors, with negative growth rates in L and in /. These negative growth rates might
be explained by a compositional change within abstract occupations in these sectors,
towards more time-consuming tasks. In terms of capital-augmenting technologies we
tind that those related to ICT increased rapidly in L and in G and fell in H, while
those augmenting traditional capital increased at a lower rate in L and in H and they
fell in . While these negative growth rates might be surprising, they are in line with
what previous literature has found@ In terms of sectoral patterns, the growth rates
of all factor-augmenting technologies were the highest in G, followed by L, except for
manual labor and traditional capital, which had the highest growth in H. Thus be-
yond the factor-specific patterns, there also seem to be sector-specific components to
technological progress.

Our results highlight that routine workers became more productive over and be-
yond what is embodied in ICT capital. Technologies augmenting routine workers in-
creased the most in all sectors, even after accounting for the increase in ICT capital (c)
and in its productivity (a.;), suggesting that there is routinization beyond computeri-
zation, in line with what/Aum et al. (2018) find.

Comparing the earlier to the more recent period shows that technological change
augmenting each type of labor accelerated over time (for all occupations in all sectors

but for a1, the growth rate of which remained virtually constant), while technological

20Both |Antras| (2004) and Herrendorf et al. (2015) find negative capital-augmenting technological
change at the aggregate level, and respectively in the manufacturing and service sectors.
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Table 1: Average annual growth rate of as for various periods between 1960 and 2017

occupations capital
manual routine abstract | non-ICT ICT

1960-2017

L 1.0025 1.0292  0.9933 1.0085 1.0200
G 1.0058 1.0559  1.0100 0.9839  1.0439
H 1.0067 1.0132 0.9763 1.0178  0.9803
1960-1990

L 1.0032 1.0108 0.9849 1.0286  1.0338
G 0.9760 1.0369  0.9827 1.0063  1.0497
H 0.9921 09882  0.9587 1.0394  0.9653
1990-2017

L 1.0017 1.0500 1.0027 0.9867  1.0049
G 1.0398 1.0775 1.0413 0.9596 1.0376
H 1.0231 1.0417  0.9962 0.9942 0.9974

change augmenting either type of capital decelerated (except for ICT-augmenting cap-
ital in H). This suggests that the relative importance of capital- vs labor-augmenting
technologies for labor productivity growth has changed over the last decades.

To the extent that positive labor productivity growth in the data has stemmed from
improvements in technologies, Table [I| implies that this was most likely due to im-
provements in routine labor-augmenting technologies. It is worth to note that the
ratios of the growth rates of routine-augmenting technologies across sectors are very
similar to those of measured labor productivity (1.53% in L, 2.49% in G and 0.72% in
H). How the growth rate of individual factor-augmenting technologies affects sec-
toral labor productivity depends on the intensity at which the various factors are
used. As shown in Figure [} sector G' has had the highest intensity in routine work-
ers, which could have amplified the effects coming from the differential evolution of
sector-occupation cell technologies (as o, grew the most). Thus the sectoral differ-
ences both in the growth rate of routine-augmenting technologies and in the occupa-
tional composition of employment, as well as their interaction could be behind the
sectoral differences in labor productivity growth.

In what follows we study the drivers of sectoral labor productivity growth in de-
tail, by computing average sectoral labor productivity growth rates between 1960 and

2017 for various counterfactual scenarios. First, we assess the importance of the var-
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ious forms of technological change. To do this, we take factor inputs from the data
and fix technologies at counterfactual values. In addition, we use a factor model to
identify common sector and occupation components in the sector-occupation-specific
labor-augmenting technologies. Second, to quantify the role of changing input use and
of differences in occupational employment shares across sectors, we use the as as ex-
tracted from the data, and fix factor inputs at counterfactual levels. Comparing these
two sets of counterfactuals to each other sheds light on whether changing inputs or
evolving technologies are more important. The comparison within a set of counterfac-
tuals where we fix just some of the inputs or just some of the technologies informs us
which particular inputs and types of technological change matter the most. Finally we

evaluate the implications of these channels for aggregate labor productivity growth.

4.1 The role of technological change

Figure 5|shows the average annual labor productivity growth in the three sectors over
1960-2017. The first set of bars is the actual data, which is perfectly reproduced by
our baseline model, showing that the goods sector had with 2.49% the highest labor
productivity growth, whereas in low-skilled services it was 1.53% and in high-skilled
services 0.72%. The subsequent sets of bars show the results of various counterfactuals
in which we fix the factor-augmenting technologies (the o ;) listed below the bars at
their 1960 values, but let inputs and other productivities vary over time as extracted
from the data. Comparing the implied sectoral labor productivity growth (and their
differences) to the data informs us about the importance of the technological change
that we shut down.

Absent any change in factor-augmenting technologies, but just due to capital ac-
cumulation and employment reallocation, as the second set of bars (‘all’) shows, there
is hardly any growth in labor productivity in low-skilled services and in goods pro-
duction and only very small differences across sectors. This clearly demonstrates that
technological progress was crucial for the level of labor productivity growth as well as

for its sectoral differences. In particular evolving technologies explained at least 76%
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Figure 5: Average sectoral labor productivity growth with fixed technologies

Each set of bars shows the average annual labor productivity growth rate (in percent) over 1960-2017
for the three sectors (low-skilled services in pink solid, goods in gray striped, and high-skilled services
in yellow patterned). The first set of bars shows the growth rates in the data, and the subsequent sets
show counterfactual growth rates when holding technologies augmenting the factors listed below the
bars at their 1960 level, with all inputs as well as all other technologies evolving as in the data.

of labor productivity growth in L, 55% in G and 33% in H | High-skilled services thus
seem to be somewhat of an exception; in this sector capital accumulation was crucial.
To see whether this is due to capital-augmenting technological change, we next fix
just the productivity parameters of ICT and non-ICT capital. Comparing the results
of the third set (‘capital’) to the data reveals that (sector-specific) capital-augmenting
technological change has increased labor productivity growth in low- and high-skilled
services, but lowered it in goods, thus acting to reduce sectoral differences. This
demonstrates that capital-augmenting technological change was not the driver of the
differences across sectors observed in the data. When distinguishing further between
technological change in the two types of capital, we see that these results are mainly
driven by the evolution of traditional capital’s productivity, and not by ICT capital.

In the last four counterfactuals we first fix all labor-augmenting technologies at

ZThese numbers are the minimum of the fraction of the data predicted when fixing all inputs, and
of one minus the fraction predicted when fixing all technologies.
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their 1960 level, and then in turn fix only manual, only routine or only abstract labor
augmenting technologies (within each sector). The results show that without any im-
provements in labor-augmenting technologies the magnitude of and the differences
between sectoral labor productivity growth would have been very far from the data.
This highlights that technological change augmenting labor is key. We break this up
further to study the role of technologies augmenting the various occupations. We find
that routine labor augmenting technological change was a first-order determinant of
labor productivity growth in low-skilled services and in goods, explaining at least
59 and 74 percent respectively. It explains at least 21 percent of labor productivity
growth in high-skilled services, which was mainly driven by capital accumulation as
we established in section Sector-specific routine labor augmenting technological
change is also the single most important driver of sectoral differences; without it labor
productivity growth would have been almost equalized across sectors. While changes
in abstract labor augmenting technologies have contributed to sectoral differences to
some extent, manual labor augmenting technologies hardly had any impact on the
level of and on the differences in sectoral labor productivity growth. This is perhaps

not surprising given the low growth rates of these technologies shown in Table

4.1.1 The role of sector and occupation components in labor-augmenting techno-

logical change

As we found such an important role for labor — and in particular for routine labor -
augmenting technological change we investigate this further. In light of the sector and
factor patterns visible in Table |1, we want to understand whether the effect of labor-
augmenting technologies can be assigned to occupation-specific or to sector-specific
components. We want to know, for example, where exactly the effects of sector-specific
routine labor augmenting technological change are stemming from; is it the differences
across sectors or the growth differential relative to the other occupations that is more

important?

22To obtain these numbers we conducted an additional counterfactual, where we fixed everything at
the 1960 level except for s which evolved as extracted from the data. We report the minimum of the
fraction of the data predicted by this additional counterfactual, and of one minus the fraction predicted
when shutting down only the change in «,.; (the ‘routine’ counterfactual of Figure ).
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To decompose the changes of technologies augmenting labor in all sector-occupation
cells, we set up a factor model/”| In particular we regress the change in log cell tech-
nologies between each consecutive period on a (time-varying) sector effect (), an

occupation effect (d,,), and a time effect (3,) in the following way
Alnasy =Inag — o1 = B + 7Vt + dop + ot (14)

where we use weights w,;; to reflect the relative importance of the sector-occupation
cell We restrict both the average sector effect and the average occupation effect
to be zero, which effectively implies that 3, captures the average labor augmenting
technological change across all cells between period ¢ — 1 and ¢ /7]

Based on the results of (14), we compute counterfactual series for A In o, from (i)
the neutral component alone (B\t), (ii) the neutral and sector-specific components (B\t +
7.+) which we call “sector-only’, (iii) the neutral and occupation-specific components
(Bt + ga,t) which we call ‘occupation-only’, and (iv) from all components (everything
but ,,:), to which we refer as the “full factor” prediction. In the appendix we show
in Figure |A1|the path of sector-occupation technology changes over time as extracted
from the data as well as those predicted from the various components.

To gauge how much of the variation in cell productivities the neutral, sector- and
occupation-specific components can explain jointly and separately, we calculate the

following distance measure between the extracted and the various predicted AIn a,:

—_—
Zo,J,t wOJ,t<A In Qogt — Aln aoJ,t)Q

D =
Zo,J,t Wost(Aln sy — Alnar)?

This measure captures the variation in the extracted productivity changes that the
various components cannot account for. It is always positive and the smaller it is, the

closer the predictions are to the data. It is worth to note that this measure is closely

ZIn macroeconomics factor models have been also used to study how country-level outcomes de-
pend on sector and country factors, for instance in Stockman| (1988)), Ghosh and Wolf| (1997) and |Koren
and Tenreyro| (2007).

“4The weights we use are the cells” average labor income between period ¢ — 1 and ¢, woy: =
VA;:(1-074)005+t+VAs:—1(1—©7+_1)0075¢—1
207 (VAL(1=05,1)000,t+VAs—1(1-0,t-1)005,t—1)
ing cell employment shares, or using year ¢t — 1 or year ¢ shares, rather than averages.

*To be more precise these restrictions are: Y >~ ;wos vy =0and Y. ; 3, wosi0,,c = 0 for every ¢.

The results are very robust to alternatives, such as us-
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related to the R?, and in certain cases, including the ‘full factor” and the ‘neutral” pre-

diction, it exactly equals 1 — R*[]

neutral full factor sector occupation

Distance measure 0.702 0.033 0.227 0.408

The above table shows the distance measure for the alternative series. It is immediately
clear that the neutral prediction explains rather little of the variation (29.8 percent),
while the full factor prediction explains almost all of the variation (96.7 percent) in the
extracted technologies. The latter also implies that the part that is idiosyncratic to the
sector-occupation cell accounts for only 3.3% of the variation. The distance measures
of both the ‘sector-only” and of the ‘occupation-only” predictions are much larger than
that of the “full factor” prediction, whose explanatory power hence comes from both
types of components/”|

The results from this decomposition imply that the growth of labor-augmenting
technologies is very well described as the sum of neutral, sector-specific and occupation-
specific components. This holds not only in terms of explained variation of «,;, but

also for the components’ contributions to sectoral labor productivity growth (see Ap-

pendix Figure .

4.2 The role of changing input use

We now turn our attention to the role of production factors. Figure[6|shows the results
of various counterfactuals in which we fix the inputs listed below the bars at their 1960
values, but let all other inputs and the factor productivities (ay;;) vary over time as

extracted from the data between 1960 and 2017 (except for the last set, where we assign

26The R? is defined as - -
Zo,J,t woJ,t(A In QoJt — Aln a)2

R = Alna
Zo,.],t woJ,t(A In QoJt — Aln a)2 ’

and R? = 1 — D if the predictor is unbiased, ZO’J’t Wo J’tmo st = Alne, and if the independent

variables are uncorrelated with the error term, corr(Alna — m, Alna) = 0. These conditions only
hold for the ‘full-factor’ and the ‘neutral’ series, and in these cases D = 1 — R?.

¥In appendix we conduct this analysis for a range of the elasticity of substitution between the
occupational labor inputs. For larger values of p the distance measure of the neutral, the sector and the
full factor component is larger, while of the occupation component it is smaller.
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identical occupational employment shares to all sectors). Again comparing the results
implied by the counterfactual to the actual data gives a sense of the importance of the
changing use of the fixed input(s).

3.50
3.00
2.50
2.00
1.50
1.00

0.50

0.00
capital non-ICT ICT occ. shares no comp. diff.
capital capital within sec. across sectors

-0.50

m Low-skilled services Goods High-skilled services

Figure 6: Average sectoral labor productivity growth with fixed factor inputs

Each set of bars shows the average annual labor productivity growth rate (in percent) over 1960-2017
for the three sectors of the economy (low-skilled services in pink solid, goods in gray striped, and high-
skilled services in yellow patterned). The first set of bars shows the growth rates in the data, and the
subsequent sets show counterfactual growth rates when holding the inputs listed below the bars at their
1960 level (or share), and with all other inputs as well as technologies evolving as in the data. In the
last set of bars we assign identical occupational employment shares to all sectors and let everything else
evolve as in the data.

In the second set of bars (‘all’) we fix all inputs at their 1960 level. Keeping all
inputs at their initial level results in lower labor productivity growth in all sectors. This
implies that the reallocation of labor and the accumulation of capital had a positive
effect on labor productivity growth in all three sectors. While the size of this effect
varied across sectors, the ranking of sectors in terms of labor productivity growth
was not affected by changing input use. However, absent capital accumulation and
employment reallocation across sector-occupation cells, there would have been hardly
any difference between the productivity growth in goods and in low-skilled services.

This highlights that changing input use is important for the level of labor productivity
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growth, as well as for its differences across sectors. On the other hand, comparing
these results to those of fixed technologies in Figure [5| (second set of bars) highlights
that evolving technologies matter much more than changing inputs, both for sectoral
growth rates and their differences.

The next three counterfactuals shed light on the role of capital accumulation. With
both types of capital inputs fixed at their 1960 level (‘capital’), the growth rate in
all sectors falls short of the data, on average by 39 percent/| This effect is the most
pronounced in high-skilled services, where absent capital accumulation there would
have been hardly any growth in labor productivity. Capital accumulation resulted
in smaller sectoral differences, but without altering the ranking of sectors in terms
of labor productivity growth. This suggests that capital deepening, which was dif-
ferential across sectors, was important for the level of labor productivity growth, but
was not the main driver of sectoral differences. In particular, if capital deepening was
the source of structural transformation, as argued in |/Acemoglu and Guerrieri (2008),
then shutting it down should result in a larger reduction in productivity growth in
the goods sector compared to services, which is not what we find. Comparing the
counterfactual where we shut down only non-ICT capital with the one where we shut
down only ICT capital accumulation shows that non-ICT capital had a larger and less
uniform effect on labor productivity growth across sectors.

In the last three counterfactuals we study the role of labor allocation across sector-
occupation cells. We first fix all labor inputs at their 1960 values (‘labor’). The resulting
productivity growth rate falls considerably short of the data in goods, in low-skilled
services only marginally, whereas in high-skilled services it is slightly higher than in
the data. Hence, absent employment reallocations, sectoral differences in labor pro-
ductivity growth are not in line with the data. Overall this highlights that changing
labor use was important for the level of growth in G and for sectoral differences. In the
last two counterfactuals we investigate whether this was driven by differences in the
occupational employment structure, either over time within sectors or across sectors.

In the penultimate set of bars, we fix the share of occupations within each sector

ZLabor productivity growth in L would have been 80% of its actual value, in G 98%, and in H 5%,
the simple average of this is 61%, i.e. 39 % lower than in the data.

30



at initial ratios (‘occ. shares within sec.”) but let the overall employment share of each
sector (as well as all other inputs and technologies) evolve as in the data. In this case
we obtain growth rates that are lower than, but quite close to the actual data. This
shows that shifts in the occupational employment structure within sectors had only
modest positive effects on sectoral labor productivity growth, but hardly any effect on
sectoral differences.

In the last set of bars rather than fixing an input at the sectors’ initial level (or share),
we impose the same occupational structure in each sector, which we let evolve in the
same way as the occupational composition of the aggregate economy. The results of
this counterfactual hardly differ from the data. This implies that the differences in
occupational intensities across sectors did not generate, nor contribute to, the sectoral
differences in labor productivity growth observed in the data.

To summarize our findings so far, both changing inputs and changing technolo-
gies have been important for the observed sectoral labor productivity growth, with
technologies playing a larger role. We find that both capital accumulation and capital-
augmenting technological change acted to reducing sectoral differences. When iso-
lating the effects of changing technologies by production factors, we see that labor-
augmenting technological change had the largest role, and in particular (sector-specific)

routine-augmenting technological change.

4.3 Implications for aggregate labor productivity growth

We established that while capital accumulation was important for the level of labor
productivity growth, especially in sector H, technological change seems to have been
a more important determinant of both the level of and the sectoral differences in labor
productivity growth. We also showed that the key driver was sector-specific routine-
augmenting technological change. In what follows we study whether these findings
hold for labor productivity growth in the aggregate economy. In addition, we investi-
gate whether the importance of the various drivers changed over time. In Figure [7]we
show average annual labor productivity in the whole economy between 1960-2017 and

in two sub-periods, 1960-1990 and 1990-2017 in the data and for several counterfactu-
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Figure 7: The role of inputs and technology in aggregate labor productivity growth

Each set of bars shows the average annual labor productivity growth rate of the economy (in percent)
over 1960-2017 (solid), and over two sub-periods, 1960-1990 (vertically striped) and 1990-2017 (horizon-
tally striped). The first set of bars shows the growth rates in the data, and the subsequent sets show
counterfactual growth rates when holding the inputs or the technologies augmenting the factors listed
below the bars at their initial level, and allowing all other inputs as well as all other technologies to
evolve as in the data.

als. Note that a larger difference between data and counterfactual implies a larger role
for the component that we shut down. Comparing the “all inputs” and the ‘all tech.”
counterfactual with the data, it is evident that technological change was more impor-
tant for labor productivity growth than changing input use for the entire period (with
technologies explaining at least 59%, and inputs at least 33%), as well as for both sub
periods. In terms of input use, capital accumulation (‘capital inputs’) played a larger
role than labor reallocation across sector-occupation cells (‘labor inputs’). Analyzing
the effect of different technologies for aggregate labor productivity growth it becomes
clear that capital augmenting technologies were more important between 1960-1990,
while labor augmenting technologies played a larger role in 1990-201 7E| Finally, look-

ing at the respective role of sector-specific technologies augmenting the three occu-

PThat in the period 1960-1990 labor productivity growth would have been higher absent labor aug-
menting technological change, and that between 1990-2017 it would have been higher without capital
augmenting technological change, reflects the numbers smaller than 1 in Table T}
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pations, routine-augmenting technological change stands out as the one contributing
the most to aggregate labor productivity growth, explaining at least 54% of labor pro-
ductivity growth. Moreover, its role became substantially more pronounced over the
time period studied. Absent routine labor augmenting technological change growth
would have been about 30% lower between 1960 and 1990, while between 1990 and
2017 there would have been hardly any growth.

5 Robustness checks and extensions

In this section we show that our results are very robust to alternative values for the
substitution elasticities. We also show that the results of a model variant with sector-
specific substitution elasticity between capital and the labor aggregate are very sim-
ilar. Finally, we describe how to control for observable worker characteristics in our
framework and demonstrate that our conclusions are robust to accounting for worker

efficiency.

5.1 Alternative substitution elasticities

So far we showed results from our framework based on three elasticities, o = 0.84,
0. = 2and p = 0.6. In this subsection we briefly summarize how our results are
affected when we change these elasticities, one at a time, to alternative values. The
general conclusions are that all of our results are extremely robust. It is important to
keep in mind that our baseline framework under any parameterization matches all
data targets perfectly. As such, alternative values for these elasticities of substitution
lead to different series of the inferred technologies. In the appendix we list in Table
the average annual growth rate of the various sector-specific factor-augmenting
technologies for the different elasticities that we consider. This table shows that the
general patterns described in section [ for Table I|remain the same. We also show fig-
ures analogous to Figures @ and |A2|for the various elasticities@ Since this analysis

establishes that our results are qualitatively unchanged — except for the role of sector-

3We do not show the equivalent of Figure@ as this figure looks virtually identical for all elasticities
we consider.
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vs. occupation-components — and even quantitatively very similar, here we only point
out for each elasticity the biggest differences compared to our baseline results.

Elasticity between capital and labor. As discussed in Section {3.3| the majority of
studies finds values less than one for the elasticity of substitution between capital and
labor, and our baseline of o = 0.84 is towards the upper end of estimates. Therefore,
we discuss how our results change with lower values, 0.75 and 0.65. The most no-
ticeable difference when changing the elasticity of substitution between capital and
labor is in terms of aggregate labor productivity growth. In Figure |A5|in the appendix
we see that the counterfactual growth rates when shutting down technological change
augmenting labor between 1960-1990, and augmenting capital between 1990-2017 do
not overshoot the actual ones. With lower substitution elasticity between capital and
labor, optimality requires a more similar growth in the effective capital input and the
effective labor aggregate. Given our framework this leads to a change in the technolo-
gies that we infer from the data. Table |A2|shows that a lower ¢ requires that within
a sector the technologies of traditional capital and the labor aggregate (formed by all
occupations and ICT-capital) have to grow at a more similar rate. This explains why
with lower o the contribution of capital- and labor-augmenting technologies are more
likely to go in the same direction.

Elasticity between occupational labor inputs. Next we vary only the elasticity of
substitution between the occupational labor inputs (incl. the routine aggregate), p]
The only visible difference relative to our baseline results is in the role of sector- and
occupation-specific components of labor-augmenting technologies. As Table[A3]in the
appendix shows, the larger is p, the larger is the distance measure both of the full
factor and of the sector-only technologies, and the smaller is the distance measure of
the occupation-only technologies. This is also reflected when considering the role of
these components in observed sectoral labor productivity growth (see Figure |A4]in
the appendix). For larger elasticities, the ranking of sectors in terms of labor produc-
tivity growth under ‘sector-only” technologies is less in line with the data, and under

‘occupation-only” technologies it is more in line with the data. Thus we find that the

31Changing the value of p does not affect the growth rate of the ay s at all, see Table in the
appendix.
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respective role of sector- and occupation-components is sensitive to this elasticity, but
the observation that we need both to match the data holds for all elasticities.
Elasticity between routine labor and ICT capital. We consider two alternative
values for o.: 1.5 in the midrange of values calibrated in Aum et al. (2018), and 2.5 in
the midrange of the values implied by the estimation in Eden and Gaggl| (2018). It is
important to note that the value of o, has no effect on the growth rate of technologies
except for routine labor and ICT capital, and quantitatively the effect is mostly on ICT-
augmenting technologies (see Table|A2)in the appendix). Given this it is not surprising
that we see hardly any effect of 0. on sectoral or aggregate labor productivity growth.
The only discernible change is quantitative: the smaller this elasticity, the larger is the

impact of technologies on aggregate labor productivity growth.

5.2 Sectoral heterogeneity in elasticities between capital and labor

We next consider a model variant where the elasticity of substitution between capi-
tal and the labor aggregate differs across sectors, as papers estimating this elasticity
have found differences across industries (e.g. Oberfield and Raval (2014), Lawrence
(2015)). Most papers focus however only on non-service industries. One exception is
Herrendorf et al.| (2015) which finds 0.75 for services. As such we set o* = ¢ = 0.75
for both of our service sectors. Our goods sector contains both agriculture and man-
ufacturing, therefore we set a value of 0% = 0.9, in between their estimates of 0.8 for
manufacturing and 1.58 for agriculture.

As we infer the technologies by sector and we just showed that our results are
robust to altering the common ¢ parameter, one should not expect large differences
compared to our baseline. The last set of rows in Table |A2| show the growth rates of
as, and we can see that in low- and high-skilled services these values are the same
as when setting the common o to 0.75. The values obtained for the goods sector are
different, but overall the table mimics the patterns of our baseline quite closely. Figure
compares the effects of the various channels with those in the baseline, showing
that our results are very robust. The only noticeable difference is quantitative: the

effect of technologies is somewhat more pronounced, and in particular with sector-
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specific elasticities it seems that the role of labor-augmenting technologies in aggregate

labor productivity growth is slightly larger.

5.3 Allowing for efficiency units of labor in production

In our baseline framework we measured occupational labor inputs as (shares of) hours
worked, implicitly assuming that all workers are equally efficient, both within and
across periods. A potential concern with this setup is that the evolution of workers’
human capital over time might confound the growth rates of technologies that we
inferred. To address this, we estimate each worker’s efficiency units from a Mincer
log wage regression on worker characteristics, including a polynomial in potential
experience, education, gender and race, using the IPUMS Census/ACS data. From
the estimates we construct average efficiency units of labor in each sector-occupation
cell, e,;; and wages per efficiency units of labor, as we explain in appendix

To incorporate efficiency units of labor into the model, we assume that firms choose
Nost = €ostloss in each period, instead of just hours worked (l,;;). This implies that
we need to use wages per efficiency unit of labor in equations (8) to to infer
sector-factor technologies, whereas the measurement of all other variables remains
unchanged.

Figure[A7)in the appendix plots the alternative series for the relative wages within
sectors. The resulting patterns for relative occupational wages within a sector are very
similar[’| whether accounting for efficiency units or not, though their levels are some-
what different. Since we identify the within-sector ratios of occupational productiv-
ities precisely from these relative wages, the general conclusions about the inferred
technological change are very similar, as shown in Table Given that the series of
the factor-augmenting technologies (by sector) in the model with efficiency units of
labor are so similar to the baseline model, and in fact for the capital inputs coincide,

the implications for sectoral labor productivity are very similar too. Figure |A8|in the

32We construct this in two different ways, by including/not-including the residuals from the Mincer
wage regression in €,:. Note that, even though we calculate sector-occupation wage rates from our
accounting identity (see equation in the appendix) as before, the relative wages within sectors are
the same as those implied by the the Mincer wage regression.

3From 2000 onwards, in high-skilled services there is somewhat of a divergence between relative
average (‘raw’) wages and relative wages controlling for workers’ characteristics.
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appendix shows the role of individual inputs and technologies in this model variant
alongside the baseline results. While there are very small quantitative differences,

qualitatively they have the very same implications.

6 Conclusion

In this paper we analyze the drivers of sectoral labor productivity growth in the United
States over 1960-2017, combining detailed Census/ACS data with sectoral data from
the BEA and EU KLEMS. We propose and implement a novel approach to extract
sector-specific factor-augmenting technologies from observed changes in factor prices,
factor shares, value added shares and sectoral growth in real value added over time.
Key in our approach is that we distinguish between occupational labor inputs and that
we do not impose a priori assumptions about whether technological change occurs at
the sector or at the factor level. Our results clearly demonstrate that technological
change has not been neutral. The growth rates of factor-augmenting technologies dif-
fered not only across the various occupations and types of capital, but also for given
production factors across sectors. Had we not taken this very flexible approach of al-
lowing technologies to evolve at the sector-factor level, we would not have been able
to identify these patterns.

Through a range of counterfactual exercises we find that most of labor produc-
tivity growth, both at the sector level and in the aggregate, was due to technological
change. In particular we show that sector-specific routine-biased technological change
was crucial, explaining at least 54% of labor productivity growth in the aggregate.
Changing occupational employment shares within sectors and capital accumulation
both had a positive effect on the level of productivity growth, but neither contributed
to the sectoral differences observed in data. Furthermore, differences in occupational
structure across sectors did not explain any of the sectoral patterns of labor productiv-
ity growth.

While we establish that the rate at which labor-augmenting technologies evolved
differs both across sectors and occupations, we also identify common components us-

ing a factor model. We find that occupation and sector components jointly explain 96.7
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percent of labor-augmenting technological changes, and that in measured sectoral la-
bor productivity growth both components of technological change are crucial. One
implication of this finding is that the growth rate of sector-occupation technologies is
well approximated by the sum of the relevant sector- and occupation-component.
Overall, our results highlight that sector-specific routine-augmenting technological
change has been the key determinant of labor productivity growth over 1960-2017 in
the US economy, and that its contribution has accelerated in more recent decades.
Our finding that occupation-specific technological change varies across sectors is
novel. As such there are no theories for this, but we believe there are at least three
possible, complementary, explanations. First, the job of a worker is not only described
by the occupation, but also by the sector (or industry) of work. It is easy to see that the
tasks performed in a very specific occupation, e.g. a cleaner, depend on whether the
individual works in a car manufacturing plant or in the offices of a law firm. Thus an
occupation’s productivity and its evolution may very naturally depend on the sector
of work. Second, sectoral differences in firm size or organizational structure might
result in differential effects of new technologies across sectors. Finally, as we con-
sider relatively broad occupational categories, there still might be some compositional
differences across sectors left in terms of finer occupational categories. In this paper
we did not investigate the reasons for sectoral differences in occupation-augmenting

technologies, but rather evaluated their role in labor productivity growth.
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A  Appendix

A.1 Classification

We classify occupations based on their routine task content and cognitive require-
ments, similarly to/Acemoglu and Autor|(2011), into the following three categories:
Manual (low-skilled non-routine): housekeeping, cleaning, protective service, food
preparation and service, building, grounds cleaning, maintenance, personal appear-
ance, recreation and hospitality, child care workers, personal care, service, healthcare
support;
Routine: farm workers, construction trades, extractive, machine operators, assem-
blers, inspectors, mechanics and repairers, precision production, transportation and
material moving occupations, sales, administrative support;
Abstract (skilled non-routine): managers, management related, professional specialty,
technicians and related support.

We combine four different industry classification systems, the NAICS, the SIC, the
ISIC and the IND1990. Table |Al{summarizes our categorization in terms of each sys-

tem.

A.2 Data Appendix

Capital targets. To back out all as we need the rental rate of traditional, R, and of
computer capital, R., the share of income going to both types of capital, ©,, and to
computer capital alone, O, as well as the amount of traditional capital in each sector,
k. As discussed in the main text, we obtain the labor income share in each sector, 1 —
©, from the BEA as the compensation of employees over gross value added. Starting
from data on current-cost net stock and quantity indices for fine capital categories from
the BEA, we calculate for traditional and computer capital real quantity (¢; and ¢.) and
price indices (p;, and p.) using the cyclical expansion procedure. Due to the quantity
index normalization of the BEA, these are both normalized to be 1 in 2009. Thus, we
assume that the real quantity of traditional and computer capital in 2009 is equal to

the share of traditional and computer capital in the current-cost net stock of capital in
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2009. Multiplying these 2009 values with the quantity indices (gx, ¢.) we get the time
series of the real quantity of traditional and computer capital. Dividing both by the
number of full-time equivalent workers we get the model equivalent of k and c. We
calculate annual depreciation rates for both types of capital J; and J. from the BEA
data by dividing the sum of current-cost depreciation of fixed assets of all non-ICT
(or ICT) capital with the sum of current cost net stock of these same fixed assets. The
depreciation rate of traditional capital is fairly stable at around 5.5 percent annually,
whereas of ICT capital the depreciation rate increases from 15.5 percent to 28 percent.
Nominal sectoral value added multiplied by the sector’s capital income share should
be equal to the value of total sectoral capital income. This results in the following ac-
counting identity:

Rk + Ree =Y"" ) VA0, (15)
J

where Y™ denotes nominal GDP per full-time equivalent worker, V' A; is sector J's
nominal value-added share, and O is sector J’s capital income share, all obtained
from the BEA. Furthermore, we assume a no-arbitrage condition on the rate of returns

to traditional and computer capital:

R.+(1—6.)p.  Ri+ (1—6,)pj,

yZ¢ Dk

Y

where pj. denotes the price of traditional capital in the next year. From these two equa-
tions we can calculate in each period the rental rates of traditional and of computer
capital, Ry, and R..

We calculate the allocation of computer capital across sectors from EU KLEMS be-
tween 1970 and 2015, as the share of nominal capital stock in millions of national cur-
rency in each sector, ¢;, with ), ¢é; = 1. The amount of real computer capital (per
worker) in each sector is then obtained as c; = ¢ - ¢;. The share of income going to
computer capital in each sector, O, is then pinned down by the accounting identity:
Re.cy = Y™™ . VA;0.;. The amount of traditional capital in each sector, k;, can then
be calculated from (15).

Sector-occupation cell wages. In our quantitative model, we use workers’ self-reported

income in the Census/ACS to compute 6, as in (1), but do not use it to calculate
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hourly wages. Instead we use an accounting identity to back out wages. This is to
ensure that in the model the sum of all factor income is equal to value added, which
we get from the BEA data. Nominal sectoral value added multiplied by the sector’s
labor income share should be the value of total sectoral labor income. This income in
turn is split across the various occupations. The accounting identity therefore is that

labor income of occupation o workers in sector .J satisfies
U)OJZOJ = Ynom . VAJ(l — GJ)GOJ, (16)

where Y™™ V A; and ©; are as defined earlier, and 6, ; denotes the share of sector .J
labor income that occupation o workers earn. Note that within sectors relative wages
depend only on the relative ¢s and occupational employment shares, and therefore is

equal to the relative wage observed in the Census/ACS data.

A.3 Derivations

In this subsection we show how the as can be expressed as a function of observables.
In the first step we show the derivation of as within a period, and hence we omit the
time subscripts. In the main text we showed the derivation of a,;/a,; and a.;/c ;.
Here we show the derivation of o, 5/, and ay.s/a .

In these derivations we repeatedly use that at the optimum relative effective input

use can be expressed as

achcJ _ (wTJO-/cJ>UC _ |: @cJ :|Ucl ’ _ ( @CJ )UZCI (17)
Q. gCy Rea, (1-0,)0,, (1-0,)0,, ’

where the first equality comes from multiplying the relative optimal input use with the

relative as, and the second one comes from multiplying it with relative factor prices
(and re-arranging). Using the above expression implies that at the optimum we can

express the routine aggregate as:

oc—1

gc—1 ge—1
RA = [(arJlrJ) 7o+ (aegey) o ] = (rglry) e {1 +

Ocs } . (18)

(1-0,)0.;
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Plugging this into the first order condition on routine labor, @), and dividing with the

FOC on manual labor, (3)), and re-arranging we get:

ey {H Oc) ]54’? <wm.]>P (ou)
mJ (1-0,)0,, Wyg Qg

Multiplying the above with w, ;/w,,; and substituting in 6,.;/6,,, we obtain (10):

o~

—oe
AmJ - WmJg

P~ %c _1
(ee=1)(p=1) p—1
Oy g Wr g (]. - @J)QTJ 97‘J

Next we express the labor aggregate as:

p—1 oc p—1 p=1 1 @c
LA=Y (0oslos) ™ +RAZT5 = (apmylms) 7 (1 4 e ) o 19)
J

O 1-0,
o=m,a
p=1 C gc —1P> p=1
i Sttino arglry N\ 7 _ Org Ocy oe=llp agslas | P _—
using (18) and substituting in (aw’;ﬂ’"m J) = g2t [1 + (1-@,)%] and <amﬂm]> =

4L (obtained similarly to (17)), and that }°6,; = 1. Plugging the expression for LA
into the FOC for manual labor, (3), and dividing by the FOC on traditional capital, (6),

and re-arranging we get:

o o—1 =g
ﬂ — Wiy 2 L 1+ Ocs ' .
I Ry, Q. Oy 1-0;

Multiplying with Ry /w,,; and re-arranging we get equation (11):

g Ry (1 (0, = 0., m O \ T e
Oy Wing \ O 1-6, 1-0, '
Finally we express sectoral output as a function of observables. Using the expression

on LA and substituting that (M> T eey [L (1 + ﬂ)] w7 (ob-

amglmg - (17®J)9'mJ OmJ 1-0,

tained similarly to (17)) we can express sectoral output as:

—1 o—1 o—1 1

o—1 p o
Y,o =LAr—1 & kj) o = kj) ¢ ——.
7 + (ousky) (osky) 6, -0,

Raising the above to the power of o /(0 — 1) we get the expression in the main text.
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A4 Decomposing labor-augmenting technological change

Alna Alna
m m
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1980 2000 2020 1980 2000 2020 1980 2000 2020
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1980 2000 2020 1980 2000 2020 1980 2000 2020
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‘—0— baseling =====x=x neutral =— =— sector occupation full factor ‘

Figure A1l: Baseline and counterfactual cell productivities

The solid red line with the marker shows the decennial change in the log of sector-occupation technolo-
gies, as calculated from the data. The other lines show the counterfactual paths, based on the neutral
(gray dotted), the sector-specific (blue dashed line), the occupation-specific (yellow dashed-dotted), or
sector- and occupation-specific (green solid line) components.

Figure|Al|shows the path of sector-occupation technology changes (between each
consecutive period) as extracted from the data, as well as the different predicted pro-
ductivities based on the components derived from the factor model. The ‘full factor’
prediction (green solid line) is quite close to the data (red solid line with marker),
illustrating that the contribution of technological change idiosyncratic to the sector-
occupation cell is very small. For some cells, the ‘occupation-only” predictions (the
yellow dashed-dotted line) gives a good account of the data, whereas for others the
‘sector-only’ predictions (the blue dashed line) are closer. The neutral predictions (gray
dotted line) give only minor changes for some cells (e.g. in the goods sector), whereas
for others it is relatively close to the data (rH cell for example).

Figure |A2|shows the results for counterfactuals that evaluate the role of the differ-

ent components of labor-augmenting technological change for sectoral labor produc-
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Figure A2: Role of occupation and sector components in sectoral labor productivity

Each set of bars shows the average annual labor productivity growth rate (in percent) over 1960-2017 for
the three sectors (low-skilled services in pink solid, goods in grey striped, and high-skilled services in
yellow patterned). The first set of bars shows the growth rates in the data, and the subsequent sets show
growth rates when feeding in counterfactual labor-augmenting technologies obtained from based
on the components listed below the bars, with all inputs as well as all capital augmenting technologies
evolving as in the data.

tivity growth. Here all inputs and capital-augmenting technologies evolve as in the
data, but we feed in the counterfactual technologies based on the components listed
below the bars. In this bar chart, the closer is a set of bars to the data, the better the
given component explains the growth rates of sectoral labor productivity. Not surpris-
ingly, labor-augmenting technological change that is neutral across sector-occupation
cells can account neither for sectoral differences, nor for the level of labor produc-
tivity growth. The counterfactual based on the ‘full factor” prediction, on the other
hand, replicates the observed labor productivity growth rates well. This highlights
that the growth of labor-augmenting technologies is well described as the sum of neu-
tral, sector-specific and occupation-specific components. However, the last two coun-
terfactuals show that neither the sector nor the occupation components by themselves
are enough to generate all aspects of the data. The occupation component alone fails to
generate the level and the differences of growth rates across sectors, whereas the sec-

tor component alone gets closer in terms of these aspects but quantitatively falls short.
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Overall this analysis reveals that both sector and occupation components are impor-
tant drivers of labor productivity growth at the sectoral level. Despite the marked dif-
ferences in labor-augmenting technological change across occupations, shown in Table
the sectoral differences within these occupation-augmenting technologies seem to

be key.

A.5 Robustness checks and extensions
A.5.1 Alternative and heterogeneous substitution elasticities

We provide more detailed results for the robustness checks discussed in the main text,
by contrasting the results from our baseline analysis with those of the alternative elas-
ticity values. Table |A2shows in the top rows the average annual growth rates of the
factor augmenting technologies in each sector in our baseline. The subsequent seg-
ments show these growth rates for the various alternative calibrations (different o, p,

o. and heterogeneous o’

highlighted in the discussion of Table
Similarly Figures and show in the top row the baseline, and in subse-

across sectors). All display the same key features that we

quent rows the results from considering two alternative values for o, p and o, respec-
tively. These figures demonstrate that all the results from the baseline are replicated
for all alternative parametrizations Figure [A6| shows the robustness of the model to
allowing for different o/ across sectors. In this figure the column on the left shows the
baseline results, and the one on the right the results with heterogeneity across sectors.

Additionally, Table shows for the range of p values which have been consid-
ered in the literature the distance measure between the changes in sector-occupation
cell technologies inferred from the data and the predictions based on the various com-
ponents of the factor model. This table shows that the distance measures of the pre-
dictions based on the neutral, on the sector and on the occupation components vary
quite a bit with the value of p. If the elasticity of substitution between different occu-
pations is low then the sector components play a larger role, while if p is high, then
the occupation components are more important. However, the full factor prediction

reproduces the data quite well for all values of p considered.
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Figure A5: Counterfactual aggregate labor productivity growth in different periods

This figure shows the role of various inputs and technologies in aggregate labor productivity growth
between 1960-2017, 1960-1990 and 1990-2017 for different elasticities. The sets of bars are exactly the
same as in Figure[7] which is also reproduced in graph (a) above.
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Table A2: Average annual growth rate of as over 1960-2017 under alternative param-
eters

occupations capital
manual routine abstract | non-ICT ICT
Baseline:
oc=084, L 1.0025 1.0292 0.9933 1.0085  1.0200
p =06 G 1.0058 1.0559  1.0100 0.9839 1.0439
o, =2 H 1.0067 1.0132 0.9763 1.0178  0.9803

Alternative o:

L 1.0017  1.0283  0.9925 1.0097 1.0192
o=0.75 G 09979 1.0476  1.0021 0.9945 1.0357
H 1.0121 1.0186  0.9815 1.0115 0.9856
L 1.0013  1.0279  0.9921 1.0103  1.0187
o =0.65 G 0.9939 1.0434 0.9981 0.9999 1.0316
H 1.0149 1.0214 0.9842 1.0083  0.9883

Alternative p:

L 1.0058 1.0262  0.9979 1.0085 1.0170
p=0.5 G 1.0123  1.0527 1.0167 | 0.9839  1.0407
H 1.0039 1.0079 09797 | 1.0178 0.9752
L 09970 1.0342  0.9856 1.0085  1.0250
p=0.7 G 09949 1.0614 09990 | 09839 1.0493
H 1.0113 1.0221  0.9706 1.0178  0.9890

Alternative o

Q

L 1.0025 1.0281  0.9933 1.0085 1.0640
o.=1.5 G 1.0058 1.0550 1.0100 | 0.9839  1.0900
H 1.0067 1.0095  0.9763 1.0178  0.9995
L 1.0025 1.0295  0.9933 1.0085  1.0057
0. =25 G 1.0058 1.0562 1.0100 | 0.9839 1.0290
H 1.0067 1.0144 0.9763 1.0178  0.9740

Sector specific o:
ol =07 L 1.0017 1.0283 0.9925 | 1.0097 1.0192
c% =09 G 1.0191 1.0699 1.0234 | 0.9666 1.0578
ol =075 H 1.0121  1.0186 09815 | 1.0115 0.9856

Table A3: Distance measure of the different predictions

p | neutral full factor sector occupation
0.5 | 0.674 0.024 0.150 0.455
0.6 | 0.702 0.033 0.227 0.408
0.7 | 0.751 0.049 0.359 0.339
0.8 | 0.832 0.076 0.587 0.247
09| 0.942 0.111 0.912 0.167
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A.5.2 Allowing for efficiency units of labor

To control for workers’ skills, we employ the following Mincer wage regression
log wiost = Sogt + B'Xit + Eiost; (20)

where 9, are occupation-sector-time effects and X, is a vector of worker character-
istics. From this regression we can back out both an occupation-sector wage in year
t that is not confounded by changes in composition of worker characteristics, X;t, as
well as an estimate of the average efficiency units a worker in occupation o and sector
J hasin year t. In particular, we run this regression on the Census/ACS data where the
vector of worker ¢ characteristics X;; is comprised of a third-order polynomial in po-
tential experience, interacted with a dummy for college education and with a gender
dummy, as well as a dummy for foreign-born and non-white race. Note that for our
model to match the average hourly wages by sector-occupation cell in every period
(Wo.s+), we need to assign the cell-year average of the exponent of the residuals from
to either the average wage per efficiency units or to the average efficiency units per
hour worked. Thus we have two options. Either we construct the sector-occupation
cell efficiency units per hour, € ;,, as the average of €, ;, = exp(3'X;;) within the sector-
occupation-year cell. In this case the implied sector-occupation-year unit wages are
given as W, ;, = W,y./e, ;. Alternatively we construct sector-occupation cell efficiency
wages per hour, @;, = exp(dos:). The implied average sector-occupation-year effi-
ciency units per hour worked are then €2, = W,/ @,

We use the equivalent of to get sector-occupation wages per efficiency unit
(woJ,t):

@%’tl(ﬂ,ﬁ%’t =YY" VA1 —0;1)0,4, (21)

where &)}, is the average sector-occupation efficiency units per hour worked in period
t (according to method M = 1,2). The within sector relative wages implied by the

accounting identity are:

eoJ,t EoJ,t

~M ~M
—M —M
woJ,t o loJﬂteoJ,t _ Cout woJ,t
SM T Oy Wegr MV
er,t 1., .eM &M er,t
rJ,tCr gt rJ,t
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where the last equality follows as both our methods ensure that we match each cell’s
average hourly wage. Thus in this formulation — just as in the baseline — the within-
sector relative wages per efficiency units obtained from the accounting identity are the

same as those implied by the Mincer wage regression.

Table A4: Sector-occupation efficiency units of labor 1960-2017

1960 1970 1980 1990 2000 2010 2017
1.685 1.642 1.498 1.548 1598 1.622 1.626
1.848 1.794 1.690 1.743 1.800 1.834 1.825
2034 1991 1.890 1.930 2.005 2.044 2.032
1975 1903 1.809 1.795 1.831 1.860 1.874
1.878 1.840 1.756 1.820 1.874 1.939 1.930
2.148 2185 2156 2199 2279 2356 2.329
1.844 1801 1.732 1.812 1.853 1.871 1.877
1.748 1.700 1.655 1.721 1.488 1.424 1.441
2125 2121 2.069 2139 2200 2.243 2248

(a) fitted efficiency units, €'

2 3 3 2 3 3 2 = 3|0

TN T O NN Ny

1960 1970 1980 1990 2000 2010 2017

1975 1924 1.707 1715 1.775 1.762 1.751
2.060 2.003 1922 1985 2.038 2.093 2.082
2450 2360 2249 2270 2332 2380 2.383
2130 2.099 2.056 2023 2103 2102 2.087
2098 2044 1982 2032 2091 2192 2153
2447 2462 2420 2482 2588 2.685 2.670
2.009 1984 1928 2.017 2.075 2105 2113
1.858 1.855 1.847 1929 1.682 1.612 1.658
2416 2409 2324 2414 2501 2.556 2.580

(b) residual efficiency units, ¢

2 3 3 2 =3 3 2 = 3o

TN TN NN

Table [A4| shows efficiency units by sector-occupation over time for the two meth-
ods. While there is a level difference between the efficiency units directly fitted and the
ones backed out as a residual from wages, the two methods give very similar patterns
for the evolution of each sector-occupation cell’s average efficiency over time.

In the variant of the model with efficiency units of labor, firms choose n,;; =
€o7.tlos+ in each period, instead of just hours worked (/,;,). This implies that we need
to use wages per efficiency unit of labor in equations (§) to (13), but the measurement
of all other variables remains the same as in the baseline model. Figure |A7|plots the
alternative series for the relative wages within sectors. The dotted lines show method

1 and the dashed lines show method 2 applied in 1), and the solid lines show our
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baseline (of wages per hour worked from (16))). Note that all alternative lines qualita-
tively show the same patterns, some are also quantitatively very close. The only larger
difference is for manual and abstract wages relative to routine in sector H between
2000 and 2017, which can be traced back to a fall of routine workers” efficiency units

in this sector for this period as shown in Table Given that the relative wage path

s Relative wagesin L . Relative wagesin G . Relative wagesin H
5 ) 5 ——o— baseline m/r
baseline alr
=== method 1 m/r
15 15 15 method 1 alr
= -o— - method 2 m/r
1 1 1 method 2 alr
05

0.5 0.5
1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020

Figure A7: Comparison of relative wages

Notes: This figure plots the relative hourly wages of manual (blue with marker) and abstract (green)
compared to routine workers within each sector over time for three alternative ways to compute wages:
(i) from the baseline model without efficiency units (equation (16), solid lines), (ii) from fitted efficiency
units ((2I) based on method 1, dotted lines), (iii) from fitted efficiency wages ((21) based on method 2,
dashed lines).

are similar to those in our baseline, it is not surprising that our results are robust to
controlling for skills.

Given the series of wages per efficiency unit of labor, @), we constructed for the
two methods M = 1,2, and all the other data we use in the main part of the paper, we
use again our methodology to infer the factor-augmenting technologies in each sector.
Table |A5shows the average annual change in the labor-augmenting technologies over
1960-2017. We do not report the results for the technology of ICT and of non-ICT
capital here, as these are exactly the same as in the baseline model because they are
independent of how labor income is split. Equations (8) to imply that differences
in the measurement of wage growth over time result in differential growth rates in the
labor-augmenting technologies, but do not affect the growth rates of a.; or ay;.

Comparing Table |A5|to Table 1| reveals that in both variants of the model with ef-
ticiency units the resulting growth rates of labor-augmenting technologies are very
similar to the baseline model of the main text, both in terms of the ranking of growth
in a,; but also quantitatively. This is perhaps not that surprising given that we es-

tablished in Figure already that the relative occupational wages within a sector
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Table A5: Average annual growth rate of as over 1960-2017 accounting for efficiency

units of labor

occupations occupations
manual routine abstract manual routine abstract
L | 1.0031 1.0294 0.9933 L | 1.0046 1.0290 0.9938
G | 1.0067 1.0554 1.0086 G | 1.0061 1.0554 1.0085
H | 1.0064 1.0166 0.9753 H | 1.0058 1.0152 0.9752

(a) based on fitted effiency units, ¢! (b) based on residual effiency units, ¢

Notes: The change in the capital inputs” technologies (the a.ss and «y, ss) is exactly the same as in Table
[[and not shown here.

do not change much when we control for workers” characteristics. Since we identify
the within-sector ratios of occupational productivities precisely from this ratio, but the
across-time changes from objects that do not depend on the measurement of wages or
efficiency units, the general conclusions about inferred technological change do not
change when we measure the labor inputs in terms of hours worked times efficiency
units.

Since the series of the factor-augmenting technologies (by sector) in the model with
efficiency units of labor are so similar to the baseline model, and in fact for the capital
inputs coincide, the implications for sectoral labor productivity are very similar too.
While there are very small quantitative differences when studying the role of individ-
ual inputs or technologies, qualitatively they have the very same implications. Figure

shows this for the model variant based on fitted effiency units, e'.

58



routine

manual

7722 =

3.50

3.00

2.50

2.00

050

capital

capital

capital

3.50

3.00

2.50

2.00

050

©Goods High-skilled services

= Low-skilled services

= High-skilled services

Goods

= Low-skilled services

ts

1c1ency unt

eff

(b) Role of technologies,

(a) Role of technologies, baseline

neutral full factor sector occupation

data

3.50

3.50

8 7
o <
5
£
g
3
g
E
E
g8 & 8 & 8 & 8 g

 High-skilled services

‘Goods

® Low-skilled services

Goods = High-skilled services

® Low-skilled services

ts

ciency uni

(d) Role of components, effi

me

(c) Role of components, basel

1o comp. diff.

across sectors

oc. shares

within sec.

3.50

ts

1ciency uni

capital tech. labor tech. manual tech. routine tech. abstract tech.

=1960-2017  B1960-1990 519902017

3.50

g
5
M .
I &
- i
I £ g
)
P )
H2 M
E
i g 2
5 oo :
“— :
12222 1 1% ]
i H
P2
S ¥
~ .
S £
= 3
N—"
CHEE I - g O -
T Z
B :
El
2 ] :
B = i
=
— ]
., &2 i
I I
Efe] :
A :
% Q. s
5y | ¢ B :
L =
i © .
5w E
S— 3
[ z
3 H
) Py 2
Q g
N B
3
b
g 7 8 2 g 7 g
ERE i 5 = g

050

®1960-2017  @1960-1990 =1990-2017

its

1c1ency un

f

(h) Aggregate labor prod., ef

baseline

(g) Aggregate labor prod.,

ciency unit model

i

Baseline vs eff:
s figure shows the differences between the magnitude of the various channels when considering the

model with efficiency units relative to the baseline.

igure A8:

F

T

59



	Introduction
	Factor use and factor income shares by sector
	A production side framework
	Sectoral production
	Inferring factor-augmenting technologies
	Implementation

	The role of changing technologies and input use
	The role of technological change
	The role of sector and occupation components in labor-augmenting technological change

	The role of changing input use
	Implications for aggregate labor productivity growth

	Robustness checks and extensions
	Alternative substitution elasticities
	Sectoral heterogeneity in elasticities between capital and labor
	Allowing for efficiency units of labor in production

	Conclusion
	Appendix
	Classification
	Data Appendix
	Derivations
	Decomposing labor-augmenting technological change
	Robustness checks and extensions
	Alternative and heterogeneous substitution elasticities
	Allowing for efficiency units of labor



