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This paper examines the effects of unilateral tax policy in the open economy. We construct

a general equilibrium trade model with heterogeneous agents allowing for country asymme-

tries. We find that in contrast to a symmetric country set-up the share of exporting firms is

endogenous. We show that a unilateral increase in the tax rate affects the factor allocation

in the regulating country and the trading partner country differently. We further derive the

implications for aggregate income and inequality in both countries.
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1 Introduction

Distributional effects of globalisation are extremely important for the public debate. Therefore, it

is vital to think about redistribution policies in the context of globalisation. In the open economy

unilateral tax policy does not only affect the regulating country, but also the trading partner. We

shed light on how unilateral tax policy affects the factor allocation, overall income and the income

distribution in both countries.

We therefore construct an asymmetric country model in general equilibrium building on work

by Egger and Kreickemeier (2012) and Kohl (2017). We look at intra-industry trade in horizontally

differentiated goods between two countries. As in Egger and Kreickemeier (2012) an occupational

choice mechanism following Lucas (1978) determines the factor allocation in the economy. Follow-

ing Kohl (2017) we introduce a redistribution policy into a trade model with firm heterogeneity.

In contrast to Egger and Kreickemeier (2012) and Kohl (2017) we allow for country asymmetries.

We find that, in contrast to the symmetric country set-up, the share of exporting firms does not

depend solely on the iceberg transport cost, but also on economy wide variables and is therefore

influenced by changes in the tax policy. We show that a unilateral increase in the tax rate in one

country affects the trading partner in various ways. The factor allocation changes such that the

mass of managers increases, whereas the mass of export consultants decreases leaving the mass

of workers constant. Aggregate income is not affected. However, inter-group inequality decreases

suggesting that a country benefits from the redistribution policy of its trading partner. The effects

of a unilateral increase in the tax rate in the regulating country are quite different. Both the mass

of managers and the mass of export consultants decrease, while the mass of workers increases.

A higher tax rate leads to distortions in the regulating country by reducing aggregate income,

whereas the effect on inequality is not clear-cut.

Our work is related to different strands of the literature. Firstly, it is related to papers that

model redistribution policies in trade models with heterogeneous firms. Egger and Kreickemeier

(2009) analyse the possibility to redistribute gains from trade in a Melitz model where wage inequal-

ity occurs due to fair wages in the labour market. They show that combining trade liberalisation

with an increase in the profit tax rate both higher aggregate income and more equality is possible

if countries are already sufficiently open. Kohl (2017) introduces a welfare state into a trade model

in order to look at the distributional effects of trade in the presence of a welfare state. The welfare

state is characterised by a progressive income tax and a lump-sum transfer. Although the transfer

endogenously increases with the level of openness, inequality is still higher in the open economy

equilibrium compared to autarky. Antràs et al. (2017) also look at the possibilities to redistribute

the gains from trade. They quantify the costs of this policy. Yet, all three papers use a symmetric
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country set-up implying that also the policy dimension is symmetric across countries. Thus, they

are not able to look at the effects of unilateral tax policy in the open economy which is the focus

of our paper.

Secondly, we build on a literature that looks at policy in trade models with firm heterogeneity

allowing for country asymmetries. Felbermayr et al. (2013) analyse the optimal tariff for a large

open economy with monopolistic competition and heterogeneous firms. They are the first to

solve the Melitz (2003) model for the asymmetric country case.1 While the entry mechanism in

Felbermayr et al. (2013) is as in Melitz (2003) our paper features an occupational choice mechanism

determining the factor allocation in the economy. We adapt the solution strategy of Felbermayr

et al. (2013) to the occupational choice framework. Kreickemeier and Richter (2014) derive the

effects of unilateral trade policy on the environment. Pflüger and Russek (2014) discuss the effects

of trade and industrial policies in the context of country asymmetries. They show that trade and

industrial policies that increases productivity in one country hurt the trading partner.

Our contribution relative to the literature is twofold. On the one hand, we are the first to solve

the Egger and Kreickemeier (2012) model for asymmetric countries. It is important to stress that

in Egger and Kreickemeier (2012) the entry mechanism is different to Melitz (2003). It works via

an occupational choice mechanism. On the other hand, the asymmetry in our analysis is in terms

of the tax policy. This is also new relative to the existing literature.

The structure of this paper is as follows. Section 2 introduces the model set-up. Section 3

derives the equilibrium conditions. Section 4 looks at the effects of unilateral tax policy. Section 5

concludes.

2 Model set-up

Individuals

We consider a world with two countries, denoted by i and j, that are open to trade. Each country is

populated by a mass of individuals, denoted by Ni in country i and Nj in country j, respectively.2

Individuals differ in their (managerial) ability ϕ. As is customary in this literature let the ability

be Pareto distributed with the lower bound normalised to one: G(ϕi) = 1 − ϕ−k
i .

Demand

1Felbermayr et al. (2013) builds on Demidova and Rodríguez-Clare (2009) that look at trade policy in the small
open economy case. Moreover, Felbermayr et al. (2013) extend the Gros (1987) model to the heterogenous firms
framework.

2One word on notation: we will use subscripts to indicate the origin perspective and superscripts to indicate the
market perspective.
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Preferences of a representative consumer on market i are given by

U i =

[∫

v∈V i
qi(v)

σ−1
σ dv

] σ
σ−1

, (1)

where qi(v) denotes the demand for variety v of a differentiated good, V i is the set of all available

varieties on market i and σ > 1 is the elasticity of substitution between the different varieties.3.

The budget constraint in country i is given by

∫

v∈V i
pi(v)qi(v)dv = Ri, (2)

with pi(v) indicating the price of variety v on market i and Ri representing total income in country

i.4 Utility maximisation of the representative consumer subject to the budget constraint leads to

the following demand function with constant price elasticity σ for each variety:

qi(v) = Ri(P
i)σ−1pi(v)−σ , (3)

where P i is the standard CES price index and given by

P i =

[∫

v∈V i
pi(v)1−σdv

] 1
1−σ

. (4)

Domestic production

There is a continuum of firms each producing a unique variety of the differentiated good under

monopolistic competition. The mass of firms serving market i is given by M i. It consists of

domestic producers in country i (denoted by M i
i ) and exporters from country j (denoted by M i

j).

In each firm there is one manager and an endogenous mass of workers. Firm productivity ϕ is

determined by the ability of the manager running the firm. The mass of workers per firm is

proportional to output and given by li(v) = qi(v)/ϕ(v). The unit production cost in country i is

denoted by ci(v) = wi/ϕ(v). The price a firm from country i charges for domestic varieties follows

from profit maximisation and is a constant markup over marginal cost, i.e.:

pi
i(v) =

σ

σ − 1
ci(v). (5)

Combining Eqs. (3) and (5) domestic revenue ri
i(ϕ) and domestic operating profits ψi

i(ϕ) of a firm

3Please note that a similar expression can be found for utility in country j. For readability we present only the
expressions for country i whenever it is possible to do so.

4It is assumed that individuals from country i spend all their income on goods on market i, i.e. Ri = Ei, where
Ei denotes total expenditure on market i.
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with productivity ϕ can be expressed as follows

ri
i(ϕ) = Ri(P

i)σ−1
(

σ

σ − 1

wi

ϕ

)1−σ

and ψi
i(ϕ) =

1

σ
ri

i(ϕ). (6)

Comparing two arbitrary firms in country i with differing productivities, we get the familiar result

that relative domestic output, revenues, operating profits, and employment only depend on relative

productivity levels:

qi
i(ϕ1)

qi
i(ϕ2)

=

(

ϕ1

ϕ2

)σ

and
ri

i(ϕ1)

ri
i(ϕ2)

=
ψi

i(ϕ1)

ψi
i(ϕ2)

=
lii(ϕ1)

lii(ϕ2)
=

(

ϕ1

ϕ2

)σ−1

. (7)

Accordingly, a firm with higher productivity has higher domestic output, revenues, operating prof-

its, and employment.

Exporting activity

Exporting is subject to two different types of costs. First, exogenously given variable trade costs in

form of the standard iceberg trade costs. Accordingly, a firm from country i that wants to export

to country j faces costs of τ j
i > 1, whereas an exporter in country j faces τ i

j > 1, respectively.

Second, exporting activity requires that an export consultant from the domestic population needs

to be hired. The fixed exporting costs for an exporting firm from country i are given as f j
i and by

f i
j for an exporting firm from country j, respectively. The fixed exporting costs are endogenously

determined in the model and we allow for f j
i 6= f i

j due to the possible asymmetry of the two

countries.

The price an exporting firm from country i charges on market j is therefore given as5

pj
i (v) = τ j

i

σ

σ − 1
ci(v) = τ j

i p
i
i(v) (8)

and it follows directly that revenues of a firm from country i on market j are given by

rj
i (v) = pj

i (v)qj
i (v) = (τ j

i )1−σ(pi
i(v))1−σRj(P

j)σ−1 = (τ j
i )1−σRj(P j)σ−1

(

σ

σ − 1

wi

ϕ

)1−σ

. (9)

Welfare state

Both in country i and in country j we model a welfare state, which redistributes income. Each

country imposes a tax ti,j ∈ [0, 1) on operating profits, where the two economies may differ in

their tax rates, i.e. ti 6= tj is possible. The tax revenue is assumed to be lump sum redistributed

to all individuals in the respective economy with everyone getting a per capita transfer bi,j ≥ 0.

5The derivation is deferred to the Appendix; see A.1.
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The tax rates are treated as exogenously given, whereas the per capita transfers are endogenously

adjusting such that each government runs a balanced budget, i.e.:

bi =
tiΨi

Ni

, (10)

where Ψi are aggregate operating profits of firms from country i.

3 Equilibrium

Occupational choice

Following Egger and Kreickemeier (2012) individuals in each economy have to make an occupational

choice, i.e. they have to decide whether to become a manager running a firm or a production worker

or an export consultant. This choice depends on their managerial ability, that can be used in the

role as a manager, but not as a worker or consultant. The indifference condition for an individual

in country i looks as follows:

(1 − ti)πi(ϕ
i∗

i ) + bi = wi + bi = f j
i + bi, (11)

where ϕi∗

i denotes the managerial ability of the individual that is just indifferent. This means that

individuals with a managerial ability greater than ϕi∗

i will become managers of a firm, whereas

individuals with an ability lower than ϕi∗

i will either work as production workers or as consultants.

Note the correspondence between the mass of managers in a country Mi and the cutoff productivity

ϕi∗

i as

Mi =
[

1 −G(ϕi∗

i )
]

Ni = (ϕi∗

i )−kNi. (12)

The occupational choice condition, Eq. (11), implies that each export consultant earns the

domestic wage rate, i.e. f j
i = wi. It further implies that the transfer does not affect the occupational

choice. As the marginal firm is a non-exporting firm and using Eq. (6) we can write the indifference

condition as

(1 − ti)
ri

i(ϕ
i∗

i )

σ
= wi, (13)

which in detail looks as follows:

(1 − ti)
1

σ
Ri(P

i)σ−1
(

σ

σ − 1

)1−σ

(ϕi∗

i )σ−1 = wσ
i . (14)

An equivalent equation can be derived for country j.
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The decision to export

Managers face the decision whether to be active only on the domestic market or whether to serve

both markets. The marginal exporting firm with productivity ϕj∗

i is just indifferent between

exporting and non-exporting. The indifference condition is given by

(1 − ti)
ri

i(ϕ
j∗

i ) + rj
i (ϕj∗

i )

σ
− f j

i + bi = (1 − ti)
ri

i(ϕ
j∗

i )

σ
+ bi. (15)

Simplifying and using the fact that export consultants just earn the economy-wide wage, we can

rewrite the exporting indifference condition and get

(1 − ti)
rj

i (ϕj∗

i )

σ
= wi. (16)

Accordingly, for the firm that is just indifferent whether to export or not, the after tax operating

profits earned on the export market have to equal the fixed costs of exporting. Using Eq. (9) in

order to substitute for rj
i (ϕj∗

i ), the exporting indifference condition becomes

(1 − ti)
1

σ
(P j)σ−1Rj

(

σ

σ − 1

)1−σ

(τ j
i )1−σ(ϕj∗

i )σ−1 = wσ
i , (17)

where an equivalent condition holds for country j.

Note that the share of exporting firms in country i is the mass of exporting firms relative to

the mass of all firms and can be determined as follows:

χi ≡
1 −G(ϕj∗

i )

1 −G(ϕi∗
i )

=

(

ϕi∗

i

ϕj∗

i

)k

=

[

Rj

(

P j
)σ−1

Ri (P i)σ−1

(

τ j
i

)−(σ−1)
]

k
σ−1

, (18)

where the last equality follows from the division of the occupational indifference condition, Eq. (14),

by the exporting indifference condition, Eq. (17). This expression shows the crucial difference be-

tween a set-up where countries are assumed to be symmetric as in Kohl (2017) and the asymmetric

case which is the focus of this paper. In the symmetric case the share of exporting firms χi col-

lapses to (τ j
i )−k and is thus exogenously given. In case of country asymmetries, by contrast, it is

endogenous as it depends not only on the iceberg trade costs but also on the relative income levels

and the relative price levels of the two countries.

Factor allocation

Starting point for determining the factor allocation in the economy is the occupational choice

condition, Eq. (13). Due to constant mark-up pricing, total wage income in country i is a constant
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fraction of total revenues of firms from country i, i.e.:

wiLi =
σ − 1

σ
Ri, (19)

while the remaining share goes to operating profits, i.e.:

Ψi =
1

σ
Ri. (20)

Using Eq. (13), we can derive total revenues of firms from country i as6

Ri =
σ

1 − ti
ζ(1 + χi)Miwi (21)

with ζ ≡ k/(k − (σ − 1)).7 Jointly with Eq. (19) this yields

Li =
σ − 1

1 − ti
ζ(1 + χi)Mi. (22)

Together with the resource constraint of the economy

Li + (1 + χi)Mi = Ni (23)

we get the factor allocation as follows. The mass of workers in the economy is given by

Li =
(σ − 1)ζ

(σ − 1)ζ + 1 − ti
Ni, (24)

which importantly does not depend on the amount of trade openness. It depends positively on the

tax rate in the domestic country. The higher the tax rate is, the more the occupational choice is

distorted leading to less managers and more workers, ceteris paribus. This implies that for equal

population sizes the country with the higher tax rate (let us assume ti > tj) has a higher mass of

workers relative to the other country. This can be easily verified by looking at the following ratio

Li

Lj

=
(σ − 1)ζ + 1 − tj
(σ − 1)ζ + 1 − ti

Ni

Nj

. (25)

The mass of managers, in turn, can be determined as

Mi =
1 − ti

(1 + χi) [(σ − 1)ζ + 1 − ti]
Ni. (26)

6The derivation is deferred to the Appendix; see A.2.
7Please note that throughout this paper we assume k > σ. Note that this assumption is stronger than k > σ − 1.

It is needed in order to ensure that also average output q̄i
i is finite and positive.
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It depends negatively on the amount of trade openness, i.e. ∂Mi/∂χi < 0. The higher the share

of exporting firms, the more individuals are employed as export consultants. Since the share of

production workers does not depend on trade openness (see Eq. (24)) it follows directly from the

resource constraint of the economy (see Eq. (23)) that the mass of managers is negatively related

to the share of exporting firms. Further inspection of Eq. (26) reveals that the direct effect of

an increase in the domestic tax rate is a decrease in the mass of managers, since from Eq. (13) a

higher tax makes it less attractive to become a manager, ceteris paribus. However, this is not the

overall effect of a tax increase on the mass of managers, since an increase in the domestic tax rate

affects the mass of managers via a change in the share of exporting firms.

The mass of export consultants follows straightforwardly as χiMi. Overall, the mass of export

consultants depends positively on the amount of trade openness, i.e. ∂(χiMi)/∂χi > 0, where the

direct effect is obviously positive, while the indirect effect via the mass of managers is negative.

Income distribution

Having characterised the factor allocation in the economy we now want to take a closer look at the

income distribution. Since export consultants are assumed to earn the economy-wide wage and

the labour market is assumed to be perfectly competitive, all workers and export consultants in

this economy have the same income. Each manager, however, earns the firm’s profit that depends

on her managerial ability. Therefore, there is income heterogeneity within the group of managers

and between managers and individuals that earn the equilibrium wage. To characterise the latter,

i.e. the inter-group inequality Ξi in country i, we look at the average net income of managers

relative to the net income of a worker or an export consultant. Accordingly,

Ξi ≡
(1 − ti)ψ̄i − wiχi + bi

wi + bi

. (27)

As we show in the Appendix (see A.3) we can rewrite this expression as:

Ξi = Di (1 + Fiχi) , (28)

with

Di ≡
[(σ − 1)ζ + 1] ζ

(σ − 1)ζ + 1 + (ζ − 1)ti
and Fi ≡

[(σ − 1)ζ + (1 − ti)] (ζ − 1)

[(σ − 1)ζ + 1] ζ
. (29)

It is straightforward to show that both Di and Fi are declining in ti leading to lower inequality,

ceteris paribus. Yet, there is a second channel of how the tax rate affects inequality that runs via

the share of exporting firms that is positively related to inter-group inequality. Importantly, this
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channel is not present in a symmetric country set-up, where the share of exporting firms can be

treated as a parameter following Eq. (18). Hence, the overall effect of ti on inequality crucially

depends on how it affects the share of exporting firms.8

Trade balance

The trade balance condition requires that aggregate exports of country i are equal to its aggregate

imports from country j, i.e.:

M j
i r̄

j
i = M i

j r̄
i
j , (30)

where r̄j
i denotes the average export revenues of exporting firms from country i. The trade balance

can be rewritten as9

Ni(ϕ
j∗

i )σ−1−k(τ j
i )1−σRj(P

j)σ−1w1−σ
i = Nj(ϕi∗

j )σ−1−k(τ i
j)1−σRi(P

i)σ−1w1−σ
j . (31)

System of equations

Having laid out the optimal behaviour of individuals in the open economy we now derive the

system of equations characterising the equilibrium.

First, we divide the occupational choice condition, Eq. (14), for country i by the export indif-

ference condition, Eq. (17), for country j in order to substitute for the market aggregates P i and

Ri of country i. This yields

1 − ti
1 − tj

(τ i
j)σ−1

(

ϕi∗

i

ϕi∗

j

)σ−1

=

(

wi

wj

)σ

. (32)

Second, combining the expression for the mass of managers, Eq. (26), with Eqs. (12) and (18)

we get a link between the two cutoff productivity levels in country i:

(ϕi∗

i )−k + (ϕj∗

i )−k =
[

(1 − ti)
−1ζ(σ − 1) + 1

]−1
. (33)

Finally, combining the trade balance condition, Eq. (31), with the exporting indifference con-

dition Eq. (17) for country i and its analogue for country j we find

ϕj∗

i =

(

Ni

Nj

1 − tj
1 − ti

wi

wj

) 1
k

ϕi∗

j . (34)

Choosing labour in country j as the numéraire, the equilibrium can be described by a system of

8Note that Ξi collapses to unity for the two extremes k → ∞ and σ → 1, since ζ → 1 in these cases. Then, there
is no affect of ti at all. We are, hence, focusing on intermediate cases with σ not too small and k not too large.

9The derivation is deferred to the Appendix; see A.4.
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five equations, Eqs. (32) and (33) and their respective analogues for country j, as well as (34), in

the five endogenous variables ϕi∗

i , ϕ
j∗

j , ϕ
j∗

i , ϕ
i∗

j , and wi.

4 Unilateral tax policy reform

Equilibrium conditions in percentage changes

We are interested in analysing unilateral tax policy. Due to non-linearity the system of equations

cannot be solved in levels. Our solution strategy is to express the system of equations in terms of

percentage changes of endogenous variables and of exogenous variables of interest. A percentage

change in variable x is denoted by x̂ ≡ dx/x. Without loss of generality we focus on country i

and look at t̂i 6= 0. This implies that N̂i = N̂j = τ̂ j
i = τ̂ i

j = t̂j = 0 by choice of the analysis and

ŵj = 0 by choice of the numéraire.10 Thus, log-linearising Eqs. (32) - (34) we can write the system

of equations as follows:

ϕ̂i∗

j = ϕ̂i∗

i −
σ

σ − 1
ŵi −

ti
1 − ti

(σ − 1)−1t̂i (35)

ϕ̂j∗

i = ϕ̂j∗

j +
σ

σ − 1
ŵi +

ti
1 − ti

(σ − 1)−1 t̂i (36)

ϕ̂i∗

i = −χiϕ̂
j∗

i +
ti

1 − ti
At̂i (37)

ϕ̂j∗

j = −χjϕ̂
i∗

j (38)

ϕ̂j∗

i = ϕ̂i∗

j +
1

k
ŵi +

1

k

ti
1 − ti

t̂i, (39)

where A ≡ 1
k
(1 + χi)

[

1 + 1−ti

ζ(σ−1)

]−1
< 2. Next, we isolate changes in endogenous variables with

respect to changes in the tax rate in country i, thus deriving elasticities denoted by x̂/t̂i.

Effects on country j

We begin with the discussion on country j to see how the trading partner is affected by changes

in the tax policy in country i. The effect of a change in the tax rate in country i on the export

cutoff in country j is given by11

ϕ̂i∗

j

t̂i
=

ti
1 − ti

[

A

(

σ

σ − 1
−

1

k

)

−
1 + χi

k

]

B−1 > 0, (40)

with B ≡ (2 + χi + χj)
σ

σ−1 − (1 − χiχj) 1
k
> 2. It can be verified that this elasticity is positive.12

This means that the export cutoff in country j is increasing in the tax rate ti. The domestic cutoff

10A more general specification allowing for changes in all variables that potentially differ across countries can be
found in the Supplement; see S.1.

11The derivation is deferred to the Appendix; see A.5.
12The proof is deferred to the Appendix; see A.6.
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is linked to the export cutoff via Eq. (38). Hence, we find

ϕ̂j∗

j

t̂i
= −χj

ϕ̂i∗

j

t̂i
= −χj

ti
1 − ti

[

A

(

σ

σ − 1
−

1

k

)

−
1 + χi

k

]

B−1 ≤ 0. (41)

There are three interesting things to note here. First, an increase in the tax rate in country i leads

to a decrease in the domestic cutoff in country j. Second, the effect of an increase in the tax rate

on the domestic cutoff is smaller than the effect on the export cutoff. Third, the domestic cutoff

is not affected if country j is in autarky, i.e. χj = 0. The share of exporting firms is given by Eq.

(18). Written in terms of elasticities yields

χ̂j

t̂i
= k





ϕ̂j∗

j

t̂i
−
ϕ̂i∗

j

t̂i





= −k(1 + χj)
ti

1 − ti

[

A

(

σ

σ − 1
−

1

k

)

−
1 + χi

k

]

B−1 < 0. (42)

Hence, we see that the share of exporting firms in country j decreases in the tax rate of country

i since both the export cutoff increases and the domestic cutoff decreases. This has important

implications for the factor allocation in country j. The mass of managers is defined by Eq. (12).

In terms of elasticities we get

M̂j

t̂i
= −k

ϕ̂j∗

j

t̂i
= kχj

ti
1 − ti

[

A

(

σ

σ − 1
−

1

k

)

−
1 + χi

k

]

B−1 ≥ 0. (43)

It is obvious that the mass of managers and hence the mass of firms in country j increases in the

tax rate ti. Together Eqs. (40), (42) and (43) imply that the mass of export consultants decreases

in the tax rate. The mass of workers Lj does not depend on ti (cf. Eq. (24)), because the mass of

workers does not depend on the amount of trade openness.

Next, we want to see how income in country j is affected by changes in the tax policy in country

i. Total income is given by Eq. (21). The elasticity of total income with respect to changes in ti

can be calculated as

R̂j

t̂i
= −

k

1 + χj





ϕ̂j
j

t̂i
+ χj

ϕ̂i
j

t̂i



 = 0. (44)

Ceteris paribus, an increase in the export cutoff decreases aggregate income, while a decrease in

the domestic cutoff increases aggregate income. Using Eqs. (40) and (41) we find that a change

in the tax rate in country i does not change total income in country j, since the changes in the

cutoffs just offset each other. This result further implies that the transfer bj is not affected by

changes in the tax rate ti, because the transfer is proportional to operating profits (cf. Eq. (10))

and operating profits are a constant fraction of total income (cf. Eq. (20)).
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While aggregate income is not affected by changes in the tax rate, there might be distributional

effects of this policy. We just argued that operating profits and the transfer per capita is not affected

by changes in ti. The share of domestic exporting firms, by contrast, is. Given Eq. (28) we can

derive the elasticity of inter-group inequality with respect to changes in the tax rate ti as

Ξ̂j

t̂i
=

Fjχj

1 + Fjχj

χ̂j

t̂i
< 0, (45)

where it is straightforward to show that Fjχj/(1 + Fjχj) ∈ (0; 1/2). Since according to Eq. (42)

the share of exporting firms in country j decreases in the tax rate ti, we find that the income gap

between managers and workers in country j shrinks if country i increases its tax rate. This is a

remarkable result as it suggests that a country benefits in terms of inequality reduction from the

redistribution policy of its trading partner.

Effects on country i

We now turn to the analysis of country i. The effect of a change in the tax rate in country i on

the change in the export cutoff in country i is given by13

ϕ̂j∗

i

t̂i
=

ti
1 − ti

[

A

(

σ

σ − 1
+
χj

k

)

+
1 + χj

k

]

B−1 > 0. (46)

It is straightforward to show that the export cutoff in country i increases if the tax rate in country

i increases. Comparing Eq. (46) to Eq. (40) we see that the effect of a unilateral increase of ti

on the export cutoff in country i is stronger than the effect on the export cutoff in country j. In

order to see how the domestic cutoff changes with the tax rate we look at Eq. (37). In addition to

the negative indirect effect via the export cutoff that was also present in the analysis of country

j, there is also a direct effect of a tax change on the domestic cutoff that is positive. The direct

effect works via the occupational choice of individuals. Ceteris paribus, a higher tax makes it less

attractive to become a manager thereby increasing the domestic cutoff productivity. Clearly, under

autarky only the direct effect is present and the domestic cutoff increases in the tax rate. The

direct and the indirect effect are of opposite sign representing counteracting forces. Combining

Eqs. (37) and (46) we get the following elasticity:

ϕ̂i∗

i

t̂i
= −χi

ϕ̂j
i

t̂i
+

ti
1 − ti

A =
ti

1 − ti





A
(

B − χi

(

σ
σ−1 +

χj

k

))

− χi
1+χj

k

B



 > 0. (47)

It can be shown that the positive direct effect dominates the negative indirect effect. Thus, the

13The derivation is in analogy to A.5.
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domestic cutoff in country i increases in the tax rate ti.
14

The share of exporting firms is given by Eq. (18). Written in terms of elasticities we find

χ̂i

t̂i
= k

(

ϕ̂i∗

i

t̂i
−
ϕ̂j∗

i

t̂i

)

= k

[

ti
1 − ti

A − (1 + χi)
ϕ̂j∗

i

t̂i

]

= k
ti

1 − ti
(1 + χi)





1

k

[

1 +
1 − ti
ζ(σ − 1)

]−1

−
A
(

σ
σ−1 +

χj

k

)

+
1+χj

k

B





=
ti

1 − ti









[

1 + 1−ti

ζ(σ−1)

]−1
−
(

σ
σ−1 − 1

k

)−1

(1 + χj)
−1

σ
σ−1

+
χj

k
σ

σ−1
− 1

k

+ (1 + χi)
−1









> 0, (48)

where the second equality follows from using Eqs. (46) and (47); the third from using the definitions

of A and B. Since both the domestic cutoff and the export cutoff increase in the tax rate it is

ex ante unclear what will happen to the share of exporting firms. We can show that the share of

exporting firms is increasing in the tax rate.15 This is an important distinction to a symmetric

policy set-up. Under symmetry the change in the domestic cutoff is identical to the change in the

export cutoff implying that the share of exporting firms is not changing with a symmetric increase

in the tax rate.16

We now want to discuss how the factor allocation in country i changes with an increase in the

tax rate. Since the domestic cutoff is increasing in the tax rate, it follows from Eq. (12) that the

mass of managers decreases in the tax rate, i.e.:

M̂i

t̂i
= −k

ϕ̂i∗

i

t̂i
= −k

ti
1 − ti





A
(

B − χi

(

σ
σ−1 +

χj

k

))

− χi
1+χj

k

B



 < 0. (49)

Combining Eqs. (46), (48) and (49) we see that the mass of export consultants also declines in the

tax rate. Inspection of Eq. (24) reveals that the mass of workers increases in the tax rate. In order

to see how the wage is affected we have a close look at Eq. (39). Rewritten as an elasticity yields

the following expression:

ŵi

t̂i
= k

(

ϕ̂j∗

i

t̂i
−
ϕ̂i∗

j

t̂i

)

−
ti

1 − ti

=
ti

1 − ti

[

1

B
(A(1 + χj) + (2 + χi + χj)) − 1

]

< 0, (50)

14The proof is deferred to the Appendix; see A.7.
15The proof is deferred to the Appendix; see A.8. Note that in the last line the second term in parentheses is

positive but smaller than one. Furthermore, the expression suggests that the elasticity is larger for initially large
values of ti. This might be only a direct effect, however, as χi,j depend on aggregates, where the initial level of ti is
also present.

16This finding is supported by Kohl (2017). We discuss the case of symmetric policy changes in the Supplement;
see S.2.
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where the second equality is got by using Eq. (40) and (46). Again we find opposing effects: A

negative direct effect of the tax and a positive indirect effect via the changes in the export cutoffs.

Overall, we find that an increase in the tax rate leads to a lower wage rate in this country.17 Total

income is affected by changes in the tax policy via different channels. Writing Eq. (21) in terms

of elasticities we get

R̂i

t̂i
=
ŵi

t̂i
+

ti
1 − ti

−
k

1 + χi

(

ϕ̂i
i

t̂i
+ χi

ϕ̂j
i

t̂i

)

=
ti

1 − ti

[

−
k

1 + χi

A +
1

B
(A(1 + χj) + (2 + χi + χj))

]

< 0. (51)

It can be shown that an increase in the tax rate lowers aggregate income.18 Hence, the tax can be

called distortionary.

To see what happens to inter-group inequality we have a look at Eq. (28). We can log-linearise

this expression as follows:

Ξ̂i

t̂i
=

1

1 + Fiχi

D̂i

t̂i
+

Fiχi

1 + Fiχi

(

D̂i

t̂i
+

F̂i

t̂i
+
χ̂i

t̂i

)

. (52)

Since D̂i/t̂i < 0, F̂i/t̂i < 0, whereas χ̂i/t̂i > 0 according to Eq. (47), the effect of ti on inter-group

inequality is ex ante ambiguous.

5 Conclusion

In this paper we set up a general equilibrium model that is capable to analyse the effects of

unilateral tax policy in the open economy. Therefore, we construct a trade model of monopolistic

competition and heterogeneous firms allowing for country asymmetries in the policy dimension.

In the asymmetric country case the share of exporting firms does not only depend on the iceberg

transport costs, but also on country aggregates that are affected by the tax policy. Thus, there

exists an additional channel how the tax policy affects the trading partner that is not present

in the symmetric country case. We find that an increase in the tax rate in one country affects

the other country in multiple ways. The marginal manager will be of lower ability, while the

marginal exporter will have a higher ability level. This has important implications for the factor

allocation in this country. The mass of managers will increase, the mass of export consultants

will decrease, while the mass of workers stays constant. We further show that a change in the tax

rate in one country does not change aggregate income and the transfer per capita in the other

country since counteracting forces exactly offset each other. However, changing the tax rate in

17The proof is deferred to the Appendix; see A.9.
18The proof is deferred to the Appendix; see A.10.
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one country has distributional effects in the other country. We find that inter-group inequality

decreases in the tax rate of the trading partner. An increase in the tax rate in one country affects

also the factor allocation in this country. We show that the mass of managers and the mass of

export consultants decreases, whereas the mass of workers increases. Furthermore, we find that a

higher tax decreases aggregate income in the regulating country, whereas the effect on inter-group

inequality is ambiguous.

A Appendix

A.1 Derivation of Eq. (8)

Profits of a firm from country i on market j are given as

πj
i (v) = qj

i (v)pj
i (v) − qj

i (v)ci(v)τ j
i − f j

i

= Rj(P j)σ−1pj
i (v)−σpj

i (v) −Rj(P j)σ−1pj
i (v)−σci(v)τ j

i − f j
i . (A.1)

Profit maximisation leads to

∂πj
i (v)

∂pj
i (v)

= Rj(P j)σ−1(1 − σ)pj
i (v)−σ + σRj(P j)σ−1pj

i (v)−σ−1ci(v)τ j
i

!
= 0. (A.2)

Solving for pj
i we get Eq. (8).

A.2 Derivation of Eq. (21)

Total revenues of producers from country i originate from domestic sales and from exporting.
Accordingly, we can write Ri as

Ri = Mi

∫ ∞

ϕi∗

i

ri
i(ϕ)

g(ϕ)

1 −G(ϕi∗
i )

dϕ+M j
i

∫ ∞

ϕ
j∗

i

rj
i (ϕ)

g(ϕ)

1 −G(ϕj∗
i )

dϕ. (A.3)

By means of our specification of the Pareto distribution and Eqs. (6) and (9) this follows as

Ri = Mi

k

k − (σ − 1)
ri

i(ϕ
i∗
i ) +M j

i

k

k − (σ − 1)
rj

i (ϕj∗
i ). (A.4)

Using the occupational choice condition, Eq. (13), and the export indifference condition, Eq. (16),
we can replace both ri

i(ϕ
i∗
i ) and rj

i (ϕj∗
i ). This gives

Ri =
σ

1 − ti

k

k − (σ − 1)

(

Mi +M j
i

)

wi. (A.5)

Replacing M j
i = χiMi and rearranging gives Eq. (21) in the main text.

A.3 Derivation of Eq. (28)

From Eq. (6) it follows that average operating profits are a constant fraction of average revenues.
Accordlingly, Ξi in Eq. (27), follows as

Ξi =
(1 − ti)ζwi(1 − ti)

−1(1 + χi) − wiχi + bi

wi + bi

. (A.6)
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Using Eq. (20) we can specify the lump-sum transfer, bi from Eq. (10) as follows:

bi =
Ri

σ

ti
Ni

=
witiLi

Ni(σ − 1)
, (A.7)

where the second equality directly follows from Eq. (19). Replacing bi by this expression, we cam
rewrite Ξi as

Ξi =
[ζ(1 + χi) − χi + tiLi/Ni(σ − 1)]wi

[1 + tiLi/Ni(σ − 1)]wi

(A.8)

Simplifying and substituting Eq. (24) for Li yields:

Ξi =
ζ + (ζ − 1)χi + tiζ/ [(σ − 1)ζ + 1 − ti]

1 + tiζ/ [(σ − 1)ζ + 1 − ti]
. (A.9)

Finally, rearranging to isolate χi gives Eq. (28) in the main text.

A.4 Derivation of Eq. (31)

In order to rewrite the trade balance condition Eq. (30) note first that the mass of exporting firms
from country i is given by

M j
i =

[

1 −G(ϕj∗

i )
]

Ni = (ϕj∗

i )−kNi. (A.10)

Average export revenues of an exporting firm from country i can be calculated as follows:

r̄j
i =

∫ ∞

ϕ
j∗

i

rj
i (ϕ)

g(ϕ)

1 −G(ϕj∗

i )
dϕ

= (ϕj∗

i )k

∫ ∞

ϕ
j∗

i

(τ j
i )1−σ(pi

i(ϕ))1−σRj(P j)σ−1kϕ−k−1dϕ

= (ϕj∗

i )k(τ j
i )1−σRj(P

j)σ−1k

∫ ∞

ϕ
j∗

i

(

σ

σ − 1

wi

ϕ

)1−σ

ϕ−k−1dϕ

= (ϕj∗

i )k(τ j
i )1−σRj(P

j)σ−1k

(

σ

σ − 1

)1−σ

w1−σ
i

[

1

σ − k − 1
ϕσ−k−1

]∞

ϕ
j∗

i

=
k

k − (σ − 1)
(ϕj∗

i )σ−1(τ j
i )1−σRj(P

j)σ−1
(

σ

σ − 1

)1−σ

w1−σ
i . (A.11)

Following the same operations for country j and combining expressions, we get Eq. (31) in the
main text.

A.5 Derivation of Eq. (40)

Eqs. (35) - (39) represent a system of five linear equations in five unknowns. We first eliminate

ϕ̂i∗

i and ϕ̂j∗

j . Substituting Eq. (37) into Eq. (35) yields

ϕ̂i∗

j = −χiϕ̂
j∗

i −
σ

σ − 1
ŵi +

ti
1 − ti

(

A −
1

σ − 1

)

t̂i. (A.12)

Substituting Eq. (38) into Eq. (36) we get

ϕ̂j∗

i = −χjϕ̂
i∗

j +
σ

σ − 1
ŵi +

ti
1 − ti

1

σ − 1
t̂i. (A.13)

16



We rewrite Eq. (39) slightly and find

ϕ̂j∗

i = ϕ̂i∗

j +
1

k
ŵi +

1

k

ti
1 − ti

t̂i. (A.14)

Thus, we have a system of three equations in three unknown.

Next, we eliminate ϕ̂j∗

i . Substituting Eq. (A.14) into Eq. (A.12) we get

(1 + χi)ϕ̂
i∗

j = −

(

σ

σ − 1
+
χi

k

)

ŵi +
ti

1 − ti

(

A −
1

σ − 1
−
χi

k

)

t̂i. (A.15)

Substituting Eq. (A.14) into Eq. (A.13) we find

(1 + χj)ϕ̂
i∗

j =

(

σ

σ − 1
−

1

k

)

ŵi +
ti

1 − ti

(

1

σ − 1
−

1

k

)

t̂i. (A.16)

This is a system of two equations in two unknowns.

We eliminate wi by solving Eq. (A.16) for wi and substituting the expression into Eq. (A.15).
Hence, we get

[

(1 + χi)

(

σ

σ − 1
−

1

k

)

+ (1 + χj)

(

σ

σ − 1
+
χi

k

)]

ϕ̂i∗

j

=
ti

1 − ti

[(

A −
1

σ − 1
−
χi

k

)(

σ

σ − 1
−

1

k

)

+

(

σ

σ − 1
+
χi

k

)(

1

σ − 1
−

1

k

)]

t̂i, (A.17)

which can be simplified to Eq. (40).

A.6 Proof of Eq. (40)

In order to show that

ϕ̂i∗

j

t̂i
=

ti
1 − ti

[

A

(

σ

σ − 1
−

1

k

)

−
1 + χi

k

]

B−1 > 0, (A.18)

it is sufficient to look at

A

(

σ

σ − 1
−

1

k

)

−
1 + χi

k
> 0, (A.19)

since B > 0 and ti

1−ti
> 0 for ti > 0. Using the definition of A and rewriting Eq. (A.19) yields

σ

σ − 1
> 1 +

1 − ti
ζ(σ − 1)

+
1

k
, (A.20)

which can be simplified to

σ > σ −

[

ti(k − (σ − 1))

k

]

. (A.21)

For ti > 0 the inequality in Eq. (A.21) is fulfilled since k > σ − 1. Hence, the export cutoff in
country j is increasing in the tax rate ti.
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A.7 Proof of Eq. (47)

In order to show that

ϕ̂i∗

i

t̂i
=

ti
1 − ti





A
(

B − χi

(

σ
σ−1 +

χj

k

))

− χi
1+χj

k

B



 > 0, (A.22)

we can focus on

A

(

B − χi

(

σ

σ − 1
+
χj

k

))

− χi
1 + χj

k
> 0, (A.23)

since B > 0 and ti

1−ti
> 0 for ti > 0. Using the definitions of A and B, Eq. (A.23) can be rewritten

as follows:

(1 + χi)(2 + χj)
σ

σ − 1
> (1 + χi)

1

k
+ χi(1 + χj)

[

1 +
1 − ti
ζ(σ − 1)

]

. (A.24)

Since we know that σ
σ−1 > 1 + 1−ti

ζ(σ−1) >
1
k

(cf. Eq. (A.20) and k > σ with σ > 1) it is sufficient to
show that

(1 + χi)(2 + χj) ≥ (1 + χi) + χi(1 + χj), (A.25)

which can be simplified to

1 + χj ≥ 0. (A.26)

Eq. (A.26) completes the proof. Hence, we can conclude that the domestic cutoff in country i is
increasing in the tax rate ti.

A.8 Proof of Eq. (48)

In order to show that

χ̂i

t̂i
= k

ti
1 − ti

(1 + χi)





1

k

[

1 +
1 − ti
ζ(σ − 1)

]−1

−
A
(

σ
σ−1 +

χj

k

)

+
1+χj

k

B



 > 0, (A.27)

it is sufficient to look at

1

k
B

[

1 +
1 − ti
ζ(σ − 1)

]−1

− A

(

σ

σ − 1
+
χj

k

)

−
1 + χj

k
> 0, (A.28)

since B > 0 and k ti

1−ti
(1 + χi) > 0 for ti > 0. Using the definitions of A and B we can rewrite Eq.

(A.28) and get

σ

σ − 1
−

1

k
> 1 +

1 − ti
ζ(σ − 1)

, (A.29)

which if fulfilled (as shown in A.6). Hence, the share of exporting firms in country i is increasing
in the tax rate ti.

A.9 Proof of Eq. (50)

We want to show that

ŵi

t̂i
=

ti
1 − ti

[

1

B
(A(1 + χj) + (2 + χi + χj)) − 1

]

< 0. (A.30)
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Using the definitions of A and B yields

ti
1 − ti









(2 + χi + χj) +
(1+χi)(1+χj )

k
[

1+
1−ti

ζ(σ−1)

]

(2 + χi + χj) σ
σ−1 − (1 − χiχj) 1

k

− 1









< 0. (A.31)

In order for Eq. (A.31) to be fulfilled, the fraction in the squared bracket needs to be smaller than
one. Hence, we need to show that

−(2 + χi + χj)
1

σ − 1
+ (1 − χiχj)

1

k
+

1 + χi + χj + χiχj

k
[

1 + 1−ti

ζ(σ−1)

] < 0. (A.32)

Eq. (A.32) can be rewritten to get

k >













1 +
1+χi+χj

1+
1−ti

ζ(σ−1)

2 + χi + χj

−

χiχj

(

1 − 1

1+
1−ti

ζ(σ−1)

)

2 + χi + χj













(σ − 1). (A.33)

We note that the squared bracket is smaller or equal to one. Thus, the inequality in Eq. (A.33) is
always fulfilled since k > σ − 1. Hence, the wage rate in country i is decreasing in the tax rate ti.

A.10 Proof of Eq. (51)

We want to show that

R̂i

t̂i
=

ti
1 − ti

[

−
k

1 + χi

A +
1

B
(A(1 + χj) + (2 + χi + χj))

]

< 0. (A.34)

Using the definitions of A and B we have to prove that

(2 + χi + χj) + (1 + χi)(1 + χj)
[

1 + 1−ti

ζ(σ−1)

]−1
1
k

(2 + χi + χj)
σ

σ−1 − (1 − χiχj)
1
k

<

[

1 +
1 − ti
ζ(σ − 1)

]−1

. (A.35)

Eq. (A.35) can be rewritten as follows:

(1 + χi + χj + χiχj)
1

k
< (2 + χi + χj)

(

σ

σ − 1
−

[

1 +
1 − ti
ζ(σ − 1)

])

− (1 − χiχj)
1

k
. (A.36)

The inequality in Eq. (A.36) holds since σ
σ−1 −

[

1 + 1−ti

ζ(σ−1)

]

> 1
k

(as shown in A.6). Hence, total

income in country i is decreasing in the tax rate ti.
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S Supplement

S.1 Equilibrium conditions in percentage changes - more general case

We want to express the system of equations (Eqs. (32) - (34)) in terms of percentage changes of

endogenous variables and of all exogenous variables that potentially differ across countries. Eqs.

(32) - (34) can be written as

−
ti

1 − ti
t̂i +

tj
1 − tj

t̂j + (σ − 1)τ̂ i
j + (σ − 1)ϕ̂i∗

i − (σ − 1)ϕ̂i∗

j = σŵi − σŵj (S.1)

−
tj

1 − tj
t̂j +

ti
1 − ti

t̂i + (σ − 1)τ̂ j
i + (σ − 1)ϕ̂j∗

j − (σ − 1)ϕ̂j∗

i = σŵj − σŵi (S.2)

ϕ̂i∗

i + χiϕ̂
j∗

i =
ti

1 − ti

1

k
(1 + χi)

[

1 +
1 − ti
ζ(σ − 1)

]−1

t̂i (S.3)

ϕ̂j∗

j + χjϕ̂
i∗

j =
tj

1 − tj

1

k
(1 + χj)

[

1 +
1 − tj
ζ(σ − 1)

]−1

t̂j (S.4)

ϕ̂j∗

i =
1

k
N̂i −

1

k
N̂j −

1

k

tj
1 − tj

t̂j +
1

k

ti
1 − ti

t̂i +
1

k
ŵi −

1

k
ŵj + ϕ̂i∗

j . (S.5)

S.2 Symmetry

In this subsection we want to look at symmetric tax policy changes, i.e. t̂i = t̂j = t̂ in an initial

symmetric equilibrium, i.e. χi = χj = χ and ti = tj = t. Starting point for this analysis are

the equilibrium conditions in percentage changes (see S.1). The domestic cutoff in country i (and

hence also in country j due to symmetry) is denoted as ϕ∗. The export cutoff in both countries is

given as ϕ∗
χ. The first equilibrium condition (Eq. (S.1)) collapses to

(σ − 1)ϕ̂∗ − (σ − 1)ϕ̂∗
χ = 0. (S.6)

Hence, a change in the domestic cutoff is equal to a change in the export cutoff. For the symmetric

case the second equilibrium condition (Eq. (S.2)) is identical to the first equilibrium condition. We

can write the third equilibrium condition (Eq. (S.3)) as

ϕ̂∗ + χϕ̂∗
χ =

t

1 − t

1

k
(1 + χ)

[

1 +
1 − t

ζ(σ − 1)

]−1

t̂. (S.7)

Under symmetry the fourth equilibrium condition (Eq. (S.4)) is identical to the third equilibrium

condition. The fifth equilibrium condition (Eq. (S.5)) collapses to an identity. Thus, we are left

with a system of two equations in two unknowns. We eliminate ϕ̂∗ and get

ϕ̂∗
χ =

t

1 − t

1

k

[

1 +
1 − t

ζ(σ − 1)

]−1

t̂. (S.8)
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By Eq. (S.6) we find

ϕ̂∗ =
t

1 − t

1

k

[

1 +
1 − t

ζ(σ − 1)

]−1

t̂. (S.9)

We see that the elasticity of the domestic cutoff with respect to the tax rate is identical to the

elasticity of the export cutoff with respect to the tax rate implying that the share of exporting

firms is not affected by changes in the tax rate. This result is compatible with the finding by Kohl

(2017).

22


	Introduction
	Model set-up
	Equilibrium
	Unilateral tax policy reform
	Conclusion
	Appendix
	Derivation of Eq. (8)
	Derivation of Eq. (21)
	Derivation of Eq. (28)
	Derivation of Eq. (31)
	Derivation of Eq. (40)
	Proof of Eq. (40)
	Proof of Eq. (47)
	Proof of Eq. (48)
	Proof of Eq. (50)
	Proof of Eq. (51)

	Supplement
	Equilibrium conditions in percentage changes - more general case
	Symmetry


