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Abstract

We analyze differences in consumption and wealth that arise because of different degrees
of rationality of households. In particular, we use a standard New Keynesian model and let a
certain fraction of households be fully rational while the other fraction possesses less cognitive
ability. We identify the rationality bias of boundedly rational agents, defined as a deviation
from the fully rational benchmark, as the driver of consumption and wealth heterogeneity. It
turns out that the rationality bias can be decomposed into three individual components: the
consumption expectation bias, the real interest rate bias and the preference shock expectation
bias. We show that for certain specifications of monetary policy the rationality bias can be
eliminated because its individual components exactly offset each other although they are
individually non-zero. However, it might not be desirable from a welfare perspective to
eliminate the rationality bias as this comes along with high inflation volatility.
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1 Introduction

Since the collapse of the global financial system in 2007-08 there is a growing consensus that models

with homogeneous rational expectations cannot adequately approximate actual human behavior at

the microeconomic or macroeconomic level. Even though there may be some highly sophisticated

and well informed economic actors, a non-negligible fraction of the population might not be nearly

as rational as assumed in theoretical models. In response to a growing need for models that

take account of cognitive imperfections different strands of literature that incorporate bounded

rationality have gained popularity. Notable examples are the adaptive learning literature (see,

e.g. Evans and Honkapohja, 2012), sparse dynamic programming (Gabaix, 2016) and a strand

of literature that incorporates heterogeneous, possibly non-rational expectations in macro models

(Branch and McGough, 2016). However, papers in the heterogeneous expectations literature have

focused on aggregate dynamics, largely ignoring the individual level. We want to fill this gap

in the literature and explicitly consider how differences in cognitive ability lead to differences in

consumption and wealth.

For this purpose, we set up a micro-founded model where a given fraction of agents is fully

rational in the conventional sense (Muth, 1961), while the other fraction is boundedly rational as

we will explain in detail below, and where we keep track of the individual bond holdings of both

groups. We identify the rationality bias of boundedly rational agents, defined as a deviation from

the fully rational benchmark, as the driver of consumption and wealth heterogeneity. Moreover,

we find a strong interaction between the size of the rationality bias and monetary policy.

Empirical evidence based on US inflation survey data suggests that in the real world expec-

tations are indeed heterogeneous and that a sizable fraction of the population follows simple

backward-looking heuristics. For instance, Branch (2004) finds evidence of the presence of differ-

ent expectation types in the Michigan Survey of Consumer Attitudes and Behavior. In particular,

both naive expectations, where the last observed value of a variable is used as a best guess for the

future, and a more sophisticated VAR heuristic are present in the data. Cornea-Madeira et al.

(2017) further find that a model with naive agents and agents that use a VAR approach to pre-

dict inflation based on its forward-looking relation with marginal costs fits actual inflation data

well. Moreover, simple backward-looking heuristics are consistent with evidence from laboratory
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experiments (Assenza et al., 2014; Pfajfar and Žakelj, 2016), where a large degree of heterogeneity

is found. Also, Fuhrer (2017) identifies slow-moving expectations as a source of macroeconomic

persistence by incorporating survey expectations into an otherwise standard DSGE model that

makes ad-hoc assumptions like indexation and habit-formation to generate observed persistence

obsolete.

In our model, boundedly rational agents form their expectations in a naive manner, consistent

with Branch (2004) and Cornea-Madeira et al. (2017) and similar to earlier literature on het-

erogeneous expectations (Branch and McGough, 2009, 2010; De Grauwe, 2011; Gasteiger, 2014;

Hommes and Lustenhouwer, 2019). Naive expectations perform well when the variable being fore-

casted is highly persistent and are optimal when the variable follows a random walk. Moreover,

our boundedly agents base their consumption decision only on the variational intuition of the

consumption Euler equation following Branch and McGough (2009). Boundedly rational agents

hence do not make decisions according to the infinite horizon learning approach of Preston (2005)

and Massaro (2013) which would require them to form expectations about all variables over an

infinite horizon and make optimal decisions based on these expectations. We believe that this

would require too much cognitive ability of boundedly rational agents.

The other fraction of agents, on the other hand, is fully rational in the conventional sense.

These agents are fully aware of the presence of boundedly rational agents and choose the optimal

intertemporal allocation of consumption, labor supply and bonds based on all their optimality

conditions including their intertemporal budget constraint. Thus, we combine the Euler learning

approach of Branch and McGough (2009) and Honkapohja et al. (2012) for boundedly rational

agents with the infinite horizon learning approach of Massaro (2013) and Preston (2005) for

rational agents. To the best of our knowledge, this is the first paper to do so.

In this framework we find that considerable consumption and wealth heterogeneity arises as

the economy is hit by shocks because boundedly rational agents respond differently with their

consumption decision than rational agents. The reason is that boundedly rational agents are

subject to the rationality bias that we identify as a deviation from the fully rational benchmark. We

find that the rationality bias can be decomposed into three different components: the consumption

expectation bias, the real interest rate bias and the preference shock expectation bias.
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Each of these biases lead bounded rational agents to deviate from the rational consumption

decision. However, they may also counteract each other. For instance, when the economy is hit by

a cost-push shock, and inflation falls after its initial hike, boundedly rational agents consistently

overestimate inflation due to their naive forecast heuristic. This leads their subjective real interest

rate to be lower compared to the objective one which puts upward pressure on their consumption

decision. At the same time, a recession induced by the central bank (to bring down inflation)

leads them to overestimate the recession, now putting downward pressure on their consumption

decision.

Our main finding is that the rationality bias disappears when the percentage deviation from

steady state of the nominal interest rate and the inflation rate is equal in every period and when

the economy was initialized without consumption and wealth heterogeneity (as in steady state). In

this case, the three components of the rationality biases exactly offset each other no matter what

the realizations of shocks are. We further show that under cost-push shocks the rationality bias

can be eliminated with any response of the nominal interest rate to inflation that is larger than

one and a corresponding positive response to output. Under preference shocks, on the other hand,

this is only possible if it is assumed that the central bank can observe and respond to the shocks

contemporaneously. However, it might not be desirable from a welfare perspective to eliminate

the rationality bias as it comes along with high inflation volatility. Even though consumption

heterogeneity enters the utilitarian welfare loss of this model, the weight on inflation suggest that

the households populating this economy prefer stable prices over homogeneous consumption (and

output stability) by far.

As previously indicated, the literature on heterogeneous expectations (see for instance Branch

and McGough (2016)) mainly focuses on aggregate dynamics and does not explicitly consider

differences in consumption and wealth of the different agent types. Recent exceptions are Beqiraj

et al. (2017) and Annicchiarico et al. (2018). The former calculate a measure of consumption

inequality in their economy. The latter present differences in bond holdings that arise between

some of their agents. The main interest of these studies, however, remains aggregate dynamics.

To the best of our knowledge, there is no paper in this tradition that focuses on individual agent’s

behavior in a macro-setting.
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The remainder of the paper is organized as follows. The model is introduced in Section 2

where we put emphasis on the assumptions on bounded rationality. In Section 3, we show how

the rationality bias can be decomposed into three specific cognitive biases of boundedly rational

agents and how the economy evolves dynamically in response to a cost-push and preference shock.

Finally, in Section 4 we show that the rationality bias can be eliminated with certain monetary

policy and include a short remark on welfare. Section 5 concludes.

2 Model

In this Section, we introduce heterogeneous rationality into a standard New Keynesian model. In

particular, we assume a unit-mass continuum of households i ∈ [0, 1] and firms j ∈ [0, 1] as well as

a monetary and fiscal authority. The population of households splits into two groups with a fixed

size: rational households, who make up a fraction α of the population and boundedly rational

households, making up the remaining 1− α of the population.

There is an ongoing discussion in the literature (see e.g. Honkapohja et al., 2012) whether

boundedly rational agents should be assumed to base their consumption decision only on the

variational intuition of the consumption Euler equation (Euler equation learning) or instead make

optimal decisions based on boundedly rational forecasts of the entire future paths of all variables

(infinite horizon learning). Since we study differences in consumption and wealth that arise due to

heterogeneity in cognitive ability, we let our two types of agents differ considerably in their degrees

of rationality. For this reason, we stick with the less cognitive demanding Euler equation learning

approach for our boundedly rational agents. We, however, do not follow Branch and McGough

(2009) and the related literature on heterogeneous expectations by letting agents with rational

expectations also use Euler equation learning. Instead, we combine the Euler equation learning

of boundedly rational agents with fully rational optimization in the conventional sense of ratio-

nal agents. Detailed descriptions of both household types including their individual expectation

formation schemes are included in Sections 2.2 and 2.3.

Further, we assume perfect consumption insurance within the groups, so that the two types

of agents can be interpreted as two different representative agents. Firms are assumed to be

run be rational managers only, as boundedly rational managers will not survive in a competitive
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evolutionary process.

2.1 The non-linear model

First, we introduce the basic model elements in non-linear form. The log-linearized version in-

cluding a specification of each household type and policy rules is given in the subsequent section.

2.1.1 Households first-order conditions

Households of type i with i ∈ {R,B} optimize their expected lifetime utility Ei
t

∑∞
t=0 β

tΥtU
i
t

subject to their real flow budget constraint

Ci
t + Ȳ bit ≤ WtH

i
t + Ȳ

It−1

Πt

bit−1 +Dt − Tt (1)

where Ei
t is the type-specific expectations operator, β < 1 the subjective discount factor, U i

t

period-utility of type i and Υt is a preference shock. Ci
t denotes individual consumption, bit =

Bi
t

PtȲ

individual real debt-to-steady-state-output where Ȳ is the steady state of output Yt, Tt is a lump-

sum tax and Wt the real wage rate, which are equal across groups. Further, H i
t denotes individual

hours, It−1 the gross nominal interest rate controlled by the central bank in period t−1, Πt =
Pt

Pt−1

the inflation rate where Pt is the aggregate price level in t and Dt dividends that households obtain

as shareholders of the firms.

Period utility is of CES-form and given by

U i
t =

(Ci
t)

1−σ

1− σ
− (H i

t)
1+γ

1 + γ
(2)

where σ is the coefficient of relative risk aversion and γ the labor supply elasticity.

Households first-order conditions are (1) and

Υt(C
i
t)

−σ = βEi
tΥt+1(C

i
t+1)

−σ It
Πt+1

(3)

Wt = (H i
t)

γ(Ci
t)

σ (4)
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2.1.2 Firms

We assume that firms are run by rational managers that are appointed by households (who are the

shareholders of firms). In the end, this assumption allows us to isolate the effect of heterogeneous

rationality of households on differences in consumption and wealth. The assumption that all

firm managers are rational can be justified as follows: one could imagine an evolutionary process

where rational managers will outperform boundedly rational ones, and hence are the only surviving

managers of firms. That is, if we would explicitly model appointment and firing of managers and

allow for bankruptcy of firms, then a firm that is led by a boundedly rational manager, who

consistently performs worse than its fully rational competitors, would either get fired or lead its

firm into bankruptcy. Thus, at any point in time, the fraction of boundedly rational managers

would be close to zero.

Production is linear in labor, while we abstract from variations in total factor productivity

which is constant over time and equal to one. Thus,

Yt(j) = Ht(j) (5)

where Ht(j) is labor supply for good j.

We assume Calvo pricing where a firm j is able to re-set its price only with a given probability

of 1 − ω in each period. Thus, each firm j maximizes its current and future discounted flow of

profits by setting its price Pt(j)
∗ subject to the demand of differentiated goods Yt(j) by the final

goods producer according to

max
Pt(j)∗

Et

∞∑
s=0

ωsQt|t+s[Pt(j)
∗Yt+s(j)− Yt+s(j)Pt+sMCt+s] (6)

s.t.

Yt+s(j) =
(Pt(j)

∗

Pt+s

)−η

Yt+s (7)

where Qs
t|t+s = βsΥt+s

Υt

(
Ct+s

Ct

)−σ
Pt

Pt+s
is the stochastic discount factor with Ct being aggregate

consumption.
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The optimization procedure gives firm j’s first-order condition

P̃t(j)Et

∞∑
s=0

ωsβsΥt+sC
−σ

t+s

(Pt+s

Pt

)η−1

Yt+s =
η

η − 1
Et

∞∑
s=0

ωsβsΥt+sC
−σ
t+s

(Pt+s

Pt

)η

Yt+sMCt+s. (8)

where P̃t(j) =
Pt(j)∗

Pt
.

2.1.3 Government and market clearing

The real government budget constraint reads

bt = gt −
Tt
Ȳ

+ s
Ht

Ȳ
Wt +

It−1

Πt

bt−1 (9)

where gt = Gt

Ȳ
is government spending relative to steady state output and s = 1

η
is a subsidy

provided to firms (as in Galí, 2008) that makes the steady state of our model efficient. We provide

the description of the evolution of government spending, taxes and the nominal interest rate in

the log-linear version of the economy.

Goods and bond markets clear according to

Yt = (αCR
t + (1− α)CB

t ) + Ȳ gt (10)

bt = αbRt + (1− α)bBt . (11)

2.2 Expectations

As already indicated, our two types of agents employ different forecasting rules. Rational agents

are sophisticated enough to compute an optimal linear forecast, i.e. they use conditional statistical

expectations ER
t xt+1 = Etxt+1, while boundedly rational agents use the last observed value (xt−1)

of a variable as their best guess for the future with the following naive heuristic EB
t xt+1 = xt−1.

2.3 The log-linear economy

For our policy analysis, we use a log-linear version the model that is approximated around a

non-stochastic zero-inflation steady state.
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2.3.1 Individual consumption, labor and bonds

Households first-order conditions in log-linearized terms are

cit =E
i
tc

i
t+1 −

1

σ
(it − Ei

tπt+1 − υt + Ei
tυt+1) (12)

wt =γh
i
t + σcit (13)

b̂it =h
i
t + wt + β−1b̂it−1 + b̄β−1(it−1 − πt) + η−1dt − (1− ḡ)cit −

T̄

Ȳ
τt (14)

where lower-case letter indicate a log-deviation from steady state (and τt indicates log-deviation

of taxes from steady state). Further, we denote b̂it = bit − b̄, and use D̄ = Ȳ − (1− s)W̄ H̄ = η−1Ȳ

where W̄ = 1. All steady state values are derived in Appendix A.5.

Equation (14) implies that the budget constraint of rational agents is given by

b̂Rt = hRt + wt + β−1b̂Rt−1 + b̄β−1(it−1 − πt) + η−1dt − (1− ḡ)cRt − T̄

Ȳ
τt. (15)

Iterating (15) until infinity, substituting for all choice variables and plugging in expectations,

ER
t = Et, gives the consumption decision of rational agents:

cRt = ζb̂Rt−1 + ζb̄(it−1 − πt) + ζβEt

∞∑
s=t

βs−t[Γyys − Γgĝs − Γττs]

− (1− ζb̄σ)β

σ
Et

∞∑
s=t

βs−t(is − πs+1) +
β

σ
Et

∞∑
s=t

βs−t(υs − υs+1) (16)

where composite parameters ζ, Γy, Γg, Γτ and the derivation of (16) are given in Appendix A.1.

Thus, fully rational households make predictions over the entire paths of output, government

spending, taxes, real interest rates and preference shocks until infinity.

For boundedly rational agents, we consider such an approach, where they need to form expec-

tations about the entire future paths of all variables and make optimal decisions based on these

variables, to require too much cognitive load. Therefore, our boundedly rational agents follow

Euler-equation learning and believe that all other agents will form the same beliefs as they do

(higher-order beliefs assumption) as in Branch and McGough (2009). This implies that bound-

edly rational agents will neglect their intertemporal budget constraint as an optimality condition.
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Boundedly rational agents are furthermore assumed to know that market clearing holds and that

rational agents will also satisfy their consumption Euler equation. In addition to this, we do not

require boundedly rational agents to be able to iterate their consumption Euler equation until

infinity but only until an arbitrary period N which they consider to be the “long-run”.

In Appendix A.2 it is shown that under the above assumptions the consumption decision of

boundedly rational agents is given by

cBt =
1

1− ḡ
EB

t yt+1 + EB
t (c

B
N − cN)−

1

σ
[it − EB

t πt+1 − υt + EB
t υt+1]−

1

1− ḡ
EB

t ĝt+1. (17)

Further, we assume that when boundedly rational agents have more current (beginning-of-period)

wealth than the average, they will expect to able to consume more than the average in the “long-

run” N , i.e. EB
t (c

B
N−cN) = ψ(b̂Bt−1− b̂t−1). This assumption ensures that we can rule out equilibria

in which the bond holdings of individual households are explosive and where households are able

to roll over their debt until infinity, similar to including bonds in the utility function as in Kurz

et al. (2013) and to quadratic adjustment costs of bonds in the budget constraint as proposed by

Schmitt-Grohé and Uribe (2003). Also, this assumption re-introduces the budget constraint to

the decision making procedure of boundedly rational agents but in a rather behavioral manner.

We choose the parameter ψ to be high enough to rule out explosiveness but also low enough to

have a small impact on short-run dynamics.

Plugging in expectations, EB
t xt+1 = xt−1, and the assumption about ”long-run” beliefs gives

cBt =
1

1− ḡ
yt−1 + ψ(b̂Bt−1 − b̂t−1)−

1

σ
[it − πt−1 − υt + υt−1]−

1

1− ḡ
ĝt−1. (18)

Comparing (18) with (16) shows that we impose far less cognitive load on boundedly rational

agents than on rational ones as discussed above. While boundedly rational agents are forward

looking in the sense that they forecast one-period-ahead (and the ”long-run”), they become ulti-

mately backward-looking due to their behavioral heuristics.

Bond holdings of rational and boundedly rational agents are given by (14) where we substitute
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for hours and wages which gives

b̂it = β−1b̂it−1 − Γcc
i
t + Γyyt + b̄β−1(it−1 − πt)− Γgĝt − Γττt (19)

where the composite parameter Γc is given in the Appendix A.1.

2.3.2 Aggregate equations

Inserting (16) and (18) into the log-linearized goods market clearing equation, yt = (1− ḡ)(αcRt +

(1− α)cBt ) + ĝt, and writing this equation recursively yields aggregate output:

yt = Φ1Etyt+1 + Φ2yt−1 + Φ3Etπt+1 − Φ4πt + Φ5πt−1 + Φ6it−1 − Φ7it

+ Φ8Etit+1 − Φ9b̂
R
t−1 + Φ10b

R
t − Φ11ĝt−1 + Φ12ĝt − Φ13Etĝt+1

− Φ14τt + Φ15b̂t−1 − Φ16b̂t + Φ17υt − Φ18Etυt+1 − Φ5υt−1 (20)

where coefficients and the derivation of (20) are given in the Appendix A.3.

Inflation is standard and follows a forward-looking Phillips-curve under rational expectations.

As shown in Appendix A.4 this implies,

πt =δ(γ +
σ

1− ḡ
)yt − δσ(1− ḡ)−1ĝt + βEt[πt+1] + µt (21)

with δ = (1−ωβ)(1−ω)
ω

and µt a cost-push shock.

The log-linearized government budget constraint is given by

b̂t = ĝt − Γττt + s(wt + ht) + b̄β−1(it−1 − πt) + β−1b̂t−1 (22)

We assume that government spending remains at its steady state level (ĝt = 0). Further, the

costs of the subsidy, s(wt + ht), are directly financed by lump-sum taxes. Additionally, taxes are

assumed to respond to beginning-of-period debt. Lump-sum taxes therefore evolve as

τt = φb,τ b̂t−1 +
s

Γτ

(
1 + γ +

σ

1− ḡ

)
yt. (23)
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where we used ht = yt and wt =
(
γ + σ

1−ḡ

)
yt (since ĝt = 0).

The evolution of aggregate debt can therefore be written as

b̂t =
(
β−1 − Γτφb,τ

)
b̂t−1 + b̄β−1(it−1 − πt). (24)

Moreover, log-linearizing the bond market clearing equation gives

b̂t = αb̂Rt + (1− α)b̂Bt . (25)

For central bank policy we assume a standard Taylor rule based on contemporaneous output

and inflation, i.e.

it = φππt + φyyt. (26)

The preference shock and cost push-shock in the linearized model are assumed to follow AR(1)

processes:

υt = ρυυt−1 + ευ (27)

µt = ρµµt−1 + εµ (28)

where εµ and ευ are uncorrelated IID shocks.

3 The Rationality Bias

In this section, we analyze differences in consumption and wealth that arise due to different

degrees of rationality. Before turning to the question how monetary policy affects these differences

in Section 4, we first define and then study in detail the rationality bias of boundedly rational

agents.

3.1 The components of the rationality bias

Differences in wealth between boundedly rational and rational agents arise as a consequences of

differences in their consumption. In this section we therefore focus on the latter. The difference in

consumption arises because boundedly rational agents follow Euler-equation learning, believe that
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all other agents form the same expectations as they do and use a simple naive forecast heuristic to

form these expectations. If a boundedly rational agent would not have these limitations it would

act as a rational agent. Hence, the difference ∆ic
i
t = cBt − cRt can be interpreted as the bias of a

boundedly rational agent. We therefore label this difference the Rationality bias.

Using the individual consumption Euler equation, (12), of both agent types we can write

∆ic
i
t = cBt − cRt = (EB

t c
B
t+1 − Etc

R
t+1)−

1

σ
(rrBt − rrt)−

1

σ
(EB

t υt+1 − Etυt+1). (29)

Equation (29) shows that we are able to decompose this bias into three individual sources: the

consumption expectation bias, the real interest rate bias and the preference shock expectation

bias.

In Section 2.3.1 we derived the consumption decision of boundedly rational agents (18) that

can be rearranged as

cBt =
1

1− ḡ
(yt−1 − ĝt−1) + ψ(b̂Bt−1 − b̂t−1)︸ ︷︷ ︸

=EB
t cBt+1

− 1

σ
[it − πt−1]︸ ︷︷ ︸

=rrBt

+
1

σ
[υt − υt−1︸︷︷︸

=EB
t υt+1

]. (30)

Comparing Equation (30) with the Euler equation of boundedly rational agents (12) shows explic-

itly what their consumption expectation and their subjective real interest rate is, i.e. EB
t c

B
t+1 =

1
1−ḡ

(yt−1− ĝt−1)+ψ(b̂
B
t−1− b̂t−1) and rrBt = it−πt−1. Inserting the boundedly rational consumption

expectations, preference shock expectations and their subjective real interest rate into (29) and

using that ĝt = 0 in all periods yields

∆ic
i
t = cBt − cRt =

( 1

1− ḡ
yt−1 + ψ(b̂Bt−1 − b̂t−1)− Etc

R
t+1

)
(31)

+
1

σ
(πt−1 − Etπt+1)−

1

σ
(υt−1 − Etυt+1).

The first term in (31) shows that the consumption expectation bias is largely driven by bound-

edly rational expectations about output (recall that we assume ψ to be a low number). Further,

the real interest rate bias is merely an inflation expectation bias. Also, (31) shows that the ratio-

nality bias further includes the preference shock expectation bias (which is however not present
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under a cost-push shock).

In principle, the individual biases can amplify or counteract each other. In section 4 we will

show that these biases exactly off-set each other when the percentage deviations from steady state

of the inflation rate and the nominal interest rate are equal and when the economy was initialized

without heterogeneity (as in steady state).

3.2 Baseline Calibration

In order to further study the rationality bias and the dynamics of aggregate variables, we pa-

rameterize the model as shown in Table 1. We emphasize, however, that our main results are

derived analytically without parameterizing the model. We choose most of the parameter values

for our baseline calibration to be in line with standard literature. As indicated in Section 2.3,

we pick a small number for the responsiveness of boundedly rational consumption with respect

to the difference of individual and aggregate wealth ψ, i.e. 0.05, as it is high enough to rule

out explosive equilibria but also low enough to have a small impact on the short-run dynamics.

We assume a fraction of 0.5 of rational and boundedly rational agents. Additionally, we assume

AR(1)-processes for the cost-push and the demand shock. In both cases, the AR-parameter is

assumed to be 0.85 while the i.i.d. component in the shock process is normally distributed with

zero mean and a standard deviation of 0.025.

Micro parameter β = 0.99 σ = 2 η = 7.84 γ = 2 ω = 0.75

Expectations α = 0.5 ψ = 0.05

Policy parameter φy = 0.2 φπ = 1.5 φb,τ = 1 ḡ = 0.21 τ̄ = 0.375

Shock parameters ρµ = 0.85 ρυ = 0.85 sd(εd) = 0.025 sd(ευ) = 0.025

Table 1: Baseline calibration

3.3 Model dynamics

With the parameterized model, we can use impulse responses to get more insight into the compo-

nents of the rationality bias of boundedly rational agents for consumption and wealth heterogeneity

and aggregate dynamics. Figure 1 and 2 depict the impulse responses following a persistent 2.5

percent cost-push and preference shock, respectively, under the baseline calibration.
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In case of the cost-push shock, the preference shock expectation bias is zero. Thus, in Figure

1 we need to consider only two different components of the rationality bias: first, the real interest

rate bias and, second, the consumption expectation bias.

The impulse responses in Figure 1 show that the cost-push shock raises inflation substantially

more than one-for-one under both homogeneous rational expectations (dotted gray) and hetero-

geneous rationality (solid green). This is due to the persistence of the shock. Consequently, the

central bank reacts by increasing the nominal interest rate in order to contract demand and to

bring down inflation.1

However, rational and boundedly rational agents react quite differently to the increase in

inflation and in the policy rate. The middle-right panel reveals the real interest rate bias which is

driven by the inflation expectations of boundedly rational agents: while the rational agent’s real

interest rate (solid green) increases by less than three percent, the subjective real interest rate

of boundedly rational agents (dashed red) increases by six percent. This is because boundedly

rational agents base their expectations on the last period and have not observed the effects of

the shock yet. Thus, they do not anticipate an increase in inflation which results in a quite

extreme hike in their subjective real interest rate relative to the rational real rate in the initial

period. However, from period 2 onward, where inflation is falling, boundedly rational agents will

consistently overestimate future inflation which results in a subjective real interest rate that is

persistently below the real rate of rational agents. Eventually, inflation expectations align when

model variables approach the steady state which results also in an alignment of the subjective real

interest rates.

These difference in subjective real interest rates partly explain the differences in consumption

and bond holdings observed in the middle-left and middle panel of Figure 1. Rational agents,

however, do not only recognize the relatively moderate increase in the real interest rate on impact

but also that the real interest rate will stay high for some time, resulting in low future consumption

and output. To fully explain the consumption and bond dynamics, we need to consider the
1Note that the slightly unusual pattern of lump-sum taxes in Figure 1 can be explained by the two components

of the tax rule, (23). On the one hand, taxes respond positively to debt, but on the other hand, lump-sum taxes
are used to finance the labor cost subsidy to firms. The costs of this subsidy (and hence taxes) go down as output
falls. Lump-sum taxes, however, hardly affect the consumption of the two agent types (and hence output and
inflation), since rational agents are Ricardian, and boundedly rational agents do not use their budget constraint as
an optimality condition.
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Figure 1: Impulse responses for a persistent 2.5% cost-push-shock under baseline calibration
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consumption expectation bias of boundedly rational agents as well.

Boundedly rational agents do not anticipate a decrease in output and consumption in the shock

period. Thus, their initial consumption response is solely due to the increase in their subjective

real interest rate. However, in the next period, boundedly rational agents observe the recession

caused by the shock and expect low future output, causing them to decrease their consumption

further even though their subjective real interest is now considerably lower. The latter causes

their consumption, however, to still be a little bit less negative than that of rational agents. This

is no longer the case in later periods where output starts to pick up and output expectations of

boundedly rational agents become too pessimistic which counteracts the positive effect of the real

interest rate bias.

In the medium-run, boundedly rational agents are therefore consuming less than rational

agents, and are accumulating more bonds. However, the higher consumption in the first periods

caused boundedly rational agents to lose more bonds in the initial periods.2 Therefore, wealth

differences in the short-run arise because rational agents own more bonds, while in the medium-

run boundedly rational agents are more wealthy. The latter allows boundedly rational agents to

consume out of wealth in the medium-run so that their consumption can pick up again. Note,

though, that since rational agents are fully optimizing using optimal linear forecasts, the consump-

tion utility losses of boundedly rational agents over the life-cycle are higher than that of rational

agents by definition.

The pattern of individual consumption is also reflected in the behavior of output that is not as

low as under homogeneous rational expectations at the beginning due to the consumption decision

of boundedly rational agents.

Next, we consider the impulse responses to a persistent preference shock in Figure 2. The

shock itself shifts the preferences of both agent types such that they want to consume more and

save less in the current period. However, as can be seen in Equation (12), agents’ consumption

does not only depend on today’s shock realization but also on their expectations about future

shock realizations. Rational agents expect a lower but still substantial shock realization tomorrow

due to the shock persistence. Therefore, their consumption increase today will be substantially
2Even though households cut consumption, initially their real bond holdings go down due to high inflation.
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Figure 2: Impulse responses for a persistent 2.5% preference shock under baseline calibration
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lower than would be the case if they did not anticipate a positive future preference shock (since

υt − Eυt+1 < υt).

On the other hand, the effects of the shock are quite different for boundedly rational agents.

In the first period, their consumption decision will be subject to a preference shock, but the

expectations that they form at the beginning of the period are not yet affected by the shock,

so that υt − EBυt+1 = υt in that period. Thus, the initial consumption response will be far

larger compared to rational agents as can be seen in the middle-left panel in Figure 2. However,

from period 2 onward, boundedly rational agents will consistently overestimate the future shock

realization and it will hold that EBυt+1 > Eυt+1 for these periods. This preference shock bias

induces boundedly rational agents to cut consumption more than rational agents from period 2

onward.

However, this effect is counteracted by the real interest rate bias and the consumption expec-

tation bias. The subjective real interest rate of boundedly rational agents increases substantially

more than the rational one in the first period as they expect next period’s inflation to be zero.

Also, output expectations are zero and thus below rational expectations. Hence, both biases re-

duce the effects of the shock on consumption of boundedly rational agents in the first period.

The net effect of all three biases on boundedly rational consumption is however still substantially

positive.

Further, form period 2 onward, the subjective real interest rate of boundedly rational agents

is lower than that of rational agents since boundedly rational agents overestimate inflation consis-

tently as it falls. Additionally, output expectations and therefore their own consumption expecta-

tions will be biased upwards as output falls. Both, the real interest rate bias and the consumption

expectations bias therefore put upward pressure on consumption in these periods. However, also

here the preference shock bias dominates so that boundedly rational consumption is lower than

rational consumption.

Moreover, just as in the case of a cost-push shock, boundedly rational agents start to build

up more real bond holdings in the medium-run (as can be seen in the middle panel of Figure

2), so that the wealth differences induced by the preference shock display more bond holdings

for rational agents in the short-run, but more bond holdings for boundedly rational agents in the
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medium-run. Boundedly rational agents are then able to consume their savings later on so that

their consumption eventually slightly overshoots the consumption of rational agents. However,

note again that boundedly rational agents loose relatively more utility compared to rational agents

over the life-cylce.

4 The rationality bias and monetary policy

So far, we have decomposed the rationality bias in three individual components, and have analyzed

the effects of these biases on the micro and macro dynamics. In this section, we study the

interaction between monetary policy and the rationality bias.

4.1 Eliminating the rationality bias

In turns out that the magnitude of the rationality bias directly depends on monetary policy. In

particular, depending on monetary policy, the rationality bias can completely be eliminated. This

is stated in Proposition 1.

Proposition 1. If the log-deviations from steady state of the nominal interest rate and the inflation

rate are equal in every period, then cRt−1 = cBt−1 and bBt−1 = bt−1 imply that cBt+s = cRt+s and

bBt+s−1 = bt+s−1, s > 0. That is, shocks to the economy do not lead to a rationality bias for any

parameterization of the model.

Proof. When the nominal interest rate equals inflation in every period, we can write the Euler

equation, (12), of rational agents as

cRt = Etc
R
t+1 −

1

σ
(πt −Etπt+1 − υt +Etυt+1) = Etc

R
t+s −

1

σ
(πt −Etπt+s − υt +Etυt+s), s > 0, (32)

where the second equality follows from iterating this equation forward until period s.

Taking the limit s→ ∞, and using that lims→∞Etc
R
t+s = lims→∞Etπt+s = lims→∞Etυt+s = 0,

it follows that

cRt = − 1

σ
(πt − υt) . (33)
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For boundedly rational consumption, we use (18). When πt = it, and assuming cRt−1 = cBt−1 and

bBt−1 = bt−1, we can write this as

cBt =
1

1− ḡ
(yt−1 − ĝt−1)−

1

σ
[πt − πt−1 − υt + υt−1]. (34)

Since it is assumed that cBt−1 = cRt−1 = − 1
σ
(πt−1 − υt−1), it follows from market clearing that

yt−1 = − 1
σ
(1− ḡ) (πt−1 − υt−1) + ĝt−1. Therefore, (34) reduces to

cBt = − 1

σ
(πt − υt) . (35)

This implies that when cRt−1 = cBt−1 and bBt−1 = bt−1, it holds that cRt = cBt , so that boundedly

rational and rational agents make identical decisions and also bBt = bt. That is, no differences in

consumption and wealth in period t− 1 imply no consumption and wealth differences in period t.

This then holds for all periods s ≥ t, which proves the proposition.

To understand the intuition of Proposition 1, recall the different components of the rationality

bias depicted in Equation (31). As derived in the proof of the proposition, the rational consumption

expectation is Etc
R
t+1 = − 1

σ
Et (πt+1 − υt+1). Also, using that initially there were no consumption

and wealth heterogeneity (as in steady state) so that market clearing and Equation (33) imply

yt−1 = − 1
σ
(1− ḡ) (πt−1 − υt−1) + ĝt−1, reduces Equation (31) to

∆ic
i
t = cBt − cRt =− 1

σ

(
πt−1 − υt−1 − Et (πt+1 − υt+1)

)
(36)

+
1

σ
(πt−1 − Etπt+1)−

1

σ
(υt−1 − Etυt+1) = 0. (37)

In Equation (37) it can be seen that the consumption expectation bias, the real interest rate bias

and the preference shock bias exactly off-set each other, even though they are different from zero

individually. Hence, the above proposition implies that boundedly rational agents act as if they

were rational, so that the difference ∆ic
i
t is zero, but that they do so for different reasons than

rational agents. Moreover, this holds for any fraction of rational agents, α.

Note that the assumption that the model is initialized with no consumption and wealth hetero-

geneity is not as restrictive as it may seem. In particular, since our model is stable and determinate,
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heterogeneity would, in the absence of shocks, always disappear over time as the model converges

to steady state. Moreover, since Proposition 1 states that, when its conditions are satisfied, shocks

do not lead to a rationality bias, it is intuitive that also in the presence of shocks consumption

and wealth heterogeneity would disappear over time when it = πt in every period. We find that

this is indeed the case. When we initialize simulations of the model with wealth and consumption

heterogeneity and shock the model in every period, differences in consumption and bond holdings

between the two agent types quickly go to zero in that case.

One possible implementation of Proposition 1 is setting φπ = 1 and φy = 0 in the Taylor

rule. However, that would imply that the model is (infinitely close to) indeterminate. Under

some conditions, though, it is also possible to implement a monetary policy that results in an

interest rate equal to the inflation rate with different combinations of φπ and φy. This is stated

in Proposition 2.

Proposition 2. If the only shock in the economy affects inflation and output proportionally in

every period, then for every value of φπ a value of φy can be found that implements it = πt in

every period. In particular:

φy = (1− φπ)
πt
yt

(38)

Proof. Plugging in it = πt in the Taylor rule, (26), and solving for φy, gives (38). This implies

that when the ratio πt

yt
is constant over time, it = πt can be implemented in every period with

constant coefficients φπ and φy that satisfy this equation.

Below we will see that the results of Proposition 2 can be used to implement Proposition 1

with φπ > 1 and φy > 0 when the economy is hit by cost-push shocks, but that φy < 0 would be

required under preference shocks.

4.2 Implementation with cost-push shocks

First, consider the case where the only shocks in our model are cost-push shocks. We numerically

search for combinations of φπ and φy that minimize consumption and wealth heterogeneity and

implement Propositions 1 and 2.3 We find that a continuum of pairs {φπ, φy} eliminate the
3To that end, we calculate theoretical variances based on the MSV-solution of our model. Based on these

theoretical variances, we then search, for different given values of φπ, for the value of φy (in a grid) that minimizes
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rationality bias. Moreover the ratio πt

yt
is constant and equal to −2.5 for all these pairs {φπ, φy},

and they all satisfy (38). Moreover, the impulse responses of {φπ, φy} pairs that eliminate the

rationality bias are all the same and are plotted in Figure 3.
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Figure 3: Representative impulse response where the rationality bias is eliminated under a cost-
push shock

Comparing with the dynamics under the baseline parameterization in Figure 1, we can observe

that although the rationality bias is eliminated, there still is a difference between the individual

real interest rates, i.e. the real interest rate bias still appears, which is however exactly offset by

the consumption expectation bias as discussed in Section 4.1.

Moreover, the elimination of the rationality bias implies a reduction in output volatility while

heterogeneity in wealth and consumption.
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inflation becomes substantially more volatile. Under the baseline calibration we assumed φπ = 1.5

and φy = 0.2. However, to satisfy (38), φπ = 1.5 would imply a very high output coefficient of

φy = 1.25 in the Taylor rule. Hence, the elimination of consumption and wealth heterogeneity

requires a far stronger output stabilization than under the baseline calibration. As there is a

trade-off between output and inflation variance in case of a cost-push shock, a strong reaction to

output by the central bank implies higher inflation volatility. More realistic parameterizations that

also implement the proposition would e.g. be φπ = 1.1 and φy = 0.25 or φπ = 1.2 and φy = 0.5.

These parameterizations, however, imply the same inflation-output trade-off and relatively strong

output stabilization.

4.3 Implementation with preference shocks

Next, we turn to preference shocks. Since inflation and output respond with the same sign to a

preference shock, the ratio πt

yt
in (38) will be positive when the economy is hit by this shock. This

implies that according to Proposition 2 a coefficient φπ > 1 requires a negative response to output

to eliminate the rationality bias. This is not desirable and can lead to indeterminacy problems.

If, however, the central bank is assumed to be able to observe and respond to the shock, then

an alternative way of implementing it = πt that does not lead to concerns for indeterminacy

becomes available. This is stated in Proposition 3.

Proposition 3. If inflation and output gap respond proportionally in every period to a shock (zt),

then it = πt can be achieved in every period if the central bank lets the interest rate correctly

respond to the shock (with coefficient φz). In particular, for every combination of φπ and φy,

it = πt is achieved if

it = φππt + φyyt + φzzt, (39)

with

φz = (1− φπ)
πt
zt

− φy
yt
zt

(40)

Proof. Plugging in it = πt in (39) and solving for φz gives (40). This implies that when the

ratios πt

zt
and yt

zt
are constant over time, it = πt can be implemented in every period with constant

coefficients φπ and φy that satisfy this equation.
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Figure 4: Representative impulse response where the rationality bias is eliminated under a
preference shock

Since under homogeneous rational expectations (α = 1), our model contains no endogenous

state variables, the ratios πt

zt
and yt

zt
will be constant in that case. Moreover, when the rationality

bias is eliminated, boundedly rational agents act as if they were rational, so that the model

behaves as under homogeneous rational expectations. Hence, when φz is chosen according to (40),

the conditions of Proposition 3 are satisfied, and the rationality bias is eliminated. This holds for

any combination of φπ and φy and for any value of α.

Similar to the case of the cost-push shock, we numerically search for combinations of φπ, φy

and φz that minimize consumption and wealth heterogeneity and implement Propositions 1 and

3. We again find that the rationality bias can be eliminated with a continuum of policy parameter
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combinations. Moreover the ratio πt

zt
is found to be constant and equal to 0.49 for all these

parameter combinations, while yt
zt

is equal to 0.2. Under the baseline calibration with φπ = 1.5

and φy = 0.2 the rationality bias is therefore eliminated with φz = −0.29. The impulse responses

are again the same for all parameter combinations that implement Proposition 3 and are plotted

in Figure 4.

Comparing Figure 4 with the impulse responses under the baseline calibration in Figure 2

shows that eliminating the rationality bias comes at the cost of slightly higher volatility in output

but also significantly higher volatility in inflation. Thus, in case of a preference shock, minimizing

the rationality bias comes at the expense of higher aggregate volatility, especially in inflation.

4.4 Welfare

We found that the rationality disappears under certain monetary policy specifications, but that

such policy implies more inflation volatility both under the cost-push shock and under the pref-

erence shock. It, therefore, may not be desirable for a central bank to implement a policy where

the bias is completely eliminated.

In Appendix A.6 we show that, under the assumption that individual preferences can be

aggregated by simply summing up their utilities, the second-order approximated aggregate utility

loss is given by

Lt ' a1var(yt) + a2var(πt) + a3var(c
B
t − cRt ) (41)

with

a1 =
[
γ +

σ

(1− ḡ)

]
(42)

a2 =
η

δ
(43)

a3 = α(1− α)
[
(1− ḡ)σ +

σ2

γ2

]
. (44)

Under the baseline calibration, the weight a3 on the variance of the rationality bias is approxi-

mately three percent of the weight on inflation volatility.4 This reflects a very strong distaste of
4the weight on output volatility, a1, is approximately five percent of that on inflation volatility under the

benchmark calibration.
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agents in this economy for inflation volatility and a rather minor distaste for consumption het-

erogeneity (and output volatility). Thus, even though the third term in Equation (41) disappears

when Proposition 1 is implemented, the corresponding increase in inflation volatility will lead to

a considerably higher welfare loss. Hence, based on (41), agents in this economy will accept a

certain rationality bias and thus a certain heterogeneity in consumption (and wealth) if this comes

with a policy that achieves price stability. Note that the strong dislike for inflation volatility is

model-inherent and robust with respect to the parameterization.5

Of course, if a social planer believes that reducing the rationality bias and therefore consump-

tion and wealth heterogeneity is more important than is reflected in the utility functions of the

agents populating the economy, a different conclusion may be reached. Our findings regarding

welfare are very much in line with the results in Debortoli and Galí (2017), who consider a two-

agent New Keynesian (TANK) model where the weight in the central bank’s micro-founded loss

function on a certain heterogeneity index is equivalently low.

5 Conclusion

We build a macroeconomic model with different degrees of rationality. While rational agents are

indeed fully rational, boundedly rational agents are assumed to be considerably less sophisticated.

Boundedly rational agents follow the less cognitive demanding Euler-equation learning and use a

simple naive forecast heuristic to form expectations.

Because both agent types make different decisions, substantial consumption and wealth hetero-

geneity arises when the economy is hit by shocks. We show that the rationality bias of boundedly

rational agents is the driver of consumption and wealth heterogeneity and can be decomposed into

three different components: the consumption expectation bias, the real interest rate bias and the

preference shock expectation bias. Further, we show that certain monetary policy can eliminate

this bias independent of the shock type. In this case the components of the rationality bias exactly

offset each other while they are non-zero individually.

However, it might not be desirable to from a welfare perspective to eliminate the rationality
5See e.g. Galí (2008), Woodford (2003), Di Bartolomeo et al. (2016) and Debortoli and Galí (2017) for loss

functions in similar models.

27



bias and therefore consumption and wealth heterogeneity as this comes along with high inflation

volatility.
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A Microfoundations

A.1 Consumption of rational agents

Recall the log-linearized budget constraint of rational agents

b̂Rt = hRt + wt + β−1b̂Rt−1 + b̄β−1(it−1 − πt) + η−1dt − (1− ḡ)cRt − T̄

Ȳ
τt. (A.1)

Iterating until infinity and rearranging gives

ER
t

∞∑
s=t

βs−tcRs = (β(1− ḡ))−1b̂Rt−1

+ ER
t

∞∑
s=t

βs−t(1− ḡ)−1
[
hRs + ws + b̄β−1(is−1 − πs) + η−1ds −

T̄

Ȳ
τs

]
. (A.2)

Using hRt = 1
γ
(wt − σcRt ) and solving for cRs yields

[γ + σ(1− ḡ)−1

γ

]
ER

t

∞∑
s=t

βs−tcRs = (β(1− ḡ))−1b̂Rt−1

+
∞∑
s=t

βs−t(1− ḡ)−1
[γ + 1

γ
ws + b̄β−1(is−1 − πs) + η−1ds −

T̄

Ȳ
τs

]
. (A.3)

For now we are focusing on the left-hand side of (A.3) which can be written as

[γ + σ(1− ḡ)−1

γ

]
cRt +

[γ + σ(1− ḡ)−1

γ

]
ER

t

∞∑
s=t+1

βs−tcRs . (A.4)

Then we can iterate the Euler equation until period s

ER
t c

R
s = cRt +

1

σ
ER

t

s−1∑
k=t

(ik − πk+1 − υk + υk+1). (A.5)
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Using this, we can write

[γ + σ(1− ḡ)−1

γ

]
ER

t

∞∑
s=t

βs−tcRs =
[γ + σ(1− ḡ)−1

(1− β)γ

]
cRt

+
[γ + σ(1− ḡ)−1

γσ

]
ER

t

∞∑
s=t+1

s−1∑
k=t

βs−t(ik − πk+1 − υk + υk+1). (A.6)

Simplifying the double sum yields

[γ + σ(1− ḡ)−1

γ

]
ER

t

∞∑
s=t

βs−tcRs =
[γ + σ(1− ḡ)−1

(1− β)γ

]
cRt

+
[γ + σ(1− ḡ)−1

γσ

] β

1− β
ER

t

∞∑
s=t

βs−t(is − πs+1 − υs + υs+1). (A.7)

Inserting into (A.3) and solving for cRt gives

cRt =ζb̂Rt−1 + ζb̄(it−1 − πt) (A.8)

+ ζβER
t

∞∑
s=t

βs−t[
γ + 1

γ
ws + η−1ds −

T̄

Ȳ
τs]

− (1− ζb̄σ)β

σ
ER

t

∞∑
s=t

βs−t(is − πs+1) +
β

σ
ER

t

∞∑
s=t

βs−t(υs − υs+1)

with ζ = (1−β)γ
(γ(1−ḡ)+σ)β

. Taking wt = γhit + σcit, integrating over agent types and using yt = ht

and ct = yt
1−ḡ

− ĝt
1−ḡ

gives wt = (γ + σ
1−ḡ

)yt − σ ĝt
1−ḡ

. Further, total dividends are defined as

Dt = Yt − (1− s)WtHt. Log-Linearizing and using yt = ht gives

dt =
Ȳ

D̄
[(1− (1− s)W̄ )yt − (1− s)W̄wt]. (A.9)

Using wt = (γ + σ
1−ḡ

)yt − σ ĝt
1−ḡ

, (1− s)W̄ = 1− η−1 and D̄ = Ȳ η−1 yields

dt = [1− (η − 1)(γ +
σ

1− ḡ
)]yt + (η − 1)σ

ĝt
1− ḡ

. (A.10)
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Using the expression for dt and wt and inserting into (A.8) gives

cRt = ζb̂Rt−1 + ζb̄(it−1 − πt) + ζβER
t

∞∑
s=t

βs−t[Γyys − Γgĝs − Γττs]

− (1− ζb̄σ)β

σ
ER

t

∞∑
s=t

βs−t(is − πs+1) +
β

σ
ER

t

∞∑
s=t

βs−t(υs − υs+1) (A.11)

with

Γy =
1 + γ

η
+ 1 +

(γ + η)σ

γη(1− ḡ)
(A.12)

Γg =
(γ + η)σ

(1− ḡ)γη
(A.13)

Γτ =
T̄

Ȳ
. (A.14)

Further, Equation (A.1) can be rewritten as

b̂Rt = β−1b̂Rt−1 − Γcc
R
t + Γyyt + b̄β−1(it−1 − πt)− Γgĝt − Γτ τ̂t (A.15)

with Γc = (1− ḡ)+ σ
γ
. Equation (A.15) can equivalently be obtained for boundedly rational agents.

A.2 Consumption of boundedly rational agents

The consumption Euler equation for boundedly rational agents reads

cBt = EB
t c

B
t+1 −

1

σ
(it − EB

t πt+1 − υt + υt+1). (A.16)

Iterated forward until period N which is far enough in the future for the boundedly rational agents

to consider it as ”long-run” (but not infinity) and using the law of iterated expectations (LIE)

gives

cBt = EB
t c

B
N − 1

σ

N∑
k=0

EB
t [it+k − πt+k+1 − υt+k + υt+k+1]. (A.17)
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Also, agents are assumed to know about market clearing yt = (1− ḡ)ct + ĝt which can be written

one period ahead from the point of view of boundedly rational agents as

EB
t yt+1 = (1− ḡ)EB

t (αc
R
t+1 + (1− α)cBt+1) + EB

t ĝt+1. (A.18)

Further, we assume that boundedly rational agents also be believe rational agents to satisfy their

consumption Euler equation and that they iterate it until period N . Inserting both forward-

iterated individual consumption Euler equations yields

EB
t yt+1 = (1− ḡ)EB

t

(
α(ER

t+1c
R
N − 1

σ

N∑
k=1

ER
t+1[it+k − πt+k+1 − υt+k + υt+k+1])+

(1− α)(EB
t+1c

B
N − 1

σ

N∑
k=1

EB
t+1[it+k − πt+k+1 − υt+k + υt+k+1]

)
+ EB

t ĝt+1. (A.19)

This can be written using Branch and McGough (2009)’s assumptions on higher-order beliefs as

EB
t

yt+1

1− ḡ
− EB

t cN − EB
t

ĝt+1

1− ḡ
= − 1

σ
EB

t

N∑
k=1

[it+k − πt+k+1 − υt+k + υt+k+1]. (A.20)

Further, writing (A.17) as

cBt − EB
t c

B
N +

1

σ
[it − EB

t πt+1 − υt + υt+1] = − 1

σ
EB

t

N∑
k=1

[it+k − πt+k+1 − υt+k + υt+k+1] (A.21)

and equating (A.20) and (A.21) gives

cBt =
1

1− ḡ
EB

t yt+1 + EB
t (c

B
N − cN)−

1

σ
[it − EB

t πt+1 − υt + EB
t υt+1]−

1

1− ḡ
EB

t ĝt+1. (A.22)

Assuming that, when boundedly rational agents have more wealth than the average, they will be

able to consume more than the average in the long-run, i.e. EB
t (c

B
N − cN) = ψ(b̂Bt−1 − b̂t−1), yields

cBt =
1

1− ḡ
EB

t yt+1 + ψ(b̂Bt−1 − b̂t−1)−
1

σ
[it − EB

t πt+1 − υt + υt+1]−
1

1− ḡ
EB

t ĝt+1. (A.23)
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A.3 Aggregation of individual consumption decisions

Plugging individual consumption decisions (17) and (A.11) into market clearing yt = (1− ḡ)(αcRt +

(1− α)cBt ) + ĝt and using ER
t = Et and EB

t xt+1 = xt−1 gives

yt = (1− ḡ)
[
αζb̂Rt−1 + αζb̄(it−1 − πt) + ζαβEt

∞∑
s=t

βs−t[Γyys − Γgĝs − Γττs]

− (1− ζb̄σ)αβ

σ
Et

∞∑
s=t

βs−t(is − πs+1) +
αβ

σ
ER

t

∞∑
s=t

βs−t(υs − υs+1)

+ (1− α)(1− ḡ)−1yt−1 + (1− α)ψ(b̂Bt−1 − b̂t−1)

− (1− α)

σ
[it − πt−1 − υt + υt−1]− (1− α)(1− ḡ)−1ĝt−1

]
+ ĝt. (A.24)

Writing (A.24) one period ahead (from the point of view of rational agents) and multiplying by β

and substracting the resulting equation from (A.24) gives after collecting terms and solving for yt

yt = Φ1Etyt+1 + Φ2yt−1 + Φ3Etπt+1 − Φ4πt + Φ5πt−1 + Φ6it−1 − Φ7it

+ Φ8Etit+1 − Φ9b̂
R
t−1 + Φ10b

R
t − Φ11ĝt−1 + Φ12ĝt − Φ13Etĝt+1

− Φ14τt + Φ15b̂t−1 − Φ16b̂t + Φ17υt − Φ18Etυt+1 − Φ5υt−1 (A.25)

with

Φ1 =
β

1− (1− ḡ)αβΓyζ + (1− α)β
(A.26)

Φ2 =
(1− α)

1− (1− ḡ)αβΓyζ + (1− α)β
(A.27)

Φ3 =
(1− ḡ)αβ

(1− (1− ḡ)αβΓyζ + (1− α)β)σ
(A.28)

Φ4 =
(1− ḡ)((1− α)β + b̄αζσ)

(1− (1− ḡ)αβΓyζ + (1− α)β)σ
(A.29)

Φ5 =
(1− ḡ)(1− α)

(1− (1− ḡ)αβΓyζ + (1− α)β)σ
(A.30)

Φ6 =
(1− ḡ)αζb̄

1− (1− ḡ)αβΓyζ + (1− α)β
(A.31)

Φ7 =
(1− ḡ)(1− α(1− β))

(1− (1− ḡ)αβΓyζ + (1− α)β)σ
(A.32)
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Φ8 =
(1− ḡ)(1− α)β

(1− (1− ḡ)αβΓyζ + (1− α)β)σ
(A.33)

Φ9 =
(1− ḡ)α(ψ − ζ)

1− (1− ḡ)αβΓyζ + (1− α)β
(A.34)

Φ10 =
(1− ḡ)αβ(ψ − ζ)

1− (1− ḡ)αβΓyζ + (1− α)β
(A.35)

Φ11 =
(1− α)

1− (1− ḡ)αβΓyζ + (1− α)β
(A.36)

Φ12 =
1− (1− ḡ)αβΓgζ + (1− α)β

1− (1− ḡ)αβΓyζ + (1− α)β
(A.37)

Φ13 =
β

1− (1− ḡ)αβΓyζ + (1− α)β
(A.38)

Φ14 =
(1− ḡ)αβζΓτ

1− (1− ḡ)αβΓyζ + (1− α)β
(A.39)

Φ15 =
(1− ḡ)αψ

1− (1− ḡ)αβΓyζ + (1− α)β
(A.40)

Φ16 =
(1− ḡ)αψβ

1− (1− ḡ)αβΓyζ + (1− α)β
(A.41)

Φ17 =
(1− ḡ)((1− α)(1 + β) + αβ)

(1− (1− ḡ)αβΓyζ + (1− α)β)σ
(A.42)

Φ18 =
(1− ḡ)β

(1− (1− ḡ)αβΓyζ + (1− α)β)σ
. (A.43)

A.4 Phillips-Curve

Log-linearizing firms optimality condition (8) around the zero-inflation steady state gives

p̃t = (1− ωβ)mct + ωβEt[p̃t+1 + πt+1] (A.44)

where marginal costs are given by

mct = wt = (γ +
σ

1− ḡ
)yt − σ

ĝt
1− ḡ

+ µt. (A.45)

where µt is a time varying exogenous wage markup (as in Galí, 2008), which we refer to as a cost-

push shock. Plugging in marginal costs in (A.44) and combining with the log-linearized evolution

of aggregate prices πt = 1−ω
ω
p̃t yields the Phillips-Curve given by (21).
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A.5 Steady state

In this section, we derive the steady state around which the model is log-linearized, where gross

inflation equals 1.

Evaluating (8) at the zero inflation steady state gives

M̄C =
η − 1

η
. (A.46)

From the first order conditions of the households it follows that in this steady state we must

have

1 + ī =
1

β
. (A.47)

Furthermore, it follows from Equation 5 that

H̄ = Ȳ . (A.48)

Next, we solve the steady state aggregate resource constraint for consumption, and write

C̄ = Ȳ (1− ḡ). (A.49)

Plugging in these steady state labor and consumption levels in (4) and using s = 1
η
gives

W̄ = Ȳ γ(Ȳ (1− ḡ))σ = Ȳ γ+σ(1− ḡ)σ =
1

(1− s)
M̄C = 1. (A.50)

Where the last equality follows from M̄C = (1− s)W̄ and (A.46). We can thus write

Ȳ =
( 1

1− ḡ

) σ
γ+σ

. (A.51)

Then we turn to the government budget constraint. In steady state, (9) reduces to

b̄ =
ḡ − T̄

Ȳ
+ η−1

1− β−1
(A.52)

where we use s = 1
η
and substitute for the interest rate using (A.47).
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A.6 Derivation of second-order approximated utilitarian welfare loss

Household utility is given by

ΥtU
i
t = U(Ci

t ,Υt)− V (H i
t ,Υt) =

Υt(C
i
t)

1−σ

1− σ
− Υt(H

i
t)

1+γ

1 + γ
(A.53)

Therefore, UC = (C̄)−σ, UCC = −σUC , UCΥ = UC and VH = (Ȳ )η, VHH = ηVH , VHΥ = VH .

Further, we will use UC = W̄VH (labor-leisure condition) where W̄ = 1 due to a subsidy to

marginal costs to firms so that the steady state is efficient. Thus, UC = VH . As before, lower case

letter indicated a log-deviation from steady state. We will frequently use the fact that

Xt − X̄

X̄
= xt +

1

2
x2t (A.54)

holds up to second-order for any variable X. Hence, the second-order approximated goods market

clearing condition in terms of log-deviations from steady state becomes yt + 1
2
y2t = (1 − ḡ)(ct +

1
2
c2t ) +O(3) where we already assume that government spending will not deviate from its steady

state value. Taking squares, the latter can be written as y2t = (1 − ḡ)2c2t + O(3). Plugging back

in yields yt = (1− ḡ)ct +
1
2
ḡ(1− ḡ)c2t +O(3) which can be rewritten as

(1− ḡ)ct = yt −
1

2

ḡ

(1− ḡ)
y2t +O(3). (A.55)

Now, we turn to approximating the utility function (A.53) using the results above. The

consumption utility part in (A.53) can be approximated as (see Woodford, 2003 or Di Bartolomeo

et al., 2016)

U(·) = C̄UC

(
ct −

σ

2
vari(c

i
t) +

1− σ

2
(ct)

2 + υ̂tct

)
+ t.i.p.+O(3) (A.56)

where we used that ct = Eic
i
t+

1
2
vari(c

i
t)+O(3) holds up to a second order and where t.i.p. contains

steady state values and shock terms that are not interacting with policy dependent variables.

Using market clearing, Equation (A.56) can be written as

U(·) = Ȳ UC

(
yt −

1

2

ḡ

(1− ḡ)
y2t − (1− ḡ)

σ

2
vari(c

i
t) +

1− σ

2(1− ḡ)
(yt)

2 + υtyt

)
+ t.i.p.+O(3). (A.57)
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which can be rewritten as

U(·) = Ȳ UC

(
yt − (1− ḡ)

σ

2
vari(c

i
t) +

1− σ
(1−ḡ)

2
y2t + υtyt

)
+ t.i.p.+O(3). (A.58)

Now, we turn to the approximation of the labor-utility term which is analogously given by

V (·) = Ȳ VH

(
ht +

γ

2
vari(h

i
t) +

1 + γ

2
h2t + υtht

)
+ t.i.p.+O(3). (A.59)

Now, our goal is to write aggregate labor in terms of aggregate output and price dispersion. To

that end, we follow Galí (2008) where we use Ht =
∫ 1

0
Ht(j) =

∫ 1

0
Yt(j) which is equal to

Ht = Yt

∫ 1

0

(Pt(j)

Pt

)−η

dj. (A.60)

Making a second-order approximation and using that η
2
vari(pt(i)) = log

( ∫ 1

0

(
Pt(j)
Pt

)−η

dj
)
(Lemma

1 in Appendix A in Chapter 4, Galí, 2008) yields

ht = yt +
η

2
varj(pt(j)). (A.61)

Inserting gives

v(·) = Ȳ VH

(
yt +

η

2
varj(pt(j)) +

γ

2
vari(h

i
t) +

1 + γ

2
(yt)

2 + υtyt

)
+ t.i.p.+O(3). (A.62)

Now, using the linear labor-leisure condition (which we can do as we insert it into a variance which

is already second-order) we can write γ
2
vari(h

i
t) =

σ2

2γ2vari(c
i
t).6 Hence, (A.62) becomes (also using

Vh = Uc from above)

V (·) = Ȳ UH

(
yt +

η

2
varj(pt(j)) +

σ2

2γ2
vari(c

i
t) +

1 + γ

2
(yt)

2 + υtyt

)
+ t.i.p.+O(3). (A.63)

6vari(
1
γwt − σ

γ c
i
t) = vari(

1
γwt) + vari(

σ
γ c

i
t)− 2Covi(

1
γwt, σc

i
t) =

σ2

γ2 vari(c
i
t).
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Inserting A.58 and A.63 into (A.53) gives

Ȳ UC

(
yt − (1− ḡ)

σ

2
vari(c

i
t) +

1− σ
(1−ḡ)

2
(yt)

2 + υtyt

)
(A.64)

−
[
Ȳ UC

(
yt +

η

2
varj(pt(j)) +

σ2

2γ2
vari(c

i
t) +

1 + γ

2
(yt)

2 + υtyt

)]
+ t.i.p.+O(3) (A.65)

and combining

− Ȳ UC

2

[
a1(yt)

2 + ã2varj(pt(j)) + ã3vari(c
i
t)
]
+ t.i.p.+O(3) (A.66)

where a1 = [γ + σ
(1−ḡ)

], ã2 = η and ã3 = [(1 − ḡ)σ + σ2

γ2 ]. Further, varj(pt(j)) = δ−1π2
t with

δ = (1−ω)(1−ωβ)
ω

(see Woodford, 2003, Chapter 6) and vari(c
i
t) = α(1 − α)(cBt − cRt )

2. Thus, the

aggregated intertemporal utility can be can written as

W = − Ȳ UC

2

∞∑
t=0

βt[a1(yt)
2 + a2π

2
t + a3(c

B
t − cRt )

2 + t.i.p.+O(3)]. (A.67)

where a2 = η
δ
and a3 = α(1− α)[(1− ḡ)σ + σ2

γ2 ]. Taking unconditional expectations yields

W ≡ − Ȳ uc
2(1− β)

[a1var(yt) + a2var(πt) + a3var(c
B
t − cRt ) + t.i.p.+O(3)]. (A.68)

Hence, the approximated utility loss is given by

L ' a1var(yt) + a2var(πt) + a3var(c
B
t − cRt ). (A.69)
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