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Abstract

I analyze energy-efficiency policy as a prescription of a minimum-efficiency
standard for energy-using household goods like cars, building insulation, and
home appliances. Such a policy has two effects. At the intensive margin, a house-
hold that invests will choose a more efficient device. At the extensive margin,
there will be more households that choose not to invest at all. Thus, additional to
and different from rebound effects, energy-efficiency policy may have unintended
consequences. I analyze the equilibrium effects of a minimum-efficiency standard,
taking price adjustments and household heterogeneity into account. A moderate
minimum-efficiency standard increases demand for efficiency-enhancing house-
hold capital goods, and reduces energy demand. More stringent policy is shown
to be less effective or even counterproductive. For the case of a fixed supply of
efficiency-enhancing capital, it is shown that minimum-efficiency standards in-
crease equilibrium energy demand. Finally, I analyze which households benefit
from minimum-efficiency standards and which ones lose. A standard induces in-
vesting households to expend more for household capital and less for energy. The
wedge between the induced expenditures and the private optimum is analyzed as
a deadweight loss.

JEL Codes: Q41 · Q48 · D15 · D61

Keywords: Energy Efficiency · Rebound Effects · Household Heterogeneity ·
Extensive Margin · Gruenspecht Effect · Investment · Theory of Environmental
Policy

1 Introduction

Households make up a large share of total fuel and electricity consumption.1 A
widespread, and seemingly natural, way to reduce final energy demand is to directly

∗University of Hamburg, Department of Economics, Von-Melle-Park 5, 20146 Hamburg, Germany.
Tel.: +49 40 42838 4529. E-mail: achim.voss@uni-hamburg.de. A previous version of this paper had the
title “Energy-Efficiency Policy and its Effects at the Intensive and at the Extensive Investment Margins
with Heterogeneous Households”.

119% of final energy consumption in the OECD is attributed to the residential sector (IEA, 2018), and
this excludes the households’ part of the transport sector’s 34%.
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target household energy efficiency via minimum-efficiency standards for durable
household goods. For instance, in the European Union, light bulbs, television sets, or
vacuum cleaners that use too much electricity must not be sold.2 Similar regulations
aim at cars, space-heating systems, building insulation or domestic appliances.3

Do these policies actually reduce aggregate energy demand? To answer this ques-
tion, we have to consider the policy’s target. For any given energy service (like light-
ing), energy efficiency usually is a fixed property of a device (like a light bulb). To
increase energy efficiency for the energy service, the household usually has to scrap
and replace it. At any moment, there are some households who plan such an invest-
ment because their old household devices are too inefficient. These households are
the ones that are targeted by the policy, because investing is a voluntary decision, and
minimum-efficiency standards usually only apply to new devices, and not to exist-
ing ones. Under these circumstances, increasing a binding standard has two coun-
tervailing effects. At the intensive margin, it will increase the energy efficiency of all
households that still invest. At the extensive margin, fewer households may decide to
invest at all, and instead keep their old devices. Thus, a minimum-efficiency standard
increases overall energy efficiency only if the first effect dominates.

To determine under which conditions this is the case, this article formally analyzes
the equilibrium effects of such a policy. I model two interdependent markets: firstly,
the market for energy, which may stand for fuel or electricity, and secondly, the market
for an energy-using household capital good. The household’s utility depends on the
energy services that the capital good and the energy input provide. If the household
has a larger amount of capital, a given amount of energy translates into more energy
services. Thus, energy efficiency is understood as the amount of capital the household
owns for the energy service under consideration. When buying the capital good, the
household can freely choose its energy efficiency – that is, buy a smaller or larger
amount of capital.

Households are heterogeneous with respect to their capital endowment – that is,
with respect to their current energy efficiency. This implies a cutoff level of capital be-
low which households invest; those that have more keep their endowment. Introduc-
ing a minimum-efficiency standard then increases the amount of capital an investing
household chooses, but it also shifts the cutoff level downwards, reducing the share of
investing households. Additionally, the cutoff level reacts to prices: If the standard in-
creases demand for energy efficiency or reduces energy demand, the efficiency-capital

2See, for instance, Dehmer (2013) or Harrabin (2017) for media coverage of the topic. For analyses of
the European light-bulb regulation, see Frondel and Lohmann (2011) or Perino and Pioch (2017).

3The 2018 International Energy Efficiency Scorecard (Castro-Alvarez et al., 2018) by the American Coun-
cil for an Energy-Efficient Economy (ACEEE), a non-profit organization, approvingly lists several direct
intervention policies and gives an overview of their implementation in 25 countries. The U.S. car fuel-
efficiency standards are more flexible than minimum-efficiency standards as they prescribe an average
fuel efficiency for a car producer, but they work in a similar way (Portney et al., 2003).
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price increase and the energy price reduction will both increase the cutoff level.
The main insights of the current article are the following. Firstly, it shows how in-

troducing a minimum-efficiency standard changes the cutoff level. A standard forces
households to pay too much for energy-efficiency capital relative to energy to mini-
mize the costs of energy services, which deters them from investing. I show that the
elasticity of the cutoff level with respect to the standard is proportional to the enforced
difference between capital and energy expenditures. Thus, a marginal minimum-
efficiency standard – that is, a barely binding standard – has almost no effect on the
cutoff level. With a stricter standard, the cutoff level decreases: Even households with
a low amount of capital forgo replacing it if the standard pushes them too far from
their individually optimal investment.

Secondly, I characterize the effects of a marginal standard in the aggregate. If sup-
ply elasticities for household appliances and energy are positive but finite, then such
a standard increases the equilibrium aggregate demand for energy-efficiency capital
and its price, and reduces the equilibrium consumption and price of energy. By con-
trast, if capital is supplied inelastically, then the only effect of a marginal standard will
be to increase the price of efficiency-enhancing capital, while the energy market will be
unaffected.

Thirdly, I demonstrate the effects of stricter efficiency standards. A moderate stan-
dard increases aggregate energy-efficiency investment and reduces energy consump-
tion, but less so the stricter the standard. For some critical level of the standard, energy
consumption is minimized. Further increasing the standard still stimulates aggregate
investment, but it is concentrated among few households, and so many other house-
holds are deterred from investing that aggregate energy demand is increased. There-
fore, a positive reaction of investment to the policy is not sufficient for a reduction of
energy demand.

Finally, I discuss welfare and distributional issues. I illustrate how the costs and
benefits of a household from minimum-efficiency standards depend on the house-
hold’s current energy efficiency. A household that has high energy efficiency would
not invest anyway, and therefore benefits from a minimum-efficiency standard if its
introduction reduces the energy price. By contrast, a household with inefficient ap-
pliances that would plan to invest bears the costs of a policy that, firstly, prescribes
higher energy efficiency than the household would privately choose, and secondly,
increases aggregate demand for such appliances, which increases their price. A main
insight here is that from the perspective of utilitarian welfare maximization, the wedge
between capital expenditures and energy expenditures that the standard creates can
be understood as the policy’s deadweight loss. An empirical implication is that opin-
ion polls should show support for energy-efficiency standards among households that
already have efficient capital goods, for instance due to a recent investment, and op-
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position among the households that have inefficient capital goods and may soon plan
to replace them.

My model builds on the basic insights of Gruenspecht (1982) – namely, that scrap-
page and replacement decisions react to regulation that only applies to newly bought
devices, and that this reaction can be strong enough to offset the intended effects of
regulation (in the short run). He analyzes the effect of pollutant emission regulation
that increases the costs (and the price) of new cars. This increases the share of peo-
ple keeping their old car and the price of used cars, which are substitutes to new ones.
Gruenspecht thus considers standards for emissions that are an externality to car own-
ers, and the regulation increases the costs of cars directly and, often, due to lower fuel
efficiency.

The first apparent difference to the present article’s focus is that the kind of pol-
icy that I consider should lead to higher energy efficiency. This is also the kind of
policy that Jacobsen and van Benthem (2015) analyze. They apply the Gruenspecht
reasoning to fuel economy standards. In their model, a representative consumer’s ve-
hicle demand is met by car suppliers whose new-car sales are subject to the standards,
and by used-car supplies that are determined as last period’s supply net of scrapping,
where the scrap probability depends on the vehicle price. However, in their model, the
elasticity of the scrap rate with respect to the vehicle price is assumed to be constant,
and the consumption of energy services is exogenous.

The contributions of Gruenspecht (1982) and Jacobsen and van Benthem (2015) are
primarily empirical. The present article provides an analytical model in which the in-
vestment and scrap decisions are derived from optimization behavior, such that the
choice of energy efficiency and the investment decision depend on the energy price.
The effects of minimum-efficiency standards are derived and discussed for a varying
strictness of the standard, instead of assuming constant elasticities. Additionally, I an-
alyze equilibrium effects by taking the influence of supply-side elasticities of energy
and energy-efficiency capital into account, such that the effects of regulation on ag-
gregate fuel consumption can be discussed. Deriving the equilibrium analysis in the
present paper from the behavior of individual, heterogeneous households also allows
to analyze welfare and distributional effects of energy-efficiency policies. In a recent
contribution, Levinson (2019) analyzes how regressive efficiency standards are. I add
to this another distributional dimension, namely between households that plan to in-
vest and those that already have efficient capital goods.

The fact that the consumption of energy services and of energy are endogenous
in my model connects the article to the vast literature on the aggregate effects of en-
ergy efficiency and, in particular, rebound effects, with early contributions by Khazzoom
(1980), Brookes (1990), Saunders (1992, 2000), Wirl (1997), among others. This litera-
ture raised skepticism about energy efficiency as a policy goal, suggesting that increas-
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ing energy efficiency might raise energy demand instead of reducing it. In the many
empirical studies that followed, such “backfire” behavior of energy demand was not
found, and rebound effects are likely small – see Gillingham et al. (2009), Borenstein
(2015), Chan and Gillingham (2015), and Gillingham et al. (2016) for an overview of
the issues, for a summary of the empirics and for recent new theoretical insights. The
focus of this literature is, in general, on exogenous technological increases of energy
efficiency. The costs – or even the energy content – of the new efficiency-enhancing
appliances are sometimes analyzed as well, for instance by Borenstein (2015); nonethe-
less, the decision of the households that would be affected by actual energy-efficiency
policy is not analyzed. The present article aims at extending the understanding of
energy-efficiency policy by modeling decisions of heterogeneous households, the ef-
fects of the policy on these decisions, and thus, the policy’s equilibrium effects. Note
that in my model, backfire behavior of fuel demand is assumed away, in order to focus
on the interplay of intensive- and extensive-margin effects. The results emphasize that
low rebound effects are not sufficient for effective energy-efficiency policy.

Another strand of the energy-efficiency literature focuses on explanations for too
low levels of energy efficiency due to either market failures or psychological explana-
tions (see Gillingham et al., 2009 or Gerarden et al., 2017). In my model, households
are perfectly rational and I do not model market failures. The model can be extended
in these directions, however, as discussed in Section 5.

The paper proceeds as follows. Section 2 analyzes a household’s demand for
energy and for energy-efficiency capital, first without and then with a minimum-
efficiency standard. Capital is chosen for a single period, anticipating how energy
demand depends on the amount of capital. Section 3 then first describes aggregate
supply and demand for energy and capital, and then analyzes minimum-efficiency
standard, first for a marginal standard and then for stricter standards. Functional
forms are introduced when necessary. Welfare and distributional effects and implica-
tions for politically determined standards are considered in Section 4. Finally, Section
5 discusses the results and possible extensions of the model.

2 Individual Demand

2.1 The Setting

Suppose that household have preferences over consumption of a numeraire good, Q,
and consumption of energy services, S. Household i’s utility is

ui = Qi + B(Si), (1)
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where I assume the energy-services benefit function B to be increasing in Si and strictly
concave, with limS→0 B′(S) = ∞ and limS→∞ B′(S) = 0.4 Energy services are obtained
by combining energy E, which can represent fuel or electricity, and capital K, so that
household i’s energy services are Si ≡ KiEi. Ki may represent the capital embodied
in a car, a space-heating system, the house’s insulation, or household appliances like
fridges or washing machines. In the investment decision considered below, I assume
that such household-capital goods are continuously scalable at the moment when they
are bought, and that their only characteristic is the amount of energy services per unit
of energy that they provide. For instance, if the household has a better space-heating
system that provides a warmer house with the same amount of fuel, Ki is larger.5 We
thus equivalently say that a household has a more energy-efficient appliance (or car,
space-heating system, etc) or that it has more capital.

The household’s budget is Qi + pEi + Ii = Yi, where p is the energy price, I is
investment and Y is exogenous income. Thus, utility becomes

ui = Yi − pEi − Ii + B(Si). (2)

In the following, I analyze the household’s optimal behavior in a two-stage proce-
dure. First, I derive energy demand given the level of capital. Afterwards, the house-
hold’s capital level is endogenized: The household is endowed with some capital and
decides whether to keep it or replace it.

2.2 Energy Demand

If the household has no capital (Ki = 0 =⇒ Si = 0), consuming energy has only costs
but no benefits, such that the household will choose Ei = 0. For Ki > 0, limS→0 B′(S) =
∞ and limS→∞ B′(S) = 0 imply that there is a strictly positive amount of Ei fulfilling
the first-order condition

B′(Si)Ki = p. (3)

This implicitly defines the household’s energy demand E∗(Ki, p) and thus energy-
service demand as functions of Ki and p:

S∗i (Ki, p) ≡ KiE∗(Ki, p). (4)

4However, given that ui is a utility function, I do not restrict B(0) = 0 (which is in contrast to the
oft-cited Inada (1963) assumptions).

5For cars, Ki are miles per gallon, while Si are miles driven; 1/Ki = Ei/Si would be the European
version, usually stated as liters of gasoline per 100 km. The simplifying assumption in the present
model is that the household can freely choose this property of its vehicle when buying it, which is a
shortcut for car suppliers offering the varieties that consumers demand.
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Differentiating (3) and rearranging yields the elasticities of energy demand with re-
spect to the price of energy, εE,p and with respect to the household’s capital stock, εE,K.
They directly translate to the respective elasticities of energy-services demand:

εE,p(Ki, p) ≡
∂E∗i (Ki, p)/E∗i (Ki, p)

∂p/p
=

1
−β(S∗i )

= εS,p(Ki, p), (5a)

εE,K(Ki, p) ≡
∂E∗i (Ki, p)/E∗i (Ki, p)

∂Ki/Ki
=

1
β(S∗i )

− 1 = εS,K(Ki, p)− 1 (5b)

where

β(Si) ≡ Si
−B′′(Si)

B′(Si)
> 0 (6)

denotes the absolute value of the elasticity of marginal benefits with respect to energy
services. I assume in the following that β is bounded:

Assumption 1. β(Si) > 1.

Then,

εS,K(Ki, p) = 1 + εE,K(Ki, p) = −εE,p(Ki, p) = −εS,p(Ki, p) =
1

β(S∗i )
∈ [0, 1). (7)

Thus, a household with a larger amount of capital will always demand more energy
services, but less energy. This assumption ensures that rebound effects are not too
strong. Using the term from the literature on energy efficiency and rebound effects,
I exclude a “backfire” effect of energy efficiency; backfire means that an increase in
energy efficiency increases energy demand (see e.g. Voss, 2015).6 Excluding backfire
effects is in line with the empirical results of the literature (Gillingham et al., 2016).
Additionally, it allows that energy-efficiency policy could at least in principle make
sense as a policy to reduce energy consumption, such that the present paper can focus
on other aspects of such policy.

Finally, substituting E∗(Ki, p) into ui, the household’s optimized utility is

Ui(Ki, p, Ii) = Yi − pE∗(Ki, p)− Ii + B(S∗i ). (8)

6Along the lines of Saunders (2000, 2008), the rebound would be defined as R ≡ 1 + εE,K(Ki, p),
which is identical to −εE,p(Ki, p). In the present model, energy efficiency in Si ≡ KiEi is embodied
in household capital, and not derived from exogenous technological progress (as it is in a large part
of the rebound-effects literature). Thus, in our context, a rebound of R means that (1− R) · 100 % of
productivity gains due to an increase in Ki are translated into actual energy conservation.
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2.3 Unconstrained Investment

Suppose that the household chooses Ki in order to maximize Ui(Ki, p, Ii), where now
the relation between investment Ii and capital has to be taken into account. The price
per unit of capital is h, such that Ii = hKi:

Ui(Ki, p, hKi) = Yi − pE∗(Ki, p)− hKi + B(S∗i ). (9)

The household’s optimal amount of capital K◦ is defined by

B′(K◦E∗(K◦, p))E∗(K◦, p) = h, (10)

where I write K◦ instead of K◦i because nothing in the formula depends on the house-
hold’s characteristics. In Appendix A.1, I show that Ui(Ki, p, hKi) is strictly concave
in Ki, that K◦ = K◦(h, p) is strictly positive, and that it is increasing in the energy
price and decreasing in the capital price. I suppress this functional dependence in the
following in order to keep the notation clear, and proceed in the same way in similar
cases below.

Note that isolating B′(S) in (3) and substituting into (10) yields:

pE∗(K◦, p) = hK◦. (11)

That is, the household will optimally spend as much for energy as for capital. In-
tuitively, to generate energy services, energy and capital are equally effective, so the
household would balance their cost. The optimization yields the indirect utility func-
tion

U◦i (h, p) = Yi − pE∗(K◦, p)− hK◦ + B(S∗(K◦, p)). (12)

where S∗(K◦, p) ≡ K◦E∗(K◦, p).
Now suppose that the household is endowed with an amount of capital Ki,0. It is

plausible that such an equipment cannot be increased continuously. Thus, the house-
hold has two alternatives: Keep Ki,0, in which case it does not have to pay for invest-
ment, or scrap it and invest to get K◦. The former option’s utility is given by (8) for
Ii = 0 and Ki = Ki,0:

Ui(Ki,0, p, 0) = Yi − pE∗(Ki,0, p) + B(Ki,0E∗(Ki,0, p)) (13)

with

∂Ui(Ki,0, p, 0)
∂Ki,0

= B′(Ki,0E∗(Ki,0, p))E∗(Ki,0, p) > 0, (14)
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which states that, naturally, the household’s utility with its capital endowment is
higher if this endowment is higher. Replacing the endowment is better if

B(S∗(K◦, p))− B(Ki,0E∗(Ki,0, p)) ≥ hK◦ − p [E∗(Ki,0, p)− E∗(K◦, p)] . (15)

The difference on the left-hand side is positive if the amount of capital the household
would buy exceeds the one it has; see (7). Likewise, the energy-expenditure difference
on the right-hand side is positive (with its old, small amount of capital, the household
would pay more for energy). There is an endowment Ki,0 = K̃ > 0 which makes the
household just indifferent:7

B(S∗(K◦, p))− B(K̃E∗(K̃, p))− p
[

E∗(K◦, p)− E∗(K̃, p)
]
− hK◦ = 0. (16)

This equation implicitly defines the cutoff as a function of the prices of energy and
capital goods: K̃ = K̃(h, p). Differentiating and rearranging yields:

∂K̃(h, p)/K̃
∂h/h

= − hK◦(h, p)
pE∗(K̃, p)

(
= −E∗(K◦, p)

E∗(K̃, p)

)
∈ (−1, 0], (17a)

∂K̃(h, p)/K̃
∂p/p

=
∆E(K◦, K̃, p)

E∗(K̃, p)
= 1 +

∂K̃(h, p)/K̃
∂h/h

∈ (0, 1]. (17b)

where we use ∆E for the amount of energy saved if the household invests:

∆E(K◦, K̃, p) ≡ E∗(K̃, p)− E∗(K◦, p). (18)

Summarizing, the optimal amount of capital of household i is

K∗i (h, p) =

K◦ if Ki,0 ∈
[
0, K̃

)
,

Ki,0 if Ki,0 ∈
[
K̃, ∞

)
.

(19a)

Accordingly, investment expenditure is

I∗i (h, p) =

hK◦ if Ki,0 ∈
[
0, K̃

)
,

0 if Ki,0 ∈
[
K̃, ∞

)
.

(19b)

Note that K∗i is discontinuous in the endowment. A household with less than K̃ will
invest and afterwards have K◦. A household with slightly more than K̃ will not accept
the costs of new capital, and therefore will have less than K◦. A household with much
more than K̃ will also keep it and therefore have a larger amount of capital. Figure 1

7Note that K◦ > 0 implies that B(S∗(K◦, p))− pE∗(K◦, p)− hK◦ > B(0)− pE∗(0, p). Thus, K̃ > 0.

9



Ki,00 K̃

Invest Do not invest

K∗i

K◦

Figure 1: Household Capital with Optimal Investment

illustrates the investment decision.
The elasticity of the indifference level with respect to the capital price is clearly neg-

ative: With a higher price of capital, the household would be more willing to stick to
its old space-heating system instead of replacing it. Conversely, with a higher energy
price, the household is more willing to scrap its capital endowment, because energy
usage with the new amount of capital would be lower.8

2.4 Investment with a Minimum-Efficiency Standard

We now consider a minimum-efficiency standard policy. This policy prescribes that
if a household invests, it has to choose Ki ≥ K ≥ K◦, where the last inequality has
to hold strictly for the standard to have any effect, because any investing household
chooses K◦ if there is no standard. In the following, when comparing two levels of the
minimum-efficiency standard K′ > K, the former standard will be called stricter than
the latter.

Which effects will the introduction of a minimum-efficiency standard have? Firstly,
there is an effect at the intensive margin: If the household still wants to invest, its
investment has to be higher. This pushes the household away from privately opti-
mal cost minimization; while its energy demand is still optimal given capital ((3) still
holds), the optimal-capital condition (10) does not hold. Instead,

dUi(K, p, hK)
dKi

= B′(KE∗(K, p))E∗(K, p)− h < 0, (20)

which also implies that instead of the expenditure balance (11), we have

hK− pE∗(K, p) > 0. (21)

The minimum standard forces the household to have too much capital to minimize

8Note that (7) excludes E∗(K̃, p) = E∗(K◦, p).
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cost, and the investment expenditures exceed its expenditures for energy. Moreover,
the stricter the standard, the larger the deviation between the expenditures:

d (hK− pE∗(K, p))
dK

= h− p
E∗(K, p)

K
εE,K(K, p) > h > 0, (22)

where the sign stems from the fact that εE,K(K, p) ∈ (−1, 0) by (7).
Secondly, because the household is kept from its private optimum, the minimum

standard reduces after-investment utility, and this has an effect at the extensive margin
– that is, the decision whether to invest is affected. In (15), K takes the place of K◦. With
the minimum standard, the household will scrap the old capital and buy an amount K
if

Ui(K, p, hK) ≥ Ui(Ki,0, p, 0). (23)

Again, the amount of capital for which this is fulfilled with equality is a cut-off level:
All households whose initial amount of capital Ki,0 is lower will invest, all households
with more capital will not.

We call the new cutoff Ǩ. It depends on prices and K: Ǩ = Ǩ(h, p, K). Thus, for a
household who has Ki,0 = Ǩ,

B(KE∗(K, p))− B(ǨE∗(Ǩ, p)) + p
[
E∗(Ǩ, p)− E∗(K, p)

]
− hK = 0. (24)

Thus, the optimal capital stock K∗i and the investment expenditure of household i are

K∗i (h, p, K) =

K if Ki,0 ∈
[
0, Ǩ

)
,

Ki,0 if Ki,0 ∈
[
Ǩ, ∞

)
,

(25a)

I∗i (h, p, K) =

hK if Ki,0 ∈
[
0, Ǩ

)
,

0 if Ki,0 ∈
[
Ǩ, ∞

)
.

(25b)

To see how the cutoff Ǩ amount depends on the standard and the prices, we differen-
tiate (24) and rearrange:

εǨ,K(h, p, K) =
∂Ǩ/Ǩ
∂K/K

= −hK− pE∗(K, p)
pE∗(Ǩ, p)

≤ 0, (26a)

εǨ,h(h, p, K) =
∂Ǩ/Ǩ
∂h/h

= − hK
pE∗(Ǩ, p)

∈
(
− hK

pE∗(K, p)
, 0
]

, (26b)

εǨ,p(h, p, K) =
∂Ǩ/Ǩ
∂p/p

=
∆E(K, Ǩ, p)

E∗(Ǩ, p)

= 1 +
pE∗(K, p)

hK
εǨ,h(h, p, K) ∈ (0, 1]. (26c)
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Ki,00 K̃Ǩ

Invest Do not invest

K∗i

K◦
K

Figure 2: Household Capital with Optimal Investment, given the Minimum-Efficiency
Standard

where ∆E(K, Ǩ, p) is defined as in (18).
For our analysis, the following wording is useful:

Definition 1. A minimum-efficiency standard that sets K marginally above K = K◦ is
called a marginal minimum-efficiency standard, or marginal standard for short.

Precisely, we refer to the effects of a marginal standard when evaluating the
marginal effects of a minimum-efficiency standard for a value of K = K◦. For the
application of this definition, note that K = K◦ also implies Ǩ = K̃ by the definitions
of K̃ in (16), and of Ǩ in (24).

We now turn to the analysis of the elasticities. Firstly, consider the effect of the
standard itself. A standard above K◦ will imply that the household is more reluctant
to invest such that Ǩ < K̃, but it has to choose K > K◦ if it invests. Figure 2 illustrates
these effects. For the further analysis, it is relevant how strongly Ǩ reacts to an increase
in K, and which effect an ever-increasing efficiency standard will have. I summarize
this analysis in the following proposition.

Proposition 1 (The effect of K on Ǩ). For K = K◦, we have εǨ,K = 0. For a stricter
standard (K > K◦), we have εǨ,K < 0. Thus, Ǩ is monotonically decreasing in K. Finally,
limK→∞ Ǩ(h, p, K) = 0.

Proof. By (11) and (21), the numerator in (26a) is zero for a K = K◦, implying εǨ,K = 0,
and positive for a stricter standard, implying εǨ,K < 0. To prove limK→∞ Ǩ(h, p, K) =
0, consider any endowment Ki,0 > 0 and assume that the household owning it prefers
to invest:

B(KE∗(K, p))− pE∗(K, p)− hK > Ui(Ki,0, p, 0). (27)

By (20), the left-hand side is decreasing in K. Moreover, using (A.1b) in Appendix A.1,
we see that d2Ui(K, p, hK)/ dK2 < 0. Thus, for any Ki,0 there will be an increase in K
such that (27) changes its sign, which proves the claim.
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Thus, a marginal minimum-efficiency standard has hardly any effect on the cutoff
level Ǩ, but if it is increased, the capital endowment below which the household would
opt for investment monotonically decreases in the standard, and if the standard is
strict enough, the household will not invest. The logic of the other two elasticities
follows the unconstrained case, as discussed after (17). However, the lower bound of
the capital-price elasticity, −hK/pE∗(K, p) now is smaller than −1.

2.5 Isoelastic Functions

In the following, we assume specific, isoelastic functions in order to illustrate the
model and also to be able to reach concrete results later on. Thus, suppose

B(Si) ≡ −
1

β− 1
S−(β−1)

i . (28)

Then (2) becomes:

ui = Yi − pEi − Ii −
1

β− 1
S−(β−1)

i . (29)

The marginal benefit of energy services is B′(Si) = S−β
i (> 0), and that of energy is

B′(Si)Ki = S−β
i Ki = E−β

i K1−β
i . From (3), (4) and (8), we obtain the household’s de-

mand for energy and energy services and its optimized utility, given the household’s
capital:

Ei = p−
1
β K
− β−1

β

i , (30a)

Si = p−
1
β K

1
β

i , (30b)

Ui(Ki, p, Ii) = Yi − Ii −
β

β− 1
p

β−1
β K

− β−1
β

i . (30c)

The elasticities of energy demand with respect to price and capital are thus constant:
εE,p(Ki, p) = −1/β < 0 and εE,K(Ki, p) = −(β− 1)/β. We can see that Assumption
1, β > 1, indeed implies a negative effect of capital on energy demand. Then with
Ii = hKi, the utility of an investing household is Ui(Ki, p, hKi) and the optimal capital
level of such a household, defined in (10), becomes

K◦ = h−
β

2β−1 p
β−1

2β−1 , (31a)

such that

E∗(K◦, p) = h
β−1

2β−1 p−
β

2β−1 , (31b)
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S∗(K◦, p) = h−
1

2β−1 p−
1

2β−1 . (31c)

Using these results, we confirm the optimal expenditure balance, (11):

pE∗(K◦, p) = h
β−1

2β−1 p
β−1

2β−1 = hK◦. (32)

Using (30c) and (31a) to derive the indirect utility function U◦i (h, p) from (12) and
utility for the case that the household does not invest, as defined by (13), we can derive
the threshold from (16):

K̃ =

(
2β− 1

β

)− β
β−1

h−
β

2β−1 p
β−1

2β−1 . (33)

We now turn to household investment given the standard K ≥ K◦. To obtain de-
mand given the standard, (30) has to be evaluated for Ki = K. For the general case,
(24) defines the cutoff amount of capital, given the standard and the prices. Here it
becomes

Ǩ(h, p, K) =
[

β− 1
β

m̃(h, p, K) + 1
]− β

β−1
K (34)

instead of (33), where

m̃(h, p, K) = hK
2β−1

β p−
β−1

β

= 1 for K = K◦,

> 1 for K > K◦.
(35)

Then,

εǨ,K(h, p, K) = −hK− pE∗(K, p)
pE∗(Ǩ, p)

= − m̃(h, p, K)− 1
β−1

β m̃(h, p, K) + 1
, (36a)

εǨ,h(h, p, K) = − hK
pE∗(Ǩ, p)

= − m̃(h, p, K)
β−1

β m̃(h, p, K) + 1
, (36b)

εǨ,p(h, p, K) =
∆E(K, Ǩ, p)

E∗(Ǩ, p)
=

β− 1
β

m̃(h, p, K)
β−1

β m̃(h, p, K) + 1
. (36c)

It is now easy to confirm the results of Proposition 1. εǨ,K(h, p, K) is indeed zero for
K = K◦, which we can confirm using (31a), and negative for stricter standards; the nu-
merator in (36a) is increasing in K. Moreover, for p = 0, εǨ,h(h, p, K) = − β

β−1 , and the
elasticity is decreasing in the fuel price and asymptotically goes to zero. εǨ,p(h, p, K) is
zero for h = 0 and monotonically goes to a value of 1. Moreover, the amount of energy
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saved if the cutoff household invests, (18), becomes

∆E(K, Ǩ, p) =
β− 1

β

h
p

K (37)

and, using (30), we have:

∆E(K, Ǩ, p)
E∗(K)

=
β− 1

β
m̃(h, p, K), (38a)

εE,K +
∆E(K, Ǩ, p)

E∗(K)
=

β− 1
β

[m̃(h, p, K)− 1] . (38b)

3 Aggregate Analysis

3.1 Aggregate Investment and Aggregate Energy Consumption

We turn to the analysis of aggregate energy consumption and aggregate household-
capital investment, or aggregate investment for short, in equilibrium. There is a unit-
size continuum of households. Suppose that the capital endowment follows a cu-
mulative distribution function G(Ki,0) with a density g(Ki,0) ≡ G′(Ki,0). Without a
minimum-efficiency standard, the share of households that invest is G(K̃). Thus, after
investment, the share G(K̃) of households will have capital K◦, and the share 1−G(K̃)
has capital distributed between K̃ and ∞ (or some maximum amount of capital); this
span includes K◦. Aggregate investment demand thus is

I(h, p) =
∫ K̃(h,p)

0
g(Ki,0)K◦(h, p)dKi,0 = G(K̃(h, p))K◦(h, p). (39)

Aggregate energy demand is then determined by:

E(h, p) =
∫ K̃(h,p)

0
g(Ki,0)E∗(K◦, p)dKi,0 +

∫ ∞

K̃(h,p)
g(Ki,0)E∗(Ki,0, p)dKi,0

= G(K̃(h, p))E∗(K◦, p) +
∫ ∞

K̃(h,p)
g(Ki,0)E∗(Ki,0, p)dKi,0. (40)

If we instead consider demand as influenced by the minimum-efficiency standard, we
have to evaluate for Ǩ(h, p, K) instead of K̃(h, p). Suppose that there are a household-
capital supply function κ(h) and an energy supply function Φ(p). In equilibrium,

κ(h•) = G(Ǩ•)K, (41a)

Φ(p•) = G(Ǩ•)E∗(K, p•) +
∫ ∞

Ǩ•
g(Ki,0)E∗(Ki,0, p•)dKi,0, (41b)
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where Ǩ• ≡ Ǩ(h•, p•, K). The • is for equilibrium, but we drop this in the following to
keep the exposition clear.

3.2 Minimum-Efficiency Standards

We now turn to analyzing how a minimum-efficiency standard affects the equilibrium.
We have already seen that a stricter standard implies that a household would need a
lower capital endowment to choose investing over keeping the old capital. From the
aggregate perspective, we can say that less households invest. However, we also know
that any household that invests now has to choose a higher amount. If (and only if)
this intensive-margin effect outweighs the extensive-margin effect, total investment is
increased by the standard. Moreover, energy demand is reduced if (and only if) the
increase of investment at the intensive margin also reduces energy consumption to a
larger extent than the reduction of investment at the extensive margin increases it.

Define the elasticities

η(h) ≡ ∂κ(h)/κ(h)
∂h/h

, (42a)

ρ(p) ≡ ∂Φ(p)/Φ(p)
∂p/p

, (42b)

γ(K) ≡ Kg(K)/G(K) =
∂G(K)/G(K)

∂K/K
, (42c)

where η is the elasticity of household capital goods with respect to the price, ρ is the
elasticity of energy supply with respect to the price, and γ is the elasticity of the share
of households with less than K with respect to that amount.

Then, to determine the effect of a minimum standard, we differentiate (41). After
some rearrangements (see Appendix A.2.1), this yields:

ĥ =
1 + εǨ,Kγ(Ǩ)

η − εǨ,hγ(Ǩ)
K̂ +

εǨ,pγ(Ǩ)

η − εǨ,hγ(Ǩ)
p̂, (43a)

p̂ =
εE,K(K)− εǨ,Kγ(Ǩ)∆E(K,Ǩ,p)

E∗(K)

χ(K) + εǨ,pγ(Ǩ)∆E(K,Ǩ,p)
E∗(K)

K̂−
εǨ,hγ(Ǩ)∆E(K,Ǩ,p)

E∗(K)

χ(K) + εǨ,pγ(Ǩ)∆E(K,Ǩ,p)
E∗(K)

ĥ, (43b)

where the hat notation represents relative changes (like ĥ ≡ dh/h) and where

χ(K) ≡ ρ− εE,p(K) +
∫ ∞

Ǩ

g(Ki,0)

G(Ǩ)

[
ρ− εE,p(Ki,0)

] E∗(Ki,0)

E∗(K)
dKi,0. (44)

For clarity of exposition, the explicit dependency of Ǩ, εǨ,K, εǨ,h, εǨ,p on (h, p, K) has
been dropped and, in general, the dependency of the equilibrium quantities and elas-
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ticities on the price p and h has been dropped because these prices are the same for all
agents. The denominators are positive.

The first-term fractions on the right-hand sides of (43) embody the direct effects of
changing the standard, while the second terms are the indirect effects that accrue by
the change of the respective other price.

First consider ĥ. In the direct-effects numerator, the 1 represents the intensive-
margin effect; the increase in the minimum standard directly increases capital demand
of the households that invest. The second term represents the extensive-margin ef-
fect; the maximum level of capital at which a household chooses to invest is reduced,
such that less households invest. The strength of this second effect depends on how
strongly Ǩ reacts to K and on how many households are affected by this because their
amount of capital equals Ǩ. The indirect effect in the second fraction shows that an
increase in the energy price will additionally increase capital demand, and vice versa.

The direct effects have counterparts in the first numerator for p̂. The first term
shows how the intensive-margin effect operates in the energy market; the households
who invest would reduce their energy demand due to their higher amount of capi-
tal (εE,K < 0). Likewise, the second term represents the extensive-margin effect: the
households who do not invest due to a stricter standard use ∆E(K, Ǩ, p) more energy
than they would if they invested; the relative increase of such a household’s energy
consumption is ∆E(K, Ǩ, p)/E∗(K). The indirect effect in the second fraction shows
that an increase in the capital price will further decrease capital demand, leading to
further energy-demand reduction reduction, and vice versa.

Solving (43) yields the elasticities of the equilibrium prices in reaction to a change
in the minimum-efficiency standard. Defining the equilibrium elasticities Ωp,K(K) ≡
p̂•(K)/K̂, Ωh,K(K) ≡ ĥ•(K)/K̂ for the prices, and ΩK,K(K) ≡ κ̂•(K)/K̂ and ΩE,K(K) ≡
Φ̂•/K̂ for the quantities, we obtain:

Ωh,K(K) =
εǨ,pγ(Ǩ)

[
εE,K(K) +

∆E(K,Ǩ,p)
E∗(K)

]
+ χ(K)

[
1 + εǨ,Kγ(Ǩ)

]
χ(K)η − χ(K)εǨ,hγ(Ǩ) + ηεǨ,pγ(Ǩ)∆E(K,Ǩ,p)

E∗(K)

, (45a)

Ωp,K(K) =
−εǨ,hγ(Ǩ)

[
εE,K(K) +

∆E(K,Ǩ,p)
E∗(K)

]
+ η

[
εE,K(K)− εǨ,Kγ(Ǩ)∆E(K,Ǩ,p)

E∗(K)

]
χ(K)η − χ(K)εǨ,hγ(Ǩ) + ηεǨ,pγ(Ǩ)∆E(K,Ǩ,p)

E∗(K)

,

(45b)

ΩK,K(K) = ηΩh,K(K), (45c)

ΩE,K(K) = ρΩp,K(K) (45d)

where we can note that the denominators are positive.
Consider the simplest case: infinitely elastic supply functions. The prices then are
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constant, but what can we say about the quantity changes? Keeping in mind that ρ is
part of χ, it is easy to derive the limits

ΩK,K(K)|η→∞,ρ→∞ = 1 + εǨ,Kγ(Ǩ), (46a)

ΩE,K(K)|η→∞,ρ→∞ =
εE,K(K)− εǨ,Kγ(Ǩ)∆E(K,Ǩ,p)

E∗(K)

1 +
∫ ∞

Ǩ
g(Ki,0)

G(Ǩ)
E∗(Ki,0)
E∗(K) dKi,0

. (46b)

A marginal standard increases investment (for K = K◦ =⇒ εǨ,K = 0, the elastic-
ity is 1) and decreases energy consumption (with an absolute elasticity smaller than
|εE,K(K)|). For a stricter standard (K > K◦ =⇒ εǨ,K < 0), both effects are reduced.
Whether they can change their sign depends on how many households are affected.
To explore this further, I again assume specific functional forms.

3.3 Isoelastic Functions: A Marginal Minimum-Efficiency Standard

We continue using the isoelastic functions introduced in Section 2.5. The price elas-
ticities of the demand side are then constant by (30a): εE,p = −1/β. Additionally, we
assume that the price elasticities of the supply side are constant. We now write m(K)
for the equilibrium version of (35):

m(K) ≡ m̃(h•, p•, K). (47)

χ(K) and the elasticities from (45) are explicitly stated in Appendix A.2.2.
For the further analysis, it is useful to note the following property:

Lemma 1. m is increasing in the minimum-efficiency standard. Specifically,

m′(K)K >
β− 1

β
m(K) + 1 > 0, (48a)

Thus,

m(K) =

= 1 for K = K◦,

> 1 for K > K◦,
(48b)

lim
K→∞

m(K) = ∞. (48c)

Proof. See Appendix A.2.3.

Together with (38), this immediately allows to state a preliminary result:
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Lemma 2. For K = K◦, it holds that

∆E(K◦, K̃, p)
E∗(K◦)

=
β− 1

β
= −εE,K ⇔ εE,K +

∆E(K◦, K̃, p)
E∗(K◦)

= 0.

For a stricter standard (K > K◦),

∆E(K, Ǩ, p)
E∗(K)

>
β− 1

β
= −εE,K ⇔ εE,K +

∆E(K, Ǩ, p)
E∗(K)

> 0.

As the standard is changed,

d
dK

∆E(K, Ǩ, p)
E∗(K)

=
β− 1

β
m′(K) > 0.

The lemma states that the indifferent household’s energy savings due to a marginal
increase of energy efficiency and its additional energy consumption if it does not invest
cancel out if the efficiency standard is marginal. In (35) and (38), we can see that the
direct effect of increasing the standard is positive, and we can see that an increase in
the capital price and a decrease in the energy price would work in the same direction
(and vice versa). The lemma states that the gap also increases after taking equilibrium
effects into account, independently of the signs of Ωh,K(K) and Ωp,K(K).

We can now, firstly, characterize the effect of a marginal standard. We talk of an
increase in aggregate capital demand when either the equilibrium price or the equi-
librium quantity of capital or both are increased by the policy – which of these pos-
sibilities applies depends on the supply elasticity. Likewise, an increase in aggregate
energy demand means that either the equilibrium energy consumption or its equilib-
rium price or both increase.

Proposition 2 (The effects of a marginal minimum-efficiency standard). Assume the
energy-services benefit function and the supply functions are isoelastic as stated in Section 2.5,
and η ∈ (0, ∞) and ρ ∈ (0, ∞). Then a marginal standard increases aggregate capital demand
and reduces aggregate energy demand relative to the situation without a standard:

Ωh,K(K◦) =
χ(K◦)

χ(K◦)η − χ(K◦)εǨ,hγ(K̃)− ηεǨ,pγ(K̃)εE,K
> 0, (49a)

Ωp,K(K◦) =
ηεE,K

χ(K◦)η − χ(K◦)εǨ,hγ(K̃)− ηεǨ,pγ(K̃)εE,K
< 0, (49b)

ΩK,K(K◦) = ηΩh,K(K◦) ∈ (0, 1), (49c)

ΩE,K(K◦) = ρΩp,K(K◦) < 0. (49d)

19



If η → ∞, we have Ωh,K(K◦) = 0 and

Ωp,K(K◦) =
εE,K

χ(K◦)− εǨ,pγ(K̃)εE,K
< 0, (50a)

ΩK,K(K◦) =
χ(K◦)

χ(K◦)− εǨ,pγ(K̃)εE,K
∈ (0, 1), (50b)

ΩE,K(K◦) =
ρεE,K

χ(K◦)− εǨ,pγ(K̃)εE,K
< 0. (50c)

If additionally to η → ∞, we have ρ → ∞, then Ωh,K(K◦) = Ωp,K(K◦) = 0, ΩK,K(K◦) = 1
and

ΩE,K(K◦) =
εE,K

1 + (K◦)−εE,K
∫ ∞

K̃
g(Ki,0)

G(K̃)
KεE,K

i,0 dKi,0

< 0. (51)

If additionally to η → ∞, we have ρ = 0, then ΩE,K(K◦) = 0.
If η = 0, ρ ∈ [0, ∞], we have:

Ωh,K(K◦) =
1

−εǨ,hγ(K̃)
> 0 = Ωp,K(K◦) = ΩK,K(K◦) = ΩE,K(K◦). (52)

Proof. Using Lemma 2 and εǨ,K(K
◦) = 0, (45) reduces to (49). The cases below follow

from evaluating for the respective values.

The proposition states that with positive but finite supply elasticities, a marginal
standard will do what one would expect it to do, namely to increase household capital
demand, thereby driving up its price. The increase in equilibrium investment in turn
reduces energy demand, and the magnitude of this effect depends on εE,K; this also
reduces the energy price.

If both capital and energy are supplied at fixed prices, the quantity effects are
strongest – in particular, the increase in K translates into a proportional increase in
investment, and a strong decrease in energy consumption. By contrast, if only capital
is supplied at a fixed price and energy is supplied inelastically, the increase in invest-
ment does not affect energy consumption.

If, however, capital is supplied inelastically, then the capital price has to increase
to keep households from investing. Because a household that invests has to choose
a higher amount of capital due to the standard, the effect of the capital price works
via the extensive margin: Ǩ decreases, such that less households invest. There are no
effects on the energy market because (by Lemma 2) the efficiency standard’s energy
demand effect on the households that still invest and the effect on the households that
stop investing just cancel out.
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Figure 3: Isolelastic Distribution Function, example for γ = 2, X = 1/4.

3.4 Isoelastic Functions: A Stricter Efficiency Standard

So far, we have only considered a marginal energy efficiency standard, for which it
was not necessary to make assumptions about the distribution of the capital endow-
ment among the households. In order to analyze a stricter standard, we will use such
an assumption in order to structure the analysis. Precisely, we assume that γ(K) is
constant; the distribution function is defined as follows.

Definition 2 (Isoelastic Distribution). We call the distribution of initial household cap-
ital an isoelastic distribution if and only if the distribution function is

G(K) =


0 for K < 0,

XKγ for K ∈
[
0, X−1/γ

]
,

1 for K > X−1/γ,

(53)

with γ > 0, X > 0.

This distribution function is discussed in Appendix A.3. If γ < 1, the distributional
mass is concentrated at low values of Ki,0, and vice versa; a uniform distribution im-
plies γ = 1. Figure 3 illustrates it for γ = 2, Figure 4 illustrates it for γ = 1/2.
Moreover, when assuming an isolelastic distribution function, we will assume that

K̃ < X−1/γ, (54)

such that there are at least some households who would not invest even if there were
no standard.

While the distribution function may not be realistic, it allows a structured discus-
sion of the efficiency standard’s effects. Given the isoelastic distribution function, we
first note that an ever-increasing efficiency standard will at some point keep all house-
holds from investing:
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Figure 4: Isolelastic Distribution Function, example for γ = 1/2, X = 1.

Lemma 3 (The equilibrium behavior of the cutoff level of capital). For isoelastic utility
and supply functions, Ǩ•(K) ≡ Ǩ(h•, p•, K) is decreasing in K. If additionally, the capital
distribution function is isoelastic, we have limK→∞ Ǩ•(K) = 0.

Proof. See Appendix A.4.2.

We can now summarize how the elasticities from (45) change as the minimum-
efficiency standard is made stricter.

Proposition 3 (The effects of a stricter minimum-efficiency standard). Assume that util-
ity and supply functions and the capital-endowment distribution function are isoelastic. If
γ ≤ β−1

β , then increasing K always increases aggregate capital demand. By contrast, if

γ > β−1
β , then aggregate capital demand initially increases in K but has a maximum at K

which satisfies

εǨ,pγ

[
εE,K +

∆E(K, Ǩ, p)
E∗(K)

]
+ χ(K)

[
1 + εǨ,Kγ

]
= 0. (55)

Energy demand initially increases in K but has a minimum at K which satisfies

−εǨ,hγ

[
εE,K +

∆E(K, Ǩ, p)
E∗(K)

]
+ η

[
εE,K − εǨ,Kγ

∆E(K, Ǩ, p)
E∗(K)

]
= 0 (56)

This implies the following critical value:

Ωp,K(K), ΩE,K(K) R 0

⇔m(K) R
1
2

(
1 +

1
γ

η

1 + η

β− 1
β

)
+

√[
1
2

(
1 +

1
γ

η

1 + η

β− 1
β

)]2

+
1
γ

η

1 + η

⇔K R Kcrit =

1
2

(
1 +

1
γ

η

1 + η

β− 1
β

)
+

√[
1
2

(
1 +

1
γ

η

1 + η

β− 1
β

)]2

+
1
γ

η

1 + η


β

2β−1

h−
β

2β−1 p
β−1

2β−1

(57)
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Kcrit(γ, β)/K◦

εE,p εE,K for η = ∞, ρ = ∞
β β/(β− 1) = −1/β = (β− 1)/β γ = 0.5 γ = 1 γ = 2 γ = 5
5 5/4 −0.2 −0.8 1.915 1.567 1.341 1.163

5/2 5/3 −0.4 −0.6 1.942 1.581 1.347 1.165
5/3 5/2 −0.6 −0.4 1.965 1.593 1.353 1.167

Table 1: Sample Values

At the value of K that minimizes aggregate energy demand, aggregate capital demand is still
increasing.

Proof. See Appendix A.4.3.

The proposition firstly states that initially, aggregate investment demand increases
with a minimum-efficiency standard, but this effect gets weaker the stricter standard,
and it may get reversed at high levels. The left-hand side of (55) is the numerator of
Ωh,K(K). The first summand reflects how the change in the energy price, which is
induced by the intensive and extensive margin effects, shifts Ǩ: A higher energy price
means that more households want to invest (and vice versa), as derived in Section 2.4.
The bracketed term in the second summand summarizes the direct effect on the capital
market, namely, that K increases investment of the households that still invest, while
this share is itself reduced by K. The number of deterred households is initially zero
but grows with K. If γ > β−1

β , this deterrence dominates for high levels of K, such that

increasing K beyond a critical level reduces capital demand. γ > β−1
β means that the

elasticity of the capital-endowment distribution function exceeds the absolute value
of the elasticity of individual energy demand with respect to capital. Intuitively, if γ

is high, then many households are affected if Ǩ shrinks due to an increase of K. By
contrast, if γ is small, then even the strongest possible reaction of Ǩ to K will not affect
many households.

Clearly, the first case holds in particular if there are many households with high
energy efficiency (cf. Figure 4). But it is also possible in the opposite case if the distri-
bution is not too right-skewed. In a sensitivity analysis for rebound effects, Borenstein
(2015, Table 1) considers energy-demand elasticities of -0.2, -0.4, and -0.6. In the third
and fourth column of Table 1, I demonstrate the implied values of εE,K = (β− 1)/β,
which then constitute the critical γ values. We can see that, for instance, the case of an
energy-demand elasticity of −0.2 implies that if γ is smaller than 4/5, investment will
always increase as the standard is made stricter.

Secondly, the left-hand side of (56) is the numerator of Ωp,K(K). The first effect
here is that a decrease in the capital price increases the amount of households invest-
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ing (and vice versa) and thereby has the above-mentioned effects on the energy market
at the intensive and extensive margins. The second effect again summarizes the (more)
direct effects of K. Energy consumption of the marginal (and still investing) household
is reduced, and households are kept from investing, such that their energy consump-
tion is not reduced. We can see that aggregate energy demand is initially reduced by
introducing a minimum-efficiency standard, but there will be a level of K minimiz-
ing it, and further increases in the standard increase energy consumption. At some
point, more and more households are deterred, and the effect on these households is
increasing, such that there is a value of K at which energy consumption is minimized.

The value of m(K) that minimizes energy consumption equals 1 for η = 0, which
corresponds to K = K◦ by Lemma 1. Thus, if capital is supplied inelastically, such that
the standard cannot increase its overall quantity, then it will always increase energy de-
mand. By contrast, a more elastic capital supply means that it takes a stricter efficiency
standard to minimize energy consumption.

From the perspective of advising second-best climate policy, we can note that
the capital supply elasticity is decisive for the question whether at least moderate
minimum-efficiency standards can have the effects that seem like official aims of pol-
icy. If capital supply elastically adjusts to additional demand created by a minimum-
efficiency standard, then the standard reduces aggregate energy demand. By contrast,
if capital is supplied inelastically, a standard cannot create additional investment. As
the standard forces investing households to increase their investment, equilibrium
then requires that other households are kept from investing. The net effect is increased
energy demand.

Thirdly, at the standard that minimizes energy consumption, aggregate investment
will still be increasing. Thus, observing additional aggregate investment is not a suffi-
cient statistic for the influence of the policy on the energy market.

For the case in which prices are fixed due to perfectly elastic supply of both capital
and energy, a quantitative characterization of the standard that minimizes energy de-
mand is possible. Relative to the private optimum K◦, the critical value of K from (57)
then is

Kcrit(γ, β)

K◦
=

1
2

(
1 +

1
γ

β− 1
β

)
+

√[
1
2

(
1 +

1
γ

β− 1
β

)]2

+
1
γ


β

2β−1

. (58)

This is illustrated in Table 1 for the above-mentioned values of β. With increasing
values of γ, Kcrit comes close to K◦.
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4 Welfare, Distribution and Politics

We ultimately aim at analyzing the effect of K on utility and welfare. There are no
externalities or other market failures in the model. Therefore, a minimum-efficiency
standard must reduce welfare in a utilitarian sense – or, as we use a partial-equilibrium
model, reduce market surplus. However, its effect differs between households. We
will now analyze these effects without adding market imperfections. The welfare
changes can be considered costs (or benefits) to the households before adding potential
benefits due to the correction of market failures.

For high-capital households that do not invest, utility is given by (13). The effect
of the minimum-efficiency standard thus is given only by the effect of the standard on
the energy price. Using (14) and the equilibrium energy-price elasticity, we have

dUi(Ki,0, p, 0)
dK/K

= −Ωp,K(K)pE∗(Ki,0), (59)

such that the a minimum-efficiency standard is good for such a household, up to the
point where it minimizes the energy price. We can directly conclude that the house-
hold then increases energy consumption.9 The effect of the price reduction on utility is
stronger the higher the household’s energy consumption; thus, in general households
with Ki,0 > Ǩ favor a minimum standard that reduces aggregate energy demand, but
the intensity of the preference (that is, the money saved due to the standard) is de-
creasing in the amount of capital.

To determine the effect of the standard on the low-capital households that do in-
vest, differentiate Ui(K, p, hK) and take the equilibrium-price effects into account:

dUi(K, p, hK)
dK/K

= −
[
Ωp,K(K)pE∗(K) + Ωh,K(K)hK + hK− pE∗(K)

]
. (60)

We see three effects. Firstly, like the high-capital households, the low-capital house-
holds benefit from a reduction in the energy price. The investing households benefit
less from this than those non-investing households with a capital endowment between
Ǩ and K; however, non-investors with Ki,0 > K benefit even less. The households suf-
fer from an increase in the capital price (which the households that do not invest do not
care about). Finally, the difference hK− pE∗(K) represents that the households dislike
that they are pushed towards a too high amount of capital, see (22). For a marginal
standard, this effect is zero, but it gets worse the stricter the standard (if the household
then still invests).

Next, the standard affects profits. Define the profit function of a representative
household-capital supply firm by πK(K) = hκ − CK(κ) and that of an energy supplier

9Dampening the effect of energy-consumption reduction, this is comparable to carbon leakage.
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by πE(K) = pΦ− CE(Φ), where the equilibrium quantities of κ and Φ depend on K
as previously discussed, and CK and CE are cost functions. Differentiating πK and πE,
we obtain

∂πK(K)
∂K/K

= Ωh,K(K)hκ + ΩK,K(K)
[
h− C′K(κ)

]
κ = Ωh,K(K)hκ, (61a)

∂πE(K)
∂K/K

= Ωp,K(K)pΦ + ΩE,K(K)
[
p− C′E(Φ)

]
Φ = Ωp,K(K)pΦ, (61b)

where the second step results from having assumed supply functions, and thus the
price to equal marginal cost. We see that, naturally, the firms in each sector benefit
from a policy that increases their respective product price, and vice versa.

To consider the total effect of the standard on welfare, we can write

W(K) =
∫ Ǩ

0
g(Ki,0)λ(Ki,0)Ui(K, p, hK)

+
∫ ∞

Ǩ
g(Ki,0)λ(Ki,0)Ui(Ki,0, p, 0)dKi,0

+ λKπK(K) + λEπE(K) (62)

where λ(K) is the welfare weight on a household’s utility, which may depend on the
capital endowment, and λK, λE are sector-specific weights on profit. These weights
can be used to evaluate energy-efficiency policy for different distributional aims. Dif-
ferentiating and using the previous results yields:

∂W(K)
∂K/K

= −
∫ Ǩ

0
g(Ki,0)λ(Ki,0) [hK− pE∗(K)]dKi,0

+ Ωh,K(K)h

[
λKκ −

∫ Ǩ

0
g(Ki,0)λ(Ki,0)K dKi,0

]

+ Ωp,K(K)p
[

λEΦ−
∫ ∞

0
g(Ki,0)λ(Ki,0)E∗(Ki,0)dKi,0

]
. (63)

Firstly, suppose that all weights are identical and standardized to 1. Then the
derivative reduces to

∂W(K)
∂K/K

= −G(Ǩ) [hK− pE∗(K)] . (64)

This is the investing households’ excess of capital costs over energy costs, and it can
be understood as the dead-weight loss of efficiency policy.

Secondly, suppose that energy is supplied from a foreign country, and that policy-
makers do not care about foreign welfare. Then λE = 0 while all other weights are 1.
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The derivative becomes

∂W(K)
∂K/K

= −G(Ǩ) [hK− pE∗(K)]−Ωp,K(K)pΦ. (65)

Thus, a marginal standard, which reduces the energy price, has a positive effect on
national welfare. As the standard is made stricter, the cost increases and is paid for
by the low-capital households who invest. However, note that energy supplied by the
world market will usually imply that the energy-price elasticity ρ is high, such that the
effect of the policy on the energy price will be low.

Thirdly, policy could possibly be pushed so far that it increases the energy price,
but this would only be in the interest of energy suppliers. By contrast, a policy that in-
creases the capital price by inducing additional capital demand and reducing energy
demand is in the interest of non-investing households and capital suppliers, poten-
tially creating political support. It is worthwhile to note the difference to a carbon tax.
A carbon tax imposes costs on all households, including those who have chosen ap-
pliances that are optimal for lower energy prices. The cost of a minimum-efficiency
standard, by contrast, is concentrated on low-capital households. This may be the out-
come of a political preference for policies that do not impose a retroactive penalty on
people who have recently invested.

Summarizing, we can note that, with positive but finite supply elasticites, a
minimum-efficiency standard as described in Proposition 2 benefits households with
efficient appliances – in particular those with appliances that are just efficient enough
for them not to invest – and capital suppliers, while it disadvantages households with
inefficient capital goods that want to invest, and energy suppliers. By Proposition 3,
we know that at some point, a standard would minimize energy demand and only the
capital suppliers would benefit from increasing the standard above this level.

5 Discussion

The present article analyzes the effects of a typical energy-efficiency policy – the in-
troduction of a minimum-efficiency standard. This policy forces investing house-
holds to choose higher energy efficiency, and keeps others from investing. Therefore,
a minimum-efficiency standard may have unintended consequences. Introducing a
marginal minimum-efficiency standard – that is, a standard that enforces energy ef-
ficiency barely above what households would choose on their own – has the conse-
quences one would expect: Increased demand for efficient capital and reduced energy
demand. However, there is a critical value of the standard that minimizes energy
demand, and increasing it further will increase energy demand again, while capital
demand is still increased.
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Heterogeneity with respect to household endowments implies that the described
policy has different distributional effects on different households. If voters under-
stand these effects, then the heterogeneity will influence their political preferences
with respect to energy-efficiency policy. This implies that further analyzing the polit-
ical economy of energy-efficiency policy, and the choice of this environmental-policy
instrument over others, is a valuable direction for future research.10 The empirical pre-
diction of the present theoretical model is that households who have high-efficiency
devices – like fuel-efficient cars, a refrigerator with a high efficiency class, an efficient
space-heating system – or who at least have recently invested into such devices, fa-
vor minimum-efficiency standards, but they care less the more efficient their device is.
Households with old, inefficient devices should oppose such policies.

However, such policy preferences require that voters understand equilibrium ef-
fects of energy efficiency. This may not be the case, given that they do not even under-
stand their own private energy savings (Allcott, 2011; Allcott and Greenstone, 2012;
Allcott et al., 2014). While the model presented in this article assumes that households
correctly anticipate their costs and benefits of investing in energy efficiency, a large
literature has recently analyzed the implications of households underestimating the
benefits of such investments, which implies an “energy-efficiency gap”.11 A simple
way to represent this in our framework is to modify the household’s condition for
investment, (23), to:

Ui(K, p, hK)− µ ≥ Ui(Ki,0, p, 0), (66)

where Ui is the function stating the true utility that the household will receive ex-post,
but due to misperceptions or undervaluation of the future, the household underesti-
mates this alternative by µ. The implication is that the capital endowment that would
induce a hosuehold to invest, Ǩ, will be lower. The effects of minimum-efficiency stan-
dards will be qualitatively the same as previously discussed: As they force investing
households out of their perceived private optimum, they make investment less attrac-
tive.

In the model presented in this article, the distribution of the endowments before
the investment decision – and before the introduction of the efficiency policy – is ex-
ogenous, and households only invest for the current period. A valuable direction for
future research is extending the model to a fully dynamic setting. Finally, environ-
mental effects have not yet been incorporated into the model. In the current model,
the efficiency standard is therefore not welfare-improving even if it reduces aggre-

10A different kind of a political-economy analysis of energy-efficiency investment is analyzed in Voss
(2015), where a government tries to influence its successor’s energy consumption by choosing the in-
vestment into energy efficiency strategically.

11For an extensive overview of different meanings of the term, see Gerarden et al. (2017).
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gate energy consumption. Integrating this aspect into the analysis suggests an explicit
comparison with Pigou taxes.

A Appendix

A.1 Unconstrained Optimization: Calculations

Differentiating (9), taking (3) into account and making use of (5) yields:

dUi(Ki, p, hKi)

dKi
=
[
B′(S∗i )Ki − p

]︸ ︷︷ ︸
=0

∂E∗(Ki, p)
∂Ki

− h + B′(S∗i )E∗(Ki, p), (A.1a)

d2Ui(Ki, p, hKi)

dK2
i

= B′(S∗i )
E∗(Ki, p)

Ki

[
1

β(S∗i )
− 2
]
< 0, (A.1b)

where the sign stems from Assumption 1. By limS→0 B′(S) = ∞, εE,K(Ki, p) < 0, and
E∗(0, p) = 0, it is always worthwhile to buy at least some capital: K◦i > 0. The optimal
amount depends on the capital price h and the energy price p, K◦(h, p). Differentiating
(10), we derive:

εK◦,h(h, p) ≡ ∂K◦(h, p)/K◦(h, p)
∂h/h

= − 1
2 + εE,p(Ki, p)

, (A.2a)

εK◦,p(h, p) ≡ ∂K◦(h, p)/K◦(h, p)
∂p/p

=
1 + εE,p(Ki, p)
2 + εE,p(Ki, p)

. (A.2b)

By Assumption 1, the denominators exceed unity, and the numerator of the second
elasticity is positive. Thus, the household invests less if capital is more expensive, but
more if energy is more expensive.

A.2 Minimum-Efficiency Standards: Calculations Without Assump-

tions About The Distribution Function

A.2.1 Price Changes on the Markets with Exogenous Price Changes on the Other
Market

Differentiating (41) yields:

Φ′(p)dp = −g(Ǩ)∆E(K, Ǩ, p)
∂Ǩ(h, p, K)

∂h
dh

+

[
G(Ǩ)

∂E∗(K, p)
∂K

− g(Ǩ)∆E(K, Ǩ, p)
∂Ǩ(h, p, K)

∂K

]
dK
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+

[
G(Ǩ)

∂E∗(K, p)
∂p

+
∫ ∞

Ǩ
g(Ki,0)

∂E∗(Ki,0, p)
∂p

dKi,0

− g(Ǩ)∆E(K, Ǩ, p)
∂Ǩ(h, p, K)

∂p

]
dp, (A.3a)

κ′(h)dh = G(Ǩ(h, p, K))dK + g(Ǩ(h, p, K))K
∂Ǩ(h, p, K)

∂h
dh

+ g(Ǩ(h, p, K))K
∂Ǩ(h, p, K)

∂p
dp + g(Ǩ(h, p, K))K

∂Ǩ(h, p, K)
∂K

dK. (A.3b)

Substitute the demand-side elasticities from (5) and (26), and the supply-side elastici-
ties and the definition of γ̃ from (42), and collect terms:

ρ(p)
G(Ǩ)

Φ(p)
E∗(K, p)

p̂ =

[
εE,K(K, p)− εǨ,K(h, p, K)γ(Ǩ)

∆E(K, Ǩ, p)
E∗(K, p)

]
K̂

+ (−εǨ,h(h, p, K))γ(Ǩ)
∆E(K, Ǩ, p)

E∗(K, p)
ĥ

−
[
−εE,p(K, p) +

∫ ∞

Ǩ(h,p,K)

g(Ki,0)

G(Ǩ)
(−εE,p(Ki,0, p))

E∗(Ki,0, p)
E∗(K, p)

dKi,0

]
p̂

− εǨ,p(h, p, K)γ(Ǩ)
∆E(K, Ǩ, p)

E∗(K, p)
p̂, (A.4a)

η(h)
G(Ǩ)

κ(h)
K

ĥ =
[
1 + εǨ,K(h, p, K)γ(Ǩ)

]
K̂ + εǨ,p(h, p, K)γ(Ǩ) p̂

− (−εǨ,h(h, p, K))γ(Ǩ)ĥ (A.4b)

where, again, the hat notation represents relative changes. Now substituting Φ(p•)
and κ(h•) from (41) and isolating p̂ and ĥ, respectively, yields (43).

A.2.2 The Equilibrium Elasticities with Isolelastic Functions

In the current section, I write down χ(K), as defined in (44), and the equilibrium elas-
ticities for the case of isoelastic functions as laid out in Section 3.3. To do so, note that
the isoelastic functions imply

E∗(Ki,0, p)
E∗(K, p)

= (K/Ki,0)
β−1

β (A.5)

which in turn implies that (44) becomes

χ(K) =
(

ρ +
1
β

)[
1 + K

β−1
β

∫ ∞

Ǩ

g(Ki,0)

G(Ǩ)
K
− β−1

β

i,0 dKi,0

]
. (A.6)

Now denote the numerator of (45a) by Nh, the numerator of (45b) by Np, and their
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denominator by Θ, and use (36), (38), and (47). This yields:

Nh(K) = εǨ,pγ(Ǩ)
[

εE,K +
∆E(K, Ǩ, p)

E∗(K)

]
+ χ(K)

[
1 + εǨ,Kγ(Ǩ)

]
=

(
β− 1

β

)2 m(K) [m(K)− 1]
β−1

β m(K) + 1
γ(Ǩ) + χ(K)

1− m(K)− 1
β−1

β m(K) + 1
γ(Ǩ)

 , (A.7a)

Np(K) = −εǨ,hγ(Ǩ)
[

εE,K +
∆E(K, Ǩ, p)

E∗(K)

]
+ η

[
εE,K − εǨ,Kγ(Ǩ)

∆E(K, Ǩ, p)
E∗(K)

]

=
β− 1

β

m(K) [m(K)− 1]
β−1

β m(K) + 1
γ(Ǩ)− η

1− m(K) [m(K)− 1]
β−1

β m(K) + 1
γ(Ǩ)

 , (A.7b)

Θ(K) = χ(K)η − χ(K)εǨ,hγ(Ǩ) + ηεǨ,pγ(Ǩ)
∆E(K, Ǩ, p)

E∗(K)

= χ(K)η +
m(K)

β−1
β m(K) + 1

γ(Ǩ)

[
χ(K) + η

(
β− 1

β

)2

m(K)

]
, (A.7c)

where χ(K) is stated in (A.6). Then,

Ωh,K(K) =

(
β−1

β

)2 m(K)[m(K)−1]
β−1

β m(K)+1
γ(Ǩ) + χ(K)

[
1− m(K)−1

β−1
β m(K)+1

γ(Ǩ)
]

χ(K)η + m(K)
β−1

β m(K)+1
γ(Ǩ)

[
χ(K) + η

(
β−1

β

)2
m(K)

] , (A.8a)

Ωp,K(K) =

β−1
β

[
m(K)[m(K)−1]

β−1
β m(K)+1

γ(Ǩ)− η

[
1− m(K)[m(K)−1]

β−1
β m(K)+1

γ(Ǩ)
]]

χ(K)η + m(K)
β−1

β m(K)+1
γ(Ǩ)

[
χ(K) + η

(
β−1

β

)2
m(K)

] , (A.8b)

ΩK,K(K) = ηΩh,K(K), (A.8c)

ΩE,K(K) = ρΩp,K(K). (A.8d)

A.2.3 Proof of Lemma 1

For m(K) from (47), such that we employ the elasticities from (45), we have

m′(K)K =

[
2β− 1

β
+ Ωh,K(K)−

β− 1
β

Ωp,K(K)
]

m(K). (A.9)

Note that

1 + Ωh,K(K)−
β− 1

β
Ωp,K(K)
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=

χ(K)η + χ(K)
[

1 + γ(Ǩ)
β−1

β m(K)+1

]
+ η

(
β−1

β

)2
[

1 + γ(Ǩ)m(K)
β−1

β m(K)+1

]
χ(K)η + m(K)

β−1
β m(K)+1

γ(Ǩ)
[

χ(K) + η
(

β−1
β

)2
m(K)

] > 0. (A.10)

Thus,

m′(K)K−
[

β− 1
β

m(K) + 1
]
=

[
1 + Ωh,K(K)−

β− 1
β

Ωp,K(K)
]

m(K)− 1

=

(m(K)− 1) χ(K)η + m(K)
[

χ(K) + η
(

β−1
β

)2
]

χ(K)η + m(K)
β−1

β m(K)+1
γ(Ǩ)

[
χ(K) + η

(
β−1

β

)2
m(K)

] > 0. (A.11)

The inequality follows from m(K◦) = 1 by (35) and from continuity for K > K◦. This
proves Lemma 1.

A.3 Isoelastic Distribution Function

We assume that household capital follows a isoelastic distribution (see Definition 2).12

This assumption is apparently unrealistic if it is meant to represent a long-run distri-
bution of capital because. The problem is not so much the upper bound of K = X−1/γ

(we can standardize prices and the other functions to make that fit). However, we
have seen that everybody owning less than a certain amount of capital would invest,
and everybody would choose the same amount, such that after investment, we would
always have a left-truncated distribution (no matter what its further properties look
like) and a discontinuous spike. Even if immediately after investment there is some
shock damaging all capital in a random manner, such that the distribution becomes
continuous, there will still be a bump. Nonetheless, for the moment I assume the isoe-
lastic distribution for tractability. Its properties are as follows:

Lemma A.1 (Isoelastic Distribution: Properties). With an isoelastic distribution, the den-
sity function is

g(K) =
∂G(K)

∂K
=

γXKγ−1 for K ∈
[
0, X−1/γ

]
,

0 else ,
(A.12a)

12The distribution is also called a Generalized Uniform Distribution (Lee, 2000), but other authors use
the term differently (Balakrishnan and Nevzorov, 2003; Jayakumar and Sankaran, 2016), such that I use
the term “isoelastic distribution” for clarity.
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and the elasticity of the share of households with capital below K with respect to K is

γ(K) =

γ for K ∈
[
0, X−1/γ

]
,

0 else.
(A.12b)

The mean and the variance are

E(K) =
∫ 1

0
g(Ki,0)Ki,0 dKi,0 =

γ

1 + γ
X, (A.12c)

V(K) =
∫ 1

0
g(Ki,0) [Ki,0 − E(K)]2 dKi,0 = Xγ

(
1

2 + γ
+ Xγ

X− 2

(1 + γ)2

)
. (A.12d)

Note that no other distribution function can be isoelastic:

Lemma A.2. If γ(K) is constant for K ∈ [Kmin, Kmax], then the form of the distribution
function of K must be the one from Definition 2.

Proof. Solving ∂G(K)
∂K

K
G(K) = γ (with a constant right-hand side) yields G(K) = KγX for

an arbitrary X. For a distribution function with bounds Kmin, Kmax, it must hold that
G(Kmax) = Kγ

maxX = 1, which implies Kmax = X−1/γ. Additionally, it must hold that
G(Kmin) = Kγ

minX = 0, which implies Kmin = 0.

A.4 Minimum-Efficiency Standards: Calculations For The Isoelastic

Distribution Function

A.4.1 Substituting the Isoelastic Distribution Function

If additional to assuming isoelastic utility and supply functions we assume that distri-
bution function is isoelastic as defined in Definition 2, (A.6) becomes

χ(K) =
(

ρ +
1
β

)
×


[
1 + γ

(
K
Ǩ

)γ
ln
(

X−
1
γ /Ǩ

)]
for γ = β−1

β ,[
1 + γ

γ− β−1
β

(
K
Ǩ

) β−1
β

[(
X−

1
γ /Ǩ

)γ− β−1
β − 1

]]
for γ 6= β−1

β

(A.13)

with

(
K
Ǩ

) β−1
β

=
β− 1

β
m(K) + 1, (A.14a)

X−
1
γ

Ǩ
=

X−
1
γ

K

[
β− 1

β
m(K) + 1

] β
β−1

(A.14b)
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by (34). Note that Ǩ < X−
1
γ by (54), because X−

1
γ is the highest value of the distribu-

tion. Thus, it is immediately visible that χ(K) > 0 for γ = β−1
β . For γ 6= β−1

β , either

γ > β−1
β , such that first term in the square-bracketed difference is greater than 1 and

the fraction with which it is multiplied is positive, or γ < β−1
β , such that the opposite

holds in both cases and the whole term is again positive.
The elasticities stated in (A.8) remain identical except that γ(Ǩ) = γ.

A.4.2 Proof of Lemma 3

Taking (36) and (47) into account, the equilibrium effect of a change of K on Ǩ is:

dǨ•(K)/Ǩ
K̂

= εǨ,K + εǨ,hΩh,K(K) + εǨ,pΩp,K(K)

= −

[
1 + Ωh,K(K)−

β−1
β Ωp,K(K)

]
m(K)− 1

β−1
β m(K) + 1= 1− m′(K)K

β−1
β m(K) + 1

 < 0 (A.15)

by (A.10). Explicitly, inserting (A.10) into (A.15),

dǨ•(K)/Ǩ
K̂

= −

[m(K)−1]
β−1

β m(K)+1
χ(K)η + m(K)

β−1
β m(K)+1

[
χ(K) + η

(
β−1

β

)2
]

χ(K)η + m(K)
β−1

β m(K)+1
γ(Ǩ)

[
χ(K) + η

(
β−1

β

)2
m(K)

] . (A.16)

The numerator is always positive. Thus, dǨ(h,p,K)/Ǩ
K̂

can only go to zero if the denomi-
nator goes to infinity. Note that

d
dK

m(K)
β−1

β m(K) + 1
=

m′(K)(
β−1

β m(K) + 1
)2 > 0, (A.17a)

d
dK

m(K)− 1
β−1

β m(K) + 1
=

(
1 + β−1

β

)
m′(K)(

β−1
β m(K) + 1

)2 > 0, (A.17b)

lim
K→∞

m(K)
β−1

β m(K) + 1
= lim

K→∞

m(K)− 1
β−1

β m(K) + 1
=

β

β− 1
. (A.17c)
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Employing an isoelastic distribution function (γ(Ǩ) = γ) and using Lemma 1,

lim
K→∞

dǨ•(K)/Ǩ
K̂

= − lim
K→∞

β
β−1 χ(K)η + β

β−1

[
χ(K) + η

(
β−1

β

)2
]

χ(K)η + β
β−1 γ

[
χ(K) + η

(
β−1

β

)2
m(K)

]

= − lim
K→∞

(1 + η) χ(K)
m(K)

χ(K)
m(K)

β−1
β η + γ

[
χ(K)
m(K) + η

(
β−1

β

)2
] . (A.18)

In order to continue, we characterize the limit behavior of χ(K)/m(K). Firstly, we
analyze the effect of a change of K on χ. Differentiating (A.13), using

d

(K
Ǩ

) β−1
β

 =
β− 1

β

(
K
Ǩ

) β−1
β
(

1− dǨ/Ǩ
K̂

)
︸ ︷︷ ︸

>0

K̂. (A.19)

and simplifying, we obtain

χ′(K)K =

(
ρ +

1
β

)
× γ×

(
K
Ǩ

) β−1
β

×



[
γ
(

1− dǨ/Ǩ
K̂

)
ln
(

X−
1
γ /Ǩ

)
− dǨ/Ǩ

K̂

]
for γ = β−1

β ,[
β−1

β

γ− β−1
β

(
1− dǨ/Ǩ

K̂

) [(
X−

1
γ /Ǩ

)γ− β−1
β − 1

]

−
(

X−
1
γ /Ǩ

)γ− β−1
β dǨ/Ǩ

K̂

]
for γ 6= β−1

β .

(A.20)

The sign for the first case is immediately clear by (A.15). For the second case, note
that γ > β−1

β implies, again, that the square-bracketed term is positive, and vice versa.
Thus, the reasoning explaining the sign of (A.13) applies a forteriori. Using (A.14a),
we can write

χ′(K)K =

(
ρ +

1
β

)
× γ×m′(K)K

×


[
γ ln

(
X−

1
γ /Ǩ

)
+ 1− γm(K)+1

m′(K)K

]
for γ = β−1

β ,{
β−1

β

γ− β−1
β

[(
X−

1
γ /Ǩ

)γ− β−1
β − 1

]
+
(

X−
1
γ /Ǩ

)γ− β−1
β

[
1−

β−1
β m(K)+1
m′(K)K

]}
for γ 6= β−1

β .

(A.21)
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We derive a lower bound for this by substituting the limiting case from (48a),
m′(K)K = β−1

β m(K) + 1. Substituting (A.14a) then yields:

χ′(K)K >

(
ρ +

1
β

)
β− 1

β
×


γ
(

K
Ǩ

)γ
ln
(

X−
1
γ /Ǩ

)
for γ = β−1

β ,

γ

γ− β−1
β

(
K
Ǩ

) β−1
β

[(
X−

1
γ /Ǩ

)γ− β−1
β − 1

]
for γ 6= β−1

β

(A.22)

which is positive and increasing by (48a) and (A.15). Note that if χ′(K)K were a pos-
itive constant, χ(K) would go to infinity as K → ∞. Thus, this holds for (A.21) a
forteriori:

lim
K→∞

χ(K) = ∞. (A.23)

Using (A.14) and Lemma 1, we obtain

lim
K→∞

χ(K)
m(K)

=

(
ρ +

1
β

)
× β− 1

β
×


γ limK→∞ ln

(
X−

1
γ /Ǩ

)
for γ = β−1

β ,

γ

γ− β−1
β

limK→∞

(
X−

1
γ /Ǩ

)γ− β−1
β

for γ 6= β−1
β .

(A.24)

Given the negative sign of (A.15), there are two seemingly possible cases. The first
is that Ǩ goes to some positive constant. Then limK→∞

χ(K)
m(K) ≡ a is also some positive

constant. But then,

lim
K→∞

dǨ•(K)/Ǩ
K̂

= − (1 + η)a

a β−1
β η + γ

[
a + η

(
β−1

β

)2
] (A.25)

implies that limK→∞ Ǩ = 0, which is a contradiction. Thus, consider limK→∞ Ǩ = 0,
which by (A.24) implies

lim
K→∞

χ(K)
m(K)

= ∞. (A.26)

Using this in (A.18) yields

lim
K→∞

dǨ•(K)/Ǩ
K̂

= − 1 + η
β−1

β η + γ
. (A.27)

Note that this is identical to the limit of the partial elasticity for η → ∞; cf. (36c). This
proves Lemma 3.
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A.4.3 The Equilibrium Elasticities with Isolelastic Functions: Analysis

For a marginal standard, (A.8) reduces to

Ωh,K(K◦) =
χ(K◦)

χ(K◦)η + β
2β−1 γ(Ǩ)

[
χ(K◦) + η

(
β−1

β

)2
] ≥ 0, (A.28a)

Ωp,K(K◦) =
− β−1

β η

χ(K◦)η + β
2β−1 γ(Ǩ)

[
χ(K◦) + η

(
β−1

β

)2
] ≤ 0, (A.28b)

ΩK,K(K◦) = ηΩh,K(K◦) ≥ 0, (A.28c)

ΩE,K(K◦) = ρΩp,K(K◦) ≤ 0 (A.28d)

where the inequalities are strict if supply elasticities are positive and finite. But this
merely confirms Proposition 2. Turning to the analysis of stricter standards, I again
assume an isoelastic distribution of capital endowments.

I first consider Ωh,K(K). As the derivatives of (A.7), even for γ(Ǩ) = γ, are quite
involved, I focus on the limiting behavior. From (A.8a), we have

lim
K→∞

Ωh,K(K) = lim
K→∞

m(K) β−1
β γ + χ(K)

[
1− β

β−1 γ
]

χ(K)η + β
β−1 γ

[
χ(K) + η

(
β−1

β

)2
m(K)

]

= lim
K→∞

β−1
β γ + χ(K)

m(K)

[
1− β

β−1 γ
]

χ(K)
m(K)η + β

β−1 γ

[
χ(K)
m(K) + η

(
β−1

β

)2
]

=
1− β

β−1 γ

η + β
β−1 γ

=

β−1
β − γ

β−1
β η + γ

(A.29)

where the last line follows from (A.26). Thus, the elasticity remains positive if β−1
β > γ,

goes to zero if β−1
β = γ, and goes to a negative value if β−1

β < γ. In the last case, it
crosses zero at which (A.7a) is zero, which can be written as(

β− 1
β

)2

m(K) [m(K)− 1] γ +

[(
β− 1

β
− γ

)
m(K) + 1 + γ

]
χ(K) = 0. (A.30)

The characterization of ΩK,K(K) then follows from its definition in (45).
I now consider Ωp,K(K). By (A.28b), it is negative for K = K◦. Note that by (A.7)

and (A.17), we have N′p(K) > 0, which is necessary for the elasticity to become pos-
itive. I calculate the critical value of K at which this is indeed the case. From (A.7b),
Np(K) = 0 for the value given in (57). Thus, for η > 0, Ωp,K(K) is negative for a
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marginal standard, decreases in absolute terms as the standard is made stricter, and
becomes zero for some value of K (that accordingly minimizes the energy price and/or
the energy consumption). Finally, it asymptotically goes to zero for K → ∞: From
(A.8b), we have, by (A.24),

lim
K→∞

Ωp,K(K) = lim
K→∞

β−1
β (1 + η) m(K)−1

β−1
β m(K)+1

γ

χ(K)
m(K)η + m(K)

β−1
β m(K)+1

γ

[
χ(K)
m(K) + η

(
β−1

β

)2
]

= lim
K→∞

(1 + η) γ
χ(K)
m(K)

[
η + β

β−1 γ
] = 0. (A.31)

The characterization of ΩE,K(K) then follows from its definition in (45).
For the last sentence of the proposition, note that rearranging (56) yields:

∆E(K, Ǩ, p)
E∗(K)

= −
εǨ,hγ− η

γ
(

εǨ,h + ηεǨ,K

) εE,K (A.32)

Substituting into the left-hand side of (55) yields:

εǨ,pγ

εE,K −
εǨ,hγ− η

γ
(

εǨ,h + ηεǨ,K

) εE,K

+ χ(K)
[
1 + εǨ,Kγ

]

=

(
ηεǨ,pεE,K

εǨ,h + ηεǨ,K
+ χ(K)

) [
1 + εǨ,Kγ

]
(A.33)

In the fraction, both elasticities in the denominator and εE,K are negative. Thus, the
round-bracketed term is positive. By χ(K) > 0, the sign of the whole elasticity at this
point depends on the square-bracketed term. Using (56), we write:

sgn
[
1 + εǨ,Kγ

]∣∣∣
Ωp,K(K)=ΩE,K(K)=0

= sgn

−εǨ,hγ + η

η
∆E(K,Ǩ,p)

E∗(K)

[
εE,K +

∆E(K, Ǩ, p)
E∗(K)

] > 0,

(A.34)

where the sign follows from Lemma 2.
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