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Abstract 

We examine how different renewable energy support policies affect innovation in solar and 
wind power technologies. The analysis is conducted using policy and patent data for a large 
sample of 194 countries and territories. The policy data allows distinguishing two 
dimensions of regulation, i.e. design and intensity, and their effects on innovation. The 
patent data is based on the new Y02E system and covers the period 1990 to 2016 with the 
more recent years of both strong increases and declines in patenting activity. The results 
show that, first, more intense portfolios of renewable energy support policies increase 
patenting in solar- and wind-power-related technologies. Second, this inducement effect is 
the strongest for public RD&D programs, targets, and fiscal incentives. In contrast to 
previous studies, this paper finds a consistently positive impact of feed-in tariffs and does 
not detect technology-specific differences in the effectiveness of this policy instrument. 
Third, the positive effect on patenting activity increases significantly over time with an 
increase in the duration of the implemented RD&D programs and targets.  

 

Keywords: Innovation; environmental regulation; renewable energy technologies; solar 
technologies; wind technologies 
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1 Introduction 

Recent data shows a remarkable growth of renewables over the last decade. In 2013 the 
share of renewables in capacity additions to the global power generation was for the first 
time higher than the share of fossil fuels. In 2017 renewables accounted for even 70% of net 
additions to the global power generation capacity. This development is not limited to OECD 
countries. In the same year, China alone added more solar PV capacity than was installed 
worldwide in 2015. Among the different technologies, solar PV led the way, accounting for 
55% of the newly installed capacity, followed by wind with 29% and hydro power with 11%.  
Overall, the global renewable energy capacity grew from 923 GW in 2004 to 2,195 GW in 
2017, with the growth rates of solar and wind being considerably higher than those of hydro 
and other renewables.1 Hence, renewable energy technologies developed from niche into 
mainstream technologies. 

The strong growth of the renewable energy capacities over the last decade has been 
accompanied by a significant decrease in the costs of electricity production from renewable 
energy technologies. For example, the levelized costs of electricity (LCOE) from utility-scale 
photovoltaic projects declined by 73% between 2010 and 2017. By 2020 it is expected that 
all renewable power generation technologies, which are in commercial use, will have a 
comparable cost range as fossil fuel fired plants (IRENA 2018).2 The decrease in costs is 
mainly driven by two factors. First, many governments have adopted more environmental 
regulations. This concerns both a more stringent regulation of carbon-based technologies, 
e.g. in the form of taxes or tradable emission permit systems, and massive subsidies for the 
development and diffusion of alternative power generation technologies, e.g. by supporting 
R&D or using feed-in tariffs.3 Second, innovation and knowledge spillovers, for instance 
from more experienced developers, have decreased the levelized costs of electricity.  

Both factors, i.e. regulation and innovation, are not independent from each other. According 
to the conventional view on environmental policy, a stricter regulation harms the 
competitiveness by increasing the costs of production (Dechezleprêtre and Sato 2017). 
Porter (1991) challenged this view with the hypothesis that a stricter regulation increases 
the competitiveness. The main mechanism is innovation. A stricter and properly designed 
regulation induces both product and process innovations and creates innovation offsets that 
compensate for the additional costs of compliance (Porter and van der Linde 1995).4 

                                            
1
 All numbers are determined from the Renewables Global Status Report of REN21 (2018). 

2
 Contrary to that, as of 2012 only solar and onshore wind power installations in prime locations had levelized 

costs of electricity that allowed them to compete with energy from fossil fuels (Diederich 2016).  
3
 The rationale for the massive government interventions and regulation in the field of energy technologies is 

usually justified by multiple market failures (Rennings et al. 2000, Jaffe et al. 2005). On the one hand, energy 
generation by fossil fuels causes significant negative externalities and environmental damages, which are only 
partially internalized and put renewable energy technologies at a competitive disadvantage. On the other 
hand, investments into innovation and the diffusion of environmentally friendly technologies are faced with 
huge uncertainties and positive externalities like knowledge spillovers, which are only partially internalized by 
intellectual property rights. Further arguments for government interventions are based on the goal of gaining 
access to domestic resources as well as independence from the volatile fossil fuel markets.  
4
 The issue whether this compensation constitutes a partial or a full offset for the additional costs of 

compliance has resulted in an intensive academic debate and different interpretations of the Porter 
Hypothesis. For an overview of the interpretations and related empirical research see e.g. Ambec et al. (2013) 
and Cohen and Tubb (2018).  
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According to the Porter hypothesis, a stricter regulation creates win-win-situations. This 
allows both to achieve emission reductions and to increase the competitiveness, especially 
of the renewable energy equipment industry.5 An important precondition to reap the 
benefits from such a win-win effect is, however, that the products of the domestic 
renewable energy equipment industry are competitive in the world market. Innovation 
plays a decisive role in this context, because more advanced technologies are associated 
with lower levelized costs of electricity. Only those countries, which are at the forefront of 
the technological development in solar, wind, and other types of renewables, have a 
realistic chance to become major exporters in this field. 

In this paper we want to analyze the relationship between environmental regulation and 
innovation in the renewable energy industry focusing on the regulation design, i.e. the 
question which policy instrument has the strongest innovation effect. Kemp and Pontoglio 
(2011) described three challenges for the related empirical research. The first is the 
difficulty to measure environmental policy, especially the design aspects of policy 
instruments. The second concerns methodological problems to measure innovation. The 
third is related to the problem that many relevant factors cannot be observed, e.g. business 
expectations, institutional constraints, and innovation capabilities.  

According to the literature review of Popp et al. (2010), early empirical studies on the 
environmental policy-innovation nexus were constrained by the data availability. This 
concerned both the data on the innovation activity and the regulation stringency that was 
usually measured using survey-based pollution abatement costs. The results of these studies 
were mixed, i.e. both negative and positive effects on innovation were estimated 
(Brunnermeier and Cohen 2003; Jaffe and Palmer 1997; Lanjouw and Mody 1996). Early 
research also did not find clear evidence for the expectation that market-based instruments 
have a greater positive effect on innovation and invention than command-and-control 
policies (Newell et al. 1999; Popp 2003).  

The research on the relationship between environmental regulation and innovation in 
renewable energy technologies, which only emerged during the last decade, shares some 
commonalities: The studies analyze either single countries or a smaller number of countries, 
namely mostly OECD or EU countries (Böhringer et al. 2017; Johnstone et al. 2010; Nicolli 
and Vona 2016); they tend to concentrate on solar and/or wind energy technologies (Braun 
et al. 2010; Kim et al. 2017; Schleich et al. 2017); and their data does often not include the 
more recent years with both a sharp rise and decline in patenting activity (Kim et al. 2017; 
Nesta et al. 2014; Nicolli and Vona 2016).  

Johnstone et al. (2010) were among the first to explore the mechanisms of regulation-
induced innovation in renewable energy technologies. They analyzed the effectiveness of 
five renewable energy support policies in 25 OECD countries between 1978 and 2003. Their 
results suggest that environmental regulation has a positive impact on innovation in 
general, but the effects of the policy instruments are different across technologies. For 
instance, feed-in tariffs increase the patenting activity for high-cost technologies like solar 
PV, but have a negative effect for wind power technologies. Braun et al. (2010) explored the 
role of three policy instruments and knowledge spillovers on solar and wind energy 

                                            
5
 According to the terminology of Jaffe and Palmer (1997), this describes the “narrowly strong” version of the 

Porter Hypothesis: Certain types of environmental regulation create a dynamic comparative advantage for 
some industries, i.e. the domestic environmental technology industry, by inducing early mover advantages.  
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innovations of 21 OECD member states between 1978 and 2004. They found that national 
spillovers foster innovation, whereas international spillovers have negligible effects.6  

More recently, Nesta et al. (2014)  investigated the effect of different environmental 
policies, proxied by an index, and of electricity market deregulation on innovation in seven 
renewables technologies for 27 OECD countries from 1976 to 2007. They found that a more 
competitive environment enhances the positive effects of renewable energy policies.  Nicolli 
and Vona (2016) estimated a similar result for EU countries using alternative proxies for the 
policies for the period 1980 to 2007. Costantini et al. (2015) focused on biofuel technologies 
in 36 countries between 1990 and 2006. They found a positive impact of both demand-pull 
and technology-push policies, but differences in the effect of first generation and advanced 
generation technologies. Kim et al. (2017) added to the literature by analyzing the effects of 
five policies on an elaborate technological change system, which was decomposed into the  
three stages invention, innovation, and diffusion. Their study covered solar and wind energy 
policies in 16 OECD countries from 1991 to 2007. Schleich et al. (2017) focused on four 
policy instruments and their effects on wind energy technologies in twelve OECD countries 
over the period 1991 to 2011. They found that out of the four instruments only targets and 
public R&D fostered the patenting activity. 

Cantner et al. (2016) and Böhringer et al. (2017) both used data on Germany only. While 
Cantner et al. (2016) analyzed the effect of different policy instruments on technology 
networks in solar and wind power technologies between 1980 and 2011, Böhringer et al. 
(2017) studied the effect of feed-in tariffs on innovation in seven different renewable 
energy technologies for the period 1990 to 2014. Their results support the positive 
innovation hypothesis, but interestingly the switch to a considerably more expensive policy 
after the year 2000 did not imply a significantly stronger innovation effect.  

This paper builds on the existing research in order to analyze the regulation-induced 
innovation effects in solar and wind power technologies. We contribute to the literature in 
three main ways. First, our analysis extends the policy dimension. We compiled a detailed 
regulation database, which documents the implementation status of common renewable 
energy support policies. This allows us to analyze the effect of eleven different policy 
instruments and to enlarge the design dimension by including the duration that a policy 
instrument has been adopted. Hence, in the sense of Porter (1991), we can address the 
question whether the choice of the policy instrument matters. Second, we use the novel 
Y02E patent classification system to identify innovation activity related to solar and wind 
energy. So far, the large majority of studies relied on the international patent classification 
(IPC) (Johnstone et al. 2010; Nesta et al. 2014; Schleich et al. 2017), which, however, only 
partly allows a reliable identification of patent applications on renewable energy 
technologies.7 Thus, this paper addresses the first two challenges of empirical studies 

                                            
6
 The role of knowledge spillovers on the diffusion of innovation in energy technologies without a special 

reference to policy differences is analyzed in several further articles. For example, Verdolini and Galeotti 
(2011) focus on the role of knowledge stocks, Dekker et al. (2012) on the role of international environmental 
agreements, Peters et al. (2012) on R&D funding for photovoltaic modules, and Dechezleprêtre et al. (2013) on 
the institutional environment including intellectual property regimes and trade restrictions. While Brunel 
(2018) also contains the effect of regulation on trade activities, Verdolini and Bosetti (2017) use an index of 
policy instruments and analyze the effect on technology transfer. 
7
 A partly-related interesting recent exception are Costantini et al. (2017), who combined the Y02E patent 

classification with technologies in the residential sector to analyze the effect on energy efficiency innovation. 
They looked at 23 OECD countries between 1990 and 2010. Their model distinguished between three policy 
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highlighted by Kemp and Pontoglio (2011). Third, we extend the time and country 
dimension. Apart from Böhringer et al.’s (2017) study on Germany, no recent paper has 
analyzed data covering both the exponential growth in the renewables innovation activity 
between 2006 and 2011, and the drastic decline in patent applications thereafter. 
Moreover, research has usually concentrated on OECD or EU countries. We analyze patent 
data from 1990 until 2016 for a large set of 194 countries and territories, including countries 
like China, Taiwan, and India that have become increasingly important players in the field of 
renewable energy technologies. 

The remainder is structured as follows. Section 2 introduces the main variables, i.e. the 
renewable energy policy instruments and the innovation measures. In section 3 the 
environmental policy-innovation model is described. Section 4 presents and discusses the 
results. Section 5 concludes. 

 
2 Policy and innovation measures 

2.1 Environmental regulation 

Detailed and reliable data on environmental regulation is one of the two main ingredients 
for research on regulation-induced innovation in solar and wind power technologies. Recent 
overviews of the measures used for environmental and climate regulation are e.g. provided 
in Brunel and Levinson (2016) and Althammer and Hille (2016). In this study, we measure 
environmental regulation along two dimensions, namely regulation design and regulation 
intensity. 

To analyze the influence of the policy design, we collected comprehensive binary data on 
the implementation status of renewable energy support policies. This approach was e.g. 
used in Carley et al. (2017), Johnstone et al. (2010), and Nicolli and Vona (2016) for several 
policy instruments. Yet, compared to the prior literature in the field, we extend both the 
country coverage and the variety of considered policy instruments. Our database includes 
information on eleven types of policy instruments in 194 countries and territories from 1974 
onwards. Table 1 gives an overview of the different renewable energy policies. The data was 
obtained from the Renewables Global Status Reports of REN21 (2005-2014b) and their 
Renewables Interactive Map (REN21 2015). Complementary data sources are the Joint 
Policies and Measures Database of the International Energy Agency (IEA) and the 
International Renewable Energy Agency (IRENA) (IEA and IRENA 2015) as well as the IEA 
Energy Technology RD&D Statistics of the OECD (2015). In order to facilitate the reasoning 
of the analysis, to account for the limited space, and to reduce the complexity of the 
robustness tests, we additionally group the eleven individual instruments into six policy 
clusters. This is done on the basis of similarities in the economic mechanisms of the 
instruments. The considered clusters are targets, RD&D support, quotas, feed-in-tariffs, 
fiscal incentives, and carbon trading.  

The second dimension of environmental regulation is the regulation intensity. Recent 
research on renewable energy policies has emphasized the value of including a continuous 
indicator measuring the stringency of the different policy instruments (Carley and Miller 
2012; Jenner et al. 2013). Such an indicator is usually constructed with the help of specific 

                                                                                                                                        
dimensions, namely demand-pull policies (energy taxation), technology-push policy (public R&D efforts), and 
an indicator for soft instruments like information and voluntary approaches. 
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information on the implemented policy instruments, such as the tariff size, cost allocation, 
or contract duration. However, this requires that the policy design of a particular instrument 
type is sufficiently similar across jurisdictions, which is not the case for our heterogeneous 
set of countries. Thus, similar to other international studies in the field, we are not able to 
attribute regulation-induced changes in innovation to specific alterations in the regulation 
design, e.g. to reduced feed-in tariffs like in Germany. 

Table 1: Taxonomy of policy clusters in renewable energy support 

Policy cluster Policy instrument Basic support mechanism 

Targets Renewable energy targets or strategies   

RD&D support Research, development and deployment programs Technology-push 

Quotas 
Renewable energy quotas with certificate trading Market-pull    

(Technology-specific) Renewable energy quotas without certificate trading 

Feed-in tariffs 

Fixed-rate or premium feed-in tariffs (incl. energy 
production payments) Market-pull    

(Technology-specific) Net metering 

Public competitive bidding (Tendering) 

Fiscal incentives 

Tax credits (Investment or production) 
Market-pull    
(Technology-specific) 

Tax reduction (Carbon, energy, sales, VAT of other taxes) 

Public spending, capital subsidies and low-cost loans 

Carbon trading Greenhouse gas certificate trading systems 
Market-pull    
(Technology-neutral) 

 

Instead we capture the regulation intensity in two ways. First, we take a similar approach as 
in Walz et al. (2011) and include the renewable energies’ share in the total electricity 
generation. This indicator is a very direct measure of the stringency of countries’ renewable 
energy support policies. Compared to other common proxies of regulation intensity, such as 
pollution abatement and control expenditures or composite indexes (e.g. Johnstone et al. 
2010), renewable energy shares have the advantage that they are available for most 
countries and easy to interpret and compare. In addition, they are not or only partly 
affected by multidimensionality and simultaneity issues, which are common in the 
regulation intensity measurement (Brunel and Levinson 2016).  

Second, the regulation intensity is measured by the policy duration, i.e. the number of years 
a certain policy instrument has been implemented. On the one hand, the effect of the policy 
duration reflects the stability of the regulatory environment. The longer an instrument is in 
place, the more market participants can rely on the support policy and the stronger may be 
the effect on innovation. On the other hand, the effect of the policy duration also depends 
on the type of policy used, i.e. command-and-control policies versus market-based policies. 
With command-and-control policies, introducing a new instrument provides strong 
incentives for innovation, but when regulatory compliance is achieved, these incentives are 
reduced. Therefore, with no change in stringency, it is expected that the effect of policy 
declines over time. Only incentive based regulations, like emission taxes or permits with a 
“double burden” (tax payments, permit expenditures), are expected to provide long-run 
incentives to innovate. Through innovations the double burden may be reduced over time 
to reach the so-called property of dynamic efficiency. 
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Figure 1 shows the number of countries with implemented renewable energy support 
policies for each cluster in the years 1990, 2002, 2008, and 2013.8 A more detailed overview 
on the instrument level can be found in Figure B1 in Appendix B. Both figures clearly show 
differences in the policy adoption rates. Widespread policy instruments are renewable 
energy targets and strategies as well as the different types of fiscal incentives and feed-in 
tariffs. During the considered time period, the dissemination rates of those policy clusters 
are systematically higher than the ones of instruments from the carbon trading and quotas 
clusters. We see two reasons for the low adoption rates of the latter policies. First, 
instruments from these clusters are more complex and difficult to implement than, for 
example, fiscal incentives. Second, carbon trading and quotas support the build-up of 
renewable energy capacities by limiting the use of conventional energy sources or by 
introducing binding requirements on utility companies. Governments may be more 
reluctant to adopt such instruments in contrast to incentive-based measures like feed-in 
tariffs. 

Figure 1: Number of countries with renewable energy policies by instrument cluster and 
yeara, b 

 
 

a
 Sources: Self prepared using IEA and IRENA (2015), OECD (2015), and REN21 (2005-2015). 

b
 Data on RD&D programs is almost exclusively available for OECD countries. Hence, the numbers might 

understate the actual dissemination of RD&D programs. 
 

Moreover, Figures 1 and B1 indicate that the speed at which the different instruments have 
become adopted across countries varies considerably. In 2013 renewable energy targets 
and strategies were the instrument with the highest dissemination rate. Governments in 
146 countries used this policy. However, the corresponding low number of countries in the 
years 1990 and 2002 suggest that structured support for renewable energy is a relatively 
recent phenomenon. With some time delay to the coordinated renewables support, the 
adoption rate of fiscal incentives, i.e. tax reductions as well as public spending and subsidies, 
and of the more advanced instruments from the feed-in tariff cluster, i.e. tendering and net 

                                            
8
 The policies are shown for these years as the results, which are presented in section 4, are based consistently 

on regulatory data for the period 1989 to 2013. The reasons are that the policy variables are lagged by one 
year and that the patent counts are calculated not only in contemporaneous terms but also as two- and three-
year moving averages (See Table D2 in Appendix D).  
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metering, started growing exponentially. Contrary to that, the adoption rate of the more 
traditional policy instruments, such as RD&D programs and classical fixed rate and premium 
feed-in tariffs, grew rather steadily. In particular the former were already used on a wider 
scale during the 1990s. Hence, a large share of the RD&D programs have been implemented 
for relatively long time periods, which may enable inventions with a lengthy development 
process.9 

 
2.2 Patents 

Besides environmental regulation, innovation data is the second key ingredient for research 
on regulation-induced renewable energy innovations. We follow the literature in this field 
and measure countries’ innovation activity by the number of patent applications for 
inventions that generate electricity from solar radiation or the force of wind (Böhringer et 
al. 2017; Johnstone et al. 2010; Nesta et al. 2014; Peters et al. 2012). 

Patent data is preferred to other measures of innovation, especially R&D expenditures, as it 
is output-oriented, widely available, information rich, highly standardized, comprehensive, 
and technology-oriented (Dernis et al. 2002; Johnstone et al. 2010; Nagaoka et al. 2010). 
However, while patent data is a direct measure of patenting activity, it is an imperfect 
measure of innovation. Common drawbacks are its highly skewed value distribution 
(Scherer and Harhoff 2000), differences in the propensity to patent across countries and 
sectors (Popp et al. 2011) and over time (Dernis et al. 2002), home bias (Dernis et al. 2002), 
and strategic non-patenting (Arundel 2001).  

Irrespective of their severity, the negative effects of these drawbacks on the estimation 
accuracy are largely manageable. Harhoff et al. (2003) showed that counting patent families 
instead of single patents corrects for the skew in the value distribution. Popp (2002) 
suggests to count total patents in order to control for differences in the propensity to patent 
across countries as well as for changes over time. Finally, a common remedy for the home 
bias is to use patent databases which cover multiple patent authorities (Dernis et al. 2002). 

In this paper we identify relevant patent applications using the new Y02E patent 
classification system. The Y02E scheme is regarded as the most accurate classification 
system of climate change mitigation patents currently available and is increasingly becoming 
the respective international standard (Calel and Dechezleprêtre 2016).10 Nonetheless, the 
large majority of prior research relied on the IPC scheme (Johnstone et al. 2010; Nesta et al. 
2014; Schleich et al. 2017). The technology classes of the IPC scheme are only partly 
adequate for analyses of climate change mitigation technologies in general and renewable 
energies in specific. For instance, while the IPC system has a distinct class for wind energy 
technologies, namely F03D (Wind motors), the list of relevant categories for solar energy 
technologies is rather long and fragmented. A number of those IPC classes cannot be 

                                            
9
 Diederich (2016) analyzed the relationship between the adoption rate of the policy instruments at hand and 

countries’ GDP per capita, energy  intensity, primary energy balance, and regional association. He observed 
that, in particular, higher-income and energy-importing countries from Europe and North America were the 
first ones to implement support policies. Later, countries with lower levels of development followed, yet their 
portfolios of support policies tended to be less intensive.  
10

 The Y02E classification scheme was developed by a consortium of experts from the European Patent Office 
(EPO), the International Center for Trade and Sustainable Development (ICTSD), and the United Nations 
Environment Programme (UNEP). 
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assigned unambiguously, because they relate to both solar cells and other types of 
semiconductors (Diederich 2016). Thus, for solar energy and also other climate change 
mitigation technologies there is a considerable risk of committing type I and II errors, i.e. to 
falsely or incompletely select patent applications. As the Y02E system was developed 
specifically for the reliable identification of patents on “technologies which control, reduce, 
or prevent greenhouse gas emissions of anthropogenic origin, as set forth by the Kyoto 
Protocol” (Veefkind et al. 2012), the risk of type I and II errors is reduced to a minimum 
(Hurtado-Albir et al. 2013; Isaka 2013; Veefkind et al. 2012). The specific technology classes 
that are relevant for our analysis are Y02E 10/5 for solar energy and Y02E 10/7 for wind 
energy. 

Diederich (2016) determined the number of patent applications for solar and wind energy 
technologies for the period 1980 to 2011 using the IPC codes applied in previous studies and 
compared the numbers to the ones using the Y02E classes. He showed that the estimates 
are fairly similar for wind energy patents. However, the corresponding estimates for solar 
energy patents vary between 104 thousand and 3.4 million for alternative sets of IPC 
classes, reflecting the significant level of ambiguity in the patent identification. 

Our data on patent applications is obtained from the European Patent Office’s worldwide 
patent statistical database PATSTAT (EPO 2018). PATSTAT is regarded as the largest open 
access patent database (Nagaoka et al. 2010). The spring 2018 version includes roughly 80 
million patent applications from well over 200 countries and territories (EPO 2018). This 
wide geographical coverage helps to assure that home bias is not an issue in our analysis. 

Figure 2: Development of patenting activity between 1990 and 2016a, b 

 
a
 Source: Self prepared using EPO(2018). 

b
 Only patent applications for which applicant information are available are displayed. 
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The development of total patent applications as well as renewable energy patent 
applications using the Y02E scheme is shown in Figure 2 for the period 1990 to 2016. Apart 
from minor slowdowns in the patenting activity during the recessions in the early 1990s, 
2000s, and 2008/09, the number of total annual patent applications grew steadily until 
2012. From the 2012 peak until 2015 total patenting fell by 9.7%. Contrary to that, the 
annual patent applications in solar and wind energy tended to grow exponentially. In 
particular after the years 2005 and 2006 the speed of technological change increased 
considerably. Given that the implementation rates of renewable energy policies strongly 
increased during the same period, this may provide a first indication that environmental 
regulation has been a main driver of innovation in solar and wind energy technologies. 
However, from the 2011 peak until 2015, the patent applications on renewable energy 
technologies declined much stronger than total patenting, namely by 66.6% for solar energy 
and 54.0% for wind energy. While the adoption rate of renewable energy policies continued 
to rise during the period, these policies were predominantly implemented in late adopter 
countries with a low patenting activity. In only few cases the policy mixes of countries with a 
high patenting activity, which are listed in Table 2, were supplemented with additional 
policy instruments. 

Moreover, for every year Figure 2 displays higher patent counts for solar energy than for 
wind energy. This is in line with the estimates in Diederich (2016). Yet, we would be cautious 
in interpreting the different number of patent applications as an indication for a higher 
innovativeness in the solar energy industry. Both the complexity of patenting eligibility and 
the propensity to patent may vary between the industries. 

Table 2 shows the distribution of renewable energy patent applications across countries. As 
can be seen, the patenting activity has been highly concentrated. The four countries with 
the highest aggregate number of innovations in solar and wind energy, i.e. the United 
States, Japan, Germany, and South Korea, account for roughly 50% of the total patent 
applications between 1980 and 2016. These countries are not only the ones with the highest 
patenting activity in solar and wind energy, but tend to be innovative in many technological 
fields. Hence, they are also the four countries with the highest patenting activity in general. 
Technology-wise, the United States and Japan are by far the two countries with the highest 
aggregate number of patent applications in solar energy. Similarly, Germany and the United 
States are the dominant innovators in wind energy technologies. South Korea and Denmark 
come in third place for solar and wind energy respectively. The decline in the number of 
renewables patent applications after 2011 has been mainly driven by the innovation activity 
in these five leading countries. This indicates that solar and wind energy technologies have 
become more mature and that developing products, which generate electricity with 
significantly lower costs, has been increasingly more difficult. 

If the patenting activity in renewables is analyzed in relative terms, i.e. set relative to the 
country’s overall number of patent applications, the picture is somewhat different. For solar 
energy technologies South Korea, Japan, and Taiwan are the countries that are most 
innovative relative to their overall patenting output. Specifically, 10.7 out of 1,000 patent 
applications of South Korean residents are related to solar energy. For Japan and Taiwan the 
corresponding ratios are 8.6 and 7.5. For wind energy technologies the values are even 
higher for Denmark, the forerunner in the field, and Spain. For every 1,000 patent 
applications 49.9 and 16.2 are wind energy patents in Denmark and Spain respectively. 
Germany, the dominant country in wind energy patenting in absolute terms, comes in third 
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place with a ratio of 5.4. An interesting similarity is that these countries with the highest 
share of patent applications in solar and wind energy are also among the nations, which 
already adopted renewables support policies in the early 1990s. 

Despite the high concentration of patent applications in few countries, our data shows that 
renewable energy patents have been filed in a growing number of countries and also 
increasingly in multiple countries. This highlights the importance of analyzing an extended 
set of countries. The growing internationalization process started for the wind energy 
technologies, where patents were already filed in 51 different countries in 1987. Solar 
energy picked up with a delay and reached 53 countries only in the year 1999. The 
milestone of 100 countries was passed in 2008 for wind energy and 2010 for solar energy. A 
reason for the higher values for wind energy may be the consistently lower levelized costs of 
electricity that have allowed a more independent growth from renewable energy support 
policies. 

Table 2: Renewable energy patent applications between 1980 and 2016 by countrya
 

  Number of renewable energy patents   
Number of renewable energy 

patents per 1,000 patents 

Country Solar Wind Total 
 

Solar Wind Total 

United States 67,642 22,948 90,590 (17.5%) 
 

5.3 1.8 7.1 

Japan 53,109 10,515 63,624 (12.3%) 
 

8.6 1.7 10.3 

Germany 27,422 27,942 55,364 (10.7%) 
 

5.3 5.4 10.7 

Korea, South 37,796 11,076 48,872 (9.4%) 
 

10.7 3.1 13.8 

China 6,174 6,426 12,600 (2.4%) 
 

2.2 2.3 4.5 

Denmark 264 11,898 12,162 (2.3%) 
 

1.1 49.8 50.9 

Taiwan 9,937 2,008 11,945 (2.3%) 
 

7.5 1.5 9.1 

France 7,785 3,365 11,150 (2.2%) 
 

4.0 1.7 5.8 

United Kingdom 4,565 4,690 9,255 (1.8%) 
 

3.6 3.7 7.2 

Spain 1,573 5,264 6,837 (1.3%) 
 

4.8 16.2 21.1 

Netherlands 2,802 2,010 4,812 (0.9%) 
 

3.7 2.7 6.4 

Switzerland 3,414 1,019 4,433 (0.9%) 
 

4.1 1.2 5.4 

Canada 2,223 1,952 4,175 (0.8%) 
 

3.3 2.9 6.1 

Italy 2,320 1,762 4,082 (0.8%) 
 

2.8 2.2 5.0 

Israel 1,916 593 2,509 (0.5%) 
 

7.0 2.2 9.2 

Sweden 714 1,689 2,403 (0.5%) 
 

1.1 2.6 3.7 

Australia 1,792 606 2,398 (0.5%) 
 

6.5 2.2 8.7 

Russia 528 1,761 2,289 (0.4%) 
 

1.1 3.7 4.8 

Belgium 1,336 767 2,103 (0.4%) 
 

5.5 3.1 8.6 

Austria 1,200 901 2,101 (0.4%) 
 

4.1 3.1 7.2 

Other 5,305 11,216 16,521 (3.2%) 
 

1.5 3.1 4.6 

Unknown 97,113 50,416 147,529 (28.5%) 
 

3.3 1.7 5.1 

Total 336,930 180,824 517,754 (100.0%)   4.6 2.5 7.0 
a
 Source: Self prepared using EPO (2018); Notes: Only patent applications for which applicant 

information are available are displayed. Patent applications that were filed by applicants from several 
countries are equally considered for the patent counts of the respective countries.  

 
2.3 Knowledge stock 

A further aspect of innovation data are knowledge stocks. It is uncommon to develop new 
inventions entirely from scratch. Instead developers rather build on the existing knowledge 
and advance it further. Thus, access to a larger knowledge stock tends to facilitate the 
invention of new technologies. The strong growth of renewables patenting activity shown in 
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Figure 2 until 2011, which increased with the growing aggregate number of innovations, 
seems to confirm this notion. 

Popp (2002, 2005) and Popp et al. (2011) developed the standard approach to construct 
knowledge stocks in environmental models. Following their approach we calculate the 
knowledge stock KSTOCKcount_Y at time t for technology _Y by aggregating annual patent 
applications count_Y and adjusting the values by the rate of decay α1 and the rate of 
diffusion α2:11 

𝐾𝑆𝑇𝑂𝐶𝐾𝑐𝑜𝑢𝑛𝑡_𝑌𝑡
= ∑ ℯ−𝛼1(𝑠)(1 − ℯ−𝛼2(𝑠+1))𝑡

𝑠=0 𝑐𝑜𝑢𝑛𝑡_𝑌𝑡−𝑠    (1) 

As introduced before, patent data is characterized by a skewed value distribution with many 
low- and few high-value patents. In order to measure the value of individual patents, several 
researchers have suggested using data on the patent family size, i.e. the number of 
countries in which a patent has been filed (Harhoff et al. 2003; Lanjouw and Schankerman 
2004; van Zeebroeck 2011). Popp et al. (2011) developed this idea further and proposed two 
filters, namely to include only patent applications filed in several countries (family size > 1) 
and to weight patent counts by the family size. The four resulting alternative patent counts 
are: first, the simple count (SC), where every patent family is counted once; second, the 
family count (FC), where only patent families for which patents are filed in several countries 
are counted; third, the size-weighted simple count (SCw), where every patent family is 
weighted by its family size; and fourth, the size-weighted family count (FCw), where patent 
families for which patents are filed in several countries are weighted by their family size. 
While Popp et al. (2011) considered each of the patent count approaches to calculate 
knowledge stocks, they favored the size-weighted family count as it fitted their sample best. 
We will also select the preferred patent count approach on the basis of the statistical fit 
with our data and provide robustness checks in section 4.2. 

 
3 Research model 

In order to analyze how different renewable energy support policies affect innovation in 
wind and solar power technologies, several specifications are estimated. The different 
models can be summarized in equations (2) and (3). In equation (2) we regress patents on 
the policy clusters: 

𝑆𝐶_𝑌𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽0 + ∑ 𝛽𝑐𝐶_𝐸𝑐,𝑖,𝑡−1 + ∑ 𝛽𝑐𝑇(𝐶_𝐸𝑐,𝑖,𝑡−1 ∗ 𝐿𝐸𝑁𝐺𝑇𝐻𝐶_𝐸𝑐,𝑖,𝑡−1
)  (2) 

+𝛽1𝐾𝑆𝑇𝑂𝐶𝐾𝑆𝐶_𝑌𝑖,𝑡−1
+ 𝛽2𝑇𝑂𝑇𝑃𝐴𝑇𝑖,𝑡−1 + 𝛽3 𝐺𝐿𝑂𝐵𝐶𝐴𝑃𝑡−1 

+𝛽4𝐷𝑂𝑀𝑆𝐻𝐴𝑅𝐸_𝑌𝑖,𝑡−1 + 𝜀𝑖,𝑡 
 

In equation (3) we regress patents on the individual policy instruments: 

𝑆𝐶_𝑌𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽0 + ∑ 𝛽𝑝𝐼_𝐸𝑝,𝑖,𝑡−1 + ∑ 𝛽𝑝𝑇 (𝐼_𝐸𝑝,𝑖,𝑡−1 ∗ 𝐿𝐸𝑁𝐺𝑇𝐻𝐼_𝐸𝑝,𝑖,𝑡−1
)  (3) 

+𝛽1𝐾𝑆𝑇𝑂𝐶𝐾𝑆𝐶_𝑌𝑖,𝑡−1
+ 𝛽2𝑇𝑂𝑇𝑃𝐴𝑇𝑖,𝑡−1 + 𝛽3 𝐺𝐿𝑂𝐵𝐶𝐴𝑃𝑡−1 

+𝛽4𝐷𝑂𝑀𝑆𝐻𝐴𝑅𝐸_𝑌𝑖,𝑡−1 + 𝜀𝑖,𝑡 
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 The rate of decay captures the speed at which older patents become obsolete and the rate of diffusion 
captures time delays until knowledge becomes available to other inventors. In line with prior studies, we use a 
rate of decay of 0.10 and a rate of diffusion of 0.25 (Lovely and Popp 2011; Popp 2003; Popp et al. 2011). The 
rates imply a lag structure peaking after four years, which lies between the three and five years regularly 
suggested in the R&D literature (Griliches 1995). 
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The indices i and t represent the respective country and year. The indices c and p reflect the 
numbering of the policy clusters and instruments. In both equations the simple count of 
patent applications SC_Y for technology _Y filed by domestic residents with a national or 
international patent office is the regressand.12 Following Johnstone et al. (2010), we 
estimate the regulation-innovation nexus for each renewable energy technology individually 
and in aggregation. Accordingly, SC_Y represents either patent applications in solar (SC_S), 
wind (SC_W), or both technologies (SC_SW). 

The main group of explanatory variables are the measures of environmental regulation 
design and intensity. To measure the regulation design we use two approaches. On the one 
hand, we use the clustered instruments, where ΣC_E reflects a set of binary variables 
denoting whether or not an instrument of a policy cluster has been implemented in a 
certain country and year. The six policy clusters are targets (C_TARGETS), RD&D support 
(C_RDD), quotas (C_QUOTAS), feed-in tariffs (C_FIT), fiscal incentives (C_FISCAL), and carbon 
trading (C_TRADING). On the other hand, we use the individual regulation instruments, 
where ΣI_E reflects a set of binary variables indicating whether or not a specific instrument 
has been implemented in a respective country and year. The eleven instrument types are 
renewable energy strategies and targets (I_TARG), research, development, and deployment 
programs (I_RDD), renewable energy quotas with certificate trading (I_QUOTWT) and 
without certificate trading (I_QUOTWOT), fixed rate or premium feed-in tariffs (I_FIT), net 
metering (I_NETMET), public competitive bidding (I_TEND), investment and production tax 
credits (I_TAXC), tax reductions (I_TAXR), public spending, capital subsidies, and low-cost 
loans (I_PUB), and greenhouse gas certificate trading (I_TRAD). 

The effect of the regulation intensity is captured in two ways. In the first set of estimations, 
intensity is only measured by the share of solar and wind in the domestic electricity 
generation DOMSHARE_Y, where _Y stands for the technology-specific shares of solar 
power (_S), wind power (_W), or both (_SW). In a second set of estimations, the regulation 
intensity is also measured by the duration a certain policy has been implemented 
(LENGTHC_E and LENGTHI_E).  

As introduced in section 2.1, the incentives of command-and-control policies and market-
based policies are expected to differ with regards to both their initial effects on innovation 
in the year of implementation and their changes in the effects over time. Therefore, in 
equations (2) and (3) both effects are separated for the different policy clusters and 
instruments. On the one hand, the direct terms of the policy design covariates (C_E and I_E) 
can be interpreted as intercept dummies. In other words, their coefficients ßc and ßp provide 
information on the base effects. On the other hand, the policy duration variables are 
interacted with the corresponding policy design binaries (C_E*LENGTHC_E and 
I_E*LENGTHI_E) and the interaction terms can be interpreted as slope dummies. Hence, the 
coefficients ßcT and ßpT help analyzing how the policy effects evolve over time. 
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 We have selected the patent count approach based on the statistical fit with our sample. Examples of results 
using different patent counts are shown in columns (1), (1c), (1d), and (1e) in Table D1 in Appendix D. As can 
be seen, the Chi² statistics of the unweighted count models (SC and FC) are generally larger than the ones of 
the weighted count models (SCw and FCw). While the same holds true for the Chi² statistics of the family 
counts (FC and FCw) compared to those of the simple counts (SC and SCw), the family count models partly 
experience convergence problems in the maximum likelihood estimation when more detailed specifications 
are estimated. Despite of this, our findings generally remain unchanged if alternative patent counts are used. 
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In order to control for the effects of other innovation drivers than environmental regulation, 
we include three control variables proposed in the literature. The first control is the 
domestic knowledge stock calculated using simple counts KSTOCKSC_Y, where _Y is again a 
placeholder for solar (_S), wind (_W), or both (_SW). Popp (2005) shows that the access to 
existing knowledge has a positive effect on research activities and the success of future 
inventions. Thus, we expect that patenting in solar and wind power technologies increases 
with the size of the respective knowledge stock.  

As a second non-regulatory innovation driver the general propensity to patent needs to be 
controlled for. Earlier research showed that the rate at which newly developed innovations 
are patented varies across countries, sectors, and over time (Cohen et al. 2002; Dernis et al. 
2002; Levin et al. 1987). Fortunately, when analyzing two closely related renewable energy 
industries or a single technology, sector-specific differences in the propensity to patent are 
less of a concern. In order to account for the country- and time-specific differences, we 
apply the reasoning of Popp (2002) and include the total number of patent applications by 
domestic applicants TOTPAT. 

A third control variable is the year-by-year change in the global electricity generation 
capacity GLOBCAP from all energy technologies. The change in the installed capacity 
controls for the incentives of the solar and wind power industry to innovate because of 
general market opportunities for power plants manufacturers (Peters et al. 2012).  

Tables C1 and C2 in Appendix C provide an overview of all variables, the respective data 
sources, and the regular descriptive statistics. In general, the dataset is strongly balanced. 
The few missing values, which are deleted listwise, are mostly the result of the breakup of 
Yugoslavia and changes in the national states in the Eastern Bloc in the early 1990s.    

To account for the discrete nature of the patent data, the models are estimated using a 
fixed effect negative binomial model for panel data with robust standard errors (Hausman 
et al. 1984). Count data models, like the negative binomial model and Poisson model, have 
been commonly applied in the field (Böhringer et al. 2017; Johnstone et al. 2010; Nicolli and 
Vona 2016; Schleich et al. 2017). A necessary condition for using the Poisson model is that 
the dependent variables follow a Poisson distribution that requires equidispersion. This is 
not the case for our patent counts. Instead the descriptive statistics in Table C2 in Appendix 
C indicate that the dependent variables are overdispersed, i.e. their variances are larger 
than the means. In such cases, the use of the negative binomial model is preferred 
(Wooldridge 2002). Moreover, the negative binomial model is generally more efficient 
(Blundell et al. 1995; Lawless 1987). 

Endogeneity due to both reverse causality and omitted variables can be a major issue in the 
estimation of the policy-induced effects on innovation (Nesta et al. 2014). As our main 
interest is to analyze the heterogeneous effect of different policies, preferred methods like 
propensity score matching, which was e.g. implemented in Calel and Dechezleprêtre (2016), 
and an instrumental variable approach with out-of-sample instruments are not feasible 
given the high number of potentially endogenous policies (Nicolli and Vona 2016). Instead, 
endogeneity concerns are often addressed in this research field by lagging the explanatory 
variables and/or using fixed effects (Böhringer et al. 2017; Costantini et al. 2015; Schleich et 
al. 2017). We follow an analogous approach by lagging all explanatory variables by one 
period and including country and time fixed effects, i.e. αi and αt respectively. The 
covariates are also lagged as the effects of the environmental policy and control variables 
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are not contemporaneous. Moreover, the fixed effects control for unobserved 
heterogeneity across countries and over time. Nonetheless, parts of the endogeneity 
related to the environmental regulation variables may still be persistent, e.g. if an omitted 
variable varies on the country-time dimension.  

 
4 Results and discussion 

4.1 Effects of policy design and duration 

While Table 3 shows the regression results for equation (2) when clustered policy 
instruments are analyzed, Table 4 presents the output for equation (3) when the individual 
policy instruments are used. For each of the approaches and the different technologies, two 
specifications are estimated. In the base specification the policy design covariates are 
included but not yet their policy duration. In the extended specification the interaction 
effects of the policy duration with the respective policy design variables are added in order 
to analyze if the policy effects change over time.  

Starting with the base specification of the clustered policy instruments in Table 3 in columns 
(1) to (3), it can be seen that the coefficient estimates of all but one of the policy design 
variables are positive and significant. In other words, all renewable energy support policies 
seem to foster the patenting activity, hence, meriting the implementation of more intensive 
portfolios of renewable energy support policies.  

Even though the importance of the different policy clusters partly varies across 
technologies, RD&D programs (C_RDD) are estimated to have the strongest positive effect 
on innovation in both solar and wind power. On average, the presence of RD&D programs 
increases patent applications by 87% (SC_SW), 145% (SC_S), and 67% (SC_W).13 Fiscal 
incentives (C_FISCAL) are also identified as an important driver of patenting activity, 
especially of inventions related to solar power. An explanation for the strong, positive effect 
may be that instruments from this cluster tend to reduce the business risk of the inventors 
as their mechanisms are very tangible. For instance, government purchase programs, capital 
subsidies, and subsidized loans entail a relatively certain and immediate benefit for their 
recipients. The third important policy cluster are targets (C_TARGETS). This rather strong 
effect comes as a surprise, because announcing targets is often not combined with concrete 
supply-side or demand-side policies. The effect could reflect a forward-looking response of 
firms to new regulations, expecting that concrete policies will follow the announcement of 
the target (Albirizio et al. 2017; Hille and Möbius 2018). Furthermore, the coefficient may 
capture remaining policy effects that are not explained by the other policy clusters. 

In columns (4) to (6) the policy duration interaction effects with the policy design variables 
are included. The estimations show that the strongest effect of the policy duration can be 
found for targets (C_TARGETS_LENGHT) as well as RD&D programs (C_RDD_LENGHT). The 
longer these measures are used, the stronger is the effect on innovation in solar and wind 
power. The duration effect of the other policy clusters is either positive or negative, but not 
significant. Overall, the effects seem to be comparatively small. For example, while the 
sheer presence of RD&D programs (C_RDD) is estimated to increase average patent 
applications for solar and wind energy by 49% in column (4), an additional year that the 
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 As the fixed effect negative binomial model is an exponential model, the expected percentage effect on 
patent application can be obtained by calculating (e

β
-1)*100. 
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programs have been implemented (C_RDD_LENGHT) increases the corresponding patent 
applications by 4.9%. Only after 9 years the duration effect outweighs the base effect. 
However, given that RD&D programs are expected to take time until they reach full 
efficiency and that in many countries renewables support policies have only been 
implemented on a wider scale during the last years of our sample, the low average values 
appear reasonable. 

Table 3: The effect of regulation on innovation using policy clusters 

Dependent variable (1) (2) (3) (4) (5) (6) 

Variable SC_SWt SC_St SC_Wt SC_SWt SC_St SC_Wt 

C_TARGETS 0.406*** 0.332*** 0.483*** 0.251** 0.116 0.396*** 

 
(0.085) (0.096) (0.102) (0.111) (0.108) (0.136) 

C_RDD 0.626*** 0.898*** 0.513*** 0.397*** 0.621*** 0.263* 

 
(0.118) (0.166) (0.134) (0.136) (0.211) (0.157) 

C_QUOTAS 0.234** 0.284** 0.150 0.201* 0.248** 0,073 

 
(0.110) (0.121) (0.110) (0.113) (0.125) (0.150) 

C_FIT 0.291*** 0.198* 0.320*** 0.252** 0.172 0.245** 

 
(0.097) (0.111) (0.096) (0.103) (0.135) (0.108) 

C_FISCAL 0.398*** 0.575*** 0.317** 0.320** 0.448** 0.229** 

 
(0.131) (0.129) (0.123) (0.124) (0.184) (0.106) 

C_TRADING 0.396*** 0.433*** 0.325** 0.218 0.174 0.220 

 
(0.118) (0.145) (0.138) (0.165) (0.180) (0.138) 

C_TARGETS_LENGTH 
   

0.047** 0.068** 0.046** 

    
(0.018) (0.034) (0.022) 

C_RDD_LENGTH 
   

0.048*** 0.050*** 0.047*** 

    
(0.014) (0.017) (0.011) 

C_QUOTAS_LENGTH 
   

-0,033 -0,047 -0,031 

    
(0,027) (0,049) (0,025) 

C_FIT_LENGTH 
   

0,002 -0,011 0,019 

    
(0,024) (0,030) (0,024) 

C_FISCAL_LENGTH 
   

-0,013 0,004 -0,030 

    
(0,026) (0,041) (0,025) 

C_TRADING_LENGTH 
   

0,015 0,024 -0,007 

    
(0,026) (0,047) (0,031) 

KSTOCKSC_Y
a
 0,001 -0,001 0,011 -0,002 -0,007 -0,001 

 
(0,006) (0,010) (0,007) (0,006) (0,007) (0,019) 

TOTPAT 0.004* 0.005** 0.004** 0,004 0,004 0,004 

 
(0,002) (0,002) (0,002) (0,008) (0,006) (0,003) 

GLOBCAP 0.178*** 0.176*** 0.162*** 0.180*** 0.179*** 0.157*** 

 
(0,028) (0,036) (0,033) (0,026) (0,037) (0,034) 

DOMSHARE_Y
a
 0,007 0,057 0,008 -0,015 -0,083 -0,005 

 
(0,011) (0,078) (0,012) (0,013) (0,071) (0,018) 

Constant -1.785*** -2.358*** -1.776*** -1.772*** -2.347*** -1.751*** 

  (0.163) (0.162) (0.151) (0.159) (0.157) (0.143) 

Observations 4,693 4,693 4,693 4,693 4,693 4,693 

Wald Chi² 824.6*** 608.0*** 837.3*** 688.0*** 861.6*** 848.0*** 

Notes: *** p<0.01, ** p<0.05, * p<0.10; robust standard errors in parentheses 
a
 The Y in the variables KSTOCKSC_Y and DOMSHARE_Y is a placeholder for the data of SW (Solar and wind 

energy), S (Solar energy), and W (Wind energy), which is used in the respective columns. 
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Table 4: The effect of regulation on innovation using policy instruments 

Dependent variable (7) (8) (9) (10) (11) (12) 
  Variable SC_SWt SC_St SC_Wt SC_SWt SC_St SC_Wt 
  I_TARGETS 0.406*** 0.387*** 0.494*** 0.136 0,064 0.282*    C_TARGETS 

 
(0.105) (0.129) (0.102) (0.172) (0.161) (0.171) 

  I_RDD 0.640*** 0.916*** 0.527*** 0.382*** 0.620*** 0.244*    C_RDD 

 
(0.140) (0.173) (0.142) (0.148) (0.156) (0.127) 

  I_QUOTWT 0.198 0.252 0,085 0.151 -0,089 -0,023   
 

 
(0.192) (0.265) (0.218) (0.216) (0.419) (0.272)    C_QUOTAS 

I_QUOTWOT 0.220* 0.313** 0.152 0.224 0.298* 0.122   
 

 
(0.127) (0.132) (0.133) (0.174) (0.160) (0.185) 

  I_FIT 0.231*** 0.177* 0.253*** 0.223*** 0.172 0.223**   
 

 
(0,081) (0,099) (0,077) (0,086) (0,124) (0,093)   

 I_NETMET 0,013 -0,023 -0,039 -0,079 -0,096 -0.200    C_FIT 

 
(0,148) (0,226) (0,139) (0,184) (0,258) (0,171)   

 I_TENDERING 0.131 0,049 0.177 0,064 0,042 0.102   
 

 
(0,163) (0,178) (0,164) (0,192) (0,202) (0,211) 

  I_TAXC 0.175 0.116 0.168 0.346* 0.347 0.318   
 

 
(0,113) (0,160) (0,106) (0,206) (0,232) (0,196)   

 I_TAXR 0,006 0.126 -0,060 -0,018 0,000 -0,037    C_FISCAL 

 
(0,113) (0,140) (0,128) (0,100) (0,142) (0,105)   

 I_PUB 0.380*** 0.422*** 0.314** 0.217* 0.270* 0.157   
 

 
(0,123) (0,132) (0,124) (0,115) (0,143) (0,106) 

  I_TRADING 0.313*** 0.335** 0.260 0.110 -0,007 0.124    C_TRADING 

 
(0,105) (0,139) (0,160) (0,145) (0,177) (0,159) 

  I_TARGETS_LENGTH 
   

0.059** 0.077*** 0.068** 
  

    
(0,030) (0,029) (0,029) 

  I_RDD_LENGTH 
   

0.054*** 0.052*** 0.053*** 
  

    
(0,017) (0,019) (0,013) 

  I_QUOTWT_LENGTH 
   

0,072 0,077 0,081 
  

    
(0,110) (0,118) (0,080) 

  I_QUOTWOT_LENGTH 
   

-0.082** -0.093** -0.065* 
  

    
(0,036) (0,045) (0,039) 

  I_FIT_LENGTH 
   

-0,006 -0,016 0,003 
  

    
(0,020) (0,025) (0,025) 

  I_NETMET_LENGTH 
   

0,034 0,013 0,005 
  

    
(0,047) (0,073) (0,041) 

  I_TENDERING_LENGTH 
   

0,007 0,003 0,002 
  

    
(0,044) (0,056) (0,049) 

  I_TAXC_LENGTH 
   

-0,020 -0,026 -0,016 
  

    
(0,066) (0,066) (0,059) 

  I_TAXR_LENGTH 
   

-0,032 -0,013 -0,044 
  

    
(0,036) (0,041) (0,027) 

  I_PUB_LENGTH 
   

0,026 0,041 0,008 
  

    
(0,030) (0,035) (0,028) 

  I_TRADING_LENGTH 
   

0,051 0,064 0,015 
  

    
(0,043) (0,060) (0,050) 

  KSTOCKSC_Y
a
 0,000 -0,003 0,007 -0,004 -0,008 -0,006 

  

 
(0,003) (0,010) (0,019) (0,004) (0,007) (0,024) 

  TOTPAT 0.004*** 0.004** 0.004* 0,004 0,004 0,003 
    (0,002) (0,002) (0,002) (0,005) (0,003) (0,003) 
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Table 4 continued: 

Dependent variable (7) (8) (9) (10) (11) (12) 

Variable SC_SWt SC_St SC_Wt SC_SWt SC_St SC_Wt 

GLOBCAP 0.189*** 0.185*** 0.175*** 0.182*** 0.176*** 0.162*** 

 
(0,032) (0,038) (0,035) (0,032) (0,036) (0,035) 

DOMSHARE_Y
a
 0,010 0,054 0,011 -0,031 -0,138 -0,005 

 
(0,012) (0,051) (0,019) (0,023) (0,096) (0,025) 

Constant -1.793*** -2.361*** -1.788*** -1.741*** -2.294*** -1.737*** 

  (0.148) (0.149) (0.171) (0.158) (0.156) (0.140) 

Observations 4,693 4,693 4,693 4,693 4,693 4,693 

Wald Chi² 1,395*** 1,539*** 699.3*** 713.5*** 1,892*** 1,300*** 

Notes: *** p<0.01, ** p<0.05, * p<0.10; robust standard errors in parentheses 
a
 The Y in the variables KSTOCKSC_Y and DOMSHARE_Y is a placeholder for the data of SW 

(Solar and wind energy), S (Solar energy), and W (Wind energy), which is used in the 
respective columns. 

 

Concerning the other covariates, only the coefficients of the change in the global generation 
capacity (GLOBCAP) are highly significant in all columns. The positive coefficient estimates 
are similar for the different technologies, indicating that changes in the general market 
opportunities for power plant manufacturers influence the innovation activities in the solar 
and wind power industry to a similar extent. Moreover, the effect of the total domestic 
patents (TOTPAT) is significantly positive in columns (1) to (3) and again there are no 
substantial technology-specific differences. The two covariates KSTOCKSC_Y and 
DOMSHARE_Y are insignificant, but robust across all specifications. 

The regression results for equation (3) in Table 4 allow analyzing the innovation effects of 
the individual policy instruments. In general, the coefficient estimates of instruments that 
are equivalent to a cluster, i.e. I_TARGETS, I_RDD, and I_TRADING, support the robustness 
of the cluster estimates. More interesting are clusters that encompass more than one 
instrument. Our analysis of columns (7) to (9) shows that within these clusters, the positive 
and significant cluster effect found in the corresponding columns (1) to (3) in Table 3 is 
driven by only one instrument.  

Within the quota cluster, this instrument is quotas without trading (I_QUOTWOT). The lack 
of significance of the other policy instrument (I_QUOTWT) indicates that such measures do 
not encourage innovation in solar and wind power. We see at least two explanations for the 
insignificant effect. First, tradable renewable certificates (TRCs or RECs) tend to favor the 
rather mature and, thus, price competitive technologies like hydro, geothermal, and 
biomass. Second, technology-specific quotas give limited incentives to innovate. 

Within the feed-in tariff cluster, patenting applications are driven by classical fixed rate and 
premium tariffs (I_FIT). The more advanced instruments, i.e. net metering (I_NETMET) and 
public competitive bidding (I_TEND), are estimated to have no significant effect on 
innovation. From a theoretical view this is surprising as a major goal of these advanced 
instruments is to decrease the levelized costs of electricity by imposing competitive 
pressures on energy equipment manufacturers. One possible explanation is that the more 
advanced instruments have predominantly been implemented fairly late, namely during or 
after the years of peak innovative activity. Contrary to that, fixed rate and premium tariffs 
had often already been in place before the years 2005 and 2006, when the speed of 
technological development in the solar and wind industry started growing exponentially. 
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Within the fiscal incentives cluster, the main drivers of innovation are public spending, 
capital subsidies, and low-cost loans (I_PUB). These immediate government interventions 
support the innovation activities of renewable energy equipment manufactures through 
very concrete mechanisms, allowing them to get a relatively reliable estimate of the 
business implications. Once granted, the measures entail immediate payments by the 
government or at least a certain market success. Contrary to that, tax reductions (I_TAXR) 
and tax credits (I_TAXC) are rather indirect and less projectable, as they depend on the 
firm’s actual market penetration. 

When comparing the magnitude of the corresponding policy design coefficients for solar 
and wind power in Tables 3 and 4, one further characteristic becomes evident. While the 
coefficients of both technologies point in the same direction, the ones in the solar-specific 
regressions tend to be larger. In other words, the policy clusters and instruments show 
stronger innovation effects for solar power. Two exceptions are targets (C_TARGETS and 
I_TARGETS) and feed-in tariffs (C_FIT and I_FIT), where the coefficients for wind power are 
larger. Such a difference cannot be observed for the control variables. However, one should 
be cautious to directly interpret this characteristic as an indication for technology-specific 
differences in the effectiveness of policy measures. The difference may as well be a mere 
consequence of the overall higher number of patent applications for solar power, which we 
found in the descriptive section 2.2, or of differences in the propensity to patent across 
technologies. 

Last, the policy duration effects of the individual instruments in columns (10) to (12) in Table 
4 show similar pattern as those of the clustered instruments in Table 3. The strongest 
positive effects are found for targets (I_TARGETS_LENGHT) and RD&D programs 
(I_RDD_LENGHT). Their positive influence on the patenting activity is estimated to increase 
with every additional year that the instrument is implemented. While the duration effects 
are still relatively small, the size of the coefficients of both instruments slightly increased in 
comparison to the respective coefficients using policy clusters. The coefficients of the other 
instruments are predominantly not significant and in the case of quotas without certificate 
trading (I_QUOTWOT_LENGTH) significantly negative. The later result may be explained by 
our prior expectation that the incentives to innovate of policy instruments without a double 
burden decrease over time. In that regard, the negative coefficient can also be interpreted 
as evidence for the narrow Porter hypothesis, according to which only suitably designed 
policies can sustainably foster innovation. Renewable energy quotas without trading do not 
seem to provide these long-run incentives. 

 
4.2 Robustness tests 

To ensure the robustness of our results, we conduct several tests. First, we estimate the 
models for alternative sets of countries. As can be seen in columns (1a) and (1b) in Table D1 
in Appendix D, the estimates are relatively consistent if G20 countries or OECD members, 
which are analyzed in many previous studies, are considered instead of the whole set of 
countries in column (1). Yet, there are some differences mainly in the magnitude of the 
coefficients. For instance, for G20 countries the global electricity generation capacity seems 
to be of higher importance than for OECD countries. Following the argumentation in 
Diederich (2016), we suggest that this may be explained by the different types of innovation 
that residents of these countries tend to patent. Technologically advanced firms in OECD 
countries may concentrate on the development of inventions at the technological forefront, 
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which often requires access to a large knowledge stock.  On the contrary, G20 member 
states, which comprise a number of developing countries, may, on average, be more 
concerned about the development of application-related innovation that depends on the 
applied know-how of a large installed base. 

Second, we analyze the issue of alternative patent count approaches. While simple patent 
counts are used in our main estimations, family counts are often regarded as the preferred 
measure, because they have a tendency to be less biased. Therefore, we rerun the 
regressions with alternative patent counts as the regressand and as the input for the 
respective knowledge stocks. As can be observed in the examples of results for the 
aggregated solar and wind technologies in columns (1c) to (1e) in Table D1 in Appendix D, 
our estimates are fairly robust to changes in the patent count approach. Hence, using size-
weighted simple counts, family counts, and size-weighted family counts instead of simple 
counts does not change the findings. 

Third, instead of analyzing contemporaneous patents as the dependent variable, we use 
two-year moving averages and three-year moving-averages. This allows us to account for 
potentially longer time periods needed to initiate R&D activities, discover new technologies, 
and file the patent application. The estimations further reduce the risk of reverse causality 
without changing our findings drastically. Examples of results are shown in Table D2 in 
Appendix D. Two differences are particularly interesting. On the one hand, the effect of 
quotas (C_QUOTAS) becomes insignificant once the moving averages are considered. In the 
light of the negative policy duration effects estimated for quotas without certificate trading 
in Table 4, the change in the estimates can again be understood as evidence for the 
decreasing incentives to innovate over time of policy instruments without a double burden. 
On the other hand, a similar change in the significance levels can be observed for the policy 
duration coefficient of targets (C_TARGETS_LENGHT). This can be an indication that targets 
are expected to be only the first step to structure the renewable energy support efforts. For 
a lasting effect, concrete supply- or demand-side policies need to be implemented. 

 
4.3 Comparison to previous literature 

This study complements and, in parts, revises the findings of the previous literature. Yet, 
when comparing our results to the ones of prior studies, it needs to be kept in mind that we 
rely on a different database. Specifically, we use a new patent identification classification for 
wind and solar energy technologies and our sample has an extended geographic and 
temporal scope. Moreover, despite the fact that many other studies also use binary data to 
measure the policy design, the analyzed policy instruments and clusters may be defined 
differently. 

Our research agrees with the majority of studies that environmental regulation spurs the 
patenting activity in renewable energy technologies (Böhringer et al. 2017; Johnstone et al. 
2010; Kim et al. 2017). In particular, the usual finding that research, development, and 
deployment programs have a strong positive effect on innovation is confirmed (Braun et al. 
2010; Nicolli and Vona 2016; Peters et al. 2012). Our results are also in line with Schleich et 
al. (2017), who identified the presence of targets as one of the most favorable drivers of the 
patenting activity. Similarly, our estimates confirm the hypothesis of IRENA (2018) and 
Peters et al. (2012) that the change in the global capacity of renewables creates learning 
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and knowledge effects, which are likely to foster further innovation and decrease the costs 
of these technologies. 

However, there is also one area of dissent. Many studies that compared the relative effects 
of different environmental policies found significant technology-specific differences 
(Costantini et al. 2015; Johnstone et al. 2010; Kim et al. 2017). For example, feed-in tariffs 
usually had a negative or insignificant effect on innovation in wind technologies, whereas 
the corresponding effect on solar energy technologies was positive (Johnstone et al. 2010; 
Nicolli and Vona 2016). The usual interpretation of this differential effect is that price-based 
policies are favorable during early phases of the technological development, whereas 
quantity-based policies like renewable energy certificates are more adequate for mature 
technologies. We find significant positive effects for both technologies and the results are 
fairly robust for both the policy cluster and the instrument estimations.  

 
5 Conclusion 

The aim of this study was to gain new insights on the relationship between policy design and 
innovation in the field of renewable energy technologies. We focused on solar and wind 
energy, which are the technologies with the highest growth rates of the installed capacity 
over the last decade. Our study advances the prior research by extending the policy, 
country, and time dimension and by applying the novel Y02 patent classification system. 

We find that, first, more intensive portfolios of renewable energy support policies foster 
innovation related to solar and wind energy. Second, while the importance of the policy 
instruments partly varies across technologies, the direction of their effects on innovation 
are quite similar. On the cluster level the strongest policy effects can be found for RD&D 
programs, renewable energy targets, and fiscal incentives. Within clusters that encompass 
more than one policy instrument, the cluster effect is usually driven by one instrument only. 
Third, there is a tendency towards larger policy effects in the solar-specific regressions, 
whereas targets and feed-in tariffs constitute exceptions. Yet, given that the patenting 
activity in the solar industry has been generally higher, we would be careful to directly 
interpret this as a technology-specific difference in the effectiveness of policy instruments. 
Hence, our estimates rather do not support this finding of Johnstone et al. (2010) and 
others. Fourth, a longer policy duration is found to significantly increase the patenting 
activity in the case of RD&D programs and targets. 

Our results show that renewable support policies have been a major driver of patenting 
activity in solar and wind power technologies. The regulation-induced innovations have 
helped to remarkably decrease the levelized costs of electricity, and as IRENA (2018) 
expects, by 2020 all technologies that are now in commercial use will be competitive with 
fossil fuels. However, to meet the advanced goals of the Paris Climate Agreement and the 
aspirations of the Sustainable Development Goals, this will not be enough. Power 
generation only accounts for 20% of global total final energy demand, whereas heating and 
cooling and the transport sector account for 80% (REN21 2018). In these areas alternative 
technologies lag behind. Therefore, the challenge in the near future will be to adapt the 
policy instruments to these intended uses. 
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Appendix A:  
Table A1: List of countries and territories 

Afghanistan Djibouti Laos 

Albania Dominica Latvia 

Algeria Dominican Republic Lebanon 

Angola Ecuador Lesotho 

Antigua and Barbuda Egypt Liberia 

Argentina El Salvador Libya 

Armenia Equatorial Guinea Lithuania 

Aruba Eritrea Luxembourg 

Australia Estonia Macedonia 

Austria Ethiopia Madagascar 

Azerbaijan Faroe Islands Malawi 

Bahamas, The Fiji Malaysia 

Bahrain Finland Maldives 

Bangladesh Former Serbia & Montenegro Mali 

Barbados France Malta 

Belarus Gabon Mauritania 

Belgium Gambia, The Mauritius 

Belize Georgia Mexico 

Benin Germany Moldova 

Bhutan Ghana Mongolia 

Bolivia Greece Montenegro 

Bosnia and Herzegovina Greenland Morocco 

Botswana Grenada Mozambique 

Brazil Guatemala Namibia 

Brunei Guinea Nauru 

Bulgaria Guinea-Bissau Nepal 

Burkina Faso Guyana Netherlands 

Burma (Myanmar) Haiti Netherlands Antilles 

Burundi Honduras New Zealand 

Cambodia Hungary Nicaragua 

Cameroon Iceland Niger 

Canada India Nigeria 

Cape Verde Indonesia Niue 

Central African Republic Iran Norway 

Chad Iraq Oman 

Chile Ireland Pakistan 

China Israel Palestinian Territories 

Colombia Italy Panama 

Comoros Jamaica Papua New Guinea 

Congo (Brazzaville) Japan Paraguay 

Congo (Kinshasa) Jordan Peru 

Cook Islands Kazakhstan Philippines 

Costa Rica Kenya Poland 

Cote dIvoire (IvoryCoast) Kiribati Portugal 

Croatia Korea, North Qatar 

Cuba Korea, South Romania 

Cyprus Kosovo Russia 

Czech Republic Kuwait Rwanda 

Denmark Kyrgyzstan Saint Kitts and Nevis 



26 

Table A1 continued: 

Saint Lucia Sri Lanka Turkey 

Saint Vincent/Grenadines Sudan and South Sudan Turkmenistan 

Samoa Suriname Uganda 

Sao Tome and Principe Swaziland Ukraine 

Saudi Arabia Sweden United Arab Emirates 

Senegal Switzerland United Kingdom 

Serbia Syria United States 

Seychelles Taiwan Uruguay 

Sierra Leone Tajikistan Uzbekistan 

Singapore Tanzania Vanuatu 

Slovakia Thailand Venezuela 

Slovenia Timor-Leste (East Timor) Vietnam 
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Appendix B:  

Figure B1: Number of countries with renewable energy policies by instrument and yeara, b 

 
 

a
 Sources: Self prepared following Diederich (2016) and using IEA and IRENA (2015), OECD (2015), and REN21 

(2005-2015). 
b
 Data on RD&D programs is almost exclusively available for OECD countries. Hence, the numbers might 

understate the actual dissemination of RD&D programs.  
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Appendix C 
Table C1: Definition of variables 

Variable Description Unit Source 

(a) Innovation measures 

count_S
a
 Count of patent applications on solar 

power (Y02E 10/5) by domestic 
applicants 

Patent 
applications 

EPO (2018) 

count_W
a
 Count of patent applications on wind 

power (Y02E 10/7) by domestic 
applicants 

Patent 
applications 

EPO (2018) 

count_SW
a
 Count of patent applications on solar 

(Y02E 10/5) or wind power (Y02E 
10/7) by domestic applicants 

Patent 
applications 

EPO (2018) 

(b) Knowledge stocks 

KSTOCKcount_S
a
 Stock of domestic patent applications 

on solar power (Y02E 10/5) 
1,000 patent 
applications 

Calculated using 
EPO (2018) 

KSTOCKcount_W
a
 Stock of domestic patent applications 

on wind power (Y02E 10/7) 
1,000 patent 
applications 

Calculated using 
EPO (2018) 

KSTOCKcount_SW
a
 Stock of domestic patent applications 

on solar (Y02E 10/5) or wind power 
(Y02E 10/7) 

1,000 patent 
applications 

Calculated using 
EPO (2018) 

(c) Changes in generation capacities 

GLOBCAP Year-by-year change in total global 
electricity generation capacity (all 
conventional and renewable energy 
technologies) 

%-points EIA (2018) 

(d) Total patents 

TOTPAT Simple count of total patent 
applications by domestic applicants 
on any technology  

1,000 patent 
applications 

EPO (2018) 

(e) Regulation design indicators (Dummy variables: 1 = cluster (C_) or policy (I_) exist) 

C_TARGETS Existence of at least one policy from 
the targets cluster 

[0, 1] IEA and IRENA, 
OECD, REN21 

C_RDD Existence of at least one policy from 
the research, development, and 
deployment programs cluster 

[0, 1] IEA and IRENA, 
OECD, REN21 

C_QUOTAS Existence of at least one policy from 
the quotas cluster 

[0, 1] IEA and IRENA, 
OECD, REN21 

C_FIT Existence of at least one policy from 
the feed-in tariffs cluster 

[0, 1] IEA and IRENA, 
OECD, REN21 

C_FISCAL Existence of at least one policy from 
the fiscal incentives cluster 

[0, 1] IEA and IRENA, 
OECD, REN21 

C_TRADING Existence of at least one policy from 
the greenhouse gas trading systems 
cluster 

[0, 1] IEA and IRENA, 
OECD, REN21 

I_TARG Existence of renewable energy 
targets or strategies 

[0, 1] IEA and IRENA, 
OECD, REN21 
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Table C1 continued: 

Variable Description Unit Source 

(e) Regulation design indicators (Dummy variables: 1 = cluster (C_) or policy (I_) exist) 

I_RDD Existence of research, development, 
and deployment programs 

[0, 1] IEA and IRENA, 
OECD, REN21 

I_QUOTWOT Existence of renewable energy quotas [0, 1] IEA and IRENA, 
OECD, REN21 

I_QUOTWT Existence of renewable energy quotas 
with certificate trading systems 

[0, 1] IEA and IRENA, 
OECD, REN21 

I_FIT Existence of fixed rate or premium 
feed.in tariffs (incl. energy production 
payments) 

[0, 1] IEA and IRENA, 
OECD, REN21 

I_NETMET Existence of net metering [0, 1] IEA and IRENA, 
OECD, REN21 

I_TEND Existence of public competitive bidding 
(tendering) 

[0, 1] IEA and IRENA, 
OECD, REN21 

I_TAXC Existence of investment of production 
tax credits 

[0, 1] IEA and IRENA, 
OECD, REN21 

I_TAXR Existence of tax reductions for carbon, 
energy, sales, VAT or other taxes 

[0, 1] IEA and IRENA, 
OECD, REN21 

I_PUB Existence of public spending, capital 
subsidies, or low-cost loans 

[0, 1] IEA and IRENA, 
OECD, REN21 

I_TRAD Existence of greenhouse gas certificate 
trading systems 

[0, 1] IEA and IRENA, 
OECD, REN21 

(f) Regulation intensity measures – Duration of the policy design indicators listed in category (e) 

LENGHTC_E
b
 Consecutive years since at least one 

policy from the respective policy 
cluster has been implemented  

Years IEA and IRENA, 
OECD, REN21 

LENGHTI_E
b
 Consecutive years that a policy 

instrument has been implemented 
Years IEA and IRENA, 

OECD, REN21 

(g) Regulation intensity measures – Renewable energy shares 

DOMSHARE_S Share of solar in total electricity 
generation 

%-points EIA (2018) 

DOMSHARE_W Share of wind in total electricity 
generation 

%-points EIA (2018) 

DOMSHARE_SW Aggregated share of solar and wind in 
total electricity generation 

%-points EIA (2018) 

a
 The term count included in the variable names in categories (a) and (b) is a placeholder for the four different 

approaches to count patent applications. 
b
 The _E in the variable names in category (f) is a placeholder for the 11 instruments and 6 clusters listed in 

category (e).
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Table C2: Descriptive statistics 

Variable Obs. Mean Std. Dev. Min Max 

(a) Innovation measures 

SC_St 4,850 45.490 437.660 0 10,761 

SC_Wt 4,850 24.418 171.176 0 3,852 

SC_SWt 4,850 69.908 585.751 0 13,872 

SC_SWMovAv2 4,850 71.341 579.899 0 13,707 

SC_SWMovAv3 4,850 72.287 570.138 0 12,822 

FC_SWt 4,850 56.088 488.217 0 11,589 

SCw_SWt 4,850 336.143 2,803.597 0 66,249 

FCw_SWt 4,850 332.112 2,812.604 0 66,941 

(b) Knowledge stocks 

KSTOCKSC_S 4,850 0.086 0.848 0 24.263 

KSTOCKSC_W 4,850 0.051 0.371 0 9.158 

KSTOCKSC_SW 4,850 0.137 1.168 0 32.188 

KSTOCKFC_SW 4,850 0.108 0.990 0 27.391 

KSTOCKSCw_SW 4,850 0.730 6.385 0 164.881 

KSTOCKFCw_SW 4,850 0.715 6.369 0 167.116 

(c) Changes in generation capacities 

GLOBCAP 4,850 3.219 1.139 1.471 5.722 

(d) Total patents 

TOTPAT 4,850 7.483 44.094 0 892.022 

(e) Regulation design indicators 

C_TARGETS 4,850 0.204 0.403 0 1 

C_RDD 4,850 0.127 0.333 0 1 

C_QUOTAS 4,850 0.055 0.228 0 1 

C_FIT 4,850 0.174 0.379 0 1 

C_FISCAL 4,850 0.189 0.391 0 1 

C_TRADING 4,850 0.054 0.225 0 1 

I_TARG 4,850 0.204 0.403 0 1 

I_RDD 4,850 0.127 0.333 0 1 

I_QUOTWOT 4,850 0.014 0.117 0 1 

I_QUOTWT 4,850 0.041 0.199 0 1 

I_FIT 4,850 0.151 0.358 0 1 

I_NETMET 4,850 0.034 0.181 0 1 

I_TEND 4,850 0.049 0.216 0 1 

I_TAXC 4,850 0.072 0.258 0 1 

I_TAXR 4,850 0.113 0.316 0 1 

I_PUB 4,850 0.152 0.359 0 1 

I_TRAD 4,850 0.054 0.225 0 1 

(f) Regulation intensity measures – Duration of the policy design indicators  

C_TARGETS_LENGTH 4,850 1.104 2.844 0 27 

C_RDD_LENGTH 4,850 1.551 4.884 0 40 

C_QUOTAS_LENGTH 4,850 0.284 1.376 0 15 

C_FIT_LENGTH 4,850 1.217 3.436 0 26 

C_FISCAL_LENGTH 4,850 1.182 3.341 0 36 

C_TRADING_LENGTH 4,850 0.260 1.243 0 9 

I_TARG_LENGTH 4,850 1.104 2.844 0 27 

I_RDD_LENGTH 4,850 1.551 4.884 0 40 

I_QUOTWOT_LENGTH 4,850 0.072 0.488 0 7 

I_QUOTWT_LENGTH 4,850 0.212 1.165 0 12 
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Table C2 continued: 

Variable Obs. Mean Std. Dev. Min Max 

(f) Regulation intensity measures – Duration of the policy design indicators  

I_FIT_LENGTH 4,850 1.128 3.365 0 26 

I_NETMET_LENGTH 4,850 0.138 0.913 0 16 

I_TEND_LENGTH 4,850 0.175 0.918 0 11 

I_TAXC_LENGTH 4,850 0.465 2.233 0 36 

I_TAXR_LENGTH 4,850 0.527 1.869 0 18 

I_PUB_LENGTH 4,850 0.919 2.744 0 25 

I_TRAD_LENGTH 4,850 0.260 1.243 0 9 

(g) Regulation intensity measures – Renewable energy share 

DOMSHARE_S 4,693 0.041 0.308 0 7.725 

DOMSHARE_W 4,693 0.434 2.030 0 34.471 

DOMSHARE_SW 4,693 0.474 2.141 0 34.820 

 

Appendix D  
Table D1: Robustness tests using alternative samples of countries and patent counts 

Dependent variable SC_SWt SC_SWt SC_SWt SCw_SWt FC_SWt FCw_SWt 

Country scope All OECD G20 All All All 

Variable (1) (1a) (1b) (1c) (1d) (1e) 

C_TARGETS 0.406*** 0.378*** 0.394** 0.453*** 0.402*** 0.409*** 

 
(0.085) (0.125) (0.183) (0.111) (0.133) (0.140) 

C_RDD 0.626*** 0.498*** 0.503* 1.083*** 1.035*** 1.486*** 

 
(0.118) (0.143) (0.260) (0.167) (0.150) (0.192) 

C_QUOTAS 0.234** 0.254* 0.319* 0.221** 0.249** 0.229* 

 
(0.110) (0.152) (0.193) (0.111) (0.114) (0.132) 

C_FIT 0.291*** 0.242** 0.154 0.279*** 0.263*** 0.282*** 

 
(0.097) (0.103) (0.103) (0,094) (0,089) (0,108) 

C_FISCAL 0.398*** 0.465*** 0.591*** 0.281** 0.388*** 0.327** 

 
(0.131) (0.112) (0.189) (0,133) (0,137) (0,163) 

C_TRADING 0.396*** 0.600*** 0.431** 0.371** 0.441*** 0.375* 

 
(0.118) (0.141) (0.194) (0,149) (0,136) (0,196) 

KSTOCKY_SW
a
 0,001 0,001 0,000 -0,003 0,000 -0,004 

 
(0,006) (0,002) (0,008) (0,003) (0,015) (0,003) 

TOTPAT 0.004* 0.004*** 0.004*** 0.005*** 0.004** 0.005** 

 
(0,002) (0,002) (0,001) (0,002) (0,002) (0,002) 

GLOBCAP 0.178*** 0.081** 0.171*** 0.153*** 0.183*** 0.163*** 

 
(0,028) (0,033) (0,029) (0,031) (0,032) (0,030) 

DOMSHARE_SW 0,007 0,006 0,036 0,008 0,010 0,013 

 
(0,011) (0,012) (0,037) (0,012) (0,013) (0,013) 

Constant -1.785*** -1.351*** -1.454*** -2.574*** -2.493*** -3.238*** 

  (0.163) (0.210) (0.194) (0.172) (0.153) (0.153) 

Observations 4,693 850 500 4,693 4,693 4,693 

Wald Chi² 824.6*** 654.8*** 479.1*** 510.1*** 1,444*** 1,008*** 

Notes: *** p<0.01, ** p<0.05, * p<0.10; robust standard errors in parentheses; 
a
 The Y in the variable 

KSTOCKY_SW is a placeholder for SC (Simple count), SCw (Size-weighted simple count), FC (Family count), and 
FCw (Size-weighted family county). 
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Table D2: Robustness tests comparing contemporaneous with moving average patent 
counts 

Dependent variable (1) (1f) (1g) (4) (4f) (4g) 

Variable SC_SWt SC_SWMovAv2 SC_SWMovAv3 SC_SWt SC_SWMovAv2 SC_SWMovAv3 

C_TARGETS 0.406*** 0.429*** 0.439*** 0.251** 0.331** 0.405*** 

 
(0.085) (0.101) (0.122) (0.111) (0.140) (0.105) 

C_RDD 0.626*** 0.380*** 0.316*** 0.397*** 0.201 0.174 

 
(0.118) (0.102) (0.118) (0.136) (0.157) (0.133) 

C_QUOTAS 0.234** 0.138 0,044 0.201* 0.137 0,072 

 
(0.110) (0.111) (0.105) (0.113) (0.114) (0.096) 

C_FIT 0.291*** 0.319*** 0.282*** 0.252** 0.290*** 0.267*** 

 
(0.097) (0,066) (0,086) (0.103) (0,096) (0,099) 

C_FISCAL 0.398*** 0.378*** 0.351*** 0.320** 0.305*** 0.299** 

 
(0.131) (0,110) (0,118) (0.124) (0,106) (0,129) 

C_TRADING 0.396*** 0.401*** 0.399*** 0.218 0.331** 0.447*** 

 
(0.118) (0,101) (0,119) (0.165) (0,168) (0,136) 

C_TARGETS_LENGTH 
   

0.047** 0,032 0,015 

    
(0.018) (0,023) (0,018) 

C_RDD_LENGTH 
   

0.048*** 0.041*** 0.040*** 

    
(0.014) (0,011) (0,010) 

C_QUOTAS_LENGTH 
   

-0,033 -0,037 -0,037 

    
(0,027) (0,024) (0,026) 

C_FIT_LENGTH 
   

0,002 0,000 -0,002 

    
(0,024) (0,022) (0,020) 

C_FISCAL_LENGTH 
   

-0,013 -0,005 -0,004 

    
(0,026) (0,030) (0,023) 

C_TRADING_LENGTH 
   

0,015 -0,002 -0,022 

    
(0,026) (0,039) (0,031) 

KSTOCKSC_SW 0,001 -0,001 -0,005 -0,002 -0,004 -0,006 

 
(0,006) (0,002) (0,003) (0,006) (0,006) (0,007) 

TOTPAT 0.004* 0.004** 0.004*** 0,004 0,004 0.004* 

 
(0,002) (0,002) (0,001) (0,008) (0,004) (0,002) 

GLOBCAP 0.178*** 0.206*** 0.237*** 0.180*** 0.193*** 0.203*** 

 
(0,028) (0,026) (0,031) (0,026) (0,028) (0,030) 

DOMSHARE_SW 0,007 0,005 -0,001 -0,015 -0,009 -0,005 

 
(0,011) (0,008) (0,008) (0,013) (0,014) (0,010) 

Constant -1.785*** -1.291*** -1.065*** -1.772*** -1.256*** -0.986*** 

  (0.163) (0.123) (0.149) (0.159) (0.149) (0.148) 

Observations 4,693 4,693 4,693 4,693 4,693 4,693 

Wald Chi² 824.6*** 891.6*** 1,398*** 688.0*** 851.2*** 1,122*** 

Notes: *** p<0.01, ** p<0.05, * p<0.10; robust standard errors in parentheses 
   


