
Bünder, Hendrik

Working Paper

A model-driven approach for graphical user interface
modernization reusing legacy services

ERCIS Working Paper, No. 30

Provided in Cooperation with:
University of Münster, European Research Center for Information Systems (ERCIS)

Suggested Citation: Bünder, Hendrik (2019) : A model-driven approach for graphical user interface
modernization reusing legacy services, ERCIS Working Paper, No. 30, Westfälische Wilhelms-
Universität Münster, European Research Center for Information Systems (ERCIS), Münster

This Version is available at:
https://hdl.handle.net/10419/203466

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/203466
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Bünder, Hendrik

Working Paper No. 30

W
or

ki
ng

 P
ap

er
 N

o.
 X

Y

A Model-Driven Approach for Graphical User

Interface Modernization Reusing Legacy

Ti
tle

 o
f t

he
 W

or
ki

ng
 P

ap
er

Editors:
Becker, J.; Backhaus, K.; Dugas, M.; Hellingrath, B.; Hoeren, T.;
Klein, S.; Kuchen, H.; Müller-Funk, U.; Trautmann, H.; Vossen, G.

ERCIS – European Research Center for Information Systems
Westfälische Wilhelms-Universität Münster
Leonardo-Campus 3, 48149 Münster, Germany
P: +49 (0)251 83-38100 F: +49 (0)251 83-38109
E: info@ercis.org W: http://www.ercis.org/

ISSN 1614-7448

THE IS RESEARCH NETWORKIS

www.ercis.org

ERCIS WORKING PAPERS

cite as: Hendrik Bünder: A Model-Driven Approach for Graphical User Interface
Modernization Reusing Legacy Services. In: Working Papers, European Re-
search Center for Information Systems No. 30. Eds.: Becker, J. et al. Münster
2019.

ISSN 1614-7448

Hendrik Bünder

A Model-Driven Approach for Graphical User Interface
Modernization Reusing Legacy Services

Working Paper No. 30

ERCIS — European Research Center for Information Systems
Editors: J. Becker, K. Backhaus, M. Dugas, B. Hellingrath,

T. Hoeren, S. Klein, H. Kuchen, U. Müller-Funk, H. Trautmann, G. Vossen

Working Papers

�1

Contents
Working Paper Sketch . 3

1 Introduction . 4

2 Related Work . 5

3 Model-Driven GUI Modernization . 6
3.1 Service Model Discovery . 7
3.2 Anti-Corruption Layer Modeling . 9
3.3 Graphical User Interface Modeling . 12
3.4 Transformation and Generation . 15

4 Conclusion and Outlook . 16

References . 19

� 2

List of Figures
Figure 1: Model-Driven Approach for Modernizing GUIs based on Legacy Services 6
Figure 2: Graphical User Interface Prototype for Customer Master Data Change Dialog . 7
Figure 3: Model-to-Model Transformation for Service Model Detection from Java Source

Code . 8
Figure 4: Legacy Model Instantiated by Java-M2M-Migrator 9
Figure 5: Anti-Corruption Layer Modeling for Integrating Legacy Services 10
Figure 6: Graphical User Interface Modeling based on Legacy Services 13
Figure 7: WYSIWYG Editor for Graphical User Interface Modeling 14
Figure 8: Graphical User Interface Modeling based on Legacy Services 15

�3

Working Paper Sketch

Type

Research Report

Title

A Model-Driven Approach for Graphical User Interface Modernization Reusing Legacy Services.

Authors

Hendrik Bünder contact via: buender@itemis.de

Abstract

Software modernization for business applications is often driven by the need for supporting addi-
tional frontend channels such as web or mobile. At the same time, business logic encapsulated by
services and the underlying persistence implementation should be reused. In contrast to writing
new graphical user interfaces (GUI) utilizing the latest programming language or framework, we
propose a model-driven software engineering (MDSE) approach for specifying the new graphi-
cal user interface. In addition, we utilize model-based reverse engineering (MBRE) to discover,
transform and integrate existing services and their data types. By providing support for model-
ing an anti-corruption layer, existing services can be integrated into the new GUI model without
exposing potential design flaws from the legacy system. The model of legacy services and data
types combined with the newly modeled graphical user interfaces are processed by transforma-
tion and generation processes to create source code for user interface, anti-corruption layer and
service calls. Thus, enabling efficient integration of existing services in new GUIs by model-based
reverse engineering and ensuring flexibility to quickly adapt new graphical user interface technolo-
gies through model-driven engineering techniques in the future. First experience from real-world
projects indicates that the introduced approach enables faster creation of new graphical user in-
terfaces by relying on production-proven services and data types.

Keywords

Model-Driven Software Engineering, Model-Based Reverse Engineering, Graphical User Interface
Modeling, Web-Based Modeling

� 4

1 Introduction

Modernizing legacy software applications is often focused on the graphical user interface, be-
cause new frontend channels, such as mobile or web, provide new business opportunities. Fur-
ther, a modern, user-centric, and compelling graphical user interface assists in delivering sustain-
able competitive advantages [20]. Consequently, graphical user interfaces are not transformed
into a structurally identical representation. Instead, new layouts and interactions specific for the
anticipated frontend channel and the inherent constraints and limitations are modeled. To cope
with fast changing programming languages, frameworks and frontend channels, a model-driven
approach for creating graphical user interfaces improves productivity [15]. Model-driven soft-
ware engineering techniques, such as transformations and generators, eventually turn models
into source code of the target language [24]. Thereby, GUIs can be adapted to the latest tech-
nology or frontend channel efficiently by solely exchanging the transformations and generation
process.

For designing the static layout of graphical user interface, a variety of sketching tools, such as
WindowBuilder [6] or SwingGUIBuilder [16], exist. In addition, there are approaches in research
to specify the static and dynamic parts of graphical user interfaces in a technology-agnostic way
in accordance with the Object Management Group’s (OMG) Model-Driven Architecture (MDA)
[9]. While the first is technology-specific and layout oriented, solutions from the second category
provide no support for integrating existing services. Further, the GUI modeling approach as intro-
duced by Vanderdonckt [22] requires a variety of models to be compliant with the MDA approach.
Thereby, modelers have to oversee many models on a different level of abstraction and ensure
their consistency to achieve reasonable results. Moreover, existing approaches often stop at the
user interface level and allow only limited connections to existing services and data types. There-
fore, data binding and service calls must be implemented manually. In contrast, the approach
introduced by this paper provides a single graphical user-interface model that provides means
to describe static and dynamic parts of the software solution. Additionally, production proven
services and data types establish the foundation for retrieving, processing and storing business
application data.

To establish a model of existing services and data types, model-based reverse engineering is
utilized. MBRE tools, such as MoDisco [2], support the instantiation of legacy-system models
used for documentation, dependency analysis, and migration. Yet, to the best of our knowledge
there is no tool enabling the integration of legacy models into forward modeling of graphical user
interfaces utilizing an MDSE approach.

Integrating legacy models bears the risk of exposing design flaws to the new model. Further, di-
rectly reusing services and data types not exactly matching the requirements of the new graphical
user interface is disadvantageous for non-functional aspects, such as performance or maintain-
ability. For example, a legacy service providing a customer object with twenty attributes provides
the data required to show name and surname in the new GUI. However, delivering the content
of twenty attributes to the frontend when only two are required increases payload and eventually
response time, thus negatively effecting user experience. To enable reuse of existing services and
data types specific for the anticipated usage an anti-corruption layer as introduced by behavior-
driven design [23] is introduced on the model level. Besides fit-for-purpose data types, potential
design flaws from the legacy system are encapsulated. Thereby, existing services can be reused
while the data types used in the GUI are adapted for the expected usage subsequently ensuring
sound performance and maintainability.

The approach introduced by this paper combines the automatic model detection of service mod-
els from source code with forward modeling of graphical user interfaces. Services described in
arbitrary programming or markup language, such as Java or OpenAPI [19], respectively, are trans-
formed into a technology-independent model. On top of the automatically created legacy services
and data types an anti-corruption layer is modeled to encapsulate design flaws from the legacy

�5

model and to provide data types specific for the anticipated GUI. The static and dynamic parts of
the GUI model are captured through a WYSIWYG editor that provides a look and feel comparable
to sketching tools hiding the meta models complexity, yet, offering mature support for specifying
complex GUIs. The graphical user interface model and the inherent references to services and
data types from the anti-corruption layer are leveraged to enable full generation of GUI code, data
binding, and service calls.

The contribution of this paper is threefold: first, we propose an approach that enables efficient
creation of graphical user interfaces built upon legacy services that are well encapsulated. Sec-
ond, a prototypical What you see is what you get (WYSIWYG) editor for capturing the static and
dynamic parts of the graphical user interface model is presented. Thirdly, a transformation and
generation process is introduced in order to project the abstract GUI and service model to arbitrary
programming languages or frameworks.

After presenting related work in Section 2, this paper introduces the model driven approach for
applying GUI modernization in Section 3. The paper concludes in Section 4 stating the main
findings and future research directions.

2 Related Work

There is a variety of tools for sketching graphical user interfaces that provide simple generation
features. Industry-proven solutions, such as WindowBuilder [6] or SwingGUIBuilder [16], focus on
modeling the layout of a graphical user interface. Subsequently, a generation process will create
the required Java classes implementing the defined GUI. The required logic, e.g., for handling
user interactions or switching pages, is left to be implemented manually.

The Inspector GUI modeler [14] enables the specification of user interface models on a textual
basis. However, specifying graphical a user interface without a WYSIWG editor is cumbersome.
In contrast, the GUI modeling approach introduced by Vanderdonckt [22] enables graphical mod-
eling of layouts and widgets. The approach also requires many other models to be created and
maintained to achieve reasonable results. In contrast, our approach provides a WYSIWG editor
for specifying the static aspects of a user interface enhanced by the possibility to model dynam-
ics, such as button clicks or service calls. Roubi et al. [18] introduced an approach to generate
graphical user interfaces for rich internet applications with a model-view-controller architecture.
Contrary to the introduced approach by this paper, the model is very close to the actual source
code thereby omitting potential efficiency improvements gained through abstraction [24].

Model-based reverse engineering is used to instantiate models from existing source code. Re-
search in the area of MBRE includes approaches on different architectural levels, such as mod-
ernizing databases [10], creating databases based on COBOL programs [7], extracting business
rules from Java applications [4], building 3D applications [12] and modernizing web applications
[21]. In addition, approaches such as JavaMoPP [11] or MoDisco [2] analyze program code and
automatically instantiate models. While the first is specialized for detecting models based on Java
code, MoDisco provides broader support and additionally aims at refactoring or migrating existing
services. In contrast, the approach introduced by this paper includes existing services instanti-
ated from model-based reverse engineering efforts into a model-driven engineering approach for
creating graphical user interfaces. Clavreul et. al. [3] describe an approach to integrate legacy
systems based on model-driven engineering techniques. The paper describes an automatic inte-
gration between legacy systems on service level based on automatically instantiated models. In
contrast, the approach proposed by this paper integrates service models into newly modeled GUI
models. Thereby, enabling efficient modernization of legacy systems based on an unchanged
service layer.

� 6

Reis et al. [17] present a model-based reverse engineering approach for legacy graphical user
interfaces. The MBRE solution enables the automatic instantiation of graphical user interface
models based on existing source code. In addition, Fleurey et al. [8] introduce an approach
to automatically create a platform-independent model (PIM) from existing source code by apply-
ing static code analysis and model transformations. From the PIM, a platform-specific model for
the target system is created, which is then the basis for generating source code. While both
approaches provide means to migrate structurally identical graphical user interface implementa-
tions, our approach focuses on creating new graphical user interfaces specific for the envisaged
use case and frontend channel while reusing existing services and data types.

Although there is research in the area of model-driven graphical user interface creation as well as
in the area of model-based reverse engineering, there is to the best of our knowledge no approach
integrating the solutions from the two areas.

3 Model-Driven GUI Modernization

The conceptual and technical foundations for integrating MDSE and MBRE approaches are intro-
duced throughout the course of this section. In addition, a running example illustrates the required
steps to reverse engineer an existing service, model an anti-corruption layer, and finally specify
the new graphical user interface utilizing the introduced meta model.

M-2-M Transformation

Anti-Corruption Layer Model

Service.*
Service.*
Service.*

Service.* Legacy Service Model

Graphical User Interface Model

Figure 1: Model-Driven Approach for Modernizing GUIs based on Legacy Services

Conceptual and technical foundations. The modernization approach is divided into three
phases. First, the existing services in format of arbitrary source code or markup language are
analyzed and transformed into legacy service model instances. As shown by Figure 1 the instan-
tiation of the legacy service model is done completely automatically by a configurable model-to-
model transformation process specific for the format of the analyzed legacy services. Second, the
legacy service models are encapsulated by a manually modeled anti-corruption layer. Thereby,
the services and data types can be re-used without exposing their potential design flaws to the
new graphical user interface. In addition, data type are model specific for their envisioned us-
age eventually improving non-functional requirements such as performance and maintainability.
Since the creation of data types and services is partially supported by the modeling tool, the anti-
corruption layer modeling is considered semi-automatic. Thirdly, the graphical user interface is
modeled using the data types and services defined in the anti-corruption layer as basis. Within
the graphical user interface model the layout based on the data types attributes, the service calls,

�7

and the page flows are modeled.

The combination of imported services, anti-corruption layer, and GUI model is input for a trans-
formation and generation process, creating representations of the technology-agnostic model for
arbitrary technologies or frameworks, such as JavaScript [25] or Angular [1], respectively. While
user interface and service implementation can be generated in the same programming language,
the separation of the two models also enables generation of different target technologies. Thereby,
service and user interface can evolve separately in terms of implementation technology, while the
abstract description remains unchanged.

Running example. To exemplify the process of building a new user interface based on an existing
service and its input and output data types, a new web based interface for changing customer
master data should be created. In the example application a GUI leveraging the Java Swing GUI
framework exists that should be replaced by a browser based dialog to change customer master
data.

Browser

http://...

JohnName: DoeSurname:

Master Data

CologneTown: 50999Zip Code

Address

Main Street 12Street:

SaveCancel

Figure 2: Graphical User Interface Prototype for Customer Master Data Change Dialog

The web-based graphical user interface should show the name and surname as well as the town,
zip code and street name of the customer’s main address. All fields should be editable and by
clicking the save button the changed data should be saved. Figure 2 illustrates the expected GUI
that should be integrated into various browser based graphical user interfaces.

3.1 Service Model Discovery

Conceptual and technical foundations. The approach for GUI modernization is designed to
provide new graphical user interfaces on top of legacy services and data types. Since existing
services are often not available in format of a formal model, the first phase is concerned with
instantiating service models. The configurable model-to-model transformation process is adapted
to ingest the format, e.g., UML, Cobol or Java service descriptions. Based on the existing format
the abstract syntax tree (AST) of the input model is created. Subsequently, the transformation
process turns the AST of the existing model into the technology-agnostic model representing the
legacy service model. Figure 3 illustrates the adjustments made to the service-model discovery
process as represented more generally by Figure 1.

Figure 3 shows the process for instantiating service models from existing Java source code. The
model-to-model transformation can be divided into two main parts. The first part utilizes the
Eclipse Java Development Toolkit (JDT) [5] to analyze existing Java source code files and to

� 8

.java
.java*.java Eclipse JDT Java-M2M-

Migrator

Java AST

Method

Class

Field

Legacy Service Model

output

inputs

Imported
Service

Imported
Data Type

Imported
Attribute

M-2-M Transformation

Figure 3: Model-to-Model Transformation for Service Model Detection from Java Source Code

instantiate the respective abstract syntax tree (AST). In addition, the JDT also provides a mature
API to analyze and interact with the AST.

Based on the JDT Java API the Java-M2M-Migrator transforms the technology-specific service
descriptions into technology-agnostic model representations. The migrator was written using the
programming language Xtend [26], that offers sophisticated support for graph creation, traversal,
and manipulation. Since the Java AST itself holds no knowledge about how services are im-
plemented, the Java-M2M-Migrator has to be aware of the semantics within the Java AST. For
example not every method of every class is a service, e.g. toString() or hash() might not be con-
sidered a service. Therefore, the Java-M2M-Migrator has to understand the specific semantics
withing the Java-AST to identify valid services. In the given example, all direct methods of a class
implementing the interface ServiceProvider are considered for the legacy service model while all
methods inherited or overwritten are ignored.

Once the Java-M2M-Migrator has identified all valid services, the input and output parameters,
as well as their transitive closure, are computed. For each data type used as parameter an
Imported Data Type with the same name and documentation is instantiated. Additionally, each
attribute of the parameters is turned into an Imported Attribute. At this point the transition from
technology-specific to technology-agnostic representation is performed. While attributes in the
Java AST obviously have Java specific data types, such as String, int, or boolean, the legacy
service model provides technology-agnostic data types that are further detailed by properties.
For example, an int from the Java AST will be transformed to a number data type with properties
specifying maximal and minimal length, digits, etc. As soon as this technology-agnostic attribute
is transformed back to a Java representation the technology-specific type will again be int. Yet,
when the attribute is used in another programming language, e.g. Fortran, it will be translated into
an integer.

By providing a technology-agnostic representation of the attributes, stubs for arbitrary languages
from which the imported service with its imported data types and attributes is used can be gener-
ated. In addition, documentation of services and data types is stored and later used for generating
system and user documentation for the new system. Further, the imported artifacts hold the tech-
nical names of attributes and data types from the legacy system. Thus, enabling generation of
advanced mappings beyond simple data type mapping for service calls. Most importantly, legacy
services, data types and attributes have to be available in the technology independent model
to provide the basis for the graphical user interface models. However, instead of directly using
the technology-agnostic representations of the legacy services, an additional anti-corruption layer
ensuring encapsulation and cohesion is modeled as explained in Subsection 3.2.

Running example. To exemplify the approach, services written in the programming language
Java are analyzed to be transformed into the legacy service model. Consequently, the model-
to-model transformation step as shown by Figure 3 is implemented for the Java programming
language. The new graphical user interface as described in Section 3 should load the customer

�9

master data based on the Java Services shown in Listing 1.

public class CustomerService implements Serv iceProv ider {
public Customer getCustomer (CustomerKey i d){

return dbAccess . loadCustomer (i d) ;
}
. . .
}

Listing 1: Legacy Service Implemented in Java

Listing 1 shows parts of a Java class analyzed by the Java-M2M-Migrator. In accordance to the
semantics, the method getCustomer is extracted by the migration process and transformed to
an artifact of the technology-agnostic model. The Customer object used as parameter in Listing
1 represents the starting point for creating the transitive closure. Figure 4 illustrates the legacy
model as instantiated by the Java-M2M-Migrator. The transitive closure of the Customer object in
this example includes the CustomerKey as well as the Address and their attributes represented as
imported data type and imported attributes, respectively.

Legacy Service Model Instance

output

inputs

<<Imported Data Type>>

CustomerKey

<<Imported Data Type>>

Customer

<<Imported Data Type>>

Address

<<Imported Service>>

getCustomer

<<Imported Attribute>>

id:String

<<Imported Attribute>>

name:String

<<Imported Attribute>>

surname:String
<<Imported Attribute>>

street:String

<<Imported Attribute>>

zipCode:String

<<Imported Attribute>>

country:String

<<Imported Attribute>>

state:String

<<Imported Attribute>>

birthYear:number

<<Imported Attribute>>

town:String

<<Imported Attribute>>

address:Address

<<Imported Attribute>>

......

Figure 4: Legacy Model Instantiated by Java-M2M-Migrator

For the example use case the name and surname attributes of the Customer object are required.
The birthYear attribute exemplified how an int attribute in the Java class from the legacy system
is transformed into an imported attribute of type number. The properties further specifying this
attribute to enable transformation back to the correct integer format for the Java language, are not
part of the illustration in Figure 4. Further, from the Address data type only town, zipCode, and
street are required.

3.2 Anti-Corruption Layer Modeling

The automatic import of services and their data types into the legacy service model is the basis
for all further modeling. However, since software source code and the API deteriorate over time
as explained by Martin et al. [13], the introduced approach avoids using the services directly. In

� 10

order to encapsulate inherent design flaws of legacy services, the second phase of the introduced
approach is concerned with modeling an anti-corruption layer. Thereby, a dedicated part of the
model converts existing legacy data types and attributes to the internal data types and attributes
of the new model.

Imported
Service

Imported
Attribute

Imported
Data Type

inputs

output

calls

Service

maps to

Attribute EntityData Type

Legacy
Service
 M

odel

A
nti-C

orruption
Layer

inputs

output

Figure 5: Anti-Corruption Layer Modeling for Integrating Legacy Services

Figure 5 illustrates a meta model used for modeling the anti-corruption layer from which the antic-
ipated implementation is generated eventually. On the lower part of Figure 5 the artifacts created
from the legacy system as explained in Section 3.1 are shown. In the middle part the meta model
elements representing the anti-corruption layer model are illustrated. To avoid mapping the same
attribute multiple times, attribute definitions were separated from their usage through DataTypes
by introducing two concepts. First, in the anti-corruption layer an Entity class contains all at-
tributes and relations that logically belong together, e.g. all attributes of the entity Customer or
Address. The mapping is then specified between attributes of imported data types and the enti-
ties attributes. Second, we define data types in the anti-corruption layer model that do not hold
own attributes, but rather reference attributes aggregated by Entity classes. These data types are
then used as input and output for services or as basis for graphical user interface descriptions.
By separating the attributes from their usage scenarios mapping is done once and the mapping
information can be leveraged at multiple occasions. Thereby, maintenance efforts for mapping
definitions are decreased and the cohesion between legacy system and new model is increased.

Based on the modeled artifacts and relations different parts of the anti-corruption layer are gen-
erated. Obviously, the specified “calls” reference enables the generation of service calls from
the anti-corruption layer to the legacy system. In addition, the model contains all information re-
quired to map input and output data types. Since the mapping is between imported data type and
entity attributes, the definition of data types in the new anti-corruption layer model is decoupled
from their mapping. In contrast, if a data type mapping per data type is required, modelers will
tend to model rather large new data structures to only specify one mapping and reuse the large
data structure. Thereby, increased payloads for service calls negatively affect performance and
subsequently user experience when interacting with the generated application. The introduced
approach eliminates this restriction.

More complex mappings of attributes with different format can also be mapped using the anti-
corruption layer modeling. For example the legacy system might hold and transport date fields as
String of eight characters while the new system handles dates as objects of a class Date. The
introduced approach not only generates a data type mapping, but also enables the generation of
data format transformations, e.g. from String to date object and vice versa.

Besides data and data format mapping, the information included in the anti-corruption layer can be
used to map attributes in additional usage scenarios, e.g., for exceptions and their messages. In

�11

the legacy system, exception messages may contain a reference to a specific attribute of the input
data type. Based on this information, a GUI framework is able to highlight the widget that is bound
to the attribute contained in the exception message that contains a wrong or unexpected value.
To provide the same sophisticated user feedback in the new graphical user interface, the attribute
references included in the exceptions must be mapped to the attributes of the anti-corruption layer
model.

Based on the attribute mapping provided by the anti-corruption layer, transformation and genera-
tions can provide mapping code not only for attributes used in services but also for attributes used
in exception messages. As mentioned above the mapping is done between the imported type and
the attributes of the entity which are then reused for different purposes, such as describing the
GUI. This implementation of the ”Don’t repeat yourself” principle allows to generate the mapping
for exception messages.

Running example. After instantiating the legacy service model in the previous section the ex-
ample continues with specifying the anti-corruption layer. The modeling activities can be divided
into two phases. First, the instance of Entity, Attribute, and Service are tailored for the require-
ments of the graphical user interface modeled in the next step. Second, the mapping information
is provided to state how attributes from the legacy model are mapped to attributes from the anti-
corruption layer. In addition, it is specified which legacy services are called by the new graphical
user interface specific services.

1 entity Customer{

2 id: String

3 givenName : String

4 surname : String

5 mainAddress : Address

6 }

7 entity Address{

8 town : String

9 zipCode : String

10 street : String

11 }

12 datatype CustomerWithAddress{

13 from Customer(givenName , surname)

14 from Adress(town , zipCode , street)

15 }

16 datatype CustomerKey{

17 from Customer(id)

18 }

Listing 2: Modeling Anti-Corruption Layer Classes

Listing 2 shows a textual representation of the Entity and DataType objects modeled to encapsu-
late mapping information and provide data for the specific graphical user interface. To simplify the
example, the entities contain only attributes that are required by the graphical user interface as
described by Figure 2. The DataType objects do not hold own attributes, but rather state which
attributes they use by specifying the from keyword followed by a reference to the respective Entity
and the reused attributes within the parentheses.

Listing 3 shows the mapping information and service calls from new to existing services. The
mapping statement starts with the keyword map followed by the keyword legacy and a colon.
After the colon, a reference to the imported data type from the legacy model is given. Followed
by the − > symbol and the class from the anti-corruption layer introduced by the keyword acl
followed by a colon is specified. Within the curly braces the mapping for each attribute with the

� 12

legacy attribute on the left and the new model attribute on the right side of the − > is given. Two
specialties worth mentioning in this example are the mapping of “name” from the legacy system
to “givenName” in the anti-corruption layer model and “address” to “mainAddress”. Thereby, it
is exemplified how attributes from the legacy model can be mapped to new names in the anti-
corruption layer model.

1 map legacy:Customer -> acl:Customer {

2 name -> givenName

3 surname -> surname

4 address -> mainAddress

5 }

6

7 map legacy:Address -> acl:Address {

8 town -> town

9 zipCode -> zipCode

10 street -> street

11 }

12

13 service CustomerWithAdress loadCustomerWithAdress(CustomerKey)

14 calls legacy:getCustomer

Listing 3: Specifying Mapping Information

In addition to the mapping of legacy data types to anti-corruption layer entities, Listing 3 exempli-
fies the definition of a service and its “calls” relation to the legacy model. Based on the previously
stated mapping information, the transformation and generation process will identify the required
mapping for the input and output data types of the newly modeled service in accordance with the
called legacy service. Besides concisely defining calls of existing services, the underlying models
can be validated to verify that the used data types are properly mapped to be used to call the
respective service.

While the mapping information will be used by transformation and generation processes to auto-
matically create the source code for the mapping layer, the modeled data types serve as basis for
the graphical user interface.

3.3 Graphical User Interface Modeling

Conceptual and technical foundations. As shown by Figure 6 the graphical user interface
metamodel is built on top of the meta model for modeling an anti-corruption layer for legacy ser-
vices. The graphical user interface model describes the static structure as well as the dynamic
interactions between user and graphical user interface.

The static design of the graphical user interface specifying the arrangement of widgets represent-
ing the data-type attributes is captured by Layouts. Besides specifying their position it is also
possible to alter the widget’s labels or their types, such as ComboBox or RadioButtonGroup, for
enumeration attributes. Again, the ”Don’t repeat yourself” principle is implemented by not copying
the attribute but rather referencing it. Thereby, the data model of the user interface is described
on the same basis as the data types used in the services to transport the data at runtime. Con-
sequently, data binding and data propagation to the services can be generated completely. In
addition, buttons for specifying user interaction with the GUI are placed on the layout.

Layouts are wrapped by Visuals that represent either panels or whole pages. While a panel
Visual holds a direct reference to a Layout, a page Visual references an arbitrary number of

�13

LayoutVisualInteraction

emitted
consumedUIPart

UIContainer

source
target EventLinkEvent

instance of

G
raphical U

ser Interface M
odel

Imported
Service

Imported
Attribute

Imported
Data Type

inputs

output

calls

Service

maps to

Attribute EntityData Type

Legacy
Service
 M

odel

A
nti-C

orruption
Layer

inputs

output

Figure 6: Graphical User Interface Modeling based on Legacy Services

Visuals. Thus, graphical user interfaces with multiple panels can be realized by combining and
nesting UI-Parts. Multi-page graphical user interfaces are modeled using UI-Containers that hold
an arbitrary number of UI-Parts. In that case, the UI-Container represents one user interface for
a specific use case. Depending on the requirements one user interface consists of an arbitrary
number of pages, panels and layouts. The compositions of user interfaces for creating a complete
application handling multiple use cases is beyond the scope of this paper.

Besides structuring the graphical user interface statically, specialized Visuals, such as ViewerVi-
sual or ListerVisual, encapsulate insights about the envisaged usage of the Layout. While the first
one ensures that all fields are read-only, the second holds additional properties to specify, e.g.,
if the list is represented as table or list as well as if in-line editing is supported. By separating
the static layout information from the anticipated usage, Layouts can be reused and the additional
semantics of visuals can be utilized by transformation and generation processes to increase the
proportion of generated code.

Besides Visuals, Interactions encapsulate service calls and make their input and output data types
available in the user interface model. Both share the parent class UI-Part. The dynamics of the
user interface are encapsulated in so called Events that are consumed or emitted by UI-Parts.
An Event is emitted by a user interaction, such as a click on a button, or by a service returning
from processing data. Every event holds a reference to a data type. While the emitted relation
between UIPart and Event describes those Events created by the UI-Part, the consumed relation
describes the Events on which occurrence the UI-Part reacts.

An Interaction calling a service for example consumes an Event emitted by a Visual representing
a button on the GUI. The emitted Event holds a reference to the input data types of the called
service. In addition, the same interaction emits an Event referencing the data type returned by
the called service. In order to describe the dynamics of the graphical user interface components,
EventLinks are modeled that connect Events. For a single service call there can be multiple
EventLinks, e.g., if the service to be called when a button is clicked takes three different pa-
rameters that are all represented by different Visuals, there are three EventLinks connecting each

� 14

consumed Event of the service call Interaction with each emitted Event of the three Visuals on the
respective GUI. By providing fine-grained connection between Visuals and Interactions flexibility
to support various use cases for visualizing and processing data is ensured.

As Figure 6 shows EventLinks are held by the UIContainer. Consequently, the UIContainer as
a representation of one graphical user interface, specifies the internal dynamics as well as the
EventLinks required to switch to other graphical user interfaces. In addition, the UI-Container
bundles an arbitrary number of Visuals and Interactions that form one graphical user interface.

Figure 7: WYSIWYG Editor for Graphical User Interface Modeling

Running example. Figure 7 shows the What you see is what you get (WYSIWYG) editor for
specifying the graphical user interface that is implemented as browser based application. The
left part represents the static parts of a single-page graphical user interface. It shows the user
interface for viewing customers master data that consist of one page called ”View Customer De-
tails” that itself consists of two panels ”Master Data” and ”Address”. Within the first panel two
widgets are shown, that are representations of the name and surname attributes as modeled within
the CustomerWithAddress data type above. The layout in the second panel represents the static
layout of the address related attributes, namely town, zipCode, and street. On the right hand
side the blue panel shows in the top area the attributes from the data type used as basis for the
selected layout. In this case the first panel is selected, therefore the attributes of the customer
master data are shown.

In addition to showing the available attributes, the blue panel also encapsulate the information
of dynamics aspect, e.g., the Interactions required to call a service. In order to specify how the
widgets shown on a panel or page are initialized with data, the service used to load the required
data has to be referenced. Due do the fact that currently the “Master Data” editor Visual is
selected (cf. Figure 7), there are two possible services shown, namely, “Init Service” and “Finish
Service”. While the first should return the data in accordance to the data type used for the panel,
the second should take the same data type to process the potentially changed data type. Next
to the “Services” label a search field is provided that takes the entered name and searches the
whole anti-corruption layer for services matching the given name. Afterwards the modeler can
drag and drop a service listed underneath either to init or finish service area. Thereby, a variety
of Interactions, Events, and EventLinks are created by the WYSIWYG editor in accordance to
the metamodel. If the user needs to specify more complex meta model concepts, e.g., additional
EventLinks, another finer grained user interface is available. However, for most of the cases the
modeling features of the WYSIWYG editor are feasible for specifying data-driven graphical user
interfaces. In general, the WYSIWYG editor hides the complexity of the underlying meta models
from the user and enables the modeling of user interfaces by domain-experts that do not require

�15

programming skills.

3.4 Transformation and Generation

Conceptual and technical foundations. Based on the combined legacy service, anti-corruption
layer, and GUI model a transformation and generation process is implemented to automatically
create the required source code. Instead of directly generating source code from the three models
specified before, the technology-agnostic models are transformed into technology-specific mod-
els. The model-to-model transformation process as illustrated by Figure 8 automatically creates
the instances of the technology-specific models based on parameters, such as a “technical project
name”. In contrast to MDA approaches, the technical models are read-only and must not be fur-
ther edited. All customizing is encapsulated in the transformations that might be parameterized
by configuration parameters. Technical models are persisted and a browser based GUI to ex-
plore these models is provided. The extra effort of introducing an additional layer of models is out
weighted by the inherent benefits, namely having a model of the implementation and simplifying
the implementation of generators. With a formal model of the technical implementation, the analy-
sis can be executed on model level, e.g., to identify models using certain implementations that are
about to be changed. More importantly, the technical models ease the implementation of model-
to-text transformations. By relying on pre-calculated values within the technical model, generators
are independent of the technology-agnostic models. The vertical separation of technical models
enables changing only one aspect of the architecture, e.g., the service implementation for a cer-
tain technology-agnostic model. In addition, vertically separated models can evolve independently
of each other. Thereby, the approach itself is maintainable and extensible.

Legacy SystemGenerated Files

Technology-agnostic Models

Anti
Corruption

Layer Model

Service.*
Service.*
Service.*
Service.*

Legacy
Service Model

Graphical User
Interface

Model

Technology-specific Models

Angular Model Python Model Documentation
Model ...

M2M TransformationM2M Transformation

M2M TransformationM2T Transformation

*.py.html.js

call

Transformation
Parameters

Transformation
Parameters

Figure 8: Graphical User Interface Modeling based on Legacy Services

Based on the technology-specific models generators for each technology are implemented that
create the required source code. Like the model-to-model transformation, the model-to-text trans-
formation can be adapted using transformation parameters as shown by Figure 8. While the
graphical user interface component exemplified by the “.js” file in Figure 8 communicates with a
specific backend written in python it does not require any knowledge about the legacy system.
Subsequently, calls to services implemented by the legacy system are fully generated including
mapping from data types known in the user interface (based on the ACL types) to the legacy

� 16

system (based on the legacy system model). The .html files constitute the system and user
documentation that is deduced from information available in the legacy model as well as in the
graphical user interface model.

Running example. Based on the graphical user interface model a web application utilizing the
Angular framework is generated. The layout of the single page application is in accordance with
the Layout as specified in Figure 7. The data model of the Angular frontend components is
generated based on the data types underlying the Visuals, such as the “CustomerWithAddress”
data type. In addition, a server side REST endpoint returning the data type by internally calling
the legacy service and mapping the returned value is generated.

def getCustomer (customerKey)
se rv i ceResu l t = ca l l JavaServ i ce (’ getCustomer ’ ,{ ’ i d ’ : customerKey })
customer = Customer ()
customer . id=serv i ceResu l t [’ customer ’] [’ i d ’]
customer . givenName=serv i ceResu l t [’ customer ’] [’name ’]
. . .
customer . address . town=serv i ceResu l t [’ customer ’] [’ address ’] [’ town ’]
return customer

Listing 4: Legacy Service Call Implemented in Python

Listing 4 exemplifies the source code generated behind the REST endpoint on the server side
at the boundary between newly generated python component and the legacy Java service. With
the function getCustomer a framework function is called that takes the name of the legacy Java
Service and the parameters as inputs. The parameters of the called Java service are given as
dictionary with the key being the name of the parameter and the value being the newly modeled
data type. Within this function, the call to the Java service as well as the data type mapping from
new model to legacy model is encapsulated.

The return value of the framework method contains the data as returned by the Java service in
JavaScript Object Notation (JSON) format. Based on the mapping information as specified in
Listing 3 the result of that function is mapped to the object of type “Customer” as expected by the
frontend. The implemented generator approach in accordance with the basic idea of MDSE as
introduced by Stahl and Völter [24] creates schematic repetitive code, e.g., “callJavaService” that
refers to the platform-specific functionality completed by individual code “getCustomer” to specify
the individual service to be called or the generated mapping code as shown by Figure 4.

In addition to the JavaScript and python sources, the model-to-text transformation also creates
user and system documentation partially based on the documentation of the legacy system.
Thereby, additional efficiency improvements are realized by automatically providing documen-
tation for the new graphical user interface model

4 Conclusion and Outlook

The introduced approach provides an automatic mechanisms to instantiate models of legacy ser-
vices and their data types, a semi-automatic mechanism to model an anti-corruption layer encap-
sulating design flaws, and a sophisticated WYSIWYG editor for forward modeling of static and
dynamic parts of a graphical user interface. The conceptual approach for instantiating service
models based on legacy source code was exemplified by a model-to-model transformation start-
ing from existing Java source code. The anti-corruption layer build on-top of the legacy model

�17

ensures integration of existing services and data types without polluting the new model. In addi-
tion, the separation of mapping and usage of imported legacy types fosters modelers to provide
high quality models tailored for the envisaged usage and not with a prematurely optimized map-
ping. Finally, the graphical user interface model provides state-of-the-art concepts to specify static
and dynamic parts of the user interface building upon existing data types and services.

The configurable service discovery based on model-to-model transformation enables the dynamic
adaption to arbitrary service descriptions. First practical experience has been gained with trans-
forming existing services described by their Java source code. Due to sophisticated tooling,
namely the Eclipse JDT, the implementation of transformation algorithms for automatically instan-
tiating legacy service models could be realized in reasonable time. However, additional research
is required to analyze the effects of larger input models on the overall performance of the AST
instantiation and the model creation.

One key concept of the anti-corruption layer modeling is the separation of mapping attributes
aggregated by Entity objects and specifying data types referencing those attributes to be used in
services and graphical user interfaces. First practical experience has shown that this separation
leads to mapped attributes being used in six different new data types on average. This strongly
indicates, that the new data types are modeled based on their envisaged usage instead of the
required effort to implement a mapping. In addition, the introduced anti-corruption layer model
enables the creation of data types fit for the anticipated purpose. Thereby, communication payload
is reduced positively affecting the response times and subsequently improving user experience.
At the same time, attributes are reused and mapping information has to be specified only once to
automatically provide mapping for data, data format and additional use case, such as mapping of
exception messages for providing mature usability in graphical user interfaces.

The meta model for modeling graphical user interfaces provides means to specify static and dy-
namic parts of a data driven business applications. By providing an event based paradigm for
connecting Visuals and Interactions, the approach is sufficiently flexible to model GUIs for data
driven business applications. The WYSIWYG editor hides the complexity of the meta model by
providing GUI designer that looks like typical sketching tools on first site. Yet, the integration of
dynamic aspects in format of buttons and service calls enables holistic modeling of graphical user
interfaces.

The transformation and generation process enables the automatic creation of technology-specific
models that are vertically separated. Thereby, technology-specific models can evolve separately
and additional models can be added at any time. Applying the approach in real world projects has
shown that large portions of GUI code can be generated based on the abstract models. Never-
theless, additional case studies are required to further investigate the potential of the generative
approach.

To ensure high quality of the modeled service calls a concept is required to validate that the legacy
services called by the newly modeled services from the anti-corruption layer provide all information
required for newly modeled data types. This becomes especially complex when the parameters
have deeply nested data types with partially different attributes. Although, the approach has been
adapted in three real-world projects, additional case studies are required to examine the benefits
of the approach.

In summary, the introduced approach, the WYSIWYG editor and the transformation and gener-
ation process enable effective creation of new user interfaces based on existing legacy services
due to consequently reducing redundant modeling by following the don’t repeat yourself principle.
The positive results from the first real world projects indicate the economic advantage that has
to be investigated by further case studies. The introduced approach leverages the combination
of MDSE and MBRE to quickly exploit new frontend technologies and channels by utilizing on
model-based engineering techniques.

� 18

References

[1] Angular. Angular - One framework. Mobile and desktop.

[2] Hugo Brunelière, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot. Modisco: A model driven
reverse engineering framework. Information and Software Technology, 56(8):1012 – 1032,
2014.

[3] Mickael Clavreul, Olivier Barais, and Jean-Marc Jézéquel. Integrating legacy systems with
mde. ICSE’10: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering and ICSE Workshops, 2, 01 2010.

[4] Valerio Cosentino, Jordi Cabot, Patrick Albert, Philippe Bauquel, and Jacques Perronnet. A
model driven reverse engineering framework for extracting business rules out of a java appli-
cation. In Proceedings of the 6th International Conference on Rules on the Web: Research
and Applications, RuleML’12, pages 17–31, Berlin, Heidelberg, 2012. Springer-Verlag.

[5] Eclipse. Eclipse java development tools.

[6] Eclipse. Windowbuilder - is a powerful and easy to use bi-directional java gui designer.

[7] Omar El Beggar, Bousetta Brahim, and Taoufiq Gadi. Getting relational database from legacy
data-mdre approach. Computer Engineering and Intelligent Systems, 4:10–32, 01 2013.

[8] Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas, and Jean-Marc Jézéquel.
Model-driven engineering for software migration in a large industrial context. In Interna-
tional Conference on Model Driven Engineering Languages and Systems, pages 482–497.
Springer, 2007.

[9] Object Management Group. Mda - the architecture of choice for a changing world.

[10] Ignacio Guzmán, Macario Polo, and Mario Piattini. Obtaining web services from relational
databases. pages 304–310, 01 2006.

[11] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian Wende. Closing the gap
between modelling and java. volume 5969, pages 374–383, 01 2009.

[12] Bernhard Jung, Matthias Lenk, and Arnd Vitzthum. Structured development of 3d applica-
tions: round-trip engineering in interdisciplinary teams. Computer Science - Research and
Development, 30(3):285–301, Aug 2015.

[13] Robert C. Martin and Micah Martin. Agile principles, patterns, and practices in C#. Robert
C. Martin series. Prentice Hall, Upper Saddle River, NJ and Munich, 10. print edition, 2015.

[14] Thomas Memmel and Harald Reiterer. Inspector: Interactive ui specification tool. Presented
at: 7th International Conference On Computer Aided Design of User Interfaces (CADUI)
2008, June 11-13, 2008, Albacete. Spain, 01 2009.

[15] Rahul Mohan and Vinay Kulkarni. Model driven development of graphical user interfaces for
enterprise business applications – experience, lessons learnt and a way forward. volume
5795, pages 307–321, 10 2009.

[16] Netbeans. Swing gui builder.

[17] André Reis and Alberto Silva. Xis-reverse: A model-driven reverse engineering approach for
legacy information systems. pages 196–207, 01 2017.

[18] Sarra Roubi, Mohammed Erramdani, and Samir Mbarki. A model driven approach for gen-
erating graphical user interface for mvc rich internet application. Computer and Information
Science, 9, 04 2016.

[19] Swagger.io. What is openapi.

�19

[20] David Sward. User experience design: A strategy for competitive advantage. volume 1, page
163, 01 2007.

[21] Feliu Trias, Valeria de Castro, Marcos Lopez-Sanz, and Esperanza Marcos. Migrating tra-
ditional web applications to cms-based web applications. Electronic Notes in Theoretical
Computer Science, 314:23 – 44, 2015. CLEI 2014, the XL Latin American Conference in
Informatic.

[22] Jean Vanderdonckt. Model-driven engineering of user interfaces: Promises, successes,
failures, and challenges. Proceedings of ROCHI, 8:32, 2008.

[23] Vaughn Vernon. Domain-driven design distilled. Addison-Wesley, Boston, 2016.

[24] Markus Völter and Thomas Stahl. Model-Driven Software Development: Technology, Engi-
neering, Management. Wiley Series in Software Design Patterns. John Wiley & Sons, New
York, NY, 2013.

[25] W3C. Javascript tutorial.

[26] Xtend. Xtend.

� 20

Working Papers, ERCIS

Nr. 1 Becker, J.; Backhaus, K.; Grob, H. L.; Hoeren, T.; Klein, S.; Kuchen, H.; Müller-Funk,
U.; Thonemann, U. W.; Vossen, G.; European Research Center for Information Systems
(ERCIS). Gründungsveranstaltung Münster, 12. Oktober 2004.

Nr. 2 Teubner, R. A.: The IT21 Checkup for IT Fitness: Experiences and Empirical Evidence
from 4 Years of Evaluation Practice. 2005.

Nr. 3 Teubner, R. A.; Mocker, M.: Strategic Information Planning – Insights from an Action
Research Project in the Financial Services Industry. 2005.

Nr. 4 Gottfried Vossen, Stephan Hagemann: From Version 1.0 to Version 2.0: A Brief History
Of the Web. 2007.

Nr. 5 Hagemann, S.; Letz, C.; Vossen, G.: Web Service Discovery – Reality Check 2.0. 2007.
Nr. 6 Teubner, R.; Mocker, M.: A Literature Overview on Strategic Information Management.

2007.
Nr. 7 Ciechanowicz, P.; Poldner, M.; Kuchen, H.: The Münster Skeleton Library Muesli – A

Comprehensive Overview. 2009.
Nr. 8 Hagemann, S.; Vossen, G.: Web-Wide Application Customization: The Case of

Mashups. 2010.
Nr. 9 Majchrzak, T.; Jakubiec, A.; Lablans, M.; Ükert, F.: Evaluating Mobile Ambient Assisted

Living Devices and Web 2.0 Technology for a Better Social Integration. 2010.
Nr. 10 Majchrzak, T.; Kuchen, H: Muggl: The Muenster Generator of Glass-box Test Cases.

2011.
Nr. 11 Becker, J.; Beverungen, D.; Delfmann, P.; Räckers, M.: Network e-Volution. 2011.
Nr. 12 Teubner, A.; Pellengahr, A.; Mocker, M.: The IT Strategy Divide: Professional Practice

and Academic Debate. 2012.
Nr. 13 Niehaves, B.; Köffer, S.; Ortbach, K.; Katschewitz, S.: Towards an IT consumerization

theory: A theory and practice review. 2012
Nr. 14 Stahl, F., Schomm, F., Vossen, G.: Marketplaces for Data: An initial Survey. 2012.
Nr. 15 Becker, J.; Matzner, M. (Eds.).: Promoting Business Process Management Excellence

in Russia. 2012.
Nr. 16 Teubner, R.; Pellengahr, A.: State of and Perspectives for IS Strategy Research. 2013.
Nr. 18 Stahl, F.; Schomm, F.; Vossen, G.: The Data Marketplace Survey Revisited.2014.
Nr. 19 Dillon, S.; Vossen, G.: SaaS Cloud Computing in Small and Medium Enterprises: A

Comparison between Germany and New Zealand. 2015.
Nr. 20 Stahl, F.; Godde, A.; Hagedorn, B.; Köpcke, B.; Rehberger, M.; Vossen, G.: Implement-

ing the WiPo Architecture. 2014.
Nr. 21 Pflanzl, N.; Bergener, K.; Stein, A.; Vossen, G.: Information Systems Freshmen Teach-

ing: Case Experience from Day One (Pre-Version of the publication in the International
Journal of Information and Operations Management Education (IJIOME)). 2014.

Nr. 22 Teubner, A.; Diederich, S.: Managerial Challenges in IT Programmes: Evidence from
Multiple Case Study Research. 2015.

Nr. 23 Vomfell, L.; Stahl, F.; Schomm, F.; Vossen, G.: A Classification Framework for Data
Marketplaces. 2015.

Nr. 24 Stahl, F.; Schomm, F.; Vomfell, L.; Vossen, G.: Marketplaces for Digital Data: Quo
Vadis?. 2015.

Nr. 25 Caballero, R.; von Hof, V.; Montenegro, M.; Kuchen, H.: A Program Transformation for
Converting Java Assertions into Controlflow Statements. 2016.

Nr. 26 Foegen, K.; von Hof, V.; Kuchen, H.: Attributed Grammars for Detecting Spring Configu-
ration Errors. 2015.

Nr. 27 Lehmann, D.; Fekete, D.; Vossen, G.: Technology Selection for Big Data and Analytical
Applications. 2016.

Nr. 28 Trautmann, H; Vossen, G.; Homann, L.; Carnein, M; Kraume, K; Challenges of Data
Management and Analytics in Omni-Channel CRM. 2017

Nr. 29 Rieger, C.: A Data Model Inference Algorithm for Schemaless Process Modeling. 2016.
Nr. 30 Bünder, H.: A Model-Driven Approach for Graphical User Interface Modernization

Reusing Legacy Services. 2019.

�21

