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Non-Technical Summary 
 
 

Should a benevolent government tax capital? This question has spurred a long economics 

literature in the theory of optimal taxation and its quantitative application. Early answers to this 

question, employing relatively stylized economic environments, were negative. That is, this 

literature concluded that optimal capital income taxes are zero. This contrasts with observations 

in all industrialized countries where capital is taxed at high rates. A more recent, mostly 

quantitative, literature finds that optimal capital income taxes should instead indeed be positive. 

The main reason for these findings is that capital income taxes can be an effective tool to provide 

a substitute for missing age-dependent labor income taxes, to redistribute from the ex-post 

perspective (from wealth rich to wealth poor households), or to provide insurance against shocks 

to labor income or asset returns from the ex-ante perspective.  

 

Our theoretical paper provides new analytical insights into the driving forces of optimal capital 

income taxes in this existing quantitative work. We emphasize a mechanism that thus far has 

received no explicit attention in this literature but is implicitly present in numerous quantitative 

studies on optimal capital income taxes. In presence of income risks and incomplete insurance 

against these risks, households forearm themselves against low income realizations through 

private savings. We show that such precautionary savings behavior may lead to a negative 

feedback on the returns to capital investments in the aggregate economy. The benevolent 

government internalizes this negative feedback. If these negative feedback effects are sufficiently 

strong, then optimal capital income taxes should be positive.  

 

In order to derive these insights in all theoretical clarity, the economic environment we employ is 

very stylized. While we thereby provide very clean and sharp characterizations of the driving forces 

of optimal capital income taxes, it is important to emphasize that our theoretical contribution is not 

intended to provide a realistic economic model for a quantitative exploration. Thus the main 

purpose of our analysis is to provide useful insights for better interpreting the quantitative findings 

in the existing quantitative literature on optimal capital income taxation. 
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We characterize the optimal linear tax on capital in an Overlapping Generations

model with two period lived households facing uninsurable idiosyncratic labor in-

come risk. The Ramsey government internalizes the general equilibrium effects of

private precautionary saving on factor prices. For logarithmic utility a complete an-

alytical solution of the Ramsey problem exhibits an optimal aggregate saving rate

that is independent of income risk, whereas the optimal time-invariant tax on capi-

tal implementing this saving rate is increasing in income risk. The optimal saving

rate is constant along the transition and its sign depends on the magnitude of risk and

on the Pareto weight of future generations. If the Ramsey tax rate that maximizes

steady state utility is positive, then implementing this tax rate permanently induces a

Pareto-improving transition even if the initial equilibrium is dynamically efficient. For
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1 Introduction

How should a benevolent government tax capital in a production economy when house-
holds face uninsurable idiosyncratic labor income risk and engage in precautionary saving
against this risk? Partial answers to this question have been given in Bewley style general
equilibrium models with neoclassical production and infinitely lived consumers, starting
from Aiyagari (1995)’s characterization of the optimal steady state capital income tax rate,
and continuing with recent work providing characterizations of the optimal path of capital
income taxes by Panousi and Reis (2015, 2017), Gottardi et al. (2015), Dyrda and Pedroni
(2018), Açikgöz et al. (2018), Chen et al. (2019) and Chien and Wen (2019).

In this paper we complement and extend this literature by providing an analytical char-
acterization of optimal linear taxes on capital in a canonical Diamond (1965) style Over-
lapping Generations model with uninsurable idiosyncratic labor income risk in the second
period of life. The Ramsey government (Ramsey 1927) has to respect equilibrium behavior
of private agents, uses the tax revenues from the tax on capital to finance lump-sum trans-
fers to households and maximizes a social welfare function with arbitrary Pareto weights
on different generations born into this economy.

For logarithmic utility we provide a complete analytical solution of the optimal dy-
namic Ramsey allocation and associated tax policy along the transition. It is characterized
by a time-invariant aggregate saving rate s, defined as the share of aggregate labor in-
come devoted to capital accumulation. This saving rate is independent of the magnitude of
idiosyncratic income risk, and can be implemented as a competitive equilibrium with a pro-
portional tax on capital that is also constant over time and strictly increasing in the extent
of income risk. As key benefit of the analytical solution we show explicitly that the optimal
saving rate chosen by the Ramsey government is shaped by three distinct effects. First,
an increase in the saving rate reduces consumption when young and increases it when old,
holding factor prices constant. We term this the partial equilibrium PE(s) effect, which is
fully taken into account by private households when making savings decisions and taking
factor prices as given. Second, a larger saving rate of the young today raise the capital
stock and thus increase wages and lower returns in general equilibrium, an effect we call
the current generations CG(s) effect. Third, a higher saving rate today has a general equi-
librium future generations FG(s) effect, since a higher current saving rate increases the
future capital stock, future wages in general equilibrium and thus impacts welfare of future
generations. With log-utility we derive all effects in closed form to show that income risk
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does not affect the optimal saving rate chosen by the Ramsey planner, because the effect
of risk on the general equilibrium effect exactly offsets the impact of risk on the partial
equilibrium precautionary savings effect for each generation.

To interpret this finding, consider an increase in income risk. Households respond by
increasing their saving rate due to the precautionary savings motive. But this increase in
the saving rate raises wages and thus the risky income component in the next period, while
lowering capital returns and the associated income. Since labor income risk is uninsur-
able by assumption, this additional wage risk is welfare reducing. In contrast, the Ramsey
planner internalizes this negative side effect from private precautionary saving when set-
ting tax rates on capital, and with log-utility, exactly offsets the PE(s) effect through the
CG(s) effect.1 The benevolent Ramsey government implements the optimal allocation by
offsetting the negative precautionary savings externality through taxes on capital, thereby
reducing the saving rate and capital formation. Hence, more broadly, our optimal tax result
is shaped by the Pigouvian taxation principle (Pigou 1920) aimed at correcting externali-
ties. Since the individually chosen (socially suboptimal) saving rate is increasing in income
risk, so is the tax rate on capital correcting the externality from these choices.

If the Ramsey government additionally values future generations, as in the current gen-
erations effect, the future generations effect internalizes the general equilibrium feedback
on returns, wages and thus exposure to idiosyncratic wage risk for future generations from
a change in the current saving rate. With logarithmic utility all these future risk terms again
cancel out, and the saving rate is not affected by income risk at all. Thus, future generations
unambiguously benefit from a higher capital stock which pushes up the optimal saving rate
desired by the Ramsey planner, relative to the world with only one generation. The pres-
ence of the future generations effect implies that the tax rate implementing the optimal
allocation may therefore by positive or negative, depending on how strongly the Ramsey
government values future relative to current generations.

Our canonical OLG model permits us to connect the results on optimal taxation of
capital to the classical discussion of dynamic efficiency, and we establish a somewhat sur-
prising result. Consider the optimal Ramsey tax rate when the government places all weight
in the social welfare function on generations living in the steady state and the future gener-
ations effect is maximally potent. If this tax rate is positive (which is true if income risk is

1Some papers emphasize that private precautionary savings behavior induced by idiosyncratic income risk
creates a pecuniary externality with first order welfare implications in incomplete markets models, see e.g.
Davila et al. (2012) or Park (2018). In this paper we refer to this effect on current as well as on future factor
prices as general equilibrium effect. Occasionally, we also label it a precautionary savings externality.
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sufficiently high), then a government implementing this constant tax rate along the transi-
tion generates a Pareto-improving transition from the unregulated steady state equilibrium.
This holds true even if the original equilibrium is dynamically efficient and thus the tax
on capital reduces aggregate consumption along the transition path. The steady state util-
ity maximizing tax rate takes into account the welfare losses induced by the crowding out
of capital. Since the capital stock monotonically decreases along the transition, welfare
losses from this crowding out effect monotonically increase along the transition. Instead,
the utility gains from a tax-induced reduction of the saving rate (and thus higher first period
consumption) are highest in the initial period, decrease monotonically along the transition,
and still dominate the welfare losses from crowding out in the long-run. Consequently,
setting the tax rate in all periods to the long-run welfare maximizing rate induces welfare
gains for all transitional generations and thus constitutes a Pareto improvement.

In the last part of the paper we extend the steady state results to Epstein-Zin-Weil utility
(EZW utility, see Epstein and Zin (1989, 1991) and Weil (1989)). We first show that our
closed form results for the transition go through unchanged for arbitrary risk aversion if the
inter-temporal elasticity of substitution (IES) is equal to one. Next, we demonstrate that
the optimal steady state saving rate is increasing in the amount of income risk if and only
if the IES is smaller than 1. With EZW utility the objective of households (and thus the
Ramsey government) is to maximize utility from safe consumption when young and from
the certainty equivalent of utility from risky consumption when old. When risk increases,
the certainty equivalent from consumption when old decreases. In response the govern-
ment finds it optimal to increase mean old age consumption by increasing the saving rate if
the willingness to inter-temporally substitute consumption is relatively low, with log-utility
(IES = 1) serving as the watershed case. The associated optimal steady state tax rate
implementing this saving rate is increasing in income risk unless both the IES and risk
aversion (RA) are large, in which case the Ramsey tax rate might be declining in income
risk. A necessary condition for this result is that households in the laissez faire equilibrium
decrease their private saving rate in response to increased income risk. They may choose
to do so if they have high RA and high IES because of the low utility value from old-age
consumption (high RA) and the high willingness to inter-temporally substitute consump-
tion (high IES) in response to an increase of risk. The Ramsey government internalizes
the associated feedback on capital formation through the future generations effect and may
therefore find it optimal to dampen the private household saving reaction by cutting the tax
on capital in response to an increase in income risk.
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This paper contributes to the literature studying optimal allocations and optimal Ram-
sey taxation in models with uninsurable idiosyncratic income risk. The first strand of this
literature analyzes the role of uninsurable idiosyncratic labor income risk for capital accu-
mulation and optimal capital income taxation in infinite horizon Aiyagari (1994), Bewley
(1986), İmrohoroğlu (1989) and Huggett (1993) economies. Davila et al. (2012) is most
related to our work. They characterize constrained efficient allocations where a planner di-
rectly chooses allocations, but cannot transfer resources between households with different
shock realizations to provide direct insurance.2 The paper emphasizes three determinants
of the optimal allocation: how uninsurable risk affects private precautionary savings, how
general equilibrium prices affect the total income risk of a consumer as well as how the
distribution of incomes, in particular the income composition of consumption- and wealth-
poor agents in the economy, affect aggregate welfare.3 We in contrast study an OLG econ-
omy where the distribution of factor incomes across generations, rather than at a given point
of time, is crucial for the determination of optimal policy. To obtain closed form solutions
we abstract from within-generation heterogeneity so that inter-generational distribution is
the only distributional effect in the model. In addition, we characterize the optimal solution
of the Ramsey tax problem with linear taxes on capital, rather than focusing on constrained
efficient allocations. However, we show that with our choice of policy instruments, the
Ramsey government can in fact implement constrained efficient allocations.

The work on optimal Ramsey capital taxation in Bewley models starts with Aiyagari
(1995). Under the assumptions that government spending is endogenous and that the opti-
mal allocation converges to a stationary equilibrium, he argues that in this stationary equi-
librium the capital income tax is positive and restores the modified golden rule.4 Recent
work by Chen et al. (2019) reassesses Aiyagari (1995)’s main finding of positive capital
income taxes in models with exogenous government spending, as in the standard Ramsey
optimal taxation literature. Depending on the IES there either is no Ramsey steady state

2The notion of constrained efficiency follows Diamond (1967) and Geanakoplos and Polemarchakis
(1986), and refers to a planner problem with the constraint that the planner cannot directly overcome a
friction implied by missing markets.

3In Davila et al. (2012) asset-income poor households benefit from an increase of the capital stock and
thus wages. Park (2018) introduces endogenous human capital accumulation so that welfare of human-capital
poor households might be improved by lower wages, which adds an additional distribution effect, with welfare
implications of changing factor incomes opposite to those by Davila et al. (2012).

4Chamley (2001) develops a partial equilibrium model to clarify that the Chamley-Judd (Judd 1985;
Chamley 1986) result of zero optimal capital taxes depends on the assumption of complete markets and breaks
down if households face income risk and a borrowing constraint. In Chamley (2001)’s partial equilibrium
analysis, the general equilibrium effects that are crucial to our results are missing by construction.
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with interest rate lower than the discount rate, or the Lagrange multiplier on the resource
constraint diverges in that steady state. In both cases Aiyagari (1995)’s argument estab-
lishing an optimal long-run positive capital income tax does not extend to the canonical
infinite horizon incomplete markets model with exogenous government spending.5,6 In our
OLG model we can characterize, for an IES of one, the entire time path of optimal Ramsey
allocations analytically, and thus can demonstrate that the allocation indeed converges to
a steady state. Furthermore we obtain a complete characterization of optimal capital tax
rates along the transition.7 A related theoretical literature studies optimal capital income
taxes in models with idiosyncratic investment risk, see Evans (2015), Panousi (2015), and
Panousi and Reis (2017). Their key focus is on the role of capital income taxes in providing
insurance or redistribution; none of these papers emphasizes the role of general equilibrium
feedback from precautionary saving behavior on optimal capital income taxation.

Finally, our work connects to the literature on optimal capital income taxation in life-
cycle economies, as in the two-period models of Pestieau (1974) and Atkinson and Sandmo
(1980). Erosa and Gervais (2001, 2002), Conesa et al. (2009), Garriga (2017) and Peterman
(2016) extend these studies to multiple periods and emphasize that capital income taxes are
only zero under strong assumptions on preferences, or if labor income tax rates can depend
on household age. The general equilibrium price effects of precautionary savings on prices
in the Ramsey problem are not addressed in these papers.

Section 2 presents the model and Section 3 characterizes the competitive equilibrium.
Section 4 lays out the Ramsey problem and presents the analytical solution for log-utility.
Section 5 discusses the efficiency properties of the Ramsey equilibrium and gives condi-
tions under which implementing the long-run optimal policy induces a Pareto improving
transition. Section 6 generalizes the results to EZW utility and Section 7 concludes.

5In related work, Chien and Wen (2019) develop a tractable Aiyagari-Bewley-Huggett model with pref-
erence rather than productivity shocks to address the impact of precautionary saving, through the general
equilibrium interest rate, on the fraction of households at the borrowing constraint.

6Heathcote, Storesletten, and Violante (2017) also develop an analytically tractable model with idiosyn-
cratic income risk. They focus on characterizing the optimal progressivity of labor income taxation in a
model with infinitely lived households, endogenous labor supply but without capital.

7Quantitative work in infinite horizon economies by Dyrda and Pedroni (2018) and Açikgöz et al. (2018)
analyze optimal fiscal policy along the economy’s transition from the status quo to the long-run steady state
and find robustly positive capital income taxes. A similar finding is obtained by Gottardi et al. (2015)
in a model with risky human capital originally proposed by Krebs (2003). These papers extend the work
by Domeij and Heathcote (2004) analyzing the welfare consequences of abolishing capital income taxes in
a Aiyagari-Bewley-Huggett economy taking into account the transition. Whereas idiosyncratic labor income
risk plays a key role in these papers, none of them emphasizes how the general equilibrium price effects affect
the optimal allocation chosen by the Ramsey planner as we do.
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2 Model

Time is discrete and extends from t = 0 to t =∞. In each period a new generation is born
that lives for two periods. Thus at any point in time there is a young and an old generation.
We normalize household size to 1 for each age cohort. In addition there is an initial old
generation that has one remaining year of life.

2.1 Household Preferences and Endowments

2.1.1 Endowments

Each household has one unit of time in both periods, supplied inelastically to the market.
Labor productivity when young is equal to (1−κ), and, as in Harenberg and Ludwig (2015),
in the second period labor productivity is given by κηt+1, where κ ∈ [0, 1) is a parameter
that captures relative labor income of the old, and ηt+1 is an idiosyncratic labor productivity
shock. We assume that the cdf of ηt+1 is given by Ψ(ηt+1) in every period and denote the
corresponding pdf by ψ (ηt+1) .We assume that Ψ is both the population distribution of ηt+1

as well as the cdf of the productivity shock for any given individual (that is, we assume a
Law of Large Numbers, LLN henceforth). Whenever there is no scope for confusion we
suppress the time subscript of the productivity shock ηt+1. We make the following

Assumption 1. The shock ηt+1 takes positive values Ψ-almost surely and∫
ηt+1dΨ = 1.

Each member of the initial old generation is additionally endowed with assets equal
to a0, equal to the initial capital stock k0 in the economy. The asset endowment is indepen-
dent of the household’s realization of the shock η.

2.1.2 Preferences

A household of generation t ≥ 0 has preferences over consumption allocations cyt , cot+1(ηt+1)

given by

Vt = u(cyt ) + β

∫
u(cot+1(ηt+1))dΨ. (1)
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Lifetime utility of the initial old generation is determined as

V−1 =

∫
u(co0(η0))dΨ.

In order to obtain the sharpest analytical results in the first part of the paper we will
assume logarithmic utility:

Assumption 2. The utility function u is logarithmic, u(c) = ln(c).

We will generalize our results to a Epstein-Zin-Weil (Epstein and Zin 1989; Epstein and
Zin 1991; Weil 1989) utility function, which nests constant relative risk aversion (CRRA)
preferences, in Section 6 of the paper.

2.2 Technology

The representative firm operates the Cobb-Douglas production technology:

F (Kt, Lt) = Kα
t (Lt)

1−α .

Furthermore we assume that capital fully depreciates between two (30 year) periods.

2.3 Government

The government levies a potentially time varying tax τt on capital, and rebates the pro-
ceeds in a lump-sum fashion to all members of the current old generation as a transfer Tt.
Note that the restriction that transfers accrue exclusively to old households implies that
the government has no direct tool for intergenerational redistribution.8 We assume that the
government has the following social welfare function

W =
∞∑

t=−1

ωtVt,

8It also implies that, conditional on a beginning of the period capital stock given by past household
decisions, the government cannot alter lifetime utility of the newborn generation in period t through changing
the current tax τt. And since tax revenues from the current old are fully rebated back to this generation,
remaining lifetime utility of the old is unaffected by the tax τt. This in turn insures that the government has
no incentive to deviate, in period t, from the period zero tax plan {τt}. In other words, given the restriction
on the set of policies, Ramsey tax policies will be time-consistent in our environment.
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where {ωt}∞t=−1 are the Pareto weights on different generations and satisfy ωt ≥ 0. Since
lifetime utilities of each generation will be bounded, so will be the social welfare function
as long as

∑∞
t=−1 ωt < ∞. We will also consider the case ωt = 1 for all t, in which case

we will take the social welfare function to be defined as

W = lim
T→∞

∑T
t=−1 Vt

T
,

which is equivalent to maximizing steady state welfare.

2.4 Competitive Equilibrium

2.4.1 Household Budget Set and Optimization Problem

The budget constraints in both periods read as

cyt + at+1 = (1− κ)wt (2a)

cot+1 = at+1Rt+1(1− τt+1) + κηt+1wt+1 + Tt+1, (2b)

where wt, wt+1 are the aggregate wages in period t and t + 1, Rt+1 = 1 + rt+1 is the
gross interest rate between period t and t + 1, and Tt+1 are lump-sum transfers to the old
generation, and ηt+1 is the age-2 period-t+ 1 idiosyncratic shock to wages.9

2.4.2 Firm Optimization

From the firm’s first order conditions we get

Rt = αkα−1
t (3a)

wt = (1− α)kαt (3b)

where
kt =

Kt

Lt
=

Kt

1− κ+ κ
∫
ηtdΨ

= Kt

is the capital-labor ratio. Since Lt = 1, we henceforth do not need to distinguish between
the aggregate capital stock Kt and the capital-labor ratio.

9Notice that instead of working with a tax on capital τt, one could work, completely equivalently, with
standard capital income taxes τkt . We discuss this equivalence in detail in Section 4.4 of the paper.
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2.4.3 Equilibrium Definition

We are now ready to define a competitive equilibrium.10

Definition 1. Given the initial condition a0 = k0 an allocation is a sequence {cyt , cot (ηt), Lt,
at+1, kt+1}∞t=0.

Definition 2. Given the initial condition a0 = k0 and a sequence of tax policies τ =

{τt}∞t=0, a competitive equilibrium is an allocation {cyt , cot , Lt, at+1, kt+1}∞t=0, prices {Rt, wt}∞t=0

and transfers {Tt}∞t=0 such that

1. given prices {Rt, wt}∞t=0 and policies {τt, Tt}∞t=0 for each t ≥ 0, (cyt , c
o
t+1(ηt+1), at+1)

maximizes (1) subject to (2a) and (2b) (for each realization of ηt+1);

2. consumption co0(η0) of the initial old satisfies (2b) (for each realization of η0):

co0 = a0R0(1− τ0) + κη0w0 + T0;

3. prices satisfy equations (3a) and (3b);

4. the government budget constraint is satisfied in every period: for all t ≥ 0

Tt = τtRtkt;

5. markets clear

Lt = L = 1

at+1 = kt+1

cyt +

∫
cot (ηt)dΨ + kt+1 = kαt .

Denote by W (τ) social welfare associated with an equilibrium for given tax policy τ.
As we will show below, for a given tax policy τ the associated competitive equilibrium in
our economy exists and is unique and thus the function W (τ) is well-defined as long as
τt ∈ (−∞, 1) for all t.

10Since our main results below will focus on economies that are dynamically efficient, we have thus far
implicitly assumed that the only asset households can trade is physical capital, thereby ruling out equilibria
with bubbles initiated by the initial old generation, or by the government issuing fiat money. Our definition
of equilibrium reflects this focus. For the same reason we also abstract from a pay-as-you-go social security
system as part of the fiscal instruments at the disposal of the government.
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Definition 3. Given the initial condition a0 = k0, a Ramsey equilibrium is a sequence of

tax policies τ̂ = {τ̂t}∞t=0 and equilibrium allocations, prices and transfers associated with

τ̂ (in the sense of the previous definition) such that

τ̂ ∈ arg max
τ

W (τ).

3 Analysis of Equilibrium for a Given Tax Policy

3.1 Partial Equilibrium

We first analyze the household problem for given prices and policies. We proceed under
the assumption that a unique solution characterized by the Euler equation exists, and then
make sufficient parametric assumptions to insure that this is indeed the case.

The optimal asset choice at+1 satisfies

1 = β(1− τt+1)

∫
Rt+1 [u′(at+1Rt+1(1− τt+1) + κηt+1wt+1 + Tt+1)]

u′((1− κ)wt − at+1)
dΨ(ηt+1).

Defining the saving rate as
st =

at+1

(1− κ)wt

we can rewrite the above equation as

1 = β(1− τt+1)

∫
Rt+1 [u′(stRt+1(1− τt+1)(1− κ)wt + κηt+1wt+1 + Tt+1)]

u′ [(1− κ)wt(1− st)]
dΨ(ηt+1),

(4)
which defines the solution

st = st(wt, wt+1, Rt+1, τt+1, Tt+1; β, κ,Ψ).

Note by assumption 1 that consumption in the second period is positive Ψ-almost surely.
Without further assumptions on the fundamentals we cannot make analytical progress.
Therefore now invoke assumption 2 that the utility function is logarithmic. Then the Euler
equation becomes:

1 = β(1− τt+1)

∫
1− st

st(1− τt+1) + κwt+1

(1−κ)wtRt+1
ηt+1 + Tt+1

(1−κ)wtRt+1

dΨ(ηt+1). (5)
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Equation (5) implicitly defines the optimal partial equilibrium saving rate st = s(wt, wt+1,
Rt+1, τt+1, Tt+1; β, κΨ).

3.2 General Equilibrium

Now we exploit the remaining equilibrium conditions. In equilibrium factor prices and
transfers are given by

wt = (1− α)kαt (6a)

Rt+1 = αkα−1
t+1 (6b)

Tt+1 = τt+1Rt+1kt+1 (6c)

From the definition of the saving rate st = at+1

(1−κ)wt
, equation (6a) and market clearing in

the asset market, which implies at+1 = kt+1, we find that

kt+1 = st(1− κ)(1− α)kαt (7)

In general, for a given sequence of capital taxes {τt}∞t=0 the competitive equilibrium is
a sequence of capital stocks {kt+1}∞t=0 that solves, for a given initial condition k0, the first
order difference equation (5) when factor prices have been substituted

1 = αβ(1− τt+1)

(
(1− κ)(1− α)kαt − kt+1

kt+1

)
Γ, (8)

where the constant

Γ =

∫
(κηt+1(1− α) + α)−1 dΨ(ηt+1) = Γ(α, κ; Ψ) (9)

fully captures the impact of idiosyncratic income risk on the equilibrium dynamics of the
capital stock.

Equation (8) implicitly defines the function kt+1 = Ω(kt, τt+1). Alternatively, and often
more conveniently, instead of expressing the solution as kt+1 = Ω(kt, τt+1), we can also
express it in terms of the saving rate as

st =
kt+1

(1− α) (1− κ)kαt
=

Ω(kt, τt+1)

(1− α) (1− κ)kαt
= Λ(kt, τt+1) (10)
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where the function st = Λ(kt, τt+1) solves (using the definition of the saving rate in equa-
tion (8)):

1 = αβ(1− τt+1)

(
1− st
st

)
Γ. (11)

3.3 Characterization of the Saving Rate

Evidently, equation (11) has a closed form solution for the saving rate st in general equi-
librium, and we can give a complete analytical characterization of its comparative statics
properties.

Proposition 1. Suppose assumptions 1 and 2 are satisfied. Then for all kt > 0 and all

τt+1 ∈ (−∞, 1] the unique saving rate st = Λ(kt, τt+1; Γ) is given by

st =
1

1 + [(1− τt+1)αβΓ(α, κ; Ψ)]−1 , (12)

which is strictly increasing in Γ, strictly decreasing in τt+1 and independent of the begin-

ning of the period capital stock.

The next corollary assures that any desired saving rate st ∈ (0, 1] can be implemented
as part of a competitive equilibrium by appropriate choice of the capital tax rate τt+1. This
corollary is crucial for our approach of solving the optimal Ramsey tax problem, since we
can cast that problem directly in terms of the government choosing saving rates rather than
tax rates.

Corollary 1. For each saving rate st ∈ (0, 1] there exists a unique tax rate τt+1 ∈ (−∞, 1)

that implements that saving rate st as part of a competitive equilibrium.

Finally we want to determine the influence of income risk on the saving rate in general
equilibrium. From Proposition 1 we know that the saving rate depends on income risk η
exclusively through the constant Γ. Furthermore, Γ is a strictly convex function of income
risk η, and thus by Jensen’s inequality we have the following:

Observation 1. Assume that α ∈ (0, 1) and κ > 0. Then

1. The constant Γ(α, κ; Ψ) is strictly increasing in the amount of income risk, in the

sense that if the distribution Ψ̃ over η is a mean-preserving spread of Ψ, then Γ(α, κ; Ψ) <

Γ(α, κ; Ψ̃).
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2. Define the degenerate distribution at η ≡ 1 as Ψ̄, then for any nondegenerate Ψ

1 < Γ̄ := Γ(α, κ; Ψ̄) < Γ(α, κ; Ψ)

We can immediately deduce the following:

Corollary 2. The equilibrium saving rate is strictly increasing in the amount of income

risk.

The proof of this result follows directly from the fact that st = Λ(kt, τt+1; Γ) is strictly
increasing in Γ and Γ is strictly increasing in the amount of income risk. Equipped with
this full characterization of the competitive equilibrium for a given sequence of tax policies
{τt+1}∞t=0 we now turn to the analysis of optimal fiscal policy.

4 The Ramsey Problem

The objective of the government is to maximize social welfare W (k0) =
∑∞

t=−1 ωtVt by
choice of capital taxes {τt+1}∞t=0 where Vt is the lifetime utility of generation t in the com-
petitive equilibrium associated with the sequence {τt+1}∞t=0.We start with general expected
utility preferences and later again invoke assumption 2 that the utility function is logarith-
mic. Making use of Corollary 1 we can substitute out taxes to write lifetime utility in terms
of the saving rate st yielding

V (kt, st) = u((1− st)(1− κ) (1− α) kαt )+

β

∫
u (κηt+1w(st) +R(st)st(1− κ)(1− α)kαt ) dΨ(ηt+1), (13)

where

w(st) = (1− α) [kt+1(st)]
α (14a)

R(st) = α [kt+1(st)]
α−1 (14b)

kt+1(st) = st(1− κ)(1− α)kαt . (14c)

We could now substitute factor prices in the lifetime utility function, but for the purpose of
better interpretation of the results we refrain from doing so at this point.
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Finally, remaining lifetime utility of the initial old generation is given by (with factor
prices already substituted out)

V−1 = V (k0, τ0) =

∫
u ([α + κη0(1− α)] kα0 ) dΨ(η0) = V (k0) (15)

Note that τ0 is irrelevant for welfare of the initial old generation (and all future generations).
This is due to the fact that, since k0 is a fixed initial condition, τ0 is nondistortionary, is
lump-sum rebated and that the government is assumed to have a period-by-period budget
balance. In fact, expression (15) shows that with the set of policies we consider lifetime
utility of the initial old cannot be affected at all, which is useful since we therefore do not
need to include it in the social welfare function.11

By Corollary 1 the Ramsey government can implement any sequence of saving rates {st}∞t=0

as a competitive equilibrium and thus can choose private saving rates directly. We can
therefore restate the problem the Ramsey government solves for

∑∞
t=0 ωt <∞ as12

W (k0) = max
{st}∞t=0

∞∑
t=0

ωtV (kt, st) (16)

subject to (14a)–(14c).
In the remainder of this section we fully characterize the solution to the Ramsey prob-

lem. We can do so for arbitrary social welfare weights {ωt}∞t=0 using the sequential for-
mulation of the problem, as Appendix B shows. In the main text we exploit the recursive
formulation of the problem, which requires a stationarity assumption on the social welfare
weights (Assumption 3 below), but allows us to derive and interpret the solution in the most
transparent manner.

4.1 Recursive Formulation and Characterization of Ramsey Problem

The Ramsey problem lends itself to a recursive formulation, under the following assump-
tion on the social welfare weights:

11For a given capital stock kt, the same argument applies to an arbitrary old generation at period t, in that
remaining lifetime utility of this old generation cannot any longer be affected by τt. Since the same is true
for lifetime utility of newborns in period t, the government has no incentives to ex post (after capital kt is
installed) deviate from its period zero Ramsey plan, in contrast to the typical time consistency problem often
encountered in the optimal capital income tax literature. This fact also implies that we can write the Ramsey
problem recursively, as done in the next subsection.

12Recall that for ωt = 1 in all t we accordingly have W (k0) = max{st}∞t=0
limT→∞

∑∞
t=0 V (kt,st)

T .
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Assumption 3. The social welfare weights satisfy, for all t ≥ 0, ωt > 0 and

ωt+1

ωt
= θ ∈ (0, 1).

Under this assumption, the recursive formulation of the problem reads as

W (k) = max
s∈[0,1)

u((1− s)(1− κ) (1− α) kα)

+β

∫
u (κηw(s) +R(s)s(1− κ)(1− α)kα) dΨ(η) + θW (k′(s)) (17)

s.t.

k′(s) = s(1− κ)(1− α)kα (18a)

R(s) = α [k′(s)]
α−1 (18b)

w(s) = (1− α) [k′(s)]
α (18c)

This way of writing the problem highlights the three effects the Ramsey government con-
siders when choosing the current saving rate s and thus the tax rate on capital τ that then
induces private households to choose the saving rate s. First, holding equilibrium prices
constant, there is the direct effect of reduced consumption when young and increased con-
sumption when old, henceforth denoted by PE(s). Private households, when making their
decisions, fully take this effect into account. Second, a change in the saving rate s impacts
the current generation through general equilibrium effects of changed wages when young
and interest rates when old. We denote this effect as CG(s). Third, a change in the cur-
rent saving rate increases the future capital stock and thus impacts lifetime utility of future
generations, an effect we denote as FG(s).

Taking first order conditions for problem (17) yields:

0 = (1− κ)(1− α)kα
[
−u′(cy) +R(s)β

∫
u′ (co(η)) dΨ(η)

]
+β

∫
u′ (co(η)) [κηw′(s) + (1− κ)(1− α)kαR′(s)s] dΨ(η)

+θW ′(k′(s))
dk′(s)

ds
= PE(s) + CG(s) + FG(s)
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We make the following observations:

1. Denoting by sCE the saving rate households would choose in the competitive equi-
librium with zero capital taxes, we have PE(sCE) = 0.

2. Appendix A demonstrates that the current generations general equilibrium equals

CG(s) = (1− α)α [(1− κ)(1− α)kα]α [s]α−1 β

∫
u′ (co(η)) [κη − 1] dΨ(η).

The magnitude of a change in factor prices induced by a change in saving rates is
purely determined from the production side of the economy (the first term in the
product). The utility value to the household and thus to the Ramsey government
of these factor price movements, however, depends on the utility function since it
determines the size of the covariance between u′(co(η)) and η. We note that∫
u′ (co(η)) [κη − 1] dΨ(η) = (κ− 1)

∫
u′(co(η))dΨ(η) + Cov [u′(co(η)), (κη − 1)]

< (κ− 1)

∫
u′(co(η))dΨ(η) < 0

and thus the current generation general equilibrium effect is negative, driving down
the desired saving rate for the Ramsey government. Higher wages exacerbate id-
iosyncratic income and thus consumption risk and therefore it is optimal for the so-
cial planner to reduce labor income risk by reducing savings incentives, other things
equal.

The fact that the current generations effect is negative has immediate consequences
for optimal tax policy in the case that θ = 0 so that the future generations effect
FG(s) discussed below is absent. We know that PE(sCE) + CG(sCE) < 0, and
thus the Ramsey government will choose a saving rate that is smaller than the com-
petitive equilibrium saving rate. Since sCE is associated with a zero tax on capital,
Proposition 1 implies that in the absence of future generations the Ramsey govern-
ment will unambiguously tax capital at a positive rate. Davila et al. (2012) derive a
similar result in a closely related two-period model. In Section 4.3 we will state the
explicit optimal tax formula for the case θ = 0.

3. The effect of a higher saving rate today on future generations through a higher capital
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stock from tomorrow on, k′(s), is encoded in the term

FG(s) = θW ′(k′(s))
dk′(s)

ds
= (1− κ)(1− α)kαθW ′(k′(s))

and depends on the relative social welfare weights of future generations θ = ωt+τ
ωt

.
When W ′(k′(s)) > 0, future generations benefit from being born with a higher
capital stock, and the Ramsey government might choose a higher saving rate than
emerging in competitive equilibrium where households do not internalize the pecu-
niary externality on future generations induced by their savings choice. As a result,
the Ramsey government might find it optimal to subsidize capital if θ is sufficiently
large, in contrast to the case where future generations are not valued at all and θ = 0.

In general, it is difficult to sign FG(s). While future generations unambiguously
benefit from a higher capital stock in their first period of life, a higher capital stock
may also lead them to increase their saving rate if the IES exceeds one which in-
creases the capital stock in the second period of life, thereby increasing labor income
risk and potentially rendering FG(s) negative.

4.2 Explicit Solution of the Ramsey Tax Problem

We now provide a complete analytical characterization of the Ramsey optimal tax problem
under the assumption 2 that utility is logarithmic. As in the standard neoclassical growth
model, the recursive Ramsey problem with log-utility has a unique closed-form solution,
which can be obtained by the method of undetermined coefficients, see Appendix B:

Proposition 2. Suppose assumptions 1, 2 and 3 are satisfied. Then the solution of the

Ramsey problem is characterized by a constant saving rate

st = s∗ =
α(β + θ)

1 + αβ
(19)

and a sequence of capital stocks that satisfy

kt+1 = s∗(1− κ)(1− α)kαt
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with initial condition k0. The associated value function and its derivative are given by

W (k) = Θ0 +
α(1 + αβ)

(1− αθ)
ln(k)

W ′(k) =
α(1 + αβ)

(1− αθ)k
.

The Ramsey allocation is implemented with a constant capital tax τ = τ(β, θ, κ, α; Ψ)

1− τ =
(θ + β)

(1− αθ) βΓ(α, κ; Ψ)
, (20)

where Γ is a positive constant defined in equation (9) and just depends on parameters.13

Corollary 3. The optimal saving rate is independent of the extent of income risk and strictly

increasing in the social discount factor θ and the individual discount factor β.

Corollary 4. The optimal capital tax rate is strictly increasing in income risk Γ, strictly

decreasing in θ, strictly increasing in β and strictly decreasing in the labor income share

κ of the old.

It is noteworthy that not only is the optimal saving rate constant and does not depend
on the level of the capital stock, but it also is independent of the extent of income risk η.
This is true despite the fact that for a given tax policy higher income risk induces a higher
individually optimal saving rate, as shown in Section 3.3. The Ramsey government finds it
optimal to implement a capital tax that is increasing in the amount of income risk, exactly
offsetting the partial equilibrium incentive to save more as income risk increases.

One advantage of the complete characterization of the recursive problem, relative to
the sequential formulation in Appendix B, is that we can give a clean decomposition of the

13Appendix B shows, using the sequential formulation of the problem, that for arbitrary welfare weights
the optimal saving rate is still independent of the capital stock and given by

st =
1

1 +
(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt

αj−1
)−1 .

The saving rate in the proposition is a special case under the assumption ωt+1

ωt
= θ for all t.
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three forces determining the optimal Ramsey saving rate. We now find that

PE(s) =
−1

(1− s)
+
αβ

s
Γ(α, κ; Ψ)

CG(s) =
αβ

s
[1− Γ(α, κ; Ψ)]

FG(s) =
θα(1 + αβ)

(1− αθ)s
,

where we note that
Γ(α, κ; Ψ) >

1

κ(1− α) + α
≥ 1.

The first inequality is strict as long as Ψ is nondegenerate and κ > 0, and the second
inequality is strict as long as κ < 1. Thus [1− Γ(α, κ; Ψ)] ≤ 0, with strict inequality if
κ < 1. This implies

PE(s) R 0, CG(s) < 0, FG(s) > 0.

Recall that the saving rate sCE in the competitive equilibrium with zero taxes satisfies
PE(sCE) = 0. Thus, starting from zero taxes, the only reason to tax capital is the current
generations general equilibrium effect which unambiguously lowers the desired saving rate
and pushes the tax rate up above zero. Against this works the future generations effect with
size controlled by θ that calls for a higher saving rate and thus a negative tax rate. Finally
note that

PE(s) + CG(s) =
−1

(1− s)
+
αβ

s
Γ(α, κ; Ψ) +

αβ

s
[1− Γ(α, κ; Ψ)]

=
−1

(1− s)
+
αβ

s
(21)

and thus the partial equilibrium incentive to save more when income risk rises is exactly

cancelled out by the general equilibrium effect on factor prices. Thus the simple solution
with log-utility of the Ramsey problem masks the presence of a partial equilibrium and a
general equilibrium effect, of which the risk terms turn out to exactly cancel each other out.

4.3 Discussion of Optimal Tax Rates

In this section we use the sharp characterization of optimal Ramsey saving rates and capi-
tal taxes from equation (20) to discuss further properties of the optimal Ramsey capital tax
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rates. The following proposition, which follows immediately from inspection of (20), gives
conditions under which the optimal Ramsey capital tax is positive, and, in contrast, condi-
tions under which capital is subsidized. For the next proposition, recall that for θ = 0 only
the utility of the first generation receives weight in the social welfare function, whereas
θ = 1 amounts to the Ramsey government maximizing steady state welfare.

Proposition 3. There is a threshold social discount factor θ̄ such that for all θ ≥ θ̄ capital

is subsidized whereas for all θ < θ̄ it is taxed in every period.14 This threshold is given as

θ̄ =
(Γ− 1) β

1 + αβΓ
> 0.

If θ̄ ≥ 1, capital is taxed even when the Ramsey government maximizes steady state welfare.

If θ̄ < 1 the Ramsey government maximizing steady state welfare should subsidize capital.

Note that these results also apply to the model without income risk, which provides a
useful benchmark to interpret the general findings. Without risk and a Ramsey government
that maximizes steady state welfare (θ = 1) the optimal capital tax is given by

τ = 1− (1/β + 1) (1− (1− κ)(1− α))

(1− α)
.

In Appendix C we show that in this case τ < 0 if and only if the competitive equilibrium
without taxes is dynamically efficient (i.e. has an interest rate R > 1, or equivalently, a
capital stock below the golden rule capital stock kGR). This suggests the possibility that
without income risk the competitive economy is dynamically efficient and the government
optimally subsidizes capital in the steady state, but with sufficiently large income risk the
result reverses and the Ramsey government finds it optimal to tax capital in the steady state.
The following proposition, again proved in Appendix C, shows that this is indeed the case.

Proposition 4. Let θ = 1 such that the Ramsey government maximizes steady state welfare,

and denote by s∗ the associated optimal saving rate. Furthermore denote by sCE the steady
14If θ = 0 then we can, by inserting the private Euler equation in the PE(s) effect, directly derive the

optimal tax rate on capital for an arbitrary strictly concave and differentiable utility function and a CRTS
production function f(k, 1) with strictly positive and strictly decreasing marginal products, as

τ =
−flk(k′(s))

fk(k′(s))
× E[u′(c(η))[κη − 1]]

E[u′(c(η))]
> 0.

Note that although this result establishes that the optimal capital tax rate is positive in the two period model
(θ = 0), it does not give the optimal tax rate in closed form since consumption c(η) is endogenous.
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state equilibrium saving rate in the absence of government policy and by sGR the golden

rule saving rate that maximizes steady state aggregate consumption. Finally assume that

the private discount factor β is sufficiently small.15

1. Let income risk be large: Γ > 1

β[(1−α)−1/Γ̄]
. Then the steady state competitive equi-

librium is dynamically inefficient, sGR < sCE, and s∗ < sCE, and the optimal capital

tax rate has τ > 0.

2. Let income risk be intermediate:

Γ ∈

(
1 + β

(1− α) β
,

1[
(1− α)− 1/Γ̄

]
β

)
.

Then the steady state competitive equilibrium is dynamically efficient, s∗ < sCE <

sGR, but optimal capital taxes are nevertheless positive, τ > 0.

3. Let income risk be small:

Γ ∈
[
Γ̄,

1 + β

(1− α) β

)
Then the steady state competitive equilibrium is dynamically efficient, sCE < sGR,

and sCE < s∗, and optimal capital taxes are negative.

The interesting result is case 2: in the presence of income risk the Ramsey government
maximizing steady state welfare might want to tax capital even though this reduces ag-
gregate consumption (since the equilibrium capital stock is not inefficiently high) because
of the CG effect: a lower capital stock shifts away income from risky labor income to
non-risky capital income, and for moderate income risk this effect dominates the future
generations effect as parametrized by θ. Note that the bounds in the previous proposition
can of course be directly defined in terms of the variance of the idiosyncratic income shock
η, to a second order approximation of the integral defining Γ (see Appendix G.2).

15Formally, assume that β <
[
(1− α)Γ̄− 1

]−1
. If this condition is violated, then the steady state com-

petitive equilibrium is dynamically inefficient and only case 1 below is relevant, that is, the optimal capital
tax rate is positive for all degrees of income risk.
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4.4 Capital Stock Dynamics and Capital Income Taxes

The discussion in the previous section concerned the optimal, time-invariant saving rate.
The saving rate, together with the law of motion for the capital stock

kt+1 = st(1− κ)(1− α)kαt =
α(θ + β)(1− κ)(1− α)

1 + αβ
kαt

and the initial condition k0 determine the entire time path for the capital stock. That se-
quence {kt}∞t=1 is independent of the amount of income risk and converges monotonically
to the steady state

k∗ =

[
α(θ + β)(1− κ)(1− α)

1 + αβ

] 1
1−α

,

either from above if k0 > k∗ or from below, if k0 < k∗. Again, the optimal tax policy that
implements this allocation depends on the extent of income risk, as shown above. We can
now also make precise the relation between the capital taxes τt studied thus far, and the
implied optimal capital income taxes τ kt . These are related by the equation16

1 + (Rt − 1)(1− τ kt ) = Rt(1− τt)

and thus
τ kt =

Rt

Rt − 1
τt,

where the gross return is given byRt = α (kt)
α−1 . As long asRt > 1 for all t, capital taxes

and capital income taxes have the same sign. A sufficient condition for this is

Assumption 4. The initial capital stock and the model parameters satisfy k0 < α
1

1−α and

1 + αβ

(θ + β)(1− κ)(1− α)
> 1.

This assumption assures that net returns are strictly positive at all times in the Ram-
sey equilibrium, since R0 = α (k0)α−1 > 1 and R∗ = α (k∗)α−1 > 1, (and because the
sequence of Rt along the transition is monotone) and thus the Ramsey allocation can be

16This equation assumes that the government does not permit the expensing of investment from capital
income taxes. Abel (2007) shows that if such expensing is allowed, capital income taxes are nondistortionary
(under appropriate ancillary assumptions). Since the Ramsey government optimally distorts the capital accu-
mulation decision of private households in this paper, one implication of our results is that it is not optimal
for the government to permit full expensing of investment in our environment (under the maintained other
restrictions on the tax instruments).
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supported by capital income taxes of the same sign as the corresponding wealth taxes. Un-
der assumption 4 therefore all interpretations and qualitative results extend without change
to capital income taxes.

4.5 Robustness to Alternative Assumptions

We now briefly comment on the robustness of our main findings to alternative modeling
assumptions, considering in turn ex-ante household heterogeneity in labor productivity,
stochastic investment returns, time varying technological progress and population growth
and, finally, endogenous labor supply.

4.5.1 Ex-Ante Heterogeneity in Labor Productivity

Assume that households differ according to permanent labor productivity ν, so that labor
productivity of type ν is given by ν(1−κ) when young and κνη when old. Further assume
that the distribution of second period shocks η is independent of permanent productivity
type ν and that the cross-sectional distribution of ν has mean 1. The government continues
to tax capital at a uniform rate and rebates revenues lump-sum within each ν-type according
to the groups’ tax payments. In Appendix D.1 we show that, perhaps not surprisingly
given homotheticity of preferences, the general equilibrium saving rate is identical across
all ν-types households, and continues to be given by equation (12) from the benchmark
model. Also, the optimal saving rate s implemented by the utilitarian (across ν) Ramsey
government remains unchanged, see equation (19), and so is the implementing optimal tax
rate (20). Households that differ in permanent productivity are just scaled-up versions of
each other so that with homothetic preferences they will choose the same saving rate in
general equilibrium. The Ramsey planner has to respect this choice and thus implements
the same capital tax policy as before.

4.5.2 Idiosyncratic Return Risk

Return to the model with ex ante identical households, but now also consider idiosyncratic
return shocks, denoted by %. After-tax gross returns in the second period of life are now
stochastic and given by Rt+1%t+1(1− τt+1), and return risk and labor income risk ηt+1 may
be correlated. We further assume that transfer payments are contingent on the rate of return
realization, Tt+1(%) = at+1Rt+1%t+1τt+1.
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Given these assumptions, we show in Appendix D.2 that all our results go through
completely unchanged, with the impact of idiosyncratic risk now expressed in terms of the
random variable δt+1 = ηt+1

%t+1
and its associated distribution Π. Thus, the constant Γ =

Γ(α, κ; Π) reflecting risk in (12) is now parameterized by Π. An increase in labor income
risk still increases the saving rate, and an increase in returns risk decreases it as saving
becomes less attractive. The optimal Ramsey saving rate continues to be given by equa-
tion (19), implemented with a tax rate according to (20), with the constant Γ now dependent
on the distribution Π.

4.5.3 Time Varying Productivity and Population Growth

Our results fully extend to a model with deterministic technological progress. Assume
that production is given by Yt = Kα

t (AtLt)
1−α where TFP At evolves according to At =

(1 + gt)At−1 at a time varying rate gt+1. This time-varying growth rate cancels out in the
household optimization problem and adds maximization irrelevant additive terms to the
Ramsey problem, leaving the optimal saving rate and tax rate on capital that implements it
completely unchanged.

In contrast, positive population growth at a constant rate n impacts the general equi-
librium by reducing the capital-labor ratio, therefore lowering wages and increasing asset
returns faced by cohort t in period t + 1 thereby increasing the competitive equilibrium
saving rate for given taxes. The optimal Ramsey saving rate, however, is not affected by
population growth, but the optimal tax on capital implementing that rate is.17 Finally, in the
steady state of the model, positive population growth shrinks, but does not eliminate, the
size of the intermediate risk interval characterized in Proposition 4 for which the economy
is dynamically efficient yet capital is taxed at a positive rate, and the reform towards that
tax rate is Pareto improving.

4.5.4 Endogenous Labor Supply and Labor Income Taxation

Thus far we have assumed that labor supply is inelastic, to focus on the role of precaution-
ary saving for capital (income) taxation. Furthermore, we have assumed that the Ramsey
government cannot complete markets by redistributing intra-generationally, either by pro-

17If the population growth rate is time varying, then the general equilibrium saving rate is time varying as
well. With a Utilitarian objective we can then no longer characterize the solution to the Ramsey problem in
closed form. If the planner instead maximizes discounted per capita utilities, then our closed form results go
through unchanged and the optimal Ramsey saving rate continues to be a constant.
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gressive taxation or income-contingent transfers. If it could, then the Ramsey government,
in the presence of exogenous labor supply, would trivially provide full insurance against η-
risk by taxing all labor income in the second period at 100% and rebating it in a lump-sum
fashion among all households. Consequently there is no role for taxes on capital in such an
environment since the precautionary saving mechanism we have highlighted disappears.

Of course, with endogenous labor supply taxing labor income at a confiscatory rate is
no longer optimal, which raises the question how the government should then tax labor and
capital income in a world with idiosyncratic income risk and overlapping generations. We
address this question in Krueger, Ludwig, and Villalvazo (2019), by endogenizing labor
supply in the second period of life, interpreting this choice as decision how long to work
and when to retire. The government taxes labor income and capital at potentially different
but linear rates, with tax proceeds rebated in a lump-sum fashion to all members of the same
generation. Since transfers are not contingent on η-shock realizations, this scheme provides
some insurance against η-risk. We find that the optimal Ramsey saving rate continues to be
constant, as is aggregate labor supply, and the optimal capital income and labor tax rates
implementing these allocations are constant as well (and non-zero almost surely).18 As in
this paper optimal taxes are increasing in labor productivity risk, and positive as long as
that risk is sufficiently large.

5 Efficiency Properties of the Ramsey Equilibrium

In this section we discuss the welfare properties of the Ramsey equilibrium characterized
thus far. By construction, the Ramsey allocation is the best allocation, given the weights in
the social welfare function, that a government that needs to respect equilibrium behavior of
households and is restricted to proportional taxes on capital can implement. We establish
two main results. First, defining constrained efficient allocations as those chosen by a social
planner that cannot directly transfer consumption across households of different ages and
with different idiosyncratic shocks (as in Davila et al. (2012)), we show that the Ramsey
equilibrium is constrained efficient in this precise sense. Second, we prove that if the
optimal Ramsey saving rate that maximizes steady state welfare s∗(θ = 1) is smaller than
the steady state saving rate in the competitive equilibrium without government sCE , then
implementing s∗(θ = 1) through positive capital taxes yields a Pareto-improving transition

18Under the assumptions maintained in the previous section, notably log-utility, geometrically declining
social welfare weights, as well as balanced growth preferences on labor.
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from the initial laissez-faire steady state towards the steady state associated with s∗(θ = 1).
This is true even if the steady state equilibrium is dynamically efficient.

5.1 Constrained Efficiency of Ramsey Equilibria

The Ramsey government cannot implement fully Pareto efficient allocations, characterized
in Appendix E.1. We now ask whether the government can at least achieve constrained ef-
ficiency with the set of instruments it has. A constrained efficient allocation is an allocation
of capital and consumption that maximizes social welfare subject to the constraint that the
allocation does not permit transfers across old households with different η realizations.

Define the set of allocations that are feasible for the constrained planner as

cyt +

∫
cot (ηt)dΨ + kt+1 = kαt (22a)

cot (ηt) = ktMPK(kt) + κηtMPL(kt). (22b)

The first constraint is simply the resource constraint. The second constraint restricts trans-
fers across different η households: old age consumption is required to equal capital income
plus an η household’s share of labor income, where the returns to capital and labor are
equal to the factors’ relative productivities. The constrained planner might find it optimal,
however, to manipulate factor prices by choosing a different sequence of capital stocks,
relative to that of a competitive equilibrium (without or with tax policy). Note that these
constraints also imply that∫

cot (ηt)dΨ = ktMPK(kt) + κMPL(kt) (23a)

cyt = (1− κ)MPL(kt)− kt+1 (23b)

so that no intergenerational transfers are permitted either, relative to the competitive equi-
librium. A constrained efficient allocation is one that maximizes societal welfare W =∑∞

t=−1 ωtVt subject to (22a) and (22b). The question is whether the simple tax policy we
consider is sufficient to offset the precautionary savings externality on factor prices, and
implement the constrained efficient allocation. The answer is yes, as the following propo-
sition (proved in Appendix E.2) shows.19

19With ex-ante heterogeneity of the form analyzed in Section 4.5.1, the Ramsey planner can no longer
implement the constrained efficient outcome, because the constrained planner can achieve some redistribution
through mandating saving rates that differ across productivity type whereas the Ramsey planner cannot. A
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Proposition 5. The Ramsey allocation is constrained-efficient.20

5.2 Pareto-Improving Tax Reforms

In this section we show that starting from the steady state competitive equilibrium without

taxes as initial condition, switching to the Ramsey optimal savings and tax policy that max-
imizes steady state welfare yields a Pareto improvement, in that all generations, including
those along the transition, are better off. This is true as long as the optimal Ramsey saving
rate is smaller than the steady state competitive equilibrium saving rate, and is true even
if the original competitive steady state equilibrium is dynamically efficient in the sense of
satisfying k0 < kGR (and thus R0 > 1), where kGR is the golden rule capital stock max-
imizing steady state aggregate consumption and k0 is the initial steady state equilibrium
capital stock.

Proposition 6. Let sCE denote the saving rate in a steady state competitive equilibrium

with zero taxes. Assume that sCE > s∗. Then a government policy that sets τt = τ ∗ > 0

leads to a Pareto improving transition from the initial steady state with capital k0 towards

the new steady state associated with tax policy τ ∗.

The proof of this proposition in Appendix E.3 shows that all generations benefit from
the government implementing a saving rate that is lower than the initial competitive equilib-
rium rate despite the fact that it lowers the capital stock, thus aggregate production, wages
and consumption along the transition. Utility gains arise from higher consumption when
young due to the lower saving rate. Since along the transition cyt = (1−s∗)(1−κ)(1−α)kαt

and since the capital stock is decreasing along the transition, utility gains are highest in

similar result applies in infinite horizon Aiyagari-style models, as emphasized by Davila et al. (2012).
20This result relates our analysis to the Mirrleesian tradition to optimal capital income taxation, see e.g.

Golosov et al. (2003) and Farhi and Werning (2012). Consider a Mirrleesian planner who chooses opti-
mal allocations under the constraint that η-shocks are private information of households. Assume that this
Mirrleesian planner additionally is not permitted to use intergenerational transfers, i.e. impose the con-
straints (23). The Mirrleesian planner would want to implement transfers across η̂-types (where η̂ denotes the
productivity reports of households), and provide insurance against low η̂ realizations. The resource constraint
and assumed absence of intergenerational transfers implies that these transfers have to net out to zero in ev-
ery period. However, under such a transfer scheme, all high-η households have an incentive to report low η̂
and therefore any transfer scheme across η̂-types is not incentive compatible. Furthermore the Mirrleesian
planner has no other means to incentivize truthful reporting (e.g. by making future consumption or labor sup-
ply contingent on the η̂ reports). Thus, transfers across η̂-households are infeasible and the constraint (22b)
would result as a consequence of incentive compatibility in the Mirrleesian problem. The Mirrleesian planner
would therefore implement, somewhat trivially under the maintained assumptions, the constrained efficient
allocation of Section 5.1, which coincides with the Ramsey optimum shown in the proposition.
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the first period of the transition and monotonically decreasing along the transition. In con-
trast, utility losses emerge from lower consumption when old, which in general equilibrium
is cot+1 = [α + κηt+1(1− α)] kαt+1, and thus is monotonically decreasing along the transi-
tion. Thus, the net welfare gains are highest for the initial generations and monotonically
declining along the transition. But by the choice of s∗ the government insures that gen-
erations in the new steady state benefit from the reform, and the monotonicity of the net
welfare gains along the transition insures that all generations living through the transition
are better off from implementing s∗ through positive taxes on capital, τ ∗ > 0.

The result in the previous proposition is of course not surprising if sCE is larger than
the golden rule implementing saving rate sGR and the initial steady state competitive equi-
librium is dynamically inefficient to start with. However, for intermediate risk, i.e., for

Γ ∈

(
1 + β

(1− α) β
,

1[
(1− α)− 1/Γ̄

]
β

)

Proposition 4 shows that s∗ < sCE < sGR, and thus the steady state equilibrium is dynami-
cally efficient. Proposition 6 establishes that setting τ ∗ > 0 implements a Pareto-improving
transition even in this case.

Note that Proposition 6 discusses a potentially massive permanent policy reform from
τ = 0 to τ = τ ∗. A reform decreasing the saving rate sCE marginally but permanently by
implementing a marginal tax hike τ = ε > 0 also leads to a Pareto improvement, under
exactly the same conditions as in the previous proposition.

Also observe that the preceding arguments, and thus our results on Pareto improving
transitions by either implementing the optimal long-run Ramsey saving rate s∗ < sCE or
by a marginal reduction of the saving rate from sCE hold for arbitrary additively separable
lifetime utility whenever the period utility function u(·) is strictly increasing. All we require
for the result is an initial laissez-faire equilibrium allocation featuring s∗ < sCE < sGR;

the exact conditions for this inequality to be satisfied of course depends on the preference
structure. Also note that, in general, the tax rate on capital required to implement the
Pareto-improving time-constant saving rate will be time-varying, rather than constant, as
in the logarithmic case.

Observe that the argument above on the sources of these net utility gains along the
transition—higher, and monotonically decreasing, consumption when young and lower,
and monotonically decreasing, consumption when old—do not rest on the presence or ex-
tent of income risk. However, whether the initial laissez-faire equilibrium satisfies the
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inequalities s∗ < sCE < sGR of course depends on risk.
Finally, it is important to note that the converse of Proposition 6 is not true: even

if sCE < s∗, implementing the Ramsey optimal steady state (θ = 1) savings subsidy
τ ∗ < 0 and associated higher saving rate s∗ does not lead to a Pareto improving transition.
Appendix E.4 shows that the generation born into the first period of the hypothetical policy-
induced transition loses from this policy change. In fact, not only is implementing τ ∗ < 0

not Pareto improving if sCE < s∗, any (marginal) policy reform that induces a period 1
saving rate above the competitive saving rate with zero taxes, sCE, does not result in a
Pareto improvement, since it makes the first generation strictly worse off.

6 General Intertemporal Elasticity of Substitution ρ and
Risk Aversion σ

In this section we extend our results to a more general utility function with intertemporal
elasticity of substitution ρ and risk aversion σ, as in Epstein and Zin (1989, 1991) and Weil
(1989). While most of this analysis focusses on steady states, we establish that our closed
form results for the transition go through unchanged for an IES ρ = 1. All details of formal
derivations are relegated to Appendix F.

We now consider a utility function of the form

Vt = u(cyt ) + βu(v(cot+1)) (24)

where the period utility function is

u(x) =


1

1− 1
ρ

x1− 1
ρ for ρ 6= 1

ln(x) for ρ = 1

for x ∈ {cyt , v(cot+1)}, and the certainty equivalent is given by

v(cot+1) =


(∫

cot+1(η)1−σdΨ(η)
) 1

1−σ for σ 6= 1

exp
(∫

ln
(
cot+1(η)

)
dΨ(η)

)
for σ = 1,

This preference specification was first introduced into the literature by Selden (1978, 1979).
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The parameter ρ measures the IES and the parameter σ governs risk aversion.21 If σ = 1
ρ

then the utility function takes the standard CRRA form.
As in Section 4, equation (13), we can write lifetime utility of a generation born in

period t, in general equilibrium, as a function of the beginning of the period capital stock
kt and the saving rate st chosen by the Ramsey government and implemented by the ap-
propriate choice of the capital tax τt+1. In addition, in the steady state the saving rate and
the associated capital stock are related by:

k = ((1− κ)(1− α)s)
1

1−α .

In Appendix F we show that the objective function of the Ramsey government boils
down to maximizing, by choice of the steady state saving rate, steady state lifetime utility:

V (s) = φ̃
(

(1− s)(1− 1
ρ) + βζ̃Γ̃2

)
s
α(1− 1

ρ)
1−α (25)

where φ̃ and ζ̃ > 0 and Γ̃2 > 0 are constants that depend on parameter values. We find that
the optimal steady state saving rate is defined implicitly as

s∗ =
α

1− α

[
(1− s∗) + βζ̃Γ̃2(1− s∗)

1
ρ

]
. (26)

From inspection of equation (26) we obtain (see Appendix F):

Proposition 7. Suppose that θ = 1 and thus the Ramsey government maximizes steady state

welfare. There exists a unique optimal Ramsey saving rate s∗ ∈ (0, 1) solving equation

(26). This saving rate can be implemented with a capital tax rate τ ∗ determined by the

21This specification of Epstein-Zin-Weil preferences is also used by other papers in the literature, e.g.,
in Bommier et al. (2017). Note that Vt represents the same ordinal ranking over current consumption cyt and
the certainty equivalent over future risky consumption cot+1(ηt+1) as the more commonly used specification

Ṽt =
{

(1− β̃)(cyt )1−
‘1
ρ + β̃

[
v(cot+1)

]1− 1
ρ

} 1

1− 1
ρ

since one is a monotone transformation of the other, Vt =
Ṽ

1− 1
ρ

t

(1−β̃)(1− 1
ρ )
− (1+β)

1− 1
ρ

, where β = β̃

1−β̃ . However,

since the Ramsey problem is stated in terms of the weighted sum of cardinal utilities, a monotone transfor-
mation of the utility function will in general alter the Ramsey problem. When focusing on a steady state
analysis, this concern does not arise, since the same saving rate (and associated tax rate) maximizes steady
state V and its monotone transformation Ṽ .
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competitive equilibrium Euler equation:

1 = (1− τ ∗)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s∗)

1
ρ

s∗
Γ̃. (27)

Note that all comparative statics results, especially those with respect to an increase in
income risk, can be deduced from an analysis of equations (26, 27). Income risk affects the
optimal Ramsey savings rate s∗ and associated implementing tax rate τ ∗ only through the
constants Γ̃, Γ̃2 which are given as:

Γ̃ = v(σ− 1
ρ)Γ (28a)

Γ̃2 = v(1− 1
ρ), (28b)

where we had defined the constant Γ above for the log-case, and is now given by:

Γ =

∫
(κηt+1(1− α) + α)−σ dΨ(ηt+1) (29)

and where the constant v is the certainty equivalent of η defined as

v =


[∫

(α + (1− α)κη)1−σ dΨ(η)
] 1

1−σ for σ = 1

exp
(∫

ln (α + (1− α)κη) dΨ(η)
)

otherwise.
(30)

In Appendix G.1 we prove the following result relating the extent of income risk to the
constants Γ̃, Γ̃2 which are in turn crucial for the comparative statics results in Section 6.2.

Lemma 1. An increase in income risk (a mean-preserving spread of η) reduces v and

increases Γ̃2 if and only if ρ ≤ 1 and increases Γ̃ if ρ ≤ 1, or ρ > 1 and σ < 1/ρ.

Note that the condition that characterizes the relation between income risk and Γ̃2 is
necessary and sufficient whereas the two alternative conditions that characterize the relation
between income risk and Γ̃ are only sufficient. The dependency of precautionary savings
on both risk aversion and the IES with recursive preferences was demonstrated by Kimball
and Weil (2009), and the sufficient conditions provided in the Lemma are stated in their
Propositions 5 and 6. We provide further intuition for this result below when discussing
implementation of the optimal Ramsey policy.
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6.1 Unit Elasticity of Substitution ρ = 1

Recognizing that for an IES of ρ = 1 we have ζ̃ = Γ̃2 = 1, direct calculations yield:

Proposition 8. Suppose that ρ = 1. Then the solution of the Ramsey problem is the same

as for log-utility in Section 4. That is, the optimal, constant saving rate is given by

s =
α(β + θ)

1 + αβ
.

The tax rate τ implementing this saving rate as a competitive equilibrium is given by

1 = (1− τ)

(
1− s
s

)
αβΓ̃

and thus is strictly increasing in income risk measured by Γ̃.

Note that the optimal Ramsey saving rate does neither depend on income risk nor on risk
aversion, but that the optimal capital tax rate τ implementing this saving rate is increasing
in income risk, and does depend on risk aversion through the constant Γ̃. Also note that
although here we state this result for steady states only, Appendix F.2 shows that the entire
analysis of Section 4 with log-utility (including the dynamic programming formulation and
the analysis of the transition path) goes through completely unchanged (by only replacing
Γ by Γ̃) for general Epstein-Zin-Weil utility as long as the IES is unity, ρ = 1.

6.2 The Impact of Risk on the Optimal Saving and Tax Rate: Disen-
tangling Risk Aversion and IES: 1

σ 6= ρ 6= 1

Thus far, we have demonstrated that an IES of 1 is sufficient (and, as turns out, necessary)
for the result that the optimal Ramsey saving rate can be solved in closed form, is constant
over time and independent of the extent of income risk. In this section we investigate how
income risk impacts the optimal Ramsey saving and capital tax rate for general IES and
risk aversion (ρ, σ) where CRRA utility is a special case ρ = 1/σ. From equation (26)
we immediately observe that the optimal steady state saving rate s is strictly increasing in
the constant Γ̃2 summarizing the impact of income risk. The response of s to income risk
immediately follows from the impact of an increase in risk on Γ̃2 in Lemma 1. We have

Proposition 9. An increase in income risk increases the optimal steady state Ramsey saving

rate s∗ if and only if ρ < 1 and decreases it if and only if ρ > 1.

32



Thus the direction of the change in s with respect to income risk is exclusively deter-
mined by the IES ρ, with the log-case acting as a watershed. Of course how strongly the
saving rate responds to an increase in income risk is also controlled by risk aversion through
the term Γ̃2.What is the intuition for this result? Suppose the economy is in the steady state
associated with a given extent of income risk and the optimal Ramsey tax policy, and now
consider an increase in income risk. The Ramsey government can always neutralize the
response of private households’ savings behavior, by appropriate adjustment of the tax rate
on capital to implement the new optimal saving rate.22

The question is then how the saving rate desired by the Ramsey government itself
changes. Households (and thus the Ramsey government) obtain utility from safe consump-
tion when young and risky consumption when old, and the desire for smoothing utility
from safe consumption when young and the certainty equivalent of consumption when old
is determined by the IES ρ. As risk increases, old age consumption is now a less effective
way to generate utility, and the certainty equivalent of old-age consumption declines, hold-
ing the consumption allocation constant. Whether the Ramsey government wants to raise
or lower old-age consumption (by increasing or reducing the saving rate) depends on how
much households value a smooth life cycle utility profile. In the log-case the two forces
exactly balance out and the Ramsey saving rate does not respond to income risk at all.
In contrast, if households strongly desire a smooth path of (the certainty equivalence of)
consumption, then the Ramsey government compensates for the loss of old-age certainty
equivalent consumption from larger income risk by saving at a higher rate, and s increases
with income risk if the IES ρ is small. The reverse is true for a high IES.

Finally, we can also determine the impact of income risk on optimal steady state capital
taxes. From equation (27) the optimal Ramsey tax rate is given by

1 = (1− τ ∗)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s∗)

1
ρ

s∗
Γ̃. (31)

We observe that income risk affects the optimal tax rate in two ways. First, for a given target
saving rate s∗, the direct impact of income risk depends on how Γ̃ (and thus the private
saving rate) responds to an increase in risk. Second, a change in income risk changes

22We saw this explicitly in the decomposition of the first order condition of the Ramsey government in
Section 4.2, where the risk term Γ from the competitive equilibrium optimality condition dropped out because
the government chooses, through taxes and the associated changes in factor prices, to exactly offset the impact
of higher risk on private household savings decisions. In the logic of that section, an increase in Γ increases
PE(s) but reduces CG(s) by precisely the same factor.
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the optimal saving rate s∗ through Γ̃2, as characterized in the previous proposition. The
next proposition, proved in Appendix F.4, gives sufficient conditions on the IES and risk
aversion (ρ, σ) under which the optimal capital tax rate τ ∗ is increasing in income risk, and
a necessary condition required for the tax rate to be decreasing in income risk. The proof
of the first proposition exploits the fact that using (26) we can rewrite equation (31) as:

1 = (1− τ ∗)
(

1− α

s∗

) Γ̃

Γ̃2

. (32)

Proposition 10. If ρ ≤ 1, then an increase in income risk increases the optimal tax rate

on capital. Similarly, if ρ > 1 and σ ≤ 1/ρ, then an increase in income risk increases the

optimal tax rate on capital.

Proposition 11. If ρ > 1 and σ > 1/ρ, an increase in income risk might lead to a strict

reduction in the optimal tax rate τ on capital. A necessary condition for this result is that

the competitive equilibrium saving rate for given τ is strictly decreasing in income risk.

The intuition for this last proposition is that, if ρ > max{1, 1/σ}, then private house-
holds might decrease their saving rate too much in general equilibrium in response to an
increase in income risk since they do no internalize the impact of the decline of the saving
rate on the capital stock and thus on wages of future generations. For the capital tax to
decrease in income risk this future generations effect has to be sufficiently strong. To see
this formally, in Appendix F.5 we first derive the decomposition of the first-order condition
for the optimal saving rate into the terms PE(s), CG(s) and FG(s), for the general EZW
utility function, and in Appendix F.6 we use this decomposition to write equation (32) as

1 = (1− τ ∗) Γ̃

Γ̃2︸ ︷︷ ︸
from PE(s)+CG(s)

− (1− τ ∗) α
s∗

Γ̃

Γ̃2︸ ︷︷ ︸
from FG(s)

.

Since Γ̃/Γ̃2 is increasing in income risk, the optimal capital tax rate τ ∗ can only decrease
in income risk when the last term, the future generations effect, is large. This effect calls
for a tax rate that decreases with income risk since s∗ is decreasing in risk for ρ > 1.

In the next section we characterize the optimal solution of the Ramsey tax problem
numerically outside the steady state. The results demonstrate that there are indeed robust
regions of the preference parameter space in which the optimal sequence of tax rates in the
Ramsey equilibrium is indeed strictly decreasing in income risk, in all time periods.
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6.3 Numerical Exploration of Optimal Ramsey Tax Transitions for
General IES ρ 6= 1 and Risk Aversion σ

In the previous subsection we provided a theoretical characterization of the optimal Ramsey
policy under the assumption that the government maximized steady state utility, i.e. θ = 1.

Since no analytical results are available outside the steady state unless ρ = 1, we now
solve for the optimal Ramsey tax transition numerically. We take as initial condition the
steady state capital stock in the competitive equilibrium without taxes and characterize the
sequences of saving rates, capital stocks, capital tax rates as well as the lifetime utility
consequences from the transition, relative to the steady state without taxes.

To implement the simulations we need to choose parameters. To exploit the dynamic
programming solution of the Ramsey problem with a social discount factor θ < 1, but to
retain the steady state results as useful benchmark for comparison, we choose θ = 0.9.

Our focus is to characterize how the extent of income risk affects the optimal Ramsey tax
transition, and how households’ preferences towards that risk (as measured by σ) and their
willingness to inter-temporally substitute (as measured by ρ) shape this transition. In the
main text we focus on a parameter constellation for which changes in income risk have a
potentially non-monotonic impact on the optimal tax rate in steady state. Recall that this
requires large σ and ρ, together with the restriction that σ > 1/ρ. Thus, here we choose
ρ = 20 and σ = 50; in Appendix H we also present quantitative results for lower, more
commonly used values of both parameters. To vary the degree of idiosyncratic income
risk we assume that η is distributed log-normally and consider four levels of risk: σln η ∈
{0, 0.25, 1, 2}, and adjust the mean µln η such thatE(η) = 1 for all risk parameterizations.23

The purpose of the simulations is to illustrate qualitative properties of the Ramsey solution
when analytical results are not available, rather than making firm quantitative statements.

From the initial capital stock k0, assumed to be the steady state capital stock absent tax
policy, the Ramsey government determines the optimal sequence of saving rates from pe-
riod 1 onwards, and implements them with capital income taxes from period 2 onwards. For
the various parameterizations, the initial competitive equilibrium saving rate, sCE , the op-
timal saving rate in the long-run, s∗∞, and the optimal long-run capital income tax rate, τ k∗∞
are shown in Table 1.24 We observe that for our parameterization with a high IES the steady

23We approximate the distribution with n = 21 Gaussian quadrature nodes. Other parameters include
α = 0.2, β = 0.8 and κ = 0.5. This choice of α and κ implies that the golden rule saving rate is sGR = 0.5.

24All economies considered here are dynamically efficient in that the saving rate sCE is less than the
golden rule saving rate sGR = 0.5 and returns on capital are positive. Consequently, taxes on capital, and on
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state competitive equilibrium saving rate sCE is inverse u-shaped in income risk, initially
increasing but eventually declining in σln η when income risk exceeds some threshold.25

Table 1: Saving Rates in Competitive Equilibrium and Optimal Long-Run Saving & Capital
Income Tax Rates: EZW-Preferences with ρ = 20, σ = 50

sCE s∗∞ τ k
∗
∞

σln η = 0 0.38 0.41 -0.13
σln η = 0.25 0.48 0.34 0.52
σln η = 1 0.44 0.28 0.60
σln η = 2 0.42 0.27 0.56

Notes: Saving rates in the initial competitive equilibrium, sCE , and optimal long-run saving, s∗∞, and capital
income tax rates τk

∗

∞ for α = 0.2, β = 0.8, κ = 0.5, σln η ∈ {0, 0.25, 1, 2}, θ = 0.9 and ρ = 20, σ = 50 .

In Proposition 11 we showed that when the Ramsey government maximizes steady
state utility (θ = 1), a necessary condition for optimal capital taxes to decline with income
risk is that the competitive equilibrium saving rate falls with income risk. This result is
apparent in Table 1 in that sCE starts to decline with income risk after σln η > 0.32, and
the optimal long-run Ramsey tax rate also eventually decreases with income risk, but not
until after σln η > 1. Finally, note that only in the deterministic economy with σln η = 0, the
competitive equilibrium saving rate is lower than the long-run optimum saving rate; in all
other economies it is higher, and optimal taxes on capital income are positive.26

Figure 1 shows, in panels (a) and (b), the optimal dynamic Ramsey equilibrium al-
location {st, kt} and tax policy {τt+1}27, see panel (c), both for log-utility and high risk
aversion and high IES ρ = 20, σ = 50. For each parametrization the initial condition is the
steady state capital stock absent capital income taxes. From panels (a) and (c) we observe
that the optimal policy in the presence of income risk (σ2

ln η > 0) is to implement a lower
saving rate (through a positive capital income tax28) in the initial period of the transition
than would emerge in the competitive equilibrium, but also relative to the long-run opti-
mum, i.e., s∗1 < s∗∞. This policy brings down the capital stock quite strongly in the initial

capital income have the same sign.
25For our parameterization the threshold is at σ̄ln η ≈ 0.32.
26As comparison, Table 1 also reports results for log utility for σ2

ln η ∈ {0, 1}. For σ2
ln η = 0 the optimal

long-run saving rate exceeds the saving rate in the initial competitive equilibrium, whereas for σ2
ln η = 2

it is lower, corresponding to cases 3 and 2 of Proposition 4, respectively. Consistent with Corollary 4, the
long-run optimal capital income tax rate τ∗∞ is increasing in risk.

27To compute taxes, we make use of a general implementation result, see Proposition 23 in Appendix F.4.
28Left y-axis of Panel (c): ρ = 20, σ = 50 case. Right y-axis: Log-utility, ρ = σ = 1.
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Figure 1: Policy Transition for ρ = 20, σ = 50 and Log Utility (σ = ρ = 1)

(a) st (b) kt

(c) τkt (d) ∆Vt

Notes: Initial, optimal saving rate, capital stock, optimal capital income tax, changes in lifetime utility forα =

0.2, β = 0.8, κ = 0.5, σln η ∈ {0, 0.25, 1, 2}, θ = 0.9 and ρ = 20, σ = 50, log-utility (ρ = σ = 1).

period (see panel (b)). Also note that for all periods t along the transition, optimal capi-
tal income taxes are inverse u-shaped in income risk, showing that the long-run results of
Table 1 extend to the entire transition path. Finally, panel (d) of the figure shows the differ-
ence in lifetime utility of a generation born in period t of the optimal tax transition, relative
to living in the steady state competitive equilibrium. It illustrates that for all economies
with σln η ≥ 0.25 the optimal Ramsey tax transition constitutes a Pareto improvement rel-
ative to the competitive equilibrium without taxes. Hence our analytical results on Pareto
improving tax transitions from maximizing steady state utility from Section 5.2 carry over
to these economies with θ < 1.
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These illustrative quantitative findings were derived under an arguably extreme prefer-
ence parametrization (σ = 50, ρ = 20), which permitted the possibility that optimal tax
rates are decreasing in the amount of income risk. Appendix H shows that the main con-
clusions in this section (apart from this inverse U-shape in income risk) are robust to more
common values of risk aversion and of the IES (e.g. CRRA utility with σ = 2 and ρ = 0.5).
For these parameterizations the optimal tax rate is monotonically increasing in income risk,
and tends to be negative unless income risk is sufficiently large. If income risk is sufficiently
large, a tax reform from the status quo of no capital taxation to the optimal Ramsey policy
with positive capital income taxes again constitutes a Pareto improvement.29

7 Conclusion

In this paper we have analyzed optimal capital taxes in a canonical OLG model with id-
iosyncratic labor income risk. We obtain a full analytical characterization of the Ramsey
allocation and tax policy along the transition to a steady state when the IES is one. The
optimal aggregate saving rate is independent of idiosyncratic income risk, and is imple-
mented by a tax rate that is increasing in income risk (unless both the IES and risk aversion
are large), and positive if and only if income risk is sufficiently large.

By showing that the Ramsey government can implement constrained efficient alloca-
tions through a proportional tax on capital we confirm that capital income taxation, in the
context of our model, is the appropriate fiscal tool to deal with the externality on equilib-
rium factor prices induced by private precautionary savings behavior against uninsurable
idiosyncratic income risk. However, we also demonstrate that capital should not necessar-
ily be taxed, and should be subsidized when the government cares strongly about future
generations. Judiciously chosen assumptions permit us to make these points in a fully an-
alytically tractable and transparent manner. The next, and complementary step in this area
of research would be to investigate numerically, whether in richer life cycle models with
idiosyncratic income risk and thus heterogeneity in income and wealth within generations

the optimal Ramsey tax policy is well approximated by the simple linear and time-constant
tax on capital that we have shown theoretically to be optimal in our simple OLG economy.

29We also consider σ = 2, ρ = 20 to show that the non-monotonicity of the tax rate with respect to income
risk disappears for lower risk aversion.
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Online Appendix: Not for Publication

A Derivation of the Current Generations CG(s) Effects

From equations (18b) and (18c) we find that

w′(s) = (1− α)α [k′(s)]
α−1 dk

′(s)

ds
= (1− α)α [(1− κ)(1− α)kα]α [s]α−1

R′(s) = α(α− 1) [k′(s)]
α−2 dk

′(s)

ds
= α(α− 1) [(1− κ)(1− α)kα]α−1 [s]α−2

and thus

κηw′(s) + (1− κ)(1− α)kαR′(s)s = (1− α)α [(1− κ)(1− α)kα]α [s]α−1 [κη − 1]

which leads to the equation in the main text:

CG(s) = (1− α)α [(1− κ)(1− α)kα]α [s]α−1 β

∫
u′ (co(η)) [κη − 1] dΨ(η)

B Derivation of Optimal Saving Rate for Log-Utility

B.1 Sequential Formulation

In this section we provide a full solution to the Ramsey optimal taxation problem for the
case of logarithmic utility in its sequential formulation, for an arbitrary set of social welfare
weights. We first recognize from the aggregate law of motion that

ln(kt+1) = ln(1− α) + ln(1− κ) + α ln(kt) + ln(st)

= κ +
t∑
i=0

αi ln(st−i) + αt+1 ln(k0)

= κt+1 +
t∑
i=0

αi ln(st−i)
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where κt+1 = ln(1− α) + ln(1− κ) + αt+1 ln(k0). Therefore the objective of the Ramsey
is given by (suppressing maximization-irrelevant constants)

∞∑
t=0

ωtV (kt, st) =
∞∑
t=0

ωt [ln(1− st) + αβ ln(st) + α (1 + αβ) ln(kt)]

= χ+
∞∑
t=0

ωt

[
ln(1− st) + αβ ln(st) + α (1 + αβ)

∞∑
i=1

αi−1 ln(st−i)

]

= χ+
∞∑
t=0

[
ωt ln(1− st) + ln(st)

(
αβωt + α (1 + αβ)

∞∑
i=t+1

ωiα
i−(t+1)

)]

and thus the social welfare function can be expressed purely in terms of saving rates as

W ({st}∞t=0) = χ+
∞∑
t=0

ωt

[
ln(1− st) + ln(st)

(
αβ + α (1 + αβ)

∞∑
j=1

ωt+j
ωt

αj−1

)]
,

where χ is a constant that depends positively on the initial capital stock k0, but is again
irrelevant for maximization. Taking first order conditions with respect to st and setting it
to zero delivers the optimal saving rate in the main text:

st =
1

1 +
(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt
αj−1

)−1 .

B.2 Recursive Formulation

To obtain the closed form solution of the recursive version of the problem for ωt+1

ωt
= θ by

the method of undetermined coefficients guess that the value function takes the following
log-linear form:

W (k) = Θ0 + Θ1 ln(k).
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Using this guess and equations (18a)-(18c) rewrite the Bellman equation (17) as:

W (k) = Θ0 + Θ1 ln(k) (33)

= max
s∈[0,1]

{ln((1− s)(1− κ) (1− α) kα)

+β

∫
ln (κηw(s) +R(s)s(1− κ)(1− α)kα) dΨ(η) + θW (k′)

}
= ln((1− κ) (1− α)) + αβ ln((1− κ)(1− α))

+

∫
ln (κη(1− α) + α) dΨ(η) + θΘ0 + θΘ1 ln [(1− κ)(1− α)]

+
[
α + α2β + αθΘ1

]
ln(k) + max

s∈[0,1]
{ln(1− s) + (αβ + θΘ1) ln(s)} .

For the Bellman equation to hold, the coefficient Θ1 has to satisfy

Θ1 =
α(1 + αβ)

(1− αθ)
.

We also immediately recognize that the optimal saving rate chosen by the Ramsey planner
is independent of the capital stock k and determined by the first order condition

1

1− s
=
αβ + θΘ1

s

and thus
s∗ =

αβ + θΘ1

1 + αβ + θΘ1

=
α(β + θ)

1 + αβ
. (34)

as given by equation (19) in the main text. Plugging in s∗ and Θ1 into the Bellman equation
(33) yields a linear equation in the constant Θ0 whose solution completes the full analytical
characterization of the Ramsey optimal taxation problem.

C Dynamic Inefficiency of the Competitive Equilibrium
and Positive Capital Taxation

In this section we provide the details of the relation between the solution to the Ramsey
problem in the steady state and the dynamic efficiency of the steady state equilibrium absent
government policy, including the proof of Proposition 4 in the main text.

First, and as usual, define the golden rule capital stock as the capital stock that maxi-
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mizes aggregate (per capita) steady state consumption C = kα − k. Thus, the golden rule
capital stock, saving rate and associated gross real interest rate are given by:

kGR = α
1

1−α

sGR =
α

(1− κ)(1− α)

RGR = 1.

A capital stock (respectively, a saving rate) is inefficiently high if it is larger than the golden
rule level, and thus the associated gross real interest rate is less than 1. In accordance with
the OLG literature we call such a capital stock, saving rate and interest rate dynamically
inefficient, as aggregate consumption could be increased by lowering the capital stock in
this case.

Now let us turn to the steady state of a competitive equilibrium. In any such steady
state, the gross real interest rate is related to the steady state capital stock k through

R = αkα−1.

From the law of motion of capital (equation (7)) we have

k = s(1− κ)(1− α)kα

and thus in any steady state equilibrium the saving and interest rate are related as:

R =
α

s(1− κ)(1− α)
.

The steady state equilibrium saving rate in turn is given by (see equation (12))

s =
1

1 + [(1− τ)αβΓ]−1 =
(1− τ)αβΓ

1 + (1− τ)αβΓ

which leads to a steady state relation between the real interest rate and the tax rate deter-
mined by

R =

1
(1−τ)βΓ

+ α

(1− κ)(1− α)
= R(τ ; Γ).

Consequently, a higher tax rate reduces the saving rate, the capital stock and thus increases
the real interest rate. Furthermore, for a given τ, the steady state interest rate is decreasing
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in the amount of income risk (unless β = 0).
The steady state interest rate in the absence of government policy is given by

R(τ = 0; Γ) =

1
βΓ

+ α

(1− κ)(1− α)

and thus the steady state competitive equilibrium without taxes is dynamically inefficient
(R(τ = 0; Γ) < 1) if and only if

1
βΓ

+ α

(1− κ)(1− α)
< 1

or if and only if

1

[(1− κ)(1− α)− α]Γ
< β

Θ1(Γ) :=
1

(1− α)Γ− Γ/Γ̄
< β (35)

where Γ̄ ≤ Γ, with equality if η is degenerate at η = 1, and thus there is no income risk.
The optimal Ramsey steady state (i.e., θ = 1) saving and tax rates (see equations (19)

and (20)) are given by

s∗ =
α(1 + β)

1 + αβ

1− τ =
1 + β

(1− α) βΓ

and thus the optimal Ramsey tax rate is positive, τ > 0, if and only if

(1 + β)

(1− α) βΓ
< 1

or if and only if

Θ2 :=
1

(1− α) Γ− 1
< β. (36)

Since
Θ2(Γ) =

1

(1− α) Γ− 1
≤ 1

(1− α)Γ− Γ/Γ̄
= Θ1(Γ)

with equality if and only if η is degenerate at η = 1, we conclude that if the competitive
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equilibrium absent taxes is dynamically inefficient, the optimal Ramsey steady state cap-
ital tax rate is positive. The reverse is not true, however: with income risk the optimal
Ramsey tax rate might be positive even when the steady state equilibrium absent policy is
dynamically efficient. To see this, comparing saving rates we have

s∗ =
α(1 + β)

1 + αβ

sCE =
1

1 + [αβΓ]−1

sGR =
α

(1− κ)(1− α)

and thus sCE > sGR if and only if

β >
1

[(1− κ)(1− α)− α] Γ

and thus if and only if the steady state equilibrium is dynamically inefficient. Furthermore
s∗ < sCE if and only if Θ2(Γ) < β and thus if and only if τ > 0.

Stating inequalities (35) and (36) in terms of Γ gives Proposition 4 in the main text. Fur-
thermore, we collect the relationship between dynamic inefficiency and a positive Ramsey
steady state capital tax rate in the following

Proposition 12. Let θ = 1. If the steady state competitive equilibrium is dynamically

inefficient, then the optimal Ramsey tax rate τ is positive. If in addition η is degenerate

at η = 1, then the reverse is true as well: τ > 0 only if the steady state competitive

equilibrium is dynamically inefficient.

D Robustness

D.1 Ex-Ante Heterogeneity

Permanent productivity is denoted by ν and we assume that the cdf of ν is given by Φ(ν).

We assume that a LLN applies so that Φ is both the population distribution of permanent
productivity ν as well as the ex-ante cdf over ν for each household. We make the following
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Assumption 5. The shock ν takes positive values Φ-almost surely and∫
νdΦ = 1.

Furthermore, shocks η and ν are independent, thus∫
ν

∫
η

νηdΦ(ν)dΨ(η) =

∫
νdΦ(ν) ·

∫
ηdΨ(η) = 1.

The budget constraints of each agent of productivity type i is now given by

at+1(ν) + cyt (ν) = (1− κ)νwt

cot+1(ν, η) = at+1Rt+1(1− τt+1) + ηt+1νκwt+1 + Tt+1(ν),

where

Tt+1(ν) = at+1(ν)Rt+1τt+1

In all periods t we have Lt =
∫ ∫

((1− κ)ν + κνηt) dΨ(η)dΦ(ν) = 1 and thus the
capital stock in period t+ 1, Kt+1 is equal to the capital intensity kt+1 = Kt+1

Lt+1
. Denote by

st(ν) =
at+1(ν)

(1− κ)νwt

the saving rate of household of type ν. The capital intensity in period t+ 1 is then

kt+1 =

∫
at+1(ν)dΦ(ν) = (1− κ)(1− α)kαt

∫
st(ν)νdΦ(ν).

D.1.1 General Equilibrium

Proposition 13. The general equilibrium saving rates st(ν) are identical for all agents: st(ν) =

st for all ν.

Proof. If s(ν) = st then since
∫
νdΦ(ν) = 1 the law of motion of the capital stock is

kt+1 = st(1− κ)(1− α)kαt .
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The first-order condition with log utility of each household is now

1 = βRt+1(1− τt+1)

∫ ∫
cyt (ν)

cot+1(η, ν)
dΨ(η)dΦ(ν)

= αβkα−1
t+1 (1− τt+1)

∫ ∫
(1− st)ν(1− κ)(1− α)kαt

st(1− κ)(1− α)kαt αk
α−1
t+1 + ηt+1κ(1− α)kαt+1

dΨ(η)dΦ(ν)

= αβkα−1
t+1 (1− τt+1)

∫ (1−st)
st

kt+1

kt+1αk
α−1
t+1 + ηt+1κ(1− α)kαt+1

dΨ(η)

= αβ(1− τt+1)
1− st
st

Γ.

Thus the optimal saving rate is independent of permanent productivity ν.

D.1.2 Ramsey Problem

Proposition 14. Permanent ex-ante heterogeneity in productivity ν does not affect the op-

timal choice of s.

Proof. The objective of the Ramsey planner is now given by

W (k) = max
s∈(0,1)

∫
ln ((1− s)ν(1− κ)(1− α)kα) dΦ(ν)+

β

∫ ∫
ln (κηνw(s) +R(s)sν(1− κ)(1− α)kα) dΦ(ν)dΨ(η),

= (1 + β)

∫
ln(ν)dΦ(ν) + max

s∈(0,1)
ln ((1− s)(1− κ)(1− α)kα) +

β

∫
ln (κηw(s) +R(s)s(1− κ)(1− α)kα) dΨ(η)

and thus heterogeneity with respect to ν does not affect the optimization.

D.2 Idiosyncratic Return Risk

We denote return shocks by %t+1 and assume that they are iid. We assume that the cdf of %
is given by Υ(%) and denote the corresponding pdf by υ (%). We again assume that a LLN
applies so that Υ is both the population distribution of % as well as the individual cdf of
return shocks. We make the following
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Assumption 6. The shock % takes positive values Υ-almost surely and∫
%dΥ = 1.

Furthermore, shocks η and % are independent30 and therefore∫
%

∫
η

%ηdΥ(%)dΨ(η) =

∫
%dΥ(%) ·

∫
ηdΨ(η)

almost surely.

The budget constraints now write as

at+1 + cyt = (1− κ)wt

cot+1(η, %) = at+1Rt+1%t+1(1− τt+1) + ηt+1κwt+1 + Tt+1(%)

and we assume that transfer payments are contingent on the rate of return realization,

Tt+1(%) = at+1Rt+1%t+1τt+1.

D.2.1 General Equilibrium

Proposition 15. The structure of the competitive equilibrium is unchanged, but now id-

iosyncratic risk summarized by Γ is expressed in terms of the distribution Π(δt+1) of the

random variable δt+1 = ηt+1

%t+1
instead of Ψ(ηt+1).

Proof. The first-order condition for log utility is now

1 = βRt+1(1− τt+1)

∫ ∫
%t+1

cyt
cot+1(η)

dΨ(η)dΥ(%)

= αβkα−1
t+1 (1− τt+1)

∫ ∫
%t+1

(1− st)(1− κ)(1− α)kαt
st(1− κ)(1− α)kαt αk

α−1
t+1 %t+1 + ηt+1κ(1− α)kαt+1

dΨ(η)dΥ(%)

= αβ(1− τt+1)
1− st
st

∫ ∫ (
α + κ(1− α)

ηt+1

%t+1

)−1

dΨ(η)dΥ(%)

= αβ(1− τt+1)
1− st
st

∫
(α + κ(1− α)δt+1)−1 dΠ(δ)

= αβ(1− τt+1)
1− st
st

Γ(α, κ; δ,Π).

30Independence is assumed for simplicity of notation but can be relaxed for the result.
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and thus the general equilibrium saving rate is the same as before, with Γ expressed in
terms of random variable δ and its cdf Π(δ).

D.2.2 Ramsey Problem

Proposition 16. The structure of the optimal Ramsey problem is unchanged. Again the

stochasticity is expressed in terms of the random variable δt+1 = ηt+1

%t+1
instead of ηt+1.

Proof. The objective of the Ramsey planner is given by

W (k) = max
s∈(0,1)

ln ((1− s)(1− κ)(1− α)kα) +

β

∫ ∫
ln (κηw(s) +R(s)%s(1− κ)(1− α)kα) dΥ(%)dΨ(η)

= max
s∈(0,1)

ln ((1− s)(1− κ)(1− α)kα) +

β

∫ ∫
ln

(
%

(
κ
η

%
w(s) +R(s)s(1− κ)(1− α)kα

))
dΥ(%)dΨ(η)

= β

∫
ln(%)dΥ(%) + max

s∈(0,1)
ln ((1− s)(1− κ)(1− α)kα) +

β

∫
ln (κδw(s) +R(s)s(1− κ)(1− α)kα) dΠ(δ)

D.3 Time Varying Technological Progress and Population Growth

Denote by At the level of technology (labor productivity) and assume that it evolves de-
terministically according to At = (1 + gt)At−1, where the growth rate of technology gt is
allowed to be time-varying. The population growth rate n ≥ 0 is assumed to be constant
over time, so that the size of the young population evolves according to Ny

t = (1+n)Ny
t−1.

With these modifications, aggregate production is

Yt = F (Kt, AtLt) = Kα
t (AtLt)

1−α ,

where Lt is aggregate labor supply given by

Lt = (1− κ)Ny
t + κN o

t = ((1− κ)(1 + n) + κ)Ny
t−1.
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Define the capital intensity in terms of efficiency units of labor as kt = Kt
AtLt

. Then,
under the maintained assumption of Cobb-Douglas production, Yt = Kα

t (AtLt)
1−α we

get yt = Yt
AtLt

= kαt and thus wages (per effective unit of labor) and interest rates are

wt = (1− α)kαt At

Rt = αkα−1
t .

The law of motion of the capital intensity can be derived as

Kt+1 = at+1N
y
t = st(1− κ)(1− α)kαt AtN

y
t

⇔ kt+1 = st
(1− κ)(1− α)

(1 + gt+1) ((1− κ)(1 + n) + κ)
kαt .

D.3.1 General Equilibrium

Proposition 17. A time varying rate of technological progress gt does not affect the saving

rate in the competitive general equilibrium, whereas an increase of the constant population

growth rate n increases the saving rate.

Proof. Start from the FOC, equation (5), given by

1 = β(1− τt+1)

∫
1− st

st(1− τt+1) + κwt+1

(1−κ)wtRt+1
ηt+1 + Tt+1

(1−κ)wtRt+1

dΨ(ηt+1)

and use that

τt+1st =
Tt+1

(1− κ)wtRt+1

to obtain

1 = β(1− τt+1)

∫
1− st

st + κwt+1

(1−κ)wtRt+1
ηt+1

dΨ(ηt+1)
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Next, rewrite wt+1

wtRt+1
as

wt+1

wtRt+1

=
kαt+1At+1

kαt Atαk
α−1
t+1

= (1 + gt+1)
1

α

kt+1

kαt

= (1 + gt+1)
1

α
st(1− κ)(1− α)

1

(1 + gt+1) ((1− κ)(1 + n) + κ)

=
1

α
st(1− κ)(1− α)

1

(1− κ)(1 + n) + κ
.

Observe that the time varying growth rate gt+1 cancels out, and we can rewrite the FOC as

1 = αβ(1− τt+1)
1− st
st

∫
1

α + κ(1− α) 1
(1−κ)(1+n)+κ

ηt+1

dΨ(ηt+1)

= αβ(1− τt+1)
1− st
st

Γ̌.

where Γ̌ :=
∫

1
α+κ(1−α) 1

(1−κ)(1+n)+κηt+1
dΨ(ηt+1).

D.3.2 Ramsey Optimum

Proposition 18. A time varying rate of technological progress gt as well as a constant

population growth rate n leave the optimal Ramsey saving rate unchanged.

Proof. With log utility, cohort t lifetime utility is given by

Vt(kt, st, At) = ln(At) + ln ((1− st)(1− κ)kαt ) + αβ ln ((1 + gt+1)kt+1(st)) + β ln (Γ2)

= ln(At) + αβ ln(1 + gt+1) + Ṽt(kt, st),

where Γ2 =
∫

((1− α)κηt+1 + α)1−σ dΨ(ηt+1). Next, assume that the government max-
imizes the discounted sum of utility of cohorts t weighted by the population size of that
cohort so that the objective is to maximize

W0 =
∞∑
t=0

ωtN
y
t Vt(kt, st, At) = χ+

∞∑
t=0

ωtN
y
t Ṽt(kt, st)

where χ is a maximization irrelevant constant. Finally, normalizing N0 = 1 we get

W0 =
∞∑
t=0

ω̃tṼt(kt, st)
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where ω̃t = ωt(1 + n)t. Also note that

kt+1(st) = st
(1− κ)(1− α)

(1 + gt+1) ((1− κ)(1 + n) + κ)
kαt .

and thus

Ṽt(kt, st) = ln (((1− st)(1− κ)kαt )) + αβ ln (kt+1(st)) + β ln (Γ2)

= ln (((1− st)(1− κ)kαt )) + αβ ln

(
st

(1− α)(1− κ)

(1 + gt+1) ((1− κ)(1 + n) + κ)
kαt

)
+ β ln (Γ2)

= χt + ln (1− st) + α(1 + αβ) ln (kt) + αβ ln (st)

and thus time varying technological progress and population growth only add a maximiza-
tion irrelevant (time varying) additive parameter. Also since

ln(kt+1) = ln(1− α) + ln(1− κ) + α ln(kt) + ln(st)− ln ((1 + gt+1) ((1− κ)(1 + n) + κ))

= κt+1 +
t∑

τ=0

ατ ln(st−τ ) + αt+1 ln(k0)

= κ̃t+1 +
t∑

τ=0

ατ ln(st−τ )

we can substitute out ln (kt) in the cohort t utility function (as before), which adds addi-
tional maximization irrelevant time varying terms.

D.3.3 The Bounds of Proposition 4 with Technological Progress and Population Growth

We focus on a steady state where the rate of technological progress is a constant g.

Golden Rule. Maximizing steady state utility is equivalent to maximizing per capita con-
sumption. The per capita resource constraint, noticing that in the social planner’s opti-
mum cot (η) = cot , is

cytN
y
t + cotN

o
t

Nt

=
F (Kt, Lt)−Kt+1

Nt

.

55



Now observe that in steady state where kt+1 = kt = k we have

Ny
t = (1 + n)Ny

t−1, N
o
t = Ny

t−1

Nt = Ny
t +N o

t = (2 + n)Ny
t−1

Lt = ((1− κ)(1 + n) + κ)Ny
t−1

F (Kt, Lt) = kαAtLt = kαAt ((1− κ)(1 + n) + κ)Ny
t−1

Kt+1 = kAt+1Lt+1 = k(1 + n)(1 + g) ((1− κ)(1 + n) + κ)Ny
t−1

and thus maximizing per capita consumption is equivalent to

max
k
{c̃yt (1 + n) + c̃ot} = max

k
{(kα − k(1 + n)(1 + g)) ((1− κ)(1 + n) + κ)}

where c̃t = ct
At

is de-trended consumption. The first-order condition gives

αkα−1 = (1 + n)(1 + g)

and thus the golden-rule capital stock is

kGR =

(
α

(1 + n)(1 + g)

) 1
1−α

with the standard intuitive explanation that, with population growth and technological
progress, more efficient workers have to be equipped each period with an increasing capital
stock to hold constant capital per efficient worker. The golden rule interest rate is thus

RGR = αkGR
α−1

= (1 + n)(1 + g).

Finally, from the law of motion of the capital stock we have

k′ = s
(1− κ)(1− α)

(1 + g) ((1− κ)(1 + n) + κ)
kα

and thus the steady state capital stock for given saving rate is

k∗ =

(
s∗

(1− κ)(1− α)

(1 + g) ((1− κ)(1 + n) + κ)

) 1
1−α

.
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Setting k∗ = kGR then gives the golden rule saving rate as

sGR =
α ((1− κ)(1 + n) + κ)

(1− κ)(1− α)(1 + n)
.

Competitive Equilibrium and Dynamic Efficiency. Since R∗ = αk∗α−1, the steady
state interest rate for given saving rate is

R∗ =
α(1 + g) ((1− κ)(1 + n) + κ)

s∗(1− κ)(1− α)
.

Now use that

s∗ =
(1− τ)αβΓ̌

1 + (1− τ)αβΓ̌
,

as defined above, to get

R∗(τ, Γ̌) =
(1 + g) ((1− κ)(1 + n) + κ)

(1− κ)(1− α)

(
α +

1

(1− τ)βΓ̌

)
and thus in the laissez-faire steady state we have

R∗(τ = 0, Γ̌) =
(1 + g) ((1− κ)(1 + n) + κ)

(1− κ)(1− α)

(
α +

1

βΓ̌

)
.

Since the laissez-faire equilibrium economy is dynamically inefficient if R∗(τ = 0, Γ̌) <

(1 + n)(1 + g) we get that the economy is dynamically inefficient if

(1 + g) ((1− κ)(1 + n) + κ)

(1− κ)(1− α)

(
α +

1

βΓ̌

)
< (1 + n)(1 + g)

⇔ β >
1(

(1−κ)(1−α)(1+n)
(1−κ)(1+n)+κ

− α
)

Γ̌

Recall that

Γ̌ =

∫
1

α + κ(1− α) 1
(1−κ)(1+n)+κ

ηt+1

dΨ(ηt+1).
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and thus in the deterministic economy we have

¯̌Γ =
1

α + κ(1− α) 1
(1−κ)(1+n)+κ

Now rewrite the bound on β above to get

β >
1(

(1−κ)(1−α)(1+n)
(1−κ)(1+n)+κ

− α
)

Γ̌

=
1(

−κ(1−α)+(1−α)(1+n)−κ(1−α)n
(1−κ)(1+n)+κ

− α
)

Γ̌

=
1(

(1−α)(1+n(1−κ))
1+n(1−κ)

−
(
α + κ(1−α)

(1−κ)(1+n)+κ

))
Γ̌

=
1(

(1− α)Γ̌− Γ̌/¯̌Γ
) := Θ1

(
Γ̌, ¯̌Γ

)

Since the structure of the Ramsey problem has not changed, we continue to find that the
optimal saving rate for θ = 1 is

s∗ =
α(1 + β)

1 + αβ

and thus the tax rate implementing it satisfies

1− τ =
1 + β

(1− α)βΓ̌

and thus we have τ > 0, if and only if

1 + β

(1− α)βΓ̌
< 1

or if and only if

Θ2

(
Γ̌
)

:=
1

(1− α)Γ̌− 1
< β.

Stating the inequalities in terms of Γ̌ the regions corresponding to Proposition 4 become

1. Γ̌ > 1

((1−α)−1/¯̌Γ)β
: dynamic inefficiency, τ > 0
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2. Γ̌ ∈
(

1+β
(1−α)β

, 1

((1−α)−1/¯̌Γ)β

]
: dynamic efficiency, τ > 0

3. Γ̌ ∈
(

¯̌Γ, 1+β
(1−α)β

]
: dynamic efficiency, τ < 0

Recall that

¯̌Γ =
1

α + κ(1− α) 1
(1−κ)(1+n)+κ

and thus an increase of n increases ¯̌Γ increasing the lower bound of the third interval. By
increasing ¯̌Γ it also reduces 1

((1−α)−1/¯̌Γ)β
and thus the interesting interval (the case 2 of

intermediate risk) gets smaller. Finally, positive population growth reduces the sensitivity
of Γ̌ with respect to increasing risk.

E Characterization of Efficient Allocations

E.1 Characterization of Pareto Efficient Allocations

In this section we derive the solution to the unconstrained social planner problem and
study whether the Ramsey government implements Pareto efficient allocations. The ob-
vious answer is no, since an unconstrained social planner would provide full insurance
against idiosyncratic η shocks, which, given the market structure, is ruled out in any com-
petitive equilibrium. More interesting is the question how the saving rate chosen by the
unconstrained planner compares to that selected by a constrained planner and the Ramsey
government. We again assume logarithmic utility. The planner maximizes social welfare

ω−1

∫
ln(co0(η0))dΨ(η0) +

∞∑
t=0

ωt

[
ln(cyt ) + β

∫
ln(cot+1(ηt+1))dΨ(ηt+1)

]
subject just to the sequence of resource constraints

cyt +

∫
cot (ηt)dΨ(ηt) + kt+1 = kαt .

We again restrict attention to geometrically declining welfare weights: ωt+1/ωt = θ ≤ 1.

Trivially, the social planner provides full insurance against idiosyncratic income risk so
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that cot (η) = cot for all η and all t. Thus the problem simplifies to

max
{cyt ,cot ,kt+1}

ω−1 ln(co0) +
∞∑
t=0

ωt
[
ln(cyt ) + β ln(cot+1)

]
s.t.

cyt + cot + kt+1 = kαt

with k0 > 0 given. The first order conditions are given by

ωt
cyt

= λt

βωt−1

cot
= λt

λt = λt+1αk
α−1
t+1

cyt + cot + kt+1 = kαt .

The optimal allocation of consumption across two generations at time t is then given by

cot
cyt

=
βωt−1

ωt

and across time it is characterized by

cot+1

cyt
= βαkα−1

t+1 .

In contrast to the Ramsey problem, consumption of the old in the first period is no longer
irrelevant for maximization because the social planner can redistribute resources inter-
generationally whereas the Ramsey planner, given the assumed restriction on instruments
cannot. Thus, we characterize optimal allocations in period 0 and in t > 0 separately.

Periods t > 0. In all periods t > 0 again assume that ωt+1

ωt
= θ. We then get

cot
cyt

=
βωt−1

ωt
=
β

θ
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and thus from the resource constraint we get

cyt =
θ

θ + β
(kαt − kt+1)

cot =
β

θ + β
(kαt − kt+1) .

Define, similarly to the Ramsey problem, the saving rate of the social planner as

st =
kt+1

(1− κ)(1− α)kαt
.

Then from the first order conditions we get

1

cyt
=

β

cot+1

αkα−1
t+1

kt+1

(kαt − kt+1)
=

αθkαt+1(
kαt+1 − kt+2

)
(1− (1− κ)(1− α)st+1) = αθ

(
1

(1− κ)(1− α)st
− 1

)
.

As in the neoclassical growth model we can show that the only solution to the first order
difference equation that does not eventually violate the non-negativity constraint of con-
sumption and does not violate the TVC is the constant saving rate s solving

(1− (1− κ)(1− α)s) = αθ

(
1

(1− κ)(1− α)s
− 1

)
.

Define s̃ = (1− κ)(1− α)s then we have

1− s̃ = αθ

(
1

s̃
− 1

)
with solutions s̃ = 1 and s̃ = αθ and thus

sSP =
αθ

(1− κ)(1− α)
.
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The optimal sequence of capital stocks, starting from k0, is therefore given by

kt+1 = (1− κ)(1− α)stk
α
t

= αθkαt .

Since
kαt − kt+1 = (1− αθ)kαt

we immediately have that the social planner’s problem is given in all periods t > 0 by a
constant saving rate

sSP =
kt+1

(1− κ)(1− α)kαt
=

αθ

(1− κ)(1− α)

and associated sequence of capital stocks

kt+1 = αθkαt .

Period 0. Let us next characterize the allocation in period t = 0. We get

co0
cy0

=
βω−1

ω0

and can, without loss of generality, normalize ω0 = 1 so that

co0
cy0

= βω−1.

Now use this in the resource constraint to get

cy0 =
1

1 + βω−1

(kα0 − k1)

co0 =
βω−1

1 + βω−1

(kα0 − k1)

k1 = s0(1− κ)(1− α)kα0 .
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Then from the first order conditions we get

1

cy0
=

β

co1
αkα−1

1

k1 (1 + βω−1)

(kα0 − k1)
=

α (θ + β) kα1
(kα1 − k2)

s0(1− κ)(1− α) (1 + βω−1)

(1− s0(1− κ)(1− α))
=

α (θ + β)

(1− αθ)

and thus

s0 =
α (θ + β)

(1− αθ)

[
(1− κ)(1− α)

(
(1 + βω−1) +

α (θ + β)

(1− αθ)

)]−1

.

We summarize these results in the following

Proposition 19. The solution to the social planner problem, for any k0 > 0, is given by

sSP0 =
α (θ + β)

(1− αθ)

[
(1− κ)(1− α)

(
(1 + βω−1) +

α (θ + β)

(1− αθ)

)]−1

and associated capital stock in period 1

k1 = sSP0 (1− κ)(1− α)kα0 .

and consumption allocations in period 0

cy0 =
1

1 + βω−1

(
1− sSP0 (1− κ)(1− α)

)
kα0

co0 =
βω−1

1 + βω−1

(
1− sSP0 (1− κ)(1− α)

)
kα0

and in all periods t > 0 by a constant saving rate

sSP =
kt+1

(1− κ)(1− α)kαt
=

αθ

(1− κ)(1− α)

and associated sequence of capital stocks

kt+1 = αθkαt
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and consumption levels

cyt =
θ(1− αθ)kαt

θ + β

cot =
β(1− αθ)kαt

θ + β

Corollary 5. If θ = 1 (associated with maximizing steady state utility), then the social

planner chooses the golden rule saving rate

sSP = sGR =
α

(1− κ)(1− α)

and the capital stock converges, in the long run, to

kGR = α
1

1−α

which satisfies

α
[
kGR

]α−1
= 1

and associated consumption levels

cy =
(1− α)

1 + β
α

α
1−α

cot =
β(1− α)

1 + β
α

α
1−α

The social planner chooses the golden rule capital stock kGR maximizing net output yGR =(
kGR

)α − kGR and splits it efficiently between cy and co according to the rule co = βcy.

Obviously, the Ramsey equilibrium is not Pareto efficient because it does not provide
full consumption insurance against idiosyncratic income risk. What is more remarkable is
that even though the optimal Ramsey saving rate is independent of income risk (and the
same as in a model where income risk is absent), it is in general different from the saving
rate optimally chosen by the social planner (who fully insures the idiosyncratic income
risk). This result is summarized in the next

Corollary 6. For a fixed social discount factor θ ∈ [0, 1], the optimal Ramsey saving rate

equals the saving rate chosen by the social planner if and only if the following knife edge
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condition is satisfied:

(1− κ) =
θ(1 + αβ)

(1− α)(β + θ)

Note that the Ramsey government can surely implement the saving rate desired by the
social planner through an appropriate choice of taxes, but unless the condition above is
satisfied, it is suboptimal to do so. The reason is that the Ramsey government has no
instruments to transfer resources across generations and thus forcing the planner saving
rate onto households (by appropriate choice of the capital tax rate) results in an equilibrium
allocation of consumption across the young and the old that is typically suboptimal.31

E.2 Proof of Constrained Efficiency of Ramsey Allocation

Proof. Define the saving rate of the constrained planner as

st =
kt+1

(1− κ)MPL(kt)
=

kt+1

(1− α)(1− κ)kαt

Thus, the law of motion for the effective capital stock for the constrained planner is

kt+1 = st(1− α)(1− κ)kαt

as in the Ramsey problem. Furthermore, from the constraints on the constrained planner

cyt = (1− κ)MPL(kt)− kt+1 = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1) = kt+1MPK(kt+1) + κηt+1MPL(kt+1)

= αkαt+1 + κηt+1(1− α)kαt+1

= [α + κηt+1(1− α)] kαt+1.

Thus consumption is the same as in the Ramsey equilibrium and the solution, in terms of
saving rates, of the constrained planner problem is the same as the Ramsey equilibrium.

31Finally note that if one were to treat the social discount factor θ as a free parameter, then one concludes
that the Ramsey optimal saving rate is efficient, in that it is identical to the choice of the social planner with
a different social discount rate θSP = (β+θ)(1−κ)(1−α)

1+αβ .
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E.3 Proof of Pareto-Improving Tax-Induced Transition

E.3.1 Log Utility

Proof of Proposition 6. The capital stock evolves according to

kt+1 = st(1− κ)(1− α)kαt .

Therefore if the Ramsey government implements s∗ through positive capital taxes in the
first period of the transition this will lead to a falling capital stock along the transition.
Recall from (1) that utility of a generation born in period t is given by

Vt = ln(cyt ) + β

∫
ln(cot+1(ηt+1))dΨ.

Now, suppose that the policy is implemented (as a surprise) in period 1 where k1 = k0.
The initial old are unaffected by this policy and thus indifferent to the tax reform. Now we
need to characterize the utility consequences for all generations born along the transition.
Denoting by s0 = sCE the equilibrium saving rate in the initial steady state, we have

∆Vt = Vt(s
∗)− Vt(s0) = ln(cyt (s

∗))− ln(cyt (s0)) + β

∫ (
ln(cot+1(s∗))− ln(cot+1(s0))

)
dΨ.

where the consumption allocations are

cyt (st) = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1; st) = st(1− κ)(1− α)kαt αk
α−1
t+1 + κηt+1(1− α)kαt+1

= [α + κηt+1(1− α)] kαt+1.

Thus

∆Vt = ln [((1− s∗)kαt )]− ln [((1− s0)kα0 )]︸ ︷︷ ︸
=∆V +

t

+αβΓ2

ln [kt+1]− ln [k0]︸ ︷︷ ︸
=∆V −t


Since the capital stock is monotonically decreasing along the transition, ∆V −t < 0 for
all t > 0 and ∆V −s < ∆V −t < 0 for all s > t > 0, and we call ∆V −t the “loss” term.
From the monotonically decreasing capital stock it also follows that ∆V +

t is monotonically
decreasing along the transition. Since in the limit we have limt→∞∆Vt > 0 (because s∗
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maximizes steady state utility), it follows that ∆V +
t > 0 for all t > 0 and we therefore

refer to ∆V +
t as the “gains” term. Finally, since gains are monotonically decreasing and

losses—the absolute value
∣∣V −t ∣∣—are monotonically increasing we achieve the smallest

gains and largest losses for t → ∞ and since limt→∞∆Vt > 0, it follows that ∆Vt > 0 in
all t > 0.

E.3.2 Generalization

Consider the additively separable life-time utility function Vt as

Vt = u(cyt ) + g(cot+1,Ψ) (37)

with u′ > 0, u′′ < 0 for all cyt > 0 and g′ > 0, g′′ < 0 for all cot+1 > 0. Aggregating second
period consumption with function g(·) nests standard (discounted) expected utility formu-
lations as well as non-expected utility preferences such as Epstein-Zin-Weil preferences,
analyzed in Section 6. As before, write consumption allocations in terms of the saving
rate s as (cyt (s), c

o
t+1(η, s)). As shorthand, below we denote as us = u′(cyt (s)) × cyt (s)

′,

with gs defined correspondingly. Given this notation the first-order condition of the Ram-
sey problem for θ = 1 is

∂V∞
∂s

= us + gs = 0 ⇔ −us = gs. (38)

We make the following additional

Assumption 7.

lim
s→1
−us > lim

s→1
gs (39)

and, for all s ∈ (α, 1),

εu′,c = −u
′′(cyt (s))

u′(cyt (s))
<
cyt (s)

′′

cyt (s)
′ = εcs,s, (40)

where εu′,c is the semi-elasticity of marginal utility32 with respect to consumption cy and εcs,s
is the semi-elasticity of consumption cy with respect to the saving rate s.

32In in a static stochastic environment this would be equal to the measure of absolute risk aversion. We
prefer the term semi-elasticity of marginal utility because first period consumption is not stochastic.
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The next proposition generalizes Proposition 6 to additively separable utility functions
with the above properties. It also provides conditions for existence and uniqueness of a
solution to (38):

Proposition 20. Let the utility function be given by (37). Under assumption 7 the solution

to (38) gives a unique s∗ ∈ (α, 1). Further assume that sCE > s∗. Then implementing s∗

in period t = 0 for all t ≥ 0 leads to a Pareto improving transition.

Before proving the above proposition, note that condition (39) is required for existence,
and condition (40) for uniqueness of s∗ ∈ (α, 1). We further show that condition (40)
implies for sCE > s∗ that ∂V∞

∂s
< 0 so that the generation born in the limit of the transition

when the economy approaches the new steady state benefits from implementing s∗ < sCE .
We later establish for Epstein-Zin-Weil preferences, which nest CRRA preferences as a
special case, that all these conditions are satisfied. Thus, we show analytically that the
conditions apply quite generally. For the general class of HARA utility functions

u(c) =
1− γ
γ

(
ι · c

1− γ
+ ξ

)γ
with parameters ι > 0, ξ, γ, and the restriction ι·c

1−γ + ξ > 0 and γ 6= 1 (ruling out linear
utility) condition (39) may fail to hold so that there is no solution to the Ramsey problem.
For instance, with exponential utility condition (39) may fail to hold since there is no lower
Inada condition so that lims→1−us <∞.33

As for the assumption that sCE > s∗ notice that we earlier established that sCE is in-
creasing with risk if there is precautionary savings. Thus, with sufficient risk we have sCE >
s∗. Also, as for the second part of the proposition on the Pareto improving transition, the
proof follows exactly the same logic as the proof of Proposition 6.

We do not address in this proposition whether the economy is dynamically efficient. Of
course, as before, the interesting case is where s∗ < sCE < sGR, where sGR = α

(1−α)(1−κ)

is the golden rule saving rate. Finally, notice that the proposition is silent about implemen-
tation. We address implementation under the assumption of existence of a unique s∗ in the
subsequent Proposition 21 for expected utility and later in Proposition 23 for EZW utility.

33Consider nested exponential utility, i.e., γ = −∞, and ξ = 1. Further parameterize ι = 1, α = 0.33, κ =
0.7 and η = 1, i.e., a degenerate deterministic case. Also assume an expected utility formulation with β = 1

g(co; Ψ) = β

∫
u(co(η))dΨ(η).

Then condition (39) fails to hold, an interior s∗ does not exist and the optimal saving rate is s∗ = 1.
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Proof of Proposition 20. First, we establish that s∗ is unique and that with uniqueness we
get for sCE > s∗ that ∂V∞

∂s
< 0. To show this, we analyze the first-order condition of the

Ramsey government (38). The next steps will establish that (i) gs > 0 is a continuous and
downward sloping function in s, (ii) −us > 0 for s > α, and (iii) that condition (40) is
required for a single crossing of gs and −us. Findings (i)-(ii) together with (39) establish
existence, the additional finding (iii) uniqueness of s∗.

Start from the allocation in the long-run steady state. Recall from Section E.3 above
that consumption when young and old is

cyt = (1− st)(1− κ)(1− α)kαt ,

cot+1 = (α + κ(1− α)η) kαt+1,

where

kt+1 = st(1− κ)(1− α)kαt . (41)

In steady state we thus have

k = (s(1− κ)(1− α))
1

1−α

and therefore steady state consumption allocations are

cy = (1− s)s
α

1−α ((1− α)(1− κ))
1

1−α (42a)

co = (α + κ(1− α)η) ((1− α)(1− κ))
α

1−α s
α

1−α . (42b)

Use this in the social welfare function for θ = 1 to obtain

V∞ = u(cy) + g(co; Ψ)

= u
(

(1− s)s
α

1−α ((1− α)(1− κ))
1

1−α

)
+ g((α + κ(1− α)η) ((1− α)(1− κ))

α
1−α s

α
1−α ; Ψ).

From the above we readily observe that gs > 0 as well as gss < 0 because of decreasing
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marginal utility.34 To establish existence of s∗ observe that

us = u′(cy(s))× cy(s)′ = u′ ((1− α)(1− κ))
1

1−α

(
−1 +

α

1− α
(1− s)s−1

)
s

α
1−α

< 0 ⇔ cy(s)′ < 0 ⇔ s > α.

because u′(cy(s)) > 0 and thus us < 0 for s > α. If, in addition, condition (39) holds,
then there exists at least one solution s∗ ∈ (α, 1). Also notice that condition (39) holds if u
satisfies the Inada condition, because then lims→1−us =∞ and lims→1 gs <∞.

To establish uniqueness we further require that u′′ < 0 for all s ∈ (α, 1) so that −us is
continuously upward sloping. Observe that

uss = u′′(cy)cy(s)′ + u′(cy)cy(s)′′ < 0 ⇔ εu′,c = −u
′′(cy)

u′(cy)
<
cy(s)′′

cy(s)′
= εcs,s

which limits the (positive) semi-elasticity of marginal utility εu′,c from above. For the
semi-elasticity of consumption εcs,s notice that we have already established that cy(s)′ < 0

for s ∈ (α, 1). We next show that for s ∈ (α, 1) also cy(s)′′ < 0 so that εcs,s > 0. To see
this, write

cy(s)′′ = ((1− α)(1− κ))
1

1−α
α

1− α
s

α
1−α−1

[
−2 + (1− s)2α− 1

1− α
s−1

]
and thus cy(s)′′ < 0 if

− 2 + (1− s)2α− 1

1− α
s−1 < 0 ⇔ s > 2α− 1

Before, we have shown that for s > α we have cy(s)′ < 0 and since α > 2α− 1 ⇔ α < 1

we know that s > α implies that cy(s)′′ < 0 and thus for s ∈ (α, 1) we get c
y(s)′′

cy(s)′
> 0. Also,

since by property (40) the function −us is continuous and upward sloping and since gs is
downward sloping we have that if s∗ ∈ (α, 1) exists, then sCE > s∗ implies that V ′∞(s) < 0.

Along the transition, recall that the consumption allocations for generation t is

cyt (st) = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1; st) = [α + κηt+1(1− α)] kαt+1.

34Specifically, we have assumed that gc > 0, gcc < 0. Observe from (42b) that co(s)′ > 0 so that gs > 0
and gss < 0.
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Thus, assuming a unique s∗ < sCE we get

∆Vt = u ((1− s∗)(1− κ)(1− α)kαt )− u
(
(1− sCE)(1− κ)(1− α)kα0

)︸ ︷︷ ︸
=∆V +

t

+

g
(
[α + κηt+1(1− α)] kαt+1; Ψ

)
− g ([α + κηt+1(1− α)] kα0 ; Ψ)︸ ︷︷ ︸

=∆V −t

and since ∂cyt
∂kt

> 0 as well as ∂cot+1

∂kt+1
> 0 the same arguments on the behavior of V +

t and V −t
along the transition as in the proof of Proposition 6 apply.

E.3.3 Implementation

Observe that the proof above does not say anything about implementation of the saving
rates though taxation of capital. The next proposition contains a fairly general implemen-
tation result for expected utility. Proposition 23 extends this result to EZW utility.

Proposition 21. If the utility function in both periods is of the HARA form,

u(c) =
1− γ
γ

(
ιc

1− γ
+ ξ

)γ
, (43)

with parameters ι > 0, ξ, γ, γ 6= 1 such that ιc
1−γ + ξ > 0, then in general equilibrium the

saving rate s is strictly decreasing in the tax rate τ so s∗ ∈ (α, 1] can be implemented by a

unique (typically time-dependent) tax rate τ ∗t+1.

Proof. Start from the Euler equation given current period t aggregate wageswt = (1−α)kαt

u′ [(1− κ)wt(1− s(τt+1))] =

αβ(1−τt+1) ((1− κ)wt)
α−1 s(τt+1)α−1

∫
u′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] dΨ(η).

(44)
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Totally differentiate (44) to get

− (1− κ)wtu
′′ [(1− κ)wt(1− s(τt+1))]

ds(τt+1)

dτt+1

= αβ ((1− κ)wt)
α−1[

−s(τt+1)α−1 + (1− τt+1)(α− 1)s(τt+1)α−2ds(τt+1)

dτt+1

] ∫
u′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] dΨ(η)

+ α2β(1− τt+1) ((1− κ)wt)
2α−1 s(τt+1)2(α−1)ds(τt+1)

dτt+1

·

·
∫
u′′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] (α + (1− α)κη)dΨ(η).

Now use the notation

cy(s(τt+1)) = (1− κ)wt(1− s(τt+1))

co(s(τt+1), η) = (α + (1− α)κη) [(1− κ)wt]
α s(τt+1)α

and divide by (1− κ)wt to rewrite this further as

− u′′ [cy(s(τt+1))]
ds(τt+1)

dτt+1

= −αβ ((1− κ)wt)
α−2[

s(τt+1)α−1 + (1− τt+1)(1− α)s(τt+1)α−2ds(τt+1)

dτt+1

]
E [u′(co(s(τt+1), η))]

+ α2β(1− τt+1) ((1− κ)wt)
2(α−1) s(τt+1)2(α−1)ds(τt+1)

dτt+1

·

·
∫
u′′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] (α + (1− α)κη)dΨ(η).

Since u′ > 0 and u′′ < 0 ambiguity of implementation may come from the expression∫
u′′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] (α + (1− α)κη)dΨ(η). (45)

Before proceeding observe that without risk implementation is unambiguous since then

u′′ [(α + (1− α)κ) [(1− κ)w0]α s(τ)α] (α + (1− α)κ) < 0.
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With income risk, observe that with HARA utility (43) we have

u′ = ι

(
ιc

1− γ
+ ξ

)γ−1

, u′′ = −ι2
(

ιc

1− γ
+ ξ

)γ−2

and thus (45) becomes

−
∫
ι2
[

ι

1− γ
(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α + ξ

]γ−2

(α + (1− α)κη)dΨ(η)

= −ι2
∫ [(

ι

1− γ
(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α + ξ

)
(α + (1− α)κη)

1
γ−2

]γ−2

dΨ(η)

= −ι2
∫ [(

ι

1− γ
(α + (1− α)κη)

γ−1
γ−2 [(1− κ)wt]

α s(τt+1)α + ξ(α + (1− α)κη)
1

γ−2

)]γ−2

dΨ(η)

= Λ(s(τt+1); ι, ξ, α, κ, γ, η) < 0

and thus for HARA preferences defined in the proposition there is a strictly downward-
sloping relationship between st and τt+1.

E.3.4 Marginal Reforms

The next corollary studies marginal tax reforms rather than implementing the full Ramsey
equilibrium.

Corollary 7. Let Assumption 7 hold and assume that sCE > s∗. Implementing a saving

rate sCE − ε ≥ s∗ for small ε > 0 in all periods t ≥ 0 through a time-varying tax rate τt+1

yields a Pareto improvement.

Proof. Replace in the proof of Proposition 20 s∗ by sCE − ε ≥ s∗ to note that the same
arguments on monotone transitions of the gains and loss terms apply.

E.4 Savings Subsidy Does Not Induce Pareto Improvement

In this section we show, in contrast to the previous section, that even if sCE < s∗, imple-
menting the Ramsey (for θ = 1) saving rate s∗ through a savings subsidy τ ∗ < 0 does
not lead to a Pareto improving transition. Exploiting the fact that in the first period of the
transition the capital stock k1 = k0 is predetermined, and the capital stock in t = 2 satisfies

k2 = s(1− α)(1− κ)kα0
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for any saving rate implemented by a given tax policy. Thus we can calculate lifetime
utility of the first transition generation, as a function of an implemented saving rate s, as

V1(s) = ln ((1− s)(1− κ)(1− α)kα0 ) + β

∫
ln (α + κη2(1− α)) (s(1− α)(1− κ)kα0 )α dΨ(η)

= ln(1− s) + βα ln(s) + ln ((1− κ)(1− α)kα0 )

+ β

∫
ln (α + κη2(1− α)) ((1− α)(1− κ)kα0 )α dΨ(η)

and thus

V ′1(s) = − 1

1− s
+
αβ

s

V ′′1 (s) = − 1

(1− s)2
− αβ

s2
< 0

and thus V1(s) is strictly concave in s. Therefore, if V ′1(s = sCE) ≤ 0, then V (s = sCE) >

V (s) for all s > sCE. We have

V ′1(s = sCE) = − 1

1− sCE
+ αβ

1

sCE
≤ 0

⇔ sCE ≥ αβ

1 + αβ

which is satisfied, exploiting expression (12) for the optimal competitive equilibrium sav-
ing rate (with zero taxes). Thus not only is implementing τ ∗ < 0 not Pareto improving if
sCE < s∗, but in fact any policy reform that induces a saving rate in period 1 above the
competitive saving rate with zero taxes, sCE, will not result in a Pareto improvement (since
it will make the first generation strictly worse off).

F Analysis of General Epstein-Zin Utility

F.1 Competitive Equilibrium for Given Tax Policy

Household maximization delivers

1 = β(1− τt+1)Rt+1

[∫ (
cot+1(ηt+1)

cyt

)1−σ

dΨ(ηt+1)

]σ− 1
ρ

1−σ ∫ (
cot+1(ηt+1)

cyt

)−σ
dΨ(ηt+1).
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and, using the expressions for consumption in both periods and the law of motion of the
capital stock, as in the previous analysis we can rewrite the first-order condition as

1 = αβ ((1− κ)(1− α))(α−1)(1− 1
ρ) (1− τt+1)k

α(α−1)(1− 1
ρ)

t st
(α−1)(1− 1

ρ)
(

1− st
st

) 1
ρ

Γ̃.

In steady state the Euler equation reads as

1 = αβ ((1− κ)(1− α))(α−1)(1− 1
ρ) (1− τ)kα(α−1)(1− 1

ρ)s(α−1)(1− 1
ρ)
(

1− s
s

) 1
ρ

Γ̃

where
k = [(1− κ)(1− α)s]

1
1−α

is the steady state capital stock. Inserting it into the Euler equation delivers

1 = (1− τ)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s)

1
ρ

s
Γ̃ (46)

where Γ̃ is defined in the main text. This result is the generalization of the log-case where
ρ = σ = 1, and where the Euler equation was given as

1 = (1− τ)αβ

(
1− s
s

)
Γ

with Γ defined as in the main text. Thus our previous analysis for log-utility is just a special
case. Also note that if ρ = 1 but σ 6= 1, then the steady state Euler equation is given by

1 = (1− τ)αβ

(
1− s
s

) 1
ρ

Γ̃

but

Γ̃ =

∫
(α + (1− α)κη)−σ dΨ(η)[∫
(α + (1− α)κη)1−σ dΨ(η)

] 6= ∫ (κη(1− α) + α)−1 dΨ(η) = Γσ=1

F.1.1 Precautionary Savings Behavior in the Competitive Equilibrium

In order to aid with the interpretation of the optimal Ramsey tax rate it is useful to establish
conditions under which, for a fixed tax rate, the saving rate in competitive equilibrium is
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increasing in income risk.

Proposition 22. If Γ̃ is strictly increasing in income risk, then for any given tax rate

τ ∈ (−∞, 1) the steady state saving rate sCE(τ) in competitive equilibrium is strictly

increasing in income risk. If Γ̃ is strictly decreasing in income risk, then so is sCE(τ).

Proof. Rewrite equation (46) as

f(s) = (1− τ)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s)

1
ρ

s
− 1

Γ̃
.

Then a saving rate sCE(τ) that satisfies f(sCE(τ)) = 0 is a steady state equilibrium saving
rate. We readily observe that f is continuous and strictly decreasing in s, with

lim
s→0

f(s) = ∞

f(1) = − 1

Γ̃
< 0

and thus for each τ ∈ (−∞, 1) there is a unique s = sCE(τ) that satisfies f(sCE(τ)) = 0.

Inspection of f immediately reveals that sCE(τ) is strictly increasing in Γ̃, from which the
comparative statics results follow.

Corollary 8. For any given τ ∈ (−∞, 1), the steady state saving rate sCE(τ) increases in

income risk if either ρ ≤ 1, or 1 < ρ < 1
σ

.

Proof. Follows directly from the previous proposition and Lemma 1 in the main text (and
proved in the next section) characterizing the behavior of Γ̃ with respect to income risk.

Proposition 22 establishes a sufficient condition for the private saving rate to increase
in income risk. But, for ρ > 1

σ
> 1 it is possible that the combination of individual savings

behavior and general equilibrium factor price movements lead to the result that, for fixed

government policy, the equilibrium saving rate is decreasing in income risk.35 We will
show below that this in turn is a necessary condition for the optimal Ramsey tax rate to
decrease in income risk.

35Also observe that a parameter constellation 1 < ρ < 1
σ pairs a high IES with a preference for a late

resolution of risk in a multi-period (more than two periods) model. Interestingly, the competitive equilibrium
saving rate may therefore decrease in income risk precisely when we pair a high IES with a preference
constellation for early resolution of risk.
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F.2 Ramsey Problem for Unit IES

Now we use the formulation of lifetime utility in equation (24). Then it is straightforward
to show that for ρ = 1 the analysis of the Ramsey problem proceeds exactly as for log
utility

W (k) = Θ0 + Θ1 ln(k)

= max
s∈[0,1]

{ln((1− s)(1− κ) (1− α) kα)

+
β

1− σ
ln

∫
(κηw(s) +R(s)s(1− κ)(1− α)kα)1−σ dΨ(η) + θW (k′)

}
= max

s∈[0,1]
{ln((1− s)(1− κ) (1− α) kα)

+
β

1− σ
ln

∫
([κη(1− α) + α] [s(1− κ)(1− α)kα]α)

1−σ
dΨ(η) + θW (s(1− κ)(1− α)kα)

}
= α [1 + θΘ1 + αβ] ln(k) + ln [(1− κ) (1− α)] + θΘ0 + θΘ1 ln((1− κ)(1− α))

+βα ln [(1− κ)(1− α)] +
β ln

∫
[κη(1− α) + α]1−σ dΨ(η)

1− σ
+ max

s∈[0,1]
{ln(1− s) + αβ ln (s) + θΘ1 ln(s)}

and the FOC delivers the optimal saving rate as in the main text:

s =
α(β + θ)

1 + αβ
.

These results clarify that the closed form solution, and the fact that the optimal saving
rate is constant over time and independent of the level of capital, is driven by an IES =

ρ = 1 (and obtained for arbitrary risk aversion), whereas the size of the capital tax needed to
implement the optimal Ramsey allocation does depend on risk aversion σ, see Section F.1.1.
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F.3 Steady State Analysis for Arbitrary IES

The Ramsey government seeking to maximize steady state lifetime utility has the objective
function:

V (s) =
(cyt )

1− ‘1
ρ + β

{[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ
}1− 1

ρ

1− 1
ρ

=
((1− κ)(1− s)(1− α)kα)1− ‘1

ρ

1− 1
ρ

+
β [s(1− κ)(1− α)kα]α(1− 1

ρ)
{[∫
{[κη(1− α) + α]}1−σ dΨ

] 1
1−σ
}1− 1

ρ

1− 1
ρ

=
((1− κ)(1− α))1− ‘1

ρ

1− 1
ρ

(1− s)(1− 1
ρ)kα(1− 1

ρ) +
β [(1− κ)(1− α)]α(1− 1

ρ) Γ̃2

1− 1
ρ

sα(1− 1
ρ)kα

2(1− 1
ρ)

where

Γ̃2 =

[∫
{[κη(1− α) + α]}1−σ dΨ

] 1− 1
ρ

1−σ

= Γ
σ− 1

ρ
1−σ

2 Γ2.

Exploiting that in steady state

k = ((1− κ)(1− α)s)
1

1−α

yields

V (s) =
((1− κ)(1− α))1− ‘1

ρ

1− 1
ρ

(1− s)(1− 1
ρ) ((1− κ)(1− α)s)

α(1− 1
ρ)

1−α

+
β [(1− κ)(1− α)]α(1− 1

ρ) Γ̃2

1− 1
ρ

(s)α(1− 1
ρ) ((1− κ)(1− α)s)

α2(1− 1
ρ)

1−α

= φ̃
(

(1− s)(1− 1
ρ) + βζ̃Γ̃2

)
s
α(1− 1

ρ)
1−α ,
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where

φ̃ =
((1− κ)(1− α))

1− 1
ρ

1−α

1− 1
ρ

ζ̃ =

(
1

(1− κ)(1− α)

)(1− 1
ρ

)

> 0

Γ̃2 =

([∫
{[κη(1− α) + α]}1−σ dΨ

] 1
1−σ
)1− 1

ρ

> 0.

Thus the steady state analysis in the main text carries through to Epstein-Zin-Weil utility
almost entirely unchanged, but with the constant that maps earnings risk into the optimal
saving rate now being affected both by risk aversion and the IES.

Hence, the optimal steady state saving rate is defined implicitly as

s

(1− s)
1
ρ

=
α

1− α
(1− s)(1− 1

ρ) + β
α

1− α
ζ̃Γ̃2 (47)

and rewriting this equation yields

LHS(s) = s =
α

1− α

[
(1− s) + βζ̃Γ̃2(1− s)

1
ρ

]
= RHS(s). (48)

We observe that the left hand side is linearly increasing in s, with LHS(0) = 0 and
LHS(1) = 1 and the right hand side is strictly decreasing in s, with RHS(0) > 0 and
RHS(1) = 0. Since both sides are continuous in s, from the intermediate value theorem
it follows that there is a unique s∗ ∈ (0, 1) solving the first order condition of the Ramsey
problem (48). Since RHS(s) is strictly increasing in Γ̃2, the Ramsey saving rate is strictly
increasing in Γ̃2. The comparative statics of s∗ with respect to income risk in the main text
then directly follow from the properties of Γ̃2 stated in Lemma 1.

For future reference we rewrite equation (48) as

(1− s)
1
ρ

s
=

1−α
α
− (1−s)

s

βζ̃Γ̃2

=
1
α
− 1

s

βζ̃Γ̃2

. (49)
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F.4 Implementation

F.4.1 Implementation in Steady State

The optimal steady state capital tax rate τ ∗ satisfies, from equation (46)

1 = (1− τ ∗)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s∗)

1
ρ

s∗
Γ̃. (50)

We observe that the optimal tax rate is strictly increasing in Γ̃ and strictly decreasing in the
Ramsey saving rate s∗ that is to be implemented. Further, recall that the Ramsey saving
rate s∗ itself satisfies the first order condition (49)

(1− s∗)
1
ρ

s∗
=

1
α
− 1

s∗

βζ̃Γ̃2

(51)

and is impacted by income risk through Γ̃2. Plugging (51) into (50) and exploiting the
definition of ζ̃ yields

1 = (1− τ ∗)
(

1− α

s∗

) Γ̃

Γ̃2

. (52)

Lemma 1 establishes that Γ̃
Γ̃2

is strictly increasing in income risk, and Proposition 9 in
the main text establishes that an increase in income risk increases s∗ if and only if ρ < 1

and decreases it if and only if ρ > 1. To sign the overall impact of income risk on the
capital tax rate it is therefore useful to consider the following cases:

Case ρ ≤ 1. This case gives clean results. From equation (52), since Γ̃
Γ̃2

is strictly in-
creasing in income risk, and since s∗ is increasing in income risk for ρ ≤ 1, strictly so if
ρ < 1, it follows that τ ∗ is strictly increasing in risk.

Case ρ > 1 and σ ≤ 1/ρ. In this case Γ̃ is strictly increasing in risk (Lemma 1) and s∗

is strictly decreasing in risk (see Proposition 9) It then directly follows from equation (50)

that τ ∗ is strictly increasing in income risk as well.

Case ρ > 1 and σ > 1/ρ. Since ρ > 1, the Ramsey saving rate s∗ is strictly decreasing
in income risk (which by itself calls for a tax rate that is strictly increasing in income risk),
by equation (50). However, now the direct impact of income risk on taxes through the term
Γ̃ might call for lower taxes since Γ̃ might now be decreasing in income risk. If Γ̃ is weakly
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increasing in income risk, then so is τ ∗. Thus a necessary condition for τ ∗ to decrease with
income risk is for Γ̃ to be strictly decreasing with income risk. This in turn is a necessary
and sufficient condition for the private saving rate in competitive equilibrium to decrease
with income risk (see Proposition 22). Thus the Ramsey tax rate τ ∗ is strictly decreasing
in income risk only if the private saving rate sCE(τ) is strictly decreasing in income risk
(for any given tax rate τ ). The corresponding if statement is not necessarily true, as the
numerical illustrations in the main text show.

Finally, one might conjecture that, since ρ > 1 and σ > 1/ρ is required for the capital
tax to decrease in income risk, that as long as both parameters are large enough the result
will materialize. This conjecture turns out to be false, as an investigation of the most
extreme case ρ = σ =∞ shows. In this case lifetime utility is given by

Vt = cyt + βcot+1 (53)

where cot+1 is consumption in old age if the lowest possible labor productivity realization
η = η

t+1
materializes. In this case one can solve analytically for the optimal interior

Ramsey saving and tax rate, and show that the optimal tax rate is the higher the lower is
η
t+1

and thus the higher is income risk.36

F.4.2 Implementation in Transition

Proposition 21 above provides a fairly general implementation result for expected utility.
The next proposition extends this result to EZW utility. We use this result in our numerical
analysis of Section 6.3.

Proposition 23. If the utility function is of the EZW form, then in general equilibrium we

have sτ = ∂st
∂τt+1

< 0 and unambiguous implementation.

Proof. Recall from Section F.1 that the first-order condition in any period t of the transition
is

1 = αβ ((1− κ)(1− α))(α−1)(1− 1
ρ) (1− τt+1)k

α(α−1)(1− 1
ρ)

t st
(α−1)(1− 1

ρ)
(

1− st
st

) 1
ρ

Γ̃.

36In this case it is possible that the Ramsey government will want to implement a saving rate of s = 1 since
households have linear preferences over consumption when young and minimum (across η) consumption
when old. As long as η is sufficiently small, however, the Ramsey government prefers to implement an
interior saving rate.
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Observe that an increase in the tax rate decreases the RHS. Collect terms on the saving rate
as

st
(α−1)(1− 1

ρ)
(

1− st
st

) 1
ρ

= st
(α−1)(1− 1

ρ)−
1
ρ (1− st)

1
ρ

and notice that for any ρ > 0 term (1 − st)
1
ρ decreases in the saving rate. In response

to an increase of the tax rate this force drives the saving rate down. To get unambiguous
implementation, we thus require that the exponent

(α− 1)

(
1− 1

ρ

)
− 1

ρ
< 0 ⇔ 1

ρ
> 0 > 1− 1

α

which holds for all α ∈ (0, 1).

F.5 Decomposition of the FOC into PE(s), CG(s) and FG(s)

Proposition 24. For θ = 1, σ 6= 1
ρ
, terms PE(s), CG(s), FG(s) are given by

PE(s) = − 1

1− s

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

αβ

s
Γ̃k(s)α(1− 1

ρ)

CG(s) =
αβ

s
k(s)α(1− 1

ρ)
(

Γ̃2 − Γ̃
)

FG(s) =
α

s(1− α)

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

α2β

s(1− α)
k(s)α(1− 1

ρ)Γ̃2

where k(s) = (s(1− κ)(1− α))
1

1−α is the steady state capital stock.

Therefore,

PE(s) + CG(s) = − 1

1− s

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

αβ

s
k(s)α(1− 1

ρ)Γ̃2. (54)

and

PE(s)+CG(s)+FG(s) =

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ

(
α

s(1− α)
− 1

1− s

)
+

1

s
k(s)α(1− 1

ρ) αβ

(1− α)
Γ̃2.

(55)
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Thus, compared to the expressions for these three effects we derived in Section 4.2, the
partial equilibrium precautionary savings effect still cancels out the current generations
general equilibrium effect (Γ̃ cancels out when adding up PE(s) and CG(s)). However,
additionally risk enters through Γ̃2. With ρ < 1 an increase of risk increases Γ̃2 thereby
pushing up the desired saving rate of the Ramsey planner. The reason is that an increase
of risk decreases the utility value of second period consumption of current generations
(effect in CG(s)) and of all future generations (effect in FG(s)). With a low IES, it is
optimal to compensate this with higher savings; vice versa for a high IES where the Ramsey
planner rather prefers increased first-period consumption, respectively current generations
consumption, over future consumption in response to an increase in risk.

Proof of Proposition 24. Calculating the respective terms yields

PE(s) = (1− κ)(1− α)kα
[
− ((1− s)(1− κ) (1− α) kα)−

1
ρ +

αk′(s)
α−1

β

(∫
(κη(1− α) + α)1−σ dΨ

)σ− 1
ρ

1−σ

k′(s)
α(σ− 1

ρ)
∫

(κη(1− α) + α)−σ dΨk′(s)
−ασ


= − 1

1− s

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

αβ

s
Γ̃k(s)α(1− 1

ρ).

and for

CG(s) = β

(∫
co(η)1−σdΨ

)σ− 1
ρ

1−σ
∫ (

co(η)−σ
)

[κηw′(s) + (1− κ)(1− α)kαR′(s)s] dΨ(η)

= βΓ
σ− 1

ρ
1−σ

2 k′(s)
α(σ− 1

ρ)
∫

(κη(1− α) + α)−σ k′(s)
−ασ

α(1− α)s−1

·
[
κηk′(s)

α − (1− κ)(1− α)kαk′(s)
α−1

s
]
dΨ

=
αβ

s
k′(s)

α(1− 1
ρ)Γ

σ− 1
ρ

1−σ
2

∫
(κη(1− α) + α)−σ [κη(1− α) + α− 1] dΨ

=
αβ

s
k(s)α(1− 1

ρ)
(

Γ̃2 − Γ̃
)
.

When maximizing steady state utility, FG(s) is equivalent to the derivative of the utility
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function with respect to the current period capital stock. Therefore:

FG(s) = ucyc
y
k(s)k(s)s + β

(∫
co(η)1−σdΨ

)σ− 1
ρ

1−σ
∫ (

co(η)−σ
)
cok′(s)k

′(s)k(s)k(s)sdΨ,

where

ucyc
y
k(s)k(s)s = ((1− s)(1− κ)(1− α)k(s)α)−

1
ρ (1− s)(1− κ)(1− α)αk(s)α−1(1− κ)k(s)α

=
α

s(1− α)

(
1− s
s

)1− 1
ρ

k′(s)
1− 1

ρ

and (∫
co(η)1−σdΨ

)σ− 1
ρ

1−σ

= Γ
σ− 1

ρ
1−σ

2 k′(s)
α(σ− 1

ρ)

and

β

∫
c0−σcok′(s)k

′(s)k(s)k(s)sdΨ =

β

∫
(κη(1− α) + α)−σ k′(s)

−ασ
(κη(1− α) + α) dΨαk′(s)α−1k′(s)α(1− κ)k(s)α−1

=
α2β

s(1− α)
k′(s)

α(1−σ)
Γ2.

Therefore:

FG(s) =
α

s(1− α)

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

α2β

s(1− α)
k(s)α(1− 1

ρ)Γ̃2.

F.6 Decomposition of τ ∗

Corollary 9. τ ∗ can only be decreasing in risk if the effect of FG(s) is sufficiently strong.

Proof. We know that the FOC for s∗ follows from

PE(s) + CG(s) + FG(s) = 0
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Now set FG(s) = 0. Rewrite from (54)

PE(s) + CG(s) = 0 ⇔ s

(1− s)
1
ρ

= αβζ̃Γ̃2,

which uses k(s) = (s(1− κ)(1− α))
1

1−α and ζ̃ = ((1 − α)(1 − κ))
1
ρ
−1. Using the above

in (50) gives

1 = (1− τ ∗) Γ̃

Γ̃2

and Γ̃
Γ̃2

is unambiguously increasing in risk, see Appendix G.1. Using the above we can
thus decompose equation (32) as

1 = (1− τ ∗) Γ̃

Γ̃2︸ ︷︷ ︸
from PE(s)+CG(s)

− (1− τ ∗) α
s∗

Γ̃

Γ̃2︸ ︷︷ ︸
from FG(s)

.

F.7 Pareto Improving Transitions

Observe that specification (37) nests EZW preferences as a special case. Thus, Proposi-
tion 20 and Corollary 7 apply.
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G Income Risk and Γ,Γ2, Γ̃, Γ̃2

G.1 General Case

In this section we prove Lemma 1 in the main text through two separate Lemmas. For this,
recall that the relevant expressions involving idiosyncratic income risk are given by:

Γ =

∫
(κη(1− α) + α)−σ dΨ(η)

Γ2 =

∫
(κη(1− α) + α)1−σ dΨ(η)

Γ̃ = Γ
σ− 1

ρ
1−σ

2 Γ = vσ−
1
ρΓ

Γ̃2 = Γ
σ− 1

ρ
1−σ

2 Γ2 = Γ
1− 1

ρ
1−σ
2 = v1− 1

ρ

Γ̃

Γ̃2

=
Γ

Γ2

v ≡


[∫

(α + (1− α)κη)1−σ dΨ(η)
] 1

1−σ for σ 6= 1

exp
[∫

ln (α + (1− α)κη) dΨ(η)
]

for σ = 1

Furthermore, as in the main text we use the notion of a mean-preserving spread in the
random variable η when referring to an increase in risk, that is, formally, random variable
η is replaced by η̃ = η + ν, where ν is a random variable with zero mean and positive
variance (and Assumption 1 applies to η̃ as well).

Lemma 2. The certainty equivalent v is decreasing in η-risk.

Proof. If σ > 1 (σ < 1), then (α + (1− α)κη)1−σ is convex and downward sloping (con-
cave and upward sloping) in η. The certainty equivalent of a convex and downward sloping
(respectively, concave and upward sloping) function is decreasing in risk.

Lemma 3. The comparative statics of the other risk terms with respect to a mean-preserving

spread in η are given by:

1. Γ is increasing in η-risk.

2. Γ2 is increasing (respectively, decreasing) in η-risk if σ > 1 (respectively σ < 1).

3. Γ̃2 is increasing (decreasing) in η-risk if ρ < 1 (ρ > 1).
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4. For ρ < 1, Γ̃ is increasing in η-risk. For ρ > 1 we have the following case distinction:

(a) For 1
σ
> ρ > 1, Γ̃ unambiguously increases in income risk.

(b) For ρ > 1, ρ > 1
σ
> 0, i.e., σ <∞ the effect of η-risk on Γ̃ is ambiguous.

Proof. 1. Γ is increasing in η-risk because (κη(1− α) + α)−σ is a convex function in
η (with the degree of convexity increasing in σ).

2. Γ2 is increasing (decreasing) in η-risk if σ > 1 (σ < 1) because (κη(1− α) + α)1−σ

is a convex (concave) function of η.

3. Γ̃2 is increasing (decreasing) in η-risk if ρ < 1 (ρ > 1) because the certainty equiv-
alent v decreases in η-risk and because for ρ < 1 (ρ > 1) the exponent 1 − 1

ρ
is

negative (positive).

4. For ρ < 1, Γ̃ is increasing in η-risk (sufficient condition). To see this, rewrite Γ̃ as

Γ̃ =
Γ

Γ
−
−(1−σ)+(1− 1

ρ )

1−σ
2

=
Γ

Γ
1−

1− 1
ρ

1−σ
2

=
Γ

Γ2

Γ
1− 1

ρ
1−σ
2 =

Γ

Γ2

v1− 1
ρ (56)

Notice that for σ ≤ 1, Γ
Γ2

is the ratio of the expectation of a strictly convex and a
concave function. Hence, for σ ≤ 1 the term Γ

Γ2
is increasing in risk by Jensen’s

inequality. For σ > 1 term Γ
Γ2

is the ratio of the expectation of two convex func-
tions with the convexity of the function in the numerator, (κη(1− α) + α)−σ, being
stronger than in the denominator, (κη(1− α) + α)1−σ as long as σ <∞. Therefore,
also for 1 < σ < ∞ term Γ

Γ2
is increasing in risk. For σ = ∞ term Γ

Γ2
is equal to 1.

Finally, since the certainty equivalent v is decreasing in η-risk, term v1− 1
ρ increases

in η-risk if and only if ρ < 1. For ρ > 1 we have the following case distinction:

(a) For 1
σ
> ρ > 1, Γ̃ unambiguously increases in η-risk because v decreases in η-

risk and σ − 1
ρ
< 0.

(b) For ρ > 1, ρ > 1
σ
> 0 the effect of η-risk on Γ̃ is ambiguous because v is

decreasing in η-risk and σ− 1
ρ
> 0 so that vσ−

1
ρ is decreasing in η-risk whereas Γ

is increasing in η-risk. Rewriting Γ̃ as in equation (56) does not resolve this
ambiguity because term Γ

Γ2
is increasing in η-risk whereas v1− 1

ρ is decreasing
in η risk because 1− 1

ρ
> 0.
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G.2 Expressing Γ-Intervals from Proposition 4 in Terms of Variances

The bounds in Proposition 4 can be given in terms of the variances of the income shock η,
to a second-order Taylor approximation of the integral defining Γ. This approximation
around η = 1 gives

Γ(α, κ, σ,Ψ) ≈ Γ̄ +
[κ(1− α)]2

[κ(1− α) + α]3
σ2
η.

With this approximation the interval for intermediate risk, item 2 of Proposition 4, becomes
σ2
η ∈

(
σ2
η, σ

2
η

)
where

σ2
η =

(κ(1− α) + α)3

(κ(1− α))2

(
1 + β

(1− α)β
− Γ̄

)
σ2
η =

(κ(1− α) + α)3

(κ(1− α))2

(
1(

(1− α)− 1
Γ̄

)
β
− Γ̄

)

and σ2
η > σ2

η > 0 under the maintained assumption that β <
[
(1− α)Γ̄− 1

]−1
. Thus,

all intervals defined in Proposition 4 can be expressed in terms of variances and are non-
empty. Also note that if the distribution Ψ is log-normal and thus exclusively determined
by its variance (given that the mean is pinned down by the assumption E(η) = 1), then no
second order approximation is necessary in the above argument, but the mapping between
the variance bounds and the Γ bounds is algebraically much more involved.

H Further Numerical Results

In Section 6.3 we showed results for an extreme parameterization ρ = 20, σ = 50 to illus-
trate hump shaped saving rates in the competitive equilibrium and hump shaped optimal
capital income tax rates in the optimal policy. We now first complement this analysis by
discussing the associated policy functions. Figure 2 plots the optimal Ramsey saving rate
(Panel (a)) and the implied capital stock carried into the next period (Panel (b)) against the
capital stock today, for various degrees of income risk (and ρ = 20, σ = 50). The figure
also displays the policy functions for logarithmic utility (ρ = σ = 1) for σ2

ln η ∈ {0, 2} and
confirms that for ρ = 1 the optimal saving rate is independent of income risk and of the cur-
rent capital stock. Relative to this benchmark, and consistent with our steady state findings
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in Proposition 9, for an IES ρ > 1 the saving policy function is decreasing in income risk.
Thus, as shown theoretically in the steady state with a high IES the Ramsey government
optimally shifts consumption towards the first period of individuals’ lives when income
risk rises. Panel (a) also shows that the saving rate is a decreasing function of the current
capital stock if ρ > 1 since an increase in the capital stock raises wages and thus labor
income risk when old and lowers returns, thereby leading to a reduction in the saving rate
when households are willing to intertemporally substitute consumption. Consequently, the
optimal capital stock tomorrow is less elastic to capital today with a high IES, relative to
the log-case, as shown in Panel (b).

Figure 2: Policy Functions for ρ = 20, σ = 50 and Log Utility (σ = ρ = 1)

(a) s∗(k) (b) k′
∗
(k)

Notes: Optimal saving rate, next period capital stock as function of current k; for ρ = 20, σ = 50 and for
logarithmic utility (ρ = σ = 1).

Next, we reduce ρ, σ to more conventional values. Results for lower risk aversion σ = 2

(maintaining ρ = 20) are shown in Figures 3–4 and Table 2. Given the lower risk aversion,
the optimal policy for the economy with σ2

ln η = 0.25 is to implement a capital income
subsidy. While the competitive equilibrium saving rate continues to be slightly decreasing
in risk, when σln η increases from 1 to 2, the optimal tax rate is strictly increasing in risk
because risk aversion is too low and the future generations effect is not powerful enough to
offset the increasing capital income tax.

Results for lower risk aversion σ = 2 and lower IES of ρ = 0.5 are shown in Figures 5–
6 and Table 3. As the motive for inter-temporal substitution is now less strong, policy
functions for the optimal saving rate are increasing in risk and in the capital stock. With
this calibration, the competitive equilibrium saving rate is only too high relative to the long-
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Figure 3: Policy Functions for ρ = 20, σ = 2 and Log Utility (σ = ρ = 1)

(a) s∗(k) (b) k′
∗
(k)

Notes: Policy function for optimal saving rate and next period capital stock for α = 0.2, β = 0.8, κ = 0.5,
σln η ∈ {0, 0.25, 1, 2}, θ = 0.9 and ρ = 20, σ = 2 as well as for logarithmic utility (ρ = σ = 1).

Table 2: CE and Optimal Long-Run Saving & Capital Income Tax Rates: Low RA

sCE s∗∞ τ k
∗
∞

EZW-Preferences with ρ = 20, σ = 2
σln η = 0 0.38 0.41 -0.13
σln η = 0.25 0.39 0.4 -0.05
σln η = 1 0.464 0.35 0.43
σln η = 2 0.460 0.3 0.58

Notes: Saving rates in the initial competitive equilibrium, sCE , and optimal long-run saving, s∗∞, and capital
income tax rates τk

∗

∞ for α = 0.2, β = 0.8, κ = 0.5, σln η ∈ {0, 0.25, 1, 2}, θ = 0.9 and ρ = 20, σ = 2.

run optimum for high income risk (σ2
ln η = 2), and only this economy experiences capital

income taxation along the transition. It also features a Pareto improvement from the tax
reform.
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Figure 4: Policy Transition for ρ = 20, σ = 2 and Log Utility (σ = ρ = 1)

(a) st (b) kt

(c) τkt (d) ∆vt

Notes: Initial and optimal saving rate, capital stock, optimal capital income tax rate and changes in lifetime
utility in transition for α = 0.2, β = 0.8, κ = 0.5, σln η ∈ {0, 0.25, 1, 2}, θ = 0.9 and ρ = 20, σ = 50 as
well as for logarithmic utility (ρ = σ = 1).

Table 3: CE and Long Run Optimal Saving & Capital Income Tax Rate: Low IES, RA

sCE s∗T τ ∗T
EZW-Preferences with ρ = 0.5, σ = 2
σln η = 0 0.13 0.24 -2.02
σln η = 0.25 0.14 0.24 -1.78
σln η = 1 0.24 0.26 -0.26
σln η = 2 0.36 0.29 0.55

Notes: Saving rates in the initial competitive equilibrium, sCE , and optimal long-run saving, s∗∞, and capital
income tax rates τk

∗

∞ for α = 0.2, β = 0.8, κ = 0.5, σln η ∈ {0, 0.25, 1, 2}, θ = 0.9 and ρ = 0.5, σ = 2.
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Figure 5: Policy Functions for ρ = 0.5, σ = 2 and Log Utility (σ = ρ = 1)

(a) s∗(k) (b) k′
∗
(k)

Notes: Policy function for optimal saving rate and next period capital stock for α = 0.2, β = 0.8, κ = 0.5,
σln η ∈ {0, 0.25, 1, 2}, θ = 0.9 and ρ = 0.5, σ = 2 as well as for logarithmic utility (ρ = σ = 1).
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Figure 6: Policy Transition for EZW with ρ = 0.5, σ = 2 and Log Utility

(a) kt (b) st

(c) τkt (d) ∆vt

Notes: Capital stock, saving rate, capital income tax rate and changes in lifetime utility in transition
for for α = 0.2, β = 0.8, κ = 0.5, σln η ∈ {0, 0.25, 1, 4}, θ = 0.9 and σ = 2, ρ = 0.5 as well as
for logarithmic utility.
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