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Non-Technical Summary 

 
The propagation of bank losses which turned a shock to a small segment of the US financial 
system (the sub-prime mortgage market) into a large global banking crisis in 2007/2008 was due 
to multiple channels of contagion: liquidity hoarding due to banks’ precautionary behavior, direct 
cross-exposures in interbank markets and fire sale externalities. We explore those three channels 
by focusing on liquidity hoarding and by building an interbank network with risk averse banks who 
solve non linear portfolio optimization while being linked to other banks in interbank markets and 
through asset commonality 
 
Our banking network is well in line with empirical facts as it reproduces dis-assortative behavior, 
core-periphery structure, low density and low clustering coefficients. We asses contagion through 
different systemic risk metrics, namely centrality measures and Shapley values. We find that 
indeed banks’ risk aversion plays an important role and that liquidity hoarding amplifies losses 
beyond the ones due to interconnections externalities. Given the realm of our model we test 
whether different regulatory policy can alleviate contagion. We find that increasing the liquidity 
requirement unequivocally reduces systemic risk and the contribution of each bank to it. The 
strong reduction in non-liquid assets induces costs in terms of system efficiency, highlighting the 
existing trade-off between stability and efficiency. An increase in the equity requirement instead 
does not present this strong trade-off. 
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Abstract

We present a network model of the interbank market in which optimizing risk averse banks
lend to each other and invest in non-liquid assets. Market clearing takes place through a tâ-
tonnement process which yields the equilibrium price, while traded quantities are determined
by means of a matching algorithm. Contagion occurs through liquidity hoarding, interbank
interlinkages and fire sale externalities. The resulting network configuration exhibits a core-
periphery structure, dis-assortative behavior and low density. Within this framework we ana-
lyze the effects of prudential policies on the stability/efficiency trade-off. Liquidity requirements
unequivocally decrease systemic risk but at the cost of lower efficiency (measured by aggre-
gate investment in non-liquid assets). Equity requirements tend to reduce risk (hence increase
stability) without reducing significantly overall investment.
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1 Introduction

The propagation of bank losses which turned a shock to a small segment of the US financial
system (the sub-prime mortgage market) into a large global banking crisis in 2007-2008 was due
to multiple channels of contagion: liquidity hoarding due to banks’ precautionary behavior, direct
cross-exposures in interbank markets and fire sale externalities. In the face of shocks to one segment
of the financial markets and increasing uncertainty, banks start to hoard liquidity. As a result of
the market freeze1, many banks find themselves unable to honor their debt obligations in interbank
markets. To cope with liquidity shocks and to fulfill equity requirements, most banks are forced to
sell non-liquid assets: the ensuing fall in asset prices2 produces, under mark-to-market accounting,
indirect losses to the balance sheet of banks exposed to those assets. Liquidity spirals turn then
into insolvency.

Several papers have shown that credit interlinkages and fire sale externalities are not able to
produce large contagion effects if taken in isolation.3 Our model embeds both channels and envisages
a third crucial channel, namely liquidity hoarding. To the best of our knowledge, so far no theoretical
model has jointly examined these channels of contagion to assess their impact on systemic risk.
After dissecting the qualitative and quantitative aspects of risk transmission, we use the model
to determine which prudential policy requirements can strike the best balance between reducing
systemic risk and fostering investment in long term assets.

To examine the above channels of contagion and to assess the efficacy of prudential regulation
we build a banking network model. The model consists of N risk averse heterogeneous banks
which perform optimizing portfolio decisions constrained by equity and liquidity requirements.
Our framework integrates the micro-foundations of optimizing banks’ decisions within a network
structure with interacting agents. Indeed, we do not adopt the convention often used in network
models according to which links among nodes are exogenous (and probabilistic) and nodes’ behavior
is best described by heuristic rules. On the contrary, we adopt the well established economic
methodology according to which agents are optimizing, decisions are micro-founded and the price
mechanism is endogenous.

The convexity in the optimization problem has two implications. First, banks can be both bor-
rowers and lenders at the same time: this is a realistic feature of interbank markets. Second, coupled
with convex marginal objectives in profits, it generates precautionary liquidity hoarding in the face
of large shocks. The emerging liquidity freeze contributes to exacerbate loss propagation.4 Banks

1The increase in the LIBOR rate was a clear sign of liquidity hoarding. After the sub-prime financial shock the
spread between the LIBOR and the U.S. Treasury went up 2% points and remained so for about nine months. As a
mean of comparison during the Saving and Loans crisis the spread went up 1% point and remained so for nearly a
month.

2Fire sales are akin to pecuniary externalities as they work through changes in market prices and operate in the
presence of equity constraints. See Greenwood et al. (2015) and Mas-Colell et al. (1995), chapter 11.

3See for instance Caccioli et al. (2014) or Glasserman and Young (2014).
4See also Afonso and Shin (2011).
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invest in non-liquid assets, which trade at common prices, hence fire sale externalities emerge. Our
banks also trade debt contracts with each other in the interbank market, hence defaults and debt
interlinkages contribute to loss propagation. Markets are defined by a price vector and a procedure
to match trading partners. The equilibrium price vector (in both the interbank and non-liquid asset
markets) is reached through a tâtonnement process,5 in which prices are endogenously determined
by sequential convergence of excess demand and supply. Once prices are determined, actual trad-
ing among heterogeneous banks takes place through a matching algorithm (see Gale and Shapley
(1962) and Shapley and Shubik (1972)). To match trading partners in the interbank market we
use a closest matching (or minimum distance) algorithm. Before examining the contagion channels
in our model we assess its empirical performance and find that it can replicate important struc-
tural/topological features of real world interbank networks (core-periphery structure, low density,
dis-assortative behavior)6.

In assessing the contagion channels we find a strong connection between the contribution of
banks to systemic risk and their total assets.7 When considering specific balance sheet items,
we find that both high interbank borrowing as well as high investment in non-liquid assets are
important in explaining the contribution of banks to systemic risk generation. High interbank
borrowing increases the scope of risk transmission through direct debt linkages. Investment in non-
liquid assets enlarges the scope of fire sale externalities. Both channels are amplified if we take into
account risk averse banks. When we analyze the impact of regulatory policy interestingly we find
that an increase in the liquidity requirement reduces systemic risk more sharply and more rapidly
than an increase in equity requirements. As banks are required to hold more liquidity, they reduce
their exposure in the interbank market as well as their investment in non-liquid assets in absolute
terms. The fall in interbank supply produces an increase in the interbank interest rate, which, due
to asset substitution, induces a fall in non-liquid asset investment relative to interbank lending.
Banks become less interconnected in the interbank market and less exposed to swings in the price
of non-liquid assets. Both channels of contagion (cross-exposures and fire sale externalities) become
less active. With an increase in the equity requirement instead the demand of interbank borrowing
falls and so does the interbank rate. Banks substitute interbank lending, which has become less
profitable, with investment in non-liquid assets. While the scope of network externalities and
cascades in debt defaults falls, the scope of pecuniary externalities increases. On balance systemic
risk, and the contribution of each bank to it, declines, but less than with an increase in liquidity
requirements.

5See also Cifuentes et al. (2005), Bluhm et al. (2014), Duffie and Zhu (2011).
6For a recent summary including further references see Langfield and Soramäki (2014).
7Systemic risk is measured by the aggregate probability of default in the system and banks’ contribution to it

by means of the Shapley value. The latter has been borrowed from the literature on both cooperative and non-
cooperative games. See Shapley (1953) and Gul (1989) respectively for the seminal contributions, and Drehmann
and Tarashev (2013) and Bluhm et al. (2014) for applications to banking. In particular, we follow closely the latter.
Other centrality measures for systemic importance are considered in one of the appendices.
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The rest of the paper is structured as follows. Section 2 relates our paper to the literature.
Section 3 describes the model. Section 4 presents the baseline network topology and discusses
the empirical matching. Section 5 analyzes the response of the network model to shocks and the
contribution of each bank to systemic risk. Section 6 focuses on the policy analysis. Section 7
concludes. Appendices with figures and tables follow.

2 Related Literature

After the collapse of Lehman and the worldwide spreading of financial distress two views have
emerged regarding the mechanisms triggering contagion.

According to the first one, cascading defaults are due to credit interconnections. In high value
payment systems banks rely on incoming funds to honor payments of outflows; when synchronicity
breaks down and banks fail to honor debts, cascading defaults emerge. Eisenberg and Noe (2001),
Afonso and Shin (2011) or Elliott et al. (2014) analyze this channel using lattice-theoretic methods
to solve for the unique fixed point of an equilibrium mapping. Works in this area take the payment
relations as given; we make a step forward as credit interlinkages in our model result from portfolio
optimization and endogenous price mechanisms, in the spirit of recent contributions like Bluhm
et al. (2014) and Halaj and Kok (2015), among others.

According to the second view, financial distress is triggered by fire sale externalities in envi-
ronments characterized by asset commonality coupled with mark-to-market accounting and equity
requirements (see also Greenwood et al. (2015)). As one bank is hit by a shock, it tries to sell
assets to meet VaR or capital constraints. Under mark-to-market accounting, the endogenous fall
in market prices negatively affects other banks’ balance sheets. Cifuentes et al. (2005) formalized
this mechanism, which was subsequently used by Bluhm et al. (2014) among others. In particular,
our paper builds on the latter contribution.

Our model encompasses both views and shows that both are important to account for risk propa-
gation. Moreover, we bring to the fore a third mechanism based on liquidity hoarding: once financial
distress has emerged banks become more cautious and hoard liquidity. The ensuing liquidity freeze
amplifies risk propagation. A similar channel is present also in Afonso and Shin (2011).

Our paper is also related to three other strands of recent literature. First, it contributes to the
literature which tries to assess the trade-offs between risk sharing and risk propagation. Using an
interbank network, Allen and Gale (2000) show the existence of a monotonically decreasing relation
between systemic risk and the degree of connectivity.8 More recent views challenge - at least in
part - this conclusion by showing that a trade off emerges between decreasing individual risk due

8In their model each bank is linked only to one neighbor along a ring. They show that the probability of a
bankruptcy avalanche is equal to one in the credit chain, but that, as the number of partners of each bank increases
(namely when the credit network becomes complete), the risk of individual default goes asymptotically to zero due
to the improved risk sharing possibilities.
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to risk sharing and increasing systemic risk due to the amplification of financial distress. Battiston
et al. (2012) show for instance that the relation between connectivity and systemic risk is hump
shaped: at relatively low levels of connectivity, the risk of individual default goes down with density
thanks to risk sharing while at high levels of connectivity, a positive feedback loop makes a bank
under distress more prone to default as the number of partners under distress increases.9 In the
numerical simulations of our model, we will assume a multinomial distribution of correlated shocks
in order to capture the presence of feedback loops.

Secondly, our paper is related to the literature analyzing metrics of systemic risk and measuring
the contribution of each bank to it (namely metrics of systemic importance). Third, a connection
can also be established with the literature analyzing matching mechanisms in markets along the
lines indicated by Shapley and Shubik (see for instance Shapley and Shubik (1972)). Finally, our
paper is related to an emerging literature studying prudential regulation in financial networks (see
for instance Gai et al. (2011) among many others).

3 The Banking Network

At a general level, a network can be represented by a list of nodes and the links connecting them.
When applied to banking, it is straightforward to identify the nodes with banks and the links with
the borrowing and lending relationships between the banks. In this spirit, the interbank system
can be succintly summarized by a matrix X with element xij representing the exposure (through
lending) of bank i to bank j. We consider a financial system consisting of N banks, hence the
matrix X will be of dimension n× n. Two important features of our network are worth noting: (i)
it is a weighted network, i.e. a link between banks i and j is indicated by the element xij ∈ R≥0

and represents the amount (in money) lent by bank i to bank j; (ii) it is a directed network, i.e.
the existence of a link in one direction does not imply the existence of a link going in the opposite
direction and therefore the matrix is not necessarily symmetric (xij 6= xji, i 6= j). Notice that
each bank can be both a borrower and a lender vis-à-vis different counterparties. An important
aspect is that cross-lending positions (hence the network links) result endogenously from the banks’
optimizing decisions (see next section) and the markets’ tâtonnement processes. Banks in our model
are characterized also by external (non interbank) assets (cash and non-liquid assets) and liabilities
(deposits). As usual, equity or net worth is defined as the difference between total assets and total
liabilities. By assumption, banks are heterogeneous due to different returns on non-liquid assets
and the levels of calibrated equity and deposits.

Prices in the interbank market and the market for non-liquid assets are determined by tâton-
nement processes. In setting up the benchmark banking system the interbank tâtonnement process
is instrumental in delivering interbank market equilibrium, whereas after setting the system and in

9Also Gai et al. (2011) derive a non-monotonic relationship between connectivity and systemic risk.
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the aftermath of a shock the tâtonnement process in the market for non-liquid assets captures the
unfolding of fire sales and is instrumental in the amplification of the shock tranmission process. The
logic of the tâtonnement processes implies the introduction of fictitious Walrasian auctioneers (see
also Cifuentes et al. (2005) or Duffie and Zhu (2011)) which collect individual notional quantities,
aggregate them and adjust the relevant price in order to bring the notional aggregate demand and
supply in line with each other.10 Once a clearing price has been achieved, actual trade takes place.
Traded quantities in the interbank market are determined according to a closest matching algorithm
(see Section 3.2 for details). A general overview of the model and the channels which operate in it
are described visually in Appendix B.

3.1 The banking problem

Our network consists of optimizing banks which solve portfolio optimization problems subject to
regulatory and balance sheet constraints. Banks are risk averse and have convex marginal utilities.
The convex optimization problem (concave objective function subject to linear constraints) allows
us to account for interior solutions for both borrowing and lending. Banks are therefore on both
sides of the interbank market vis-à-vis different counterparties: this is a realistic feature of interbank
markets and is a necessary condition for a core-periphery configuration to emerge (see Craig and
von Peter (2014)). Furthermore we assume that banks have convex marginal utilities with respect
to profits.11 Empirical observation shows that banks tend to adopt precautionary behavior in an
uncertain environment.12 Convex marginal utilities allow us to account for this fact, since in this
case banks’ expected marginal utility (hence banks’ precautionary savings) tends to increase with
the degree of uncertainty.

Banks’ portfolios are made up of cash, non-liquid assets and interbank lending. Moreover, banks
are funded by means of deposits and interbank loans. Hence, the balance sheet of bank i is given
by:

ci + pni + li1 + li2 + ...+ lik︸ ︷︷ ︸
≡li

= di + bi1 + bi2 + ...+ bik′︸ ︷︷ ︸
≡bi

+ ei (1)

where ci represents cash holdings, ni denotes the volume and p the price of non liquid assets
(so that pni is the market value of the non liquid portion of the bank’s portfolio), di stands for
deposits and ei for equity. lij is the amount lent to bank j where j = 1, 2, ..., k and k is the
cardinality of the set of borrowers from the bank in question; bij is the amount borrowed from
bank j where j = 1, 2, ..., k′ and k′ is the cardinality of the set of lenders to the bank in question.

10Banks in our model are risk averse, hence have concave objective functions and linear constraints. The con-
vexity of the optimization problem and the assumption of an exponential aggregate supply function guarantees that
individual and aggregate excess demand and supply behave in both markets according to Liapunov convergence.

11This amounts to assuming a positive third derivative.
12See also Afonso and Shin (2011).
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Hence li =
∑k
j=1 lij stands for total interbank lending and bi =

∑k′

j=1 bij stands for total interbank
borrowing.13

The bank’s optimization decisions are subject to two standard regulatory requirements:

ci ≥ αdi (2)

ci + pni + li − di − bi
ωnpni + ωlli

≥ γ + τ (3)

Equation 2 is a liquidity requirement according to which banks must hold at least a fraction α
of their deposits in cash.14 Equation 3 is an equity requirement (which could also be rationalized
as resulting from a VaR internal model). It states that the ratio of equity at market prices (at the
numerator) over risk weighted assets (at the denominator) must not fall below a threshold γ + τ .
Cash enters the constraint with zero risk weight since it is riskless in our model, while ωn and ωl
represent the risk weights on non-liquid assets and interbank lending respectively. The parameter
γ is set by the regulator, while the parameter τ captures an additional desired equity buffer that
banks choose to hold for precautionary motives.

The bank’s preferences are represented by a CRRA utility function:

U(πi) = (πi)1−σ

1− σ (4)

where σ stands for the bank’s risk aversion. As explained above the convex maximization
problem serves a dual purpose. First, it allows us to obtain interior solutions for borrowing and
lending. Second, since the CRRA utility function is characterized by convex marginal utilities
(positive third derivatives), we can introduce banks’ precautionary behavior in the model. As
marginal utilities are convex with respect to profits, higher uncertainty induces higher expected
marginal utility at the optimal point. As expected marginal utility increases banks tend to be more
cautious and to hoard liquidity more.

Another important aspect of concave optimization is that in non-linear set-ups, the variance
in assets’ returns affects the bank’s decision. Higher variance in assets’ returns reduces expected
banks’ utility, thereby reducing the extent of their involvement both in lending as well non-liquid
assets investment. This is also the sense in which higher uncertainty in assets’ returns (interbank
lending as well as non-liquid assets) produces liquidity hoarding and credit crunches. In this set up
it is convenient to take a second order Taylor approximation of the expected utility of profits.

The second order approximation of Equation 4, in the neighborhood of the expected value of

13Note that since banks cannot lend to nor borrow from themselves, we set lii = bii = 0 ∀ i = 1, ..., N .
14Basel III proposes the liquidity coverage ratio (LCR), which is somewhat more involved than Equation 2. Given

the stylized nature of our model the LCR is not easy to capture, yet we consider that the liquidity requirement in
Equation 2 provides a good approximation to the constraints faced by the bank in terms of liquidity management.
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profits E[π] reads as follows15:

U(πi) ≈ U(E[πi]) + Uπ(πi − E[πi]) + 1
2Uππ(πi − E[πi])2 (5)

Taking expectations on both sides of equation 5 and yields:

E [U(πi)] ≈ E [U(E[πi])]︸ ︷︷ ︸
=U(E[πi]) by LIE

+ UπE [(πi − E[πi])]︸ ︷︷ ︸
=0 by LIE

+ 1
2UππE

[
(πi − E[πi])2]︸ ︷︷ ︸
=Var(πi)=σ2

π

≈ U(E[πi]) + 1
2Uππσ

2
π (6)

where we have used the law of iterated expectations and where σ2
π stands for the variance of

profits.
Given the CRRA function U(πi) = (πi)1−σ

1−σ , where σ is the coefficient of risk aversion, we can
compute the second derivative as Uππ = −σE[πi]−(1+σ). Notice that under certainty equivalence
(namely when E[U ′′′(π)] = 0) the equality E [U(πi)] = U(E[πi]) holds at all states. With CRRA
utility, the third derivative with respect to profits is positive, which in turn implies that the expected
marginal utility grows with the variability of profits. Furthermore since, U ′′ < 0, expected utility is
equal to the utility of expected profits minus a term that depends on the volatility of bank profits
and the risk aversion parameter. This is a direct consequence of Jensen’s inequality and provides
the standard rationale for precautionary saving. Using the expression derived above for Uππ, the
expected utility of profits can be written as:

E [U(πi)] ≈
E[πi]1−σ

1− σ − σ

2E[πi]−(1+σ)σ2
π (7)

Equation 7 represents the objective function that bank i maximizes subject to the constraints
introduced above. With these elements in mind the problem of bank i can be summarized as follows:

Max
{ci,ni,li,bi}

E[U(πi)]

s.t. Equation 2, Equation 3, Equation 1

ci, ni, li, bi ≥ 0

(P)

Before moving forward and for the sake of completeness we derive next the precise form of
profits, as well as their variance.

15Note that all partial derivatives are also evaluated at E[π].
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The bank’s profits are given by the returns on lending in the interbank market (at the interest
rate rl) plus returns from investments in non-liquid assets (whose rate of return is rni ) minus the
expected costs from interbank borrowing.16 The rate of return on non-liquid assets is exogenous
and heterogeneous across banks: we assume that banks have access to investment opportunities
with different degrees of profitability. The interest rates on borrowed funds are also heterogeneous
across banks due to a risk premium.17 In lending to j, bank i charges a premium rpj over the risk-
free interest rate (i.e. the interest rate on interbank loans rl), which depends on the probability of
default of j, δj . The premium can be derived through an arbitrage condition. By lending lij to j,
bank i expects to earn an amount given by the following equation:

(1− δj)
(
rl + rpj

)
lij︸ ︷︷ ︸

with no default

+ δj
(
rl + rpj

)
(1− ξ) lij︸ ︷︷ ︸

with default

(8)

where ξ is the loss given default parameter. If bank j cannot default, bank i gets:

lijr
l (9)

By equating 8 and 9 we can solve for the fair risk premium charged to counterparty j:

rpj = ξδj
1− ξδj

rl (10)

It is immediate to verify that the premium is calculated so that, by lending to j, bank i expects
to get rllij (to obtain this, substitute the premium back into 8). We can interpret condition 8 also as
a participation constraint: bank i will lend to bank j only if it gets an expected return from lending
equal to the risk free rate, i.e. the opportunity cost of lending. By summing up over all possible
counterparties of bank i, and recalling that li =

∑k
j=1 lij , we retrieve the overall gain that bank i

expects to achieve by lending to all the borrowers: rlli. On the other hand, as a borrower, bank i
must also pay the premium associated to its own default probability. Since banks charge a fair risk
premium, the returns that banks obtain from non-defaulting borrowers offset the losses resulting
from contracts with defaulting borrowers. Borrowing banks, on the other hand, must always pay
the premium.18 Therefore the cost of borrowing is given by: rbi bi = (rl + rpi )bi = 1

1−ξδi r
lbi.

Finally, the gains from investment in non-liquid assets are given by: rni nip . Given these assump-
tions, the profits of bank i read as follows:

16For simplicity it is assumed that deposits and cash/reserves are not remunerated. Note that since these would be
a fixed number if calibrated they would only shift up or down the responses that we see from the model. Furthermore,
such shifts would be indeed hard to even perceive.

17In what follows for the derivation of the premium we draw on Bluhm et al. (2014).
18A valid question which may arise in our context regards the validity of the Modigliani-Miller theorem in the

framework we present here. In Appendix A we briefly show why this theorem does not hold in our setting.

9



πi = rni
ni
p

+ rlli − (rl + rpi )bi = rni
ni
p

+ rlli −
1

1− ξδi
rlbi (11)

Having obtained an expression for profits, we now compute their variance. Notice that volatility
only derives from uncertainty in non-liquid asset returns and from default premia on borrowing.
These are cross-sectional variances and they are the only which can be considered in our setting,
which is static and hence does not allow for the consideration of time series variances. The return
on interbank lending as well as the price of non-liquid assets are endogenous and therefore will
ultimately depend on exogenous elements of the model and of the shocks assumed.19 Finally, it
should be noted that in setting up the system the price of non-liquid assets is set to one, which is a
status-quo scenario in which aggregate sales of non-liquid assets are zero and therefore no fire sales
are present. Given the sources of uncertainty we obtain the following volatility of profits:

σ2
π = Var

(
rni
ni
p

+ rlli −
1

1− ξδi
rlbi

)
(12)

=
(
ni
p

)2
σ2
rn
i
− (birl)2Var

(
1

1− ξδi

)
+ 2nirlbicov

(
rni ,

1
1− ξδi

)
(13)

We know that δi ∈ [0, 1]. Furthermore, even when f(δi) = 1
1−ξδi is a a convex function, over a

realistic range of δi it is essentially linear and it is therefore sensible to obtain the variance of f(δi)
through a first order Taylor approximation around the expected value of δi, which yields:

Var
(

1
1− ξδi

)
= ξ2(1− ξE[δi])−4σ2

δi (14)

We assume that the ex ante correlation between return on non-liquid assets and costs of bor-
rowing is zero, hence we can set the covariance term in Equation 12 to zero. This leaves us with
the following expression for the variance of profits:

σ2
π =

(
ni
p

)2
σ2
rn
i
− (birl)2ξ2(1− ξE[δi])−4σ2

δi (15)

3.2 Interbank Market Clearing

The interbank market clears in two stages. In the first stage a standard tâtonnement process is
applied and the interbank interest rate is obtained by clearing excess demand/supply. Individual
demands and supplies (as obtained from banks’ optimization) are summed up to obtain market

19Furthermore, given the nature of the fire sales externalities, it is virtually impossible for banks to form an
expectation about them, as they would need to know the entire balance sheet of the banking system in every state
of the world. For a similar argument see Caballero and Simsek (2013).
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demand and supply. If excess demand or supply occurs at the market level, the interbank rate
is adjusted sequentially to eliminate the discrepancy. In the second stage, after the equilibrium
interbank rate has been determined, a matching algorithm determines the actual pairs of banks
involved into bilateral trading (at market prices). We aim to capture here the behavior of centralized
interbank markets as opposed to markets in which bilateral bargaining is the main mechanism
driving the matching of banks.20 Additionally, as noted by Glasserman and Young (2014), to assess
the potential damage that can come from interbank connections the precise shape of the network
is not as important as some balance sheet ratios that better capture this potential damage, like for
instance total interbank borrowing or total assets/liabilities. These are precisely the quantities on
which banks focus in our model, as we aim to assess how banks navigate the trade-offs between the
different types of externalities and their investment in long term assets.

Price Tâtonnement in the Interbank Market. For a given calibration of the model, which
includes an initial level of the interbank interest rate, the bank chooses the optimal demand (bi)
and supply (li) of interbank debt trading. These are submitted to a Walrasian auctioneer who
sums them up and obtains the market demand B =

∑N
i=1 bi and supply L =

∑N
i=1 li. If B > L

there is excess notional demand in the market and therefore rl is increased, whereas the opposite
happens if B < L.21 Changes in the interbank rates are bounded within intervals which guarantee
the existence of an equilibrium see Mas-Colell et al. (1995)).

The clearing price process delivers an equilibrium interest rate as well as two vectors, l =
[l1 l2 ... lN ] and b = [b1 b2 ... bN ] , which correspond to optimal lending and borrowing of all banks
for given equilibrium prices.

Matching Trading Partners. Once the equilibrium interest rate has been obtained, actual
bilateral trading relations among banks need to be determined. In other words, given the vectors
l = [l1 l2 ... lN ] and b = [b1 b2 ... bN ] obtained during the price clearing process we need to match
pairs of banks for the actual trading to take place. We use a matching algorithm to determine how
bank i distributes its lending (li =

∑k
i=1 lij) and/or borrowing (bi =

∑k′

i=1 bij) among its potential
counterparties.

The matching algorithm, therefore, will determine the structure of the network. Mathematically
the matching algorithm delivers the matrix of interbank positions X, with element xij indicating
the exposure (through lending) of bank i to bank j, starting from the vectors l and b. Once all
trading has been cleared the vectors l and b will also correspond to the row sum and column sum
(respectively) of the matrix X.

20As noted in European Central Bank (2012), around 60% of interbank repo transactions in the Euro area take
place via CCP-based electronic trading.

21This iteration takes place in fictitious time as in standard tâtonnement processes. Banks do not trade during
interest rate adjustment and trade only occurs once the equilibrium interest rate has been determined.
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The problem of obtaining the interbank matrix X from its marginals (vectors l and b) is not
new in the literature dealing with empirical approaches to interbank contagion. The reason for
this is that the bilateral exposure data in matrix X is not publicly available, whereas the overall
lending to and borrowing from other banks is public information. A first approach to this problem
constituted of using the maximum entropy method (see Upper (2011) for a summary). The latter
operates under the logic that banks distribute their lending and borrowing as evenly as possible
and therefore the number of connections in the network is maximized. As several studies working
with real world interbank data have shown, such topology is not representative of actual interbank
networks, which on the contrary tend to show a very low level of connectivity. More recent work
has gone in the opposite direction of maximum entropy, trying instead to find the matrix that
minimizes the density of the network (see for instance Anand et al. (2015)).

The problem can be cast as in terms of a system of linear equations of the form Ax = y, where
A is an 2n × N(N − 1) matrix with N − 1 ones per row and two ones per column (and zeros
elsewhere), x is N(N − 1)× 1 vector containing all the non-diagonal elements of matrix X, and y
is a 2N × 1 vector which stacks the vectors l and b. For N > 3 the conditions for the existence of
a unique solution to the system will not be achieved, but at the same time, given the specific form
of matrix A, neither will the conditions for the inexistence of any solution. There will be therefore
infinite solutions. This guarantees that by randomly pairing the banks one will eventually find a
solution that delivers a matrix X consistent with the vectors l and b. The question is then whether
banks are actually paired randomly in real world interbank networks. There is fact no evidence for
this; on the contrary, there are economic reasons implying non-randomness in the way banks relate
to each other.

The matching algorithm we consider is the closest matching, or minimum distance, algorithm
(henceforth CMA), which is in the spirit of recent approaches in that it minimizes the number
of connections by construction, while at the same time having an underlying economic rationale
behind the matching of specific banks. The rationale behind this mechanism lies in matching pairs
of banks whose desired demand and supply are close in terms of size. The vectors of lending and
borrowing are ordered in descending order and transactions are assigned. For the sake of argument,
say banks i and j are the largest lender and borrower respectively, then the element (i, j) of the
interbank matrix will be given by xij = min{li, bj}. This process goes over all pairs of banks and
whatever residual desired amount that remains after a every transaction is stored for the next round
of the algorithm.

Since in our setting, as in the real world, banks are on both sides of the market, some complica-
tions may arise. In particular, an issue which can emerge is that, because of the order in which the
transactions are effected, a bank will eventually be “matched against itself” at the last stage of the
algorithm. Of course this cannot be the case since, as mentioned earlier, we assume that banks do
not trade with themselves. When we encounter such issue, the algorithm starts again from scratch
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but introduces a random swapping in the ordering of banks. From the argument developed in the
paragraph above the achievement of solution is in this way guaranteed.

In this case matching takes place sequentially following the notion of deferred-acceptance estab-
lished in Gale and Shapley (1962). The interbank trading matrix obtained by this method delivers
a low level of connectivity, providing in fact a minimum density matrix. This low level of density or
connectivity is in line with the one observed in the data. The CMA is also based on a stability ra-
tionale, as it is generally compatible with pair-wise efficiency and has been proposed in the seminal
treaty of Shubik (1999) as most apt to capture clearing in borrowing and lending relations.22

3.3 Price Tâtonnement in the Market for Non-Liquid Assets

In this section we briefly describe the clearing process used for the non-liquid asset market, which is
modelled along the lines of Cifuentes et al. (2005) and operates once a shock has hit the system. As
mentioned earlier, the price of non-liquid assets is set to 1 when the financial system is set up. This
is the price corresponding to zero aggregate sales and banks fulfilling regulatory requirements (i.e.
the “status quo” price). The occurrence of shocks to banks’ non-liquid asset holdings may force
them to put some of their stock of assets on the market in order to fulfill regulatory requirements.
This increases the supply of assets above demand. As a result the price adjusts to clear the market.

The logic of the mechanism can be described as follows. Consider the situation in which bank
i is forced to sell non-liquid assets for an amount si in order to fulfill the equity requirement. An
expression for si can be obtained by replacing ni with ni − si in the denominator of Equation 3
and solving for si. From that it is straightforward to see that si will be decreasing in prices p,
implying in turn that the aggregate sales function S(p) =

∑
i si(p) is also decreasing in p. Defining

the aggregate demand function as Θ(p) : [p, 1] → [p, 1], an equilibrium price solves the following
fixed point problem: Θ(p) = d−1(S(p)).

The price at which total aggregate sales are zero, namely p = 1, can certainly be considered
one equilibrium price. But a key insight from Cifuentes et al. (2005) is that a second (stable)
equilibrium price exists, to the extent that the supply curve S(p) lies above the demand curve D(p)
for some range of values. The convergence to the second equilibrium price is guaranteed by using
the following inverse demand function23:

p = exp(−β
∑
i

si), (16)

where β is a positive constant to scale the price responsiveness with respect to non-liquid assets

22In a previous version of this paper we also considered two alternative matching mechanisms, namely the max-
imum entropy algorithm and a random matching algorithm with a loading factor calibrated to obtain a density in
between the extremes of CMA and maximum entropy. These two alternatives deliver networks with a significantly
different topology. Results are available upon request.

23This function can be rationalized by assuming the existence of some noise traders in the market.
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sold, and si is the amount of bank i’s non-liquid assets sold on the market.
For an initial decline in prices to, say, p0, banks will respond by putting an amount S(p0) on

the market. But given Equation 16, this will in turn push the price down to p1 = d−1(S(p0)). This
generates further sales to the tune of S(p1). This process goes on until a new equilbrium price p∗

is reached. For further details on the mechanism we refer the reader to the seminal contribution by
Cifuentes et al. (2005).

3.4 Equilibrium Definition

Definition. A competitive equilibrium in our model is defined as follows:
(i) A quadruple (li, bi, ni, ci) for each bank i that solves the optimization problem P.
(ii) A clearing price in the interbank market, rl, which satisfies B = L, with B =

∑N
i=1 bi and

L =
∑N
i=1 li.

(iii) A trading-matching algorithm for the interbank market.
(iv) A clearing price for the market of non-liquid assets, p, that solves the fixed point: Θ(p) =

d−1(s(p)).

3.5 Risk Transmission Channels in the Model

Before proceeding with the simulation results, it is useful to highlight the main channels of risk
transmission in this model. There are three channels which operate simultaneously; to fix ideas we
start by describing the effects of real interlinkages.

First, a direct channel goes through the lending exposure in the interbank market. When bank
i is hit by a shock which makes it unable to repay interbank debt, default losses are transmitted to
all the banks exposed to i through interbank loans. Depending on the size of losses, these banks,
in turn, might find themselves unable to fulfill their obligations in the interbank market.

The increase of default losses and in the uncertainty of debt repayment makes risk averse banks
more cautious. They therefore hoard liquidity. The ensuing fall in the supply of liquidity increases
the likelihood that banks will not honor their debts, reduces banks’ resiliency to shocks and amplifies
the cascading effects of losses. Notice that convex marginal objectives with respect to returns are
also crucial in determining an increase in precautionary savings in the face of increasing uncertainty.

Liquidity shortage quickly turns into insolvency. Moreover, it reduces banks’ exposure to non
liquid assets. Eventually banks are forced to sell non-liquid assets if they do not meet regulatory
requirements. If the sale of the assets is large enough, the market experiences a collapse of the asset
price. This is the essence of pecuniary externalities, namely the fact that liquidity scarcity and the
ensuing individual banks’ decisions have an impact on market prices. In an environment in which
banks’ balance sheets are measured with mark-to-market accounting, the fall in the asset price
induces accounting losses to all banks which have invested in the same asset. Accounting losses
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force other banks to sell non-liquid assets under distress. This vicious circle also contributes to turn
a small shock into a spiralling chain of sales and losses. Three elements are crucial in determining
the existence of fire sale externalities in our model. First, the presence of equity requirements affects
market demand elasticities in a way that individual banks’ decisions about asset sales do end up
affecting market prices. Second, the tâtonnement process described above produces falls in asset
prices whenever supply exceeds demand. Third, banks’ balance sheet items are evaluated with a
mark-to-market accounting procedure.

All the above-mentioned channels (credit interconnections among banks, liquidity hoarding and
fire sales) have played an important role during the 2007 crisis. Caballero and Simsek (2013) for
instance describe the origin of fire sale externalities in a model in which the complex financial
architecture also induces uncertainty, which amplifies financial panic. Afonso and Shin (2011)
instead focus on loss transmission due to direct exposure of banks in the money market and through
liquidity hoarding. Our model merges those approaches and gains a full picture of the extent of the
cascade following shocks to individual banks24.

Notice that the mechanisms just described are in place even if the shock hits a single bank.
However to produce a more realistic picture in the simulations presented below we assume a multi-
nomial distribution of shocks to non-liquid assets: initial losses can therefore hit all banks and can
also in principle be correlated. Therefore our numerical exercise will account for the quantitative
relevance of contagion by assuming also asset risk commonality.

3.6 Systemic Risk

The 2007-8 crisis moved the attention of supervisory authorities from the too-big-to fail to the
too-interconnected-to fail banks. In the past, systemically important banks were identified based
on concentration indices such as the Herfindahl index. Nowadays systemically important banks are
those who are highly interconnected with others. To measure the relevance of interconnections, an
important distinction arises between ex ante and ex post metrics. Ex ante measures determine the
contribution of each bank to systemic risk based on a time-t static configuration of the network.
These measures are useful as they identify banks/nodes which can potentially be risk spreaders,
but they have little predictive power, as they do not consider the transformations in the network
topology following shocks. On the contrary ex post measures do so, hence they can be fruitfully
used in stress tests. Overall ex ante measures can be used for preemptive actions, while ex post
measures can be used to predict the possible extent of contagion in the aftermath of shocks, an
information crucial to establish the correct implementation of post-crisis remedies.

Our focus here is on one ex post metric, namely the Shapley value25. In Appendix D we

24A short description of the shock transmission process is given in in Appendix C.
25See Shapley (1953) for the formal problem. Drehmann and Tarashev (2013) applied this concept to banking for

the first time, and it was subsequently used by several authors.
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report the performance in the numerical analysis of a set of ex ante metrics, namely network
centrality measures, as well as their comparison with the Shapley value. The Shapley value comes
from the literature on cooperative and non-cooperative game theory, and provides the contribution
(through permutations) of each bank to an aggregate value. The latter in our case is the aggregate
probability of default and is computed via the ratio of assets from all defaulting banks to total
assets, Φ =

∑
Ω
assetsΩ∑
i
assetsi

, where Ω ∈ i identifies the set of defaulting banks (banks that cannot fulfill
regulatory requirements even after selling all assets). One desirable property of the Shapley value
is additivity, which in our case implies that the marginal contribution of each bank adds up to the
aggregate default probability.

Formally the Shapley value is defined as follows. Define first C as a coalition of players which
is a subset of the set definining all possible coalitions with N players (the latter denoted by CN ).
In this spirit, C−i stands for a coalition which does not include player/bank i. Next, define vΨ a
function which maps subsets of players to the real numbers (i.e. vΨ : 2N → R, where by convention
it is assumed that v(∅) = 0). This so called characteristic function will generate a value vΨ(C) for
every possible coalition C: in our case this value is systemic risk when the coalition C of banks is
being shocked. Similarly, vΨ(C−i) will indicate the value generated by a coalition which does not
include bank i. With these elements in mind, the Shapley value for bank i can be expressed in the
following way:

Ξi(vΨ) = 1
N !

∑
C∈CN

(
vΨ(C−i ∪ i)− vΨ(C−i)

)
(17)

where vΨ(C−i ∪ i) is the value obtained by coalition C−i but when also including bank i. That
is, Ξi(vΨ) gives the average marginal contribution of player i over all possible coalitions of player
set N . Note that the index Ψ denotes different possible shock scenarios, hence banks’ contribution
to systemic risk is computed conditional on a shock vector to the banking system.26

4 Baseline Scenario Results and Empirical Matching

In this section we present the baseline network configuration, which we characterize using synthetic
metrics, namely density, average path length, assortativity, clustering, betweenness and eigenvector
centrality. Additionally, we consider other items derived from the final configuration of the network
which are useful in assessing its realism. In particular we consider the ratio of interbank assets
to total assets, the equilibrium interest rate achieved through the interbank market tâtonnement

26As can be seen by the fact that the possible coalitions which can be formed with player set N is given by 2N ,
the computation of the Shapley value is usually subject to the curse of dimensionality. For this reason it is normally
approximated in numerical simulations by the average marginal contribution of players to the aggregate value over

M randomly sampled permutations or coalitions, Ξi(vΨ) ≈
∧
Ξi(vΨ) = 1

M

∑
C∈CM

(
vΨ(Ci ∪ i)− vΨ(C−i)

)
.
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process, the number of intermediaries in the system (i.e. banks which both borrow and lend), and
the subset of intermediaries which form the core of the system.27

Our primary goal is to verify that our banking network shares topological properties with the
empirical counterparts. We indeed find that our model is able to replicate a number of stylized
facts characterizing real world interbank networks (core-periphery structure, low density and dis-
assortative behavior).

Before presenting the simulation results for the baseline structure, we describe the model cal-
ibration, which is largely based on banking and regulatory data. Table 1 summarizes calibrated
values and shock distributions.

Following Drehmann and Tarashev (2013), the number of banks is set to 20. This keeps the
system manageable in terms size (allowing us to track the behavior of different banks) and in terms
of computation time. All policy related parameters are taken from the implementation of Basel III
in Europe (see the Regulation No 575/2013 of the European Parliament and of the Council of 26
June 2013). The liquidity requirement (α), equity requirement (gamma), risk weights on non-liquid
assets (ωn) and interbank lending (ωl) are set respectively to 10%, 8%, 0.2 and 1.28. We use data
from Bureau van Dijk’s Bankscope database to calibrate deposits and equity. We take the average
of total assets for the period 2011-2013 for Euro Area banks, and use deposits and equity (again
averaged over 2011-2013) of the top 20 banks in terms of assets.29 The return on non-liquid assets
is randomly drawn from a uniform distribution over the range 0 − 15% (the variance is computed
accordingly), whereas the vector of shocks to non-liquid assets, which is the starting point of the
shock transmission process, is drawn from a multivariate normal distribution with a mean of 5,
a variance of 25 and zero covariance (we draw 1000 shocks to evaluate the model). We set the
loss given default parameter ξ to 0.5 (see for instance Memmel and Sachs (2013)), whereas for
the expected probability of default and its variance we assign values of 0.5% and 0.3% respectively.
Finally, the banks’ risk aversion parameter σ is set equal to 2. For precautionary saving to arise such
parameter must be larger than 1. Note also that the parameter β capturing the price responsiveness
relative to non-liquid assets sold is endogenous and calculated as the number necessary to achieve a
10% drop if all non-liquid assets optimally chosen by banks are sold on the market (see Greenwood
et al. (2015) and references therein for price responsiveness in fire sales processes).

27As noted by Craig and von Peter (2014), interbank markets typically present a tiered structure, and intermedi-
ation plays a key role in assessing that structure. In particular, an interbank market is tiered when there are banks
which intermediate between other banks that are not directly connected. The two tiers thus formed are a core of
densely connected banks, and a periphery of banks unconnected to each other directly but connected to the core.
Core banks are therefore a strict subset of intermediaries: those intermediaries that serve to connect peripheral banks
that would otherwise be disconnected from each other.

28The banks’ capital buffer (on top of the equity requirement) is set to 1%
29The underlying data used to construct the averages is at the quarterly frequency, the highest frequency available

for such data. The calibration is done with this frequency in mind. This has a bearing on the usefulness of systemic
risk and systemic importance measures. For instance, at an extremely high frequency, systemic importance measures
building directly on the matrix of interbank connections are likely to be very volatile and therefore lose most of their
informational value.
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Par./Var. Description Value
N Number of banks in the system 20
α Liquidity requirement ratio 0.10
ωn Risk weight on non-liquid assets 1
ωl Risk weight on interbank lending 0.20
γ Equity requirement ratio 0.08
τ Desired equity buffer 0.01
di Bank deposits Top20 EA
ei Bank equity Top20 EA
σ Bank risk aversion 2
ξ Loss given default 0.5
E[δ] Expected default probability 0.005
σ2
δ Variance of default probability 0.003
rni Return on non-liquid assets U(0, 0.15)
σ2
rb
i

Variance of rni 1
12 (max(rni )−min(rni ))2

Ψ Shocks to non-liquid assets ℵ(5, 25 ∗ I)

Table 1: Baseline calibration

We start by describing the partitions of banks into borrowers and lenders, the share of interbank
assets over total assets and the equilibrium interbank rate (see also Table 2 below). Given the above
calibration, the equilibrium interbank rate is 2.98%, in line with the pre-crisis average of EONIA.
Interbank assets as a share of total assets stand at 23.7%, also in line with real world counterparts.
There are 5 banks that only lend (banks 6, 10, 16, 17 and 19), 6 that only borrow (2, 5, 7, 8, 14 and
15) and 9 intermediaries that both borrow and lend (1, 3, 4, 9, 11, 12, 13, 18 and 20). Generally
speaking banks who borrow are those whose returns on non-liquid assets are high (and higher than
returns on interbank lending). Since those have good investment opportunities they wish to invest
and require liquidity beyond the one present in their portfolio. On the contrary banks decide to
lend when the rate that they receive on bank lending is higher than the rate of return on non-liquid
assets. The convexity of the optimization problem implies that internal solutions exist and banks
can be on both sides of the market, namely being borrowers and lenders at the same time. Few
large banks enter both sides of the market and act as central nodes: those banks have high returns
on non-liquid assets, hence they wish to obtain liquidity for investment, but they also have large
cash balances and are willing to lend to acquire a diversified portfolio.
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4.1 Synthetic Measures of Network Architecture and Empirical Match-
ing

Our next step is to describe the network topology by using synthetic network indicators.30 Notice
that synthetic metrics describing the network largely depend upon the banks’ optimization problem
and upon the matching algorithm. On the other hand, for the static network configuration the three
contagion channels described previously do not play a role since they become operative only when
banks are hit by shocks. The network response to shocks and the role of the contagion channels for
systemic risk will be analysed in Section 5.

Figure 1 presents the baseline configuration with an interbank matrix computed via the closest
matching algorithm, given the parameters from Table 1. Different nodes represent banks and
their size is given by total assets. The width of arrows indicates the amounts transacted and an
arrow going from i to j indicates that i is exposed to j through lending. The amount of links is
not particularly high. In network parlance, the network exhibits low density: the density of the
network is 7.37%, in line with the evidence from country-specific studies of interbank markets31.

(a) Standard representation (b) Circle representation

Figure 1: Baseline network configuration

Table 2 shows results for the other synthetic metrics considered, given the baseline parameteri-
zation.

30To compute some of the network indicators we made use of the Brain Connectivity Toolbox and the MatlabBGL
library.

31See for instance van Lelyveld and In’t Veld (2012) for the Dutch case. Regardless of the specific number, a
general finding from the literature is that interbank markets present low density.
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Density (%) 7.37
Average Degree 1.40
Average Path Length 2.60
Betweenness Centrality (Av.) 7.10
Eigenvector Centrality (Av.) 0.13
Clustering Coefficient (Av.) 0.03
Assortativity
out-in degree -0.15
in-out degree 0.26
out-out degree -0.31
in-in degree -0.44

# Intermediaries 9
# Core Banks 3
Interbank Assets/Total Assets (%) 23.68
Equilibrium Interbank Rate (%) 2.98

Table 2: Network characteristics - Baseline setting

The first two network metrics are closely related. The density of the network captures the share
of existing links over the total amount of possible links, whereas the average degree gives the average
number of connections per bank. Both metrics proxy the extent of diversification in the network.
By construction, the CMA network presents low density and hence a low average degree: a bank is
connected on average to 1.4 other banks.

The average path length is the mean shortest path between pairs of nodes. It gives an idea
of the ease with which one can expect to get from a given node to any other given node. In our
case this number is 2.6, implying that the average bank is almost 3 connections away. The average
path length is small, in line with real-world interbank networks (see Alves et al. (2013) or Boss
et al. (2004) among others). This implies that exposure is not far away for the average bank in the
network.

Betweenness and eigenvector centrality are computed as averages for all nodes in the network.
The CMA network features high betweenness and eigenvector centrality since a few banks act as
gatekeepers.

The clustering coefficient measures the tendency of neighbors of a given node to connect to
each other, thereby generating a cluster of connections. For our network configuration the average
clustering coefficient is low, especially in relation to other types of networks (for instance, trade
networks), and in line with evidence on real-world interbank networks.

The assortativity coefficient aims at capturing the tendency of high-degree nodes to be linked
to other high-degree nodes. As noted by Bargigli et al. (2015), interbank networks tend to be
dis-assortative, implying that high-degree nodes tend to connect to other high-degree nodes less
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frequently than would be expected under the assumption of a random rewiring of the network that
preserves the nodes’ degrees. With the exception of the in-out coefficient, which presents positive
assortativity, our network presents in fact dis-assortative behavior. These results are in line with
those observed in the data (see for instance Bargigli et al. (2015) or Alves et al. (2013) among
others). Notice that dis-assortative behavior is associated with core-periphery structures; this is
true both in the data and in our model. As already mentioned above, a necessary condition for the
presence of a core-periphery structure is to have banks which both borrow and lend, i.e. to have
intermediaries. Out of the 20 banks in our model, 9 are intermediaries. Furthermore, from these 9
banks, 3 constitute the core of the network.32

To sum up our network shares most synthetic indicators with the empirical counterparts. No-
tably the network is characterized by low density, low clustering, low average path length, dis-
assortative behavior and a core-periphery structure in which the core is a strict subset of all inter-
mediaries. Further results for the simulation of the baseline network can be found in Appendix D.

5 Model Response to Shocks

An essential prerequisite of prudential regulation consists in measuring systemic risk and identifying
systemically important banks. Assessing the contribution of each bank to risk propagation is
indeed a crucial aspect of the inspecting activity that supervisors conduct to prevent crises. To
this aim and prior to the analysis of the prudential policy we present some metrics that measure
the contribution of each bank to systemic risk or that allow the supervisor to detect systemically
important intermediaries. In this section we focus specifically on the Shapley value. Given the
system-wide default probability following a multinomial distribution of banks’ shocks, the Shapley
value determines the contribution of each bank to it.33

Figure 2 presents each bank’s contribution to systemic risk, based on the Shapley value method-
ology. The number of permutations considered for the computation of the Shapley Value was set
to 1000. The clearing algorithm for the interbank market used is that of Eisenberg and Noe (2001).
We simulate shocks to the value of non-liquid assets with multinomial distributions. In response
to those shocks all channels of contagion are activated. First and foremost, banks become more
cautious and start to hoard liquidity thereby producing a credit crunch in the interbank market.
The fall in liquidity supply together with the adverse shocks on some banks’ assets produces many
adverse effects: some banks stop honoring their debt obligations, most banks de-leverage, and some
banks sell their non-liquid assets to meet equity and liquidity requirements. All those actions trig-

32Our conception of the core follows that of the seminal work of Craig and von Peter (2014). We thank Ben Craig
for sharing the code for the computation of the core-periphery structure.

33Other indicators can be used to identify systemically important banks. In Appendix D we present results for
one such type of indicators, namely network centrality metrics, and compare the results with those obtained from
the Shapley value analysis.
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ger further losses. The liquidity hoarding reduces the system’s resiliency to shocks: banks who do
not repay their debt transmit direct losses to exposed lenders; fire sales of non-liquid assets, by
triggering falls in assets prices, transmit indirect losses to the balance sheets of other banks.
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Figure 2: Contribution to systemic risk (mean Shapley Value) by bank

By jointly analyzing the data in Figure 2 and the banks’ optimal portfolio allocations as reported
in Table 4 in Appendix D we find that the banks which contribute the most to systemic risk are the
ones which both borrow in the interbank market and invest highly in non-liquid assets.34 Generally
speaking we find a strong connection between Shapley value and total assets. Interbank borrowing
increases the extent of risk transmission through direct interconnections, while investment in non-
liquid assets increases the extent of risk transmission via fire sale externalities. The more banks
borrow and the more banks invest in non-liquid assets, the larger is their contribution to cascading
defaults and to systemic risk. The rationale behind this is as follows. Banks which leverage more in
the interbank market are clearly more exposed to the risk of default on interbank debts. The larger is
the size of debt default the larger are the losses that banks transmit to their counterparts. Borrowing
banks therefore contribute to systemic risk since they are the vehicle of network/interconnection
externalities. On the other hand, banks which invest more in non-liquid assets transmit risks
since they are the vehicle of pecuniary externalities. The higher is the fraction of non-liquid asset
investment, the higher is the negative impact that banks’ fire sales have on market prices. The

34Usually those are also the banks with the higher returns on non-liquid assets investment.
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higher is the collapse in market prices, the higher are the accounting losses experienced by all other
banks due to asset commonality and mark-to-market accounting. Notice that banks which invest
and borrow much are also those with the highest returns on non-liquid assets investment. As banks
invest more they also grow in size, consequently there is also a connection between banks’ size and
systemic risk. Figure 2 (observed in combination with total assets as from Table 4 which presents
the optimal balance sheet structure in the baseline setting) shows for instance that smaller banks
tend to contribute less to systemic risk. While the Shapley value shows a strong connection to
total assets, the connection to other balance sheet items or relevant balance sheet ratios is not
particularly strong (see Figure 4 in Appendix D.2).35 To assess the role of banks’ risk aversion and
precautionary savings on the transmission of risk we present the main results for systemic risk by
comparing the models with and without risk averse banks: see Appendix E. Generally speaking
systemic risk is higher with risk averse banks. In the face of uncertainty banks’ marginal utility
from hoarding liquidity increases. The fall in interbank supply drives interbank rates up, which in
turn increases debt default rates. Introducing convex preferences generally increases the degree of
non-linearity featured by the model.

To test the robustness of the Shapley value we compute the ranking of systemically important
banks also using alternative metrics, namely network centrality indicators. Due to space consider-
ations, simulation results for those are presented and discussed in Appendix D.

6 Policy Analysis: Stability versus Efficiency

Recent guidelines on prudential regulation from Basel III include requirement ratios both for eq-
uity and for liquidity. A crucial policy question is whether changing the regulatory requirements
affects systemic risk and the contribution of each bank to it. In setting the level of the regulatory
requirements there are clearly trade-offs. For instance, higher equity requirements might be ben-
eficial since they reduce the extent of banks’ leverage (thereby reducing direct interconnections)
and increase the share of assets potentially able to absorb losses. On the other hand, higher equity
requirements imply that banks can invest less and that in the face of shocks the extent of fire sale
increases with respect to the tightness of the regulatory constraint. Similar trade-offs apply to
liquidity requirements.36

We inspect the variations in systemic risk and in the optimal allocation for different values of
the liquidity requirement α and of the equity requirement γ. As in the baseline setting, the number
of permutations for the computation of the Shapley Value is set to 1000.

35This holds irrespective of the matching algorithm used: in exercises not reported here we have computed the
interbank matrix using other matching algorithms (which deliver a different network topology) and the qualitative
message stays unaltered.

36Note that in our model the investment in external non-liquid assets is a proxy for the connection of the banking
system with the real economy. We thereby take this as a measure of efficiency and as a crude substitute for welfare.
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Table 3 summarizes the main results from the policy experiments. To the left (right) we have the
results from changes in the liquidity (equity) requirement. The different panels (rows) represent,
respectively: total systemic risk, interbank assets as a share of total assets, non-liquid assets as a
share of equity, the equilibrium interest rate, leverage and network density.

We start by examining how overall systemic risk and the contribution of each bank to it change
when altering the two policy parameters. At first glance, overall systemic risk shows a downward
trend when we increase the liquidity parameter α. That said, as is obvious from the charts, starting
from values around 0.2 systemic risk exhibits a jig-saw behaviour within this general downward
trend. Such behaviour is not present in the linear model with risk neutrality and we therefore
attribute it to the non-linearities embedded in the set-up of our model. There are some banks that
always contribute to systemic risk (mostly banks 1, 2, 3, 5, 12 and 16, see Figure 7). The rationale
for the results is as follows. As banks must hold more liquidity for precautionary motives, their
exposure in the interbank market declines, though this is not reflected in interbank assets as a share
of total assets since the reduction in non-liquid assets is quite substantial (see the upper right panel
in Table 3). The interbank interest rate increases due to the scarce supply of liquidity (see lower
left panel in Table 3) and banks’ investment in non-liquid assets declines as available liquidity falls.
Overall, there is a strong reduction in the scope for fire sale externalities and a relatively milder
increase in the scope for network externalities. The ratio of non-liquid assets to equity is halved for
the range of values of α under consideration, pointing to the trade off between stability (as proxied
by systemic risk) and efficiency (as proxied by aggregate investment in non-liquid assets).

Results are somehow more complex when we increase the equity requirement, γ. As this param-
eter increases, overall systemic risk declines over an initial range, but it stays flat after roughly 0.13.
Banks leverage less and the interbank interest rate declines as the demand of liquid funds has de-
clined. This reduces the overall scope for transmitting default losses, and in fact interbank lending
as a percentage of assets reaches very low values (see middle figure in the second row in Table 3).
However, banks also reduce the amount of liquid assets (not shown here), while keeping the amount
of non-liquid asset investment roughly unchanged in terms of equity for an initial range and then
only reducing it slightly (see Table 3 and compare the y-axis of the two upper right panels).37 The
scope of risk transmission through fire sales is therefore only slightly reduced. Increasing the equity
requirement above 10% seems to have a non-negligible impact on systemic risk, while at the same
time not reducing efficiency as strongly as with increases in the liquidity requirement. As for the
contribution of each bank to overall systemic risk (see Shapley values in Figure 8) we observe that,
while most banks tend to transmit less risk as γ increases, others instead tend to contribute more.

37Notice that in our model raising equities does not entail adjustment costs. In reality and depending on the
degree of financial market development some adjustment costs might render equity adjustment stickier. If so, it is
possible that in face of increases in equity requirements banks might decide to partly increase equities and partly
reduce their asset portfolio in order to rebalance the ratio. In any case we would observe a stronger fall in non-liquid
assets under an increase in equity requirements than under an increase in liquidity requirements.
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Table 3: Main results from policy analysis. Changes in the liquidity requirement (LR) and equity
requirement (ER) are presented in the x-axis.
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Since all banks are less exposed to the interbank market the scope of loss cascades through network
linkages is reduced. On the other hand some banks invest more in non-liquid assets. This exposes
the latter to the swings in the market price for non-liquid assets and increases the probability that
they will engage in fire sales.

The lower right panels of Table 3 present the evolution of network density for the two policy
experiments we entertain38. For changes in the liquidity requirement, network density presents
an increasing trend, whereas for changes in the equity requirement there is an almost constant
reduction in density, which is roughly halved over the range of values considered. While the upper
limit for network density is roughly the same for the two policy exercises, it is worth noting that
in the case of changes in the liquidity requirement, density never falls below the starting value of
approximately 6.5%, whereas it falls to almost 3.5% when increasing the equity requirement. When
changing the equity requirement there is a noticeable drop starting at around γ = 0.12. The reason
for this can be seen in Figure 6b in Appendix F. The number of active banks in the interbank
market drops substantially, in particular those banks that both borrow and lend. If we take the
number of banks on both sides of the market as a proxy for intermediation activity, Figure 6b
shows that intermediation reaches a peak when γ = 0.12. As the equity requirement increases less
banks are active in the market and the ones that are actually active demand less liquidity relative
to existing supply, forcing the continuous downward trend in the interbank rate that we see in
Table 3.

As Figure 6a shows, no such development occurs when increasing the liquidity requirement. This
essentially leaves the number of active banks unchanged. When the liquidity requirement increases
there seem to be two countervailing forces that balance each other. As the liquidity requirement
raises, banks supply less liquidity in the interbank market and this has a depressing effect on density
and other measures such as closeness (not shown here). On the other hand, some banks increase
their demand of liquid funds driving the interbank rate up and inducing other banks to substitute
investment in non-liquid assets with interbank lending. This asset substitution effect increases the
available liquidity in the interbank market (as shown in Table 3), which in turn has a positive
impact on density and related measures.

To sum up, increasing the liquidity requirement unambiguously reduces systemic risk as it
notably reduces the investment in non-liquid assets while only marginally increasing the scope for
network externalities. The fall in the overall non-liquid asset investment shows however that an
increase in the liquidity requirement reduces system efficiency. An increase in the equity requirement
also decreases systemic risk (though the latter remains flat after γ = 0.13), but without a substantial
decrease in efficiency.

38Average degree, path length and clustering coefficients paint a very similar picture so we left them out for the
sake of space.
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6.1 Systemic Risk and Contagion Channels

To assess the contribution of each of the channels considered (liquidity hoarding, interconnections
and fire sales) we compare the evolution of systemic risk (under different values for α and γ) under
four alternative models (see Appendix E). Model 1 is the benchmark considered so far. Model
2 considers risk neutral banks with a linear objective function, thereby eliminating the liquidity
hoarding channel and eliminating the possibility that banks act on both sides of the market. Model
3 eliminates investment in non-liquid assets in order to shut off the fire sale channel. Finally, Model
4 is a small variation on Model 3 in which the risk aversion parameter σ is set to zero. We can
summarize the difference in results as follows. First, the benchmark model (with all contagion
channels) shows larger swings in the changes of systemic risk with respect to α and γ. This is
due to the fact that the presence of risk averse agents by triggering precautionary saving features
higher non-linearities. Second, in Model 4 systemic risk increases with respect to increases in α.
This is empirically puzzling, although it is internally consistent with the assumptions of model 4,
namely the absence of other investment opportunities beyond those in non-liquid assets and the
assumption of σ = 0. As the liquidity requirement increases, banks which are short of funds increase
their demand of interbank borrowing. This raises the interbank rate and makes interbank lending
attractive for banks which have excess liquidity. Overall network linkages in the interbank market
increase and so does contagion of default risk.

To summarize our benchmark model has two important appealing features. First, it generates
realistic amplifications of risk and features non-linearity in transmission channels: both are realistic
features of banking panics triggered by contagion channels. Second, and contrary to alternative
models considered, it provides reasonable predictions for the response of the network to changes in
policy regulations.

7 Concluding Remarks

We have analyzed a banking network model featuring risk transmission via different channels.
Banks in our model are risk averse and solve a concave optimal portfolio problem. The individual
optimization problems and the market clearing processes deliver a matrix of network links in the
interbank market. Each bank can be both borrower and lender vis-à-vis different counterparties.
Shocks to one bank are transmitted through defaults on interbank debt, through price collapses
of non-liquid assets triggered by fire sales or through liquidity hoarding. Clearing in the market
takes place through a price tâtonnement iterative process and through a trading matching algo-
rithm, namely closest matching (or minimum distance). The network thus obtained resembles some
characteristics from the empirical counterparts. In particular, it presents low density, low average
degree, dis-assortative behaviour and a core-periphery structure.
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We use our banking network to assess the role of prudential regulations in reducing systemic
risk. We find that increasing the liquidity requirement unequivocally reduces systemic risk and the
contribution of each bank to it. As banks must hold more liquidity for precautionary motives, their
exposure in the interbank market declines, though this is not reflected in interbank assets as a share
of total assets as the reduction in non-liquid assets is quite substantial. The former limits somewhat
the scope for network externalities, whereas the latter substantially reduces the scope for pecuniary
externalities. The reduction in non-liquid assets is so strong that there is an associated cost to it in
terms of efficiency of the system, highlighting the existing trade-off between stability and efficiency.
An increase in the equity requirement instead does not present this strong trade-off. Systemic risk
decreases, in particular for an initial range of values of γ. The scope for network externalities is
persistently reduced as the share of interbank assets over total assets steadily declines to reach
very low values in the upper range of γ. While there is also a slight reduction in the scope for
fire sales externalities, the reduction in non-liquid assets is relatively minor. The system becomes
more homogenous and the potential damage from interbank market collapses is markedly reduced.
This comes at the expense of having less banks trade in the interbank market, with an associated
reduction in its density.

We have explored the effects of contagion and risk transmission stemming from the asset side of
banks’ balance sheets. Incorporating risk originating from the liability side would take our model
one step further in the direction of realism. We leave this avenue for future research.
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A Deviation from the Modigliani-Miller theorem

Like firms, banks have a capital structure and it is legitimate to ask whether their value and risk
profile is independent from their capital structure – i.e. whether the Modigliani-Miller theorem
holds true for banks in our framework. In fact it is rather easy to prove that the theorem is
violated in our case. The main reason for the departure stems from the bankruptcy costs associated
with interbank debt. In our framework, banks can fund themselves through deposits and through
interbank borrowing. The returns on deposits are fixed and constant: for generality we can set it
equal to rd. On the other side the cost of interbank borrowing for a single bank contains a premium
for bankruptcy and is equal to rl + rp = 1

1−ξδ r
l (for simplicity we skip bank subindices). Notice

that, while the bankruptcy premium rp is derived so that the expected value of interbank lending is
equalized to the return of a safe asset, the risk profile of interbank borrowing is in fact very different
from that of other funding means, in particular deposits which are risk free in our set-up.

To prove that the capital structure matters for the banks’ risk profile we proceed as follows.
We define Q as the expected return on banks’ asset reflecting also banks’ risk and we define as V
the market value of banks’ securities. By construction the market value of banks’ securities must
equalize the sum of deposits and interbank borrowing: V = d + b. The Modigliani-Miller theorem
states that the value of the bank shall be independent from the capital structure. To see if this is
the case let’s take two extreme cases. Suppose one bank funds itself entirely through deposits and
a second bank funds itself entirely through interbank borrowing. We start by assuming that the
two banks have the same market value and will instead show that this brings us to a contradiction.
Define V1 as the market value of bank 1 and V2 as the market value of bank 2 and start by assuming
that V1 = V2. For bank 1 it must be true that:

V1 = d = Q

rd

For bank 2 it must be true that:
V2 = b = Q

rl + rp

Since the return of interbank borrowing features a premium over the lending rate it follows by
construction that the two banks cannot have the same market value and the same risk profile.

B Model’s Visual Representation

C Shock Transmission

The shock tranmission process can be succintly summarized as follows. After the vector of shocks is
drawn the supply of non-liquid assets will be affected and therefore the price will have to be adjusted.
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Figure 3: A bird’s eye view of the model.

Following such adjustment, some banks may not be able to fulfill their interbank commitments. Such
banks will liquidate their entire non-liquid asset holdings, pay as much as they can to interbank
creditors and be added to the default set. The interbank adjustment is done following the now classic
algorithm outlined in Eisenberg and Noe (2001). Note that, at this stage, interbank connections
are taken as given and banks are not re-optimizing; changes to the interbank market structure are
at this point the result of applying the clearing mechanism of Eisenberg and Noe (2001). At the
same time, many banks may not be able to fulfill the equity requirement. Within this group, two
sub-groups may be distinguished. First there are those banks that after selling part of their non-
liquid asset holdings will be able to fulfill the equity requirement; the second group cannot fulfill
the requirement even after selling all their non-liquid assets. The former group will just liquidate
what it needs in order to comply with requirements, whereas the latter group will liquidate all and
be added to the default set. All the non-liquid assets put on the market by all banks will be used
for a recalculation of the price p and start a new round of the transmission process. When no more
defaults occur the algorithm stops and systemic risk is computed as set out in the main text.

D Additional results for baseline scenario

D.1 Balance sheet characteristics and systemic importance ranking
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D.2 Additional results on Shapley value and systemic importance

Figure 4 plots the Shapley value versus bank characteristics. Results point to a strong connection
with total assets as discussed in the main body of the paper. The connection to other balance sheet
items is rather weak.

Figure 4: SV vs. bank characteristics

For systemic importance measures we consider network centrality indicators. In graph theory
and network analysis the centrality of a vertex or node measures its relative importance within
the graph. In particular, we consider the following measures: degree, closeness, betweenness and
eigenvector centrality.39 Degree centrality captures the number of connections that a bank has. In
networks in which the direction of links matter, like ours, it can be divided into in- and out-degree.
The former accounts for the number of links “arriving” to a node, whereas the latter quantifies the
number of links “leaving” a node. Closeness centrality assesses the importance of nodes based on
how reachable they are from all other nodes (i.e. how “close” they are). Betweenness centrality
gauges the relative importance of nodes based on how often they lie in paths connecting other nodes
(i.e. how important they are as “gatekeepers”). Finally, eigenvector centrality is a generalization
of degree centrality which captures the idea that connections to other nodes which are themselves
well connected should carry more weight.40

Table 5 above presents the ranking of systemic importance for the baseline setting and for all

39With this choice we cover the range of possible measures based on standard taxonomy (see for instance Alves
et al. (2013)).

40In directed networks one can also subdivide closeness and eigenvector centrality, the former into in and out
versions, the latter into left and right eigenvectors.
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the measures considered. Depending on the measure one chooses to focus on, the assessment differs
substantially for many banks. At one extreme we have for instance bank 7, which can be ranked
first according to one measure, and up to seventeenth by another. There are some banks that are
consistently ranked high or low (see for instance bank 18 for the former and bank 17 for the latter).

Another interesting question is whether systemic importance measures (i.e. centrality indica-
tors) and systemic risk measures (i.e. Shapley value) deliver a consistent ranking. Figure 5 sheds
light on this issue by plotting the Shapley value versus the different network centrality measures
considered.41 The bottom line is that there is no apparent connection between the ranking pro-
vided by the two types of measures. While this may seem disappointing at first glance, one should
bear in mind that these measures are not only different algebraically, but also conceptually. Sys-
temic importance measures are of an ex-ante nature in the sense that all that is needed for their
computation is a matrix representing the connections between banks. Importantly, to construct
these measures there is no need for a shock to hit the system and thereby no need either for the
specification of behavioral responses. They are in this sense also static. For systemic risk indicators
to be computed one needs indeed to measure risk, and to that end assume some kind of shock to
the system.42 Furthermore, behavioral responses of some sort are needed for the shock process to
converge. In this respect this type of measures have a more dynamic flavor.

Figure 5: SV vs. centrality measures

41In the working paper version of this paper we also perform the comparison with other family of systemic
importance indicators, namely input-output-based measures, and the message remains unaltered.

42This can be for example the targeted exogenous failure of a given institution, the sequential exogenous failure
of all institutions, or as we explore in this paper, multinomial shocks to all banks simultaneously.
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E Model Comparison

In this section we compare the results from different models to illustrate some differences. We
perform a policy analysis in the same fashion as in the main body of the paper. For all models
considered the interbank matrix was obtained by means of the CMA algorithm, and the shock
simulation involves 1000 realizations of the shock vector. We consider the following four alternative
models:

• Model 1: this model is the one presented in the main body of the paper, featuring risk averse
banks and the interaction of fire sales and network externalities.

• Model 2: this model has risk neutral instead of risk averse banks, hence the objective function
is linear and simply given by utility of expected profits, which in this case is equal to expected
utility of profits. The constraints remain the same, and fire sales and interbank contagion are
also kept. It is worth noting that in this model there are no banks that participate on both
sides of the market simultaneously, i.e. they are either borrowers or lenders.

• Model 3: this model is similar to Model 1 but it eliminates the fire sales channel. Non-liquid
assets are no longer a choice variable of banks and are instead calibrated by the values banks
would have chosen if given the chance. Once a shock hits banks cannot sell the assets and
the transmission of distress takes place only through the interbank channel.

• Model 4: this model is a small variation of Model 3. In particular, we set the risk aversion
parameter to σ = 0.

Results from the comparison exercise are summarized in Table 6, which presents the effects
of changes in the liquidity and equity requirements on systemic risk, interbank lending over total
assets and non-liquid assets over equity.
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Changes in liquidity requirement α Changes in equity requirement γ
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Table 6: Model Comparison
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F Additional results for comparative static analysis

(a) Changes in LR (α) (b) Changes in ER (γ)

Figure 6: Number of active banks in interbank market for different values of α and γ

38



Figure 7: Contribution to systemic risk (Shapley Value, y axis) by bank for different values of α
(x axis)
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Figure 8: Contribution to systemic risk (Shapley Value, y axis) by bank for different values of γ
(x axis)
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