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Abstract: We solve a rich life-cycle model of household decisions involving

consumption of perishable goods and housing services, habit formation for

housing consumption, stochastic labor income, stochastic house prices, home

renting and owning, stock investments, and portfolio constraints. In line with

empirical observations, the optimal decisions involve (i) stock investments that

are low or zero for many young agents and then gradually increasing over life,

(ii) an age- and wealth-dependent housing expenditure share, (iii) non-housing

consumption being significantly more sensitive to wealth and income shocks

than housing consumption, and (iv) non-housing consumption being hump-

shaped over life.
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1 Introduction

Residential real estate is important both as a consumption good and an investment which

is illustrated by the following key figures. Housing services (shelter) have a weight of 31.9%

in the November 2013 U.S. Consumer Price Index for All Urban Consumers. In 2010 the

value of residential property owned by U.S. households was 36% of total household wealth

with an even higher share for middle-income households. The home ownership rate has

been in the range of 65-70% in the U.S. in the period 1996-2013 and is also well above 50%

in most other developed countries. Moreover, 27% of U.S. home sales in 2011 were purely

for investment purposes.1 In addition, used as collateral, real estate facilitates household

borrowing. For these reasons housing consumption and investment should be included in

life-cycle models of optimal household decisions but, because of the significant increase in

modeling complexity, only few existing papers do so.

We solve for the optimal life-cycle decisions in a rich model featuring consumption of

perishable goods and housing services, stochastic labor income, stochastic house prices,

renting/owning decisions, stock investments, and portfolio constraints. An innovative

model feature is habit formation in the preferences for housing consumption.2 Habit for-

mation finds empirical support, and the consequences of perishable consumption habits for

consumption and investment decisions are well-studied (Section 2 reviews the literature).

In contrast, housing habits remain unexplored, even though habit formation is arguably

more relevant for housing consumption because homes serve as very visible status symbols

and because individuals build up affection for their home and neighborhood as well as

social ties to other persons in the community.3 Moreover, explicit and implicit costs of

home transactions are likely to induce consumption and trading patterns similar to those

caused by habit persistence. For these reasons individuals might be very reluctant to

reduce housing consumption relative to other goods in dire times.

Calibrated to U.S. data, our model explains key features of observed household choices:

Stock investments. In our baseline parametrization the optimal stock investment is

zero in the early years—even with a low risk aversion—and then gradually increasing until

1
The Consumer Price Index is described by the Bureau of Labor Statistics at http://www.bls.gov/

cpi/. The wealth share of real estate is from the Survey of Consumer Finances, see Tables 8 and 9.1 in
Bricker, Kennickell, Moore, and Sabelhaus (2012); residential property includes primary residence and other
residential property but not equity in non-residential property. Similar numbers are reported by Campbell
(2006, Figures 2 and 3) and Guiso and Sodini (2013). For home ownership rates, see the Census Bureau at
http://www.census.gov/housing/hvs/ for the U.S. and Andrews and Sánchez (2011) for selected OECD
countries. The pure investment share of U.S. home sales is from the Investment and Vacation Home Buyers
Survey by the National Association of Realtors, cf. Choi, Hong, Kubik, and Thompson (2013).

2
The habit is internal, i.e., the agent’s utility of current consumption decreases in her past consumption.

An external habit (like “keeping up with the Jones’es”) means that the agent compares consumption to
an external benchmark (e.g., aggregate consumption) unaffected by her own consumption decisions.

3
Solnick and Hemenway (2005) report empirical evidence supporting status concerns regarding housing.

1
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retirement. Typical models incorporating income, but not housing, imply that all financial

wealth should be invested in stocks when young and then the stock weight eventually goes

below 100% and decreases until retirement. Empirically, many young individuals invest

little or nothing at all in stocks, and the stock market participation is a hump-shaped

function of age. Adding housing as a second investment asset reduces the speculative

stock demand because of diversification and because housing investments provide access

to collateralized borrowing, which stocks generally do not. The housing habit induces a

minimum future housing consumption which the investor finances by maintaining a wealth

buffer invested in the housing market. Hence, the habit reduces the wealth disposable for

speculative investments and thus further postpones stock market entry. Also consistent

with data but unlike standard models, the stock weight goes up when increasing wealth

since the habit-induced wealth buffer then seizes a smaller share of wealth.

Perishable consumption. Empirical studies find that perishable consumption over

life is hump shaped, but frictionless consumption-savings models with one good lead to

optimal consumption being either increasing, decreasing, or flat. The predominant expla-

nation is that borrowing constraints or non-hedgeable risks cause the hump, but we show

that a hump in perishable or non-housing consumption naturally emerges in the absence

of such frictions if the individual forms housing habits. Housing consumption early in

life is expensive since the individual then commits to a certain level of housing consump-

tion in the remaining lifetime, which necessitates the above-mentioned wealth buffer. As

the individual’s horizon shrinks, the buffer decreases, and housing consumption effectively

becomes less expensive. Early in life the individual thus tilts the consumption bundle to-

wards perishable consumption, and less so as time passes. By embedding this mechanism

in a setting in which overall consumption tends to increase over life, a hump-shaped per-

ishable consumption emerges. The papers arguing that borrowing constraints are central

to the consumption hump prohibit the agent from any borrowing, although homeowners

in reality have access to typically cheap borrowing at a large scale (and even many renters

borrow). Relaxing the borrowing constraint postpones the consumption hump, but we

show that housing habits can restore an early consumption hump.

Housing expenditure share. The Cobb-Douglas utility assumed in standard two-

good models imply a constant relation between housing consumption expenditures and

perishable consumption expenditures, and thus a constant housing expenditure share.

This contradicts empirical observations along several dimensions. First, the housing ex-

penditure share varies counter cyclically. For example, Figure 1 shows the 1980-2013

annual U.S. GDP growth rates together with the percentage changes in the housing ex-

penditure share of U.S. households reported in the National Income and Product Accounts

(NIPA). The correlation over the full period shown is −0.51, and over 1990-2013 it is even

2
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Figure 1: Growth rates of GDP and the housing expenditure share. The data
is taken from the U.S. National Income and Product Accounts published by the Bureau of
Economic Analysis. GDP growth rates are in Table 1.1.1 (dated January 30, 2015), and
the housing expenditure share is in Table 2.3.5 (dated October 30, 2014).

−0.59.4 Between 1980 and 2013 the housing expenditure ratio has varied between 21.0%

(in 2012) and 23.1% (in 1986) with an average of 22.0%. The variation in housing expen-

diture shares is confirmed by the Consumer Expenditure Survey (CEX). In 1993-2013 the

housing expenditure share for all age groups was 32.9% on average and varied between

31.4% (in 1993) and 34.4% (2009 and 2010). The correlation between GDP growth and the

CEX average housing expenditure share is also negative, although of a smaller magnitude

than with NIPA data.5 Across households, the housing expenditure share is decreasing in

income. For example, in the 2013 CEX survey the share in the five income quintiles (from

lowest to highest) is 40.0%, 36.8%, 34.8%, 32.4%, and 31.1%. On a micro level, Chetty and

Szeidl (2007) report from Panel Study of Income Dynamics (PSID) data that in the year

following a job loss, home owners on average reduce food consumption much more than

housing consumption.These observations are consistent with habit formation: in times of

declining [increasing] wealth or income, housing expenditures are reduced [increased] less

than non-housing expenditures.

Secondly, the housing expenditure share varies with age. By analyzing CEX consump-

4
See NIPA Table 2.3.5 published by the Bureau of Economic Analysis, the U.S. Department of Com-

merce, at http://www.bea.gov/itable/. Following Piazzesi, Schneider, and Tuzel (2007), the housing
expenditure share is the ratio of housing consumption expenditures to the sum of housing and non-housing
consumption expenditures. Housing consumption expenditures are represented by the item ‘housing and
utilities’ and non-housing consumption is the sum of ‘nondurable goods’ (less ‘clothing and footwear’) and
‘services’ (less ‘housing and utilities’). While NIPA includes a quantity index for housing consumption,
Piazzesi et al. (2007) argue that this measure is imprecise so, following their lead, we do not use it.

5
The CEX data was downloaded from the Bureau of Labor Statistics, the U.S. Department of Labor, at

http://www.bls.gov/cex/csxshare.htm. We use the expenditure share for the item ‘housing’. We obtain
very similar results by using ‘shelter’ that subtracts various expenditures from ‘housing.’

3
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Figure 2: The housing expenditure share over the life cycle. The figure shows
housing expenditure shares of renters and owners, as well as the average of the two, over
the life cycle. The housing expenditure share is the ratio of housing consumption to the
sum of housing and non-housing consumption. The data is based on CEX and SCF, and
processed and supplied by Yang (2009).

tion data and housing ownership data from the Survey of Consumer Finances (SCF), Yang

(2009) finds that non-housing consumption is hump shaped, whereas housing consumption

per adult-equivalent increases throughout life, quite steeply early in life and then flatten-

ing out. Based on her data, Figure 2 shows the housing expenditure share over the life

cycle for renters and owners as well as the average of the two.6 The housing expenditure

share increases with age from around 22% to 40%, with the steepest increases at age 25-35

and age 60-70. Furthermore, the correlation between the housing expenditure share and

GDP growth is more negative for young households than for old. For the 25-34 year olds

the correlation is -0.22, whereas for households above 75 years the correlation is -0.03.

Also these features are consistent with habit formation. Current housing consumption

decisions are influenced by their impact on the housing habit in the remaining life, which

obviously is less important for households with a shorter expected remaining lifetime.

Housing consumption vs. investment. The housing investment consists of a spec-

ulative position, a hedge against increases in future housing consumption costs, the above-

mentioned habit-induced buffer, and a term adjusting for the extent to which human cap-

ital replaces a housing investment. With our baseline parameters, the resulting housing

investment position is positive from the beginning, increasing to around retirement, after

which it drops as wealth is reduced to finance retirement consumption. Both in the early

and the late years of adult life, the optimal housing consumption exceeds the optimal

6
We are grateful to Fang Yang for sharing the data with us. The data includes the housing stock of

owners, and we assume that housing consumption is a constant fraction of the stock. The fraction is set
to 8.22% since then 20-year old owners have the same expenditure share as 20-year old renters, but the
life-cycle profile of the expenditure share is the same for a wide range of values for this constant. We use
the mean housing and non-housing consumption for each age to compute the expenditure share.

4



housing investment, which can be implemented by renting the home and having a lim-

ited investment in the housing market, maybe through REITs (Real Estate Investment

Trusts). In the intermediate life phase, the optimal housing investment exceeds consump-

tion, which can be implemented by owning the home and investing additionally in the

housing market. This renting-owning-renting life-cycle pattern is often seen in real life.

Our strategy to illustrate the above results is the following. As our full model fea-

tures portfolio constraints and unspanned labor income risk, the optimal consumption

and investment decisions are determined by a numerical method. To better understand

the economic forces at play, we first solve two simpler versions of the model in closed form.

The first model is designed to demonstrate the impact of the housing habit on the optimal

perishable and housing consumption. The second model focuses on the impact of housing

and the housing habit on portfolio decisions, but has to abstract from portfolio constraints

and unspanned income risk to facilitate a closed-form solution.

To solve the full model, mainstream numerical methods are computationally infeasi-

ble due to the high number of state variables (time, wealth, income, house price, habit

level). Instead, we extend and adapt the SAMS (Simulation of Artificial Market Strategies)

method introduced by Bick, Kraft, and Munk (2013) to habit formation, two consump-

tion goods, and two risky assets. The method optimizes over a family of consumption

and investment strategies parameterized by a low number of constants. Each strategy is a

minor transformation of the optimal strategy in a closely related unconstrained, complete

market, and we derive this optimal strategy in closed form. The expected utility in the

true market of each strategy is evaluated by Monte Carlo simulations and, by embedding

that in a standard numerical optimization over the parameters, we determine the best of

these strategies. In our baseline parametrization this strategy deviates from the unknown,

truly optimal strategy by at most 1.1% in terms of the certainty equivalent of wealth.7

The paper is organized as follows. Section 2 positions our paper relative to the existing

literature. Section 3 introduces the ingredients of our model. The two simple models are

solved in Section 4. The full model and the numerical solution technique are presented in

Section 5. Results for a baseline parametrization of the model are discussed in Section 6,

whereas Section 7 considers alternative parametrizations. Section 8 concludes.

2 Related literature

The theoretical literature on life-cycle consumption and investments builds on Samuelson

(1969) and Merton (1969, 1971). The effects of including realistic labor income dynamics

and associated portfolio constraints are now well-explored, cf., e.g., Bodie, Merton, and

7
This is an upper bound, the losses are typically much lower.

5



Samuelson (1992), Cocco, Gomes, and Maenhout (2005), Koijen, Nijman, and Werker

(2010), and Munk and Sørensen (2010). Unless labor income is highly correlated with the

stock—or the two processes are co-integrated as in Benzoni, Collin-Dufresne, and Goldstein

(2007)—an agent facing borrowing constraints optimally invests 100% of financial wealth

in stocks early in life and eventually reduces the weight when approaching retirement. This

is at odds with the low stock market participation and the life-cycle variations in the stock

weight observed empirically (see, e.g., Guiso and Sodini 2013).8 Wachter and Yogo (2010)

show that a non-standard “addilog” utility of basic consumption and luxury consumption

can explain the observation that the stock portfolio weight increases in wealth, but the

model does not explain a zero or low stock weight of young investors.

Cocco (2005) adds housing, but ignores the renting/owning decision and assumes a

perfect correlation between house prices and aggregate income shocks. He concludes that

house price risk crowds out stock holdings which, together with a sizable stock market

entry cost, can explain the limited stock market participation. We obtain the same result

in a more general model without imposing entry costs and show that housing habits may

postpone stock market entry. Yao and Zhang (2005) allow an imperfect house-income cor-

relation and endogenize the renting/owning decision, but so that a renter has zero wealth

exposure to house price risk and a home owner must have a housing consumption identi-

cal to the housing investment position. They find that home owners invest less in stocks

than renters, supporting that housing risk crowding out stock market risk. Generalizing

to stochastic interest rates, van Hemert (2010) focuses on the interest rate exposure and

mortgage choice over the life cycle. Fischer and Stamos (2013) solve a life-cycle problem

where expected housing returns depend on realized past returns. As in our model, Kraft

and Munk (2011) disentangle housing investment and consumption by simultaneous own-

ing and renting (out) or by investing in house price linked financial contracts. To obtain

closed-form solutions, they focus on the unrealistic unconstrained, complete market case,

whereas we allow for unspanned income risk and relevant portfolio constraints.9

The above papers with housing assume time-additive Cobb-Douglas utility, but we

introduce habit formation in housing consumption. Carrasco, Labeaga, and Lopez-Salido

(2005), Browning and Collado (2007), and Ravina (2007) report empirical support of

habit formation. Consumption habits have been formally studied since Ryder and Heal

(1973), and habits in representative agent preferences help explain asset pricing facts that

8
Cocco, Gomes, and Maenhout (2005) and Davis, Kubler, and Willen (2006) show that young investors

with access to unsecured borrowing at a high interest rate may optimally refrain from investing in stocks.
In contrast, our model allows for fully collateralized borrowing at the risk-free rate.

9
Other papers addressing various aspects of housing in individual decision making include Goetzmann

(1993), Flavin and Yamashita (2002), Campbell and Cocco (2003), Cauley, Pavlov, and Schwartz (2007),
Li and Yao (2007), Chetty and Szeidl (2014), and Corradin, Fillat, and Vergara-Alert (2014).

6



seem puzzling with time-separable power utility, see, e.g., Campbell and Cochrane (1999)

and Menzly, Santos, and Veronesi (2004). Ingersoll (1992) and Munk (2008) add habit

formation to Merton’s basic one-good, no-income portfolio problem. As we do, they assume

the habit is additive (utility depends on the difference between current consumption and

the habit level) and multi-period (i.e., depending on the agent’s full consumption history).

They observe that the habit induces a buffer invested in the risk-free asset and thus

reduces the risky investments. The discrete-time model of Polkovnichenko (2007) includes

a finite-state labor income process but assumes an additive one-period habit, i.e., the habit

level is a fraction of only last period’s consumption. In his baseline setting, the optimal

stock share is still large and often even 100%. Gomes and Michaelides (2003) show that

a multiplicative habit (utility depending on the ratio of current consumption to the habit

level) leads to portfolio decisions very similar to those for standard time-additive utility.

To our knowledge the only paper with habit formation in housing consumption is by

Aydilek (2013), who assumes a multiplicative one-period habit for housing in a two-good,

discrete-time, life-cycle model disregarding stock investments and focusing on housing

late in life. The housing habit has stronger implications in our setting because of both

the multi-period and the additive specification of the habit, and we also consider the

interaction between housing decisions and stock investments. Van Binsbergen (2013) and

Heyerdahl-Larsen (2014) apply a good-specific (deep) habit in equilibrium models.

The housing habit implies a housing expenditure share that depends on the agent’s age

and the housing consumption relative to the habit level, which again depends on wealth

and the house price. With standard Cobb-Douglas utility the share is constant, and with

CES (Constant Elasticity of Substitution) utility the share depends only on the house

price. The addi-log specification used by Wachter and Yogo (2010) for the utility of basic

and luxury goods implies an expenditure share depending on good prices and the level of

consumption, but not directly on the agent’s age as in our model and as observed in the

data, cf. the Introduction. CES utility was assumed in the housing-extended Consumption-

CAPM of Piazzesi, Schneider, and Tuzel (2007). Their key mechanism is that agents are

especially concerned about states with low overall consumption when the share of housing

consumption is low relative to perishable consumption. This holds for CES utility if the

intratemporal elasticity of substitution between housing and non-housing consumption

exceeds one. In our model low housing consumption is particularly bad due to the habit.

The hump in life-cycle perishable consumption was documented by Thurow (1969),

Gourinchas and Parker (2002), and Fernández-Villaverde and Krueger (2007), among oth-

ers, and is typically explained by borrowing constraints, uninsurable income risk, and

mortality risk, cf., e.g., Nagatani (1972), Carroll (1997), and Hansen and İmrohoroğlu

(2008). Still, the hump in such models is often located around the retirement age—cf.,

7



e.g., Cocco, Gomes, and Maenhout (2005)—whereas the hump in the data is around

age 50. Moreover, such models ignore housing and its role as collateral for borrowing,

so their imposed borrowing constraints are very strong. We show that the housing habit

induces a hump in perishable consumption without constraints or risks, and that it moves

the hump to an earlier age when reasonable constraints and risks are included.

As mentioned in the Introduction, Yang (2009) presents empirical evidence on housing

and non-housing consumption over the life cycle. She builds a discrete-time overlapping

generations equilibrium model emphasizing the role of borrowing constraints and trans-

action costs in producing realistic consumption patterns. Her model ignores stock invest-

ments. We incorporate the housing-stock investment decision and suggest housing habits

as a mechanism to match observed life-cycle patterns in both investment and consumption.

3 Model ingredients

3.1 Consumption goods

Our economy features two consumption goods: perishable (or non-housing) consumption

and housing consumption. The housing good is measured in a number of “units” reflecting

size, quality, and location of the residential property. For concreteness, think of one unit

as one square foot residence of average quality and location. For convenience we refer to

this good as houses. The agent consumes perishable consumption at the rate ct and units

of housing consumption at the rate qt. We take the perishable good to be the numeraire.

The time t unit price of the housing good is denoted by Ht, which varies over time as

explained in the specific models in the following sections. The agent can rent housing

units at a rent proportional to the price of the rented property; renting q units over the

time interval [t, t+ dt] costs χqHt dt, and we refer to χ ≥ 0 as the rental rate.

3.2 Preferences

The agent develops habits for housing consumption; the habit level q̄t satisfies

q̄t = q̄0e
−εt + α

∫ t

0
e−ε(t−s)qs ds ⇒ dq̄t = (αqt − εq̄t) dt, (1)

where the initial habit level q̄0, the persistence parameter ε, and the scaling parameter α

are non-negative constants. The agent derives utility from the consumption at any given

time according to the habit-extended Cobb-Douglas function

U(c, q, q̄) =
1

1− γ

[
cb (q − q̄)1−b

]1−γ
,

8



where γ > 1 is a risk aversion parameter, and b ∈ (0, 1) is a weighting parameter. Note

that γ > 1 implies that perishable and housing consumption are substitutes in the sense

that Ucq < 0. The habit level q̄ represents an endogenously determined subsistence level

of housing consumption. If, from time t on, the agent’s housing consumption is exactly

at the minimum, qs = q̄s for s ≥ t, the future habit level is q̄u = q̄te
−(ε−α)(u−t) housing

units. The difference ε− α indicates the strength of the habit by determining how much

the current habit level restricts future decisions. For later use, we define

k =
(1− b)(γ − 1)

γ
, b̂ = b−kb/(1−b)(1− b)−k.

The agent lives until time T . The agent’s objective at any time t < T is to maximize

Et[
∫ T
t e−δ(s−t)U(cs, qs, q̄s) ds] over the feasible consumption and investment strategies as

will be specified in more detail. Here, δ is the agent’s subjective time preference rate.

3.3 Labor income

Throughout life the agent receives an income stream from non-financial sources at a rate

of Yt. The dynamics of Yt are specified in the concrete models considered in the following

sections. The individual retires at a predetermined time T̃ ≤ T . At retirement the income

drops to a known fraction Υ of the income immediately before,

YT̃+ = ΥYT̃−. (2)

This reflects the wide-spread final-salary pension schemes and is a common assumption in

the literature (e.g., Cocco, Gomes, and Maenhout 2005; Lynch and Tan 2011).

3.4 Investments, wealth, and potential constraints

In all the models we study, the agent can invest in a risk-free asset offering a continuously

compounded rate of return r. We assume a constant r throughout to focus on the impact of

housing decisions and habits on consumption and investment, and the effects of stochastic

interest rates on life-cycle decisions are already well-studied.10 In our simplest model the

risk-free asset is the only investment object. In the other models the agent can also invest

in a single stock (the market index), and in housing units in order to capture the dual role

of housing as both a consumption good and an investment object. The agent’s tangible

wealth at a given date is the sum of the values of her investments in the available assets. In

addition, she has human wealth in terms of the present value of her future labor income.

10
See, e.g., van Hemert (2010), Koijen, Nijman, and Werker (2010), Munk and Sørensen (2010), and

Kraft and Munk (2011).
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The first two models we consider disregard constraints on investments, and any un-

certainty (also about future labor income) is assumed to be spanned by traded assets, so

that markets are complete. In particular, the labor income stream can then be valued as

a dividend stream and is modeled so that the human wealth at any time t is of the form

YtF (t) for some deterministic function F . The total wealth of the agent is the sum of the

tangible wealth Xt and the human wealth YtF (t). The agent has to make sure that she

can meet the minimum housing consumption defined by the habit level also in the future.

As explained earlier, if the agent from time t on keeps housing consumption exactly at

the minimum, the future habit level is q̄u = q̄te
−(ε−α)(u−t) housing units with a total cost

rate of q̄uχHu. The present value of these costs, which we refer to as the housing habit

buffer, constitutes the amount the agent must set aside at time t to cover minimum future

housing consumption. In the models we consider, the housing habit buffer is of the form

q̄tχHtB(t) for some deterministic function B. The disposable wealth of the agent at time t

is thus the tangible wealth plus the human wealth less the housing habit buffer:

X̂t = Xt + YtF (t)− q̄tχHtB(t). (3)

Our main model features unspanned risks and investment constraints that are binding

in some states, and then the above conclusions are invalid. But, as explained in the

Introduction, we solve that decision problem by embedding it in certain unconstrained

complete markets where the above considerations hold.

4 Two instructive models with closed-form solutions

Our full-blown model involves unspanned risks and borrowing and short-selling constraints.

Consequently, we cannot solve it in closed form. To build intuition for the economic forces

at play, this section considers two simpler models with closed-form solutions.

4.1 Model with full certainty

Here we set up and solve a simple model disregarding uncertainty and frictions. The unit

house price Ht and labor income rate develop as

dHt = Ht (r + µH) dt, dYt = YtµY (t) dt,

so that house prices grow at a constant and labor income at a deterministic rate. The

agent can only invest in the risk-free asset so her wealth Xt evolves as

dXt = rXt dt+ Yt dt− ct dt− qtHtχdt.

10



The value function (aka. the indirect utility function) of the agent is

J(t, x, h, y, q̄) = sup
c,q

∫ T

t
e−δ(s−t)U(cs, qs, q̄s) ds,

where x, h, y, q̄ denote the time t values of the wealth, the house price, the labor income,

and the housing habit. By design, this model focuses on the effects of housing habits on

consumption. In the more realistic settings considered subsequently, the value function

and the optimal consumption policy have the same structure as in this simple case.

Theorem 1 The value function is

J(t, x, h, y, q̄) =
1

1− γ
(χh)γkG(t)γ (x+ yF (t)− q̄χhB(t))1−γ , (4)

where

B(t) =
1

rB

(
1− e−rB(T−t)

)
, (5)

G(t) = b̂

∫ T

t
e−rG(s−t) (1 + αB(s))k ds, (6)

F (t) =


∫ T
t e−

∫ u
t rF (s) ds du, t ∈ [T̃ , T ],∫ T̃

t e−
∫ u
t rF (s) ds du+ Υ

∫ T
T̃ e−

∫ u
t rF (s) ds du, t < T̃ ,

(7)

rB = ε− α− µH , rG =
δ

γ
+
γ − 1

γ
r − (r + µH)k, rF (t) = r − µY (t). (8)

With X̂t defined in (3), the optimal perishable and housing consumption rates are

ct = bb̂
(1 + αB(t))k

G(t)
X̂t, qt = q̄t + (1− b)b̂ (1 + αB(t))k−1

χHtG(t)
X̂t. (9)

The life-cycle profile of perishable consumption is hump shaped if r > δ, µH < ε, and

k

[
αrB

(α+ rB)erBT − α
− (r + µH)

]
≤ r − δ

γ
≤ k(α− [r + µH ]).

Optimal perishable and housing consumption are related via

ct =
b

1− b
(qt − q̄t)χHt (1 + αB(t)) , (10)

and the housing expenditure share is

χqtHt

ct + χqtHt
=

1− b

1− b+ b
(

1− q̄t
qt

)
(1 + αB(t))

. (11)
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Without habit formation (q̄t = 0, α = 0), perishable consumption is a constant multiple

of housing consumption expenditures, and the housing expenditure share is the constant

1 − b. Furthermore, the growth rate in perishable consumption is the constant [r − δ +

(1− b)(γ − 1)(r+ µH)]/γ. With r > δ, γ > 1, and a non-negative house price growth rate

r + µH , perishable consumption is increasing throughout life.

The housing habit implies a time-dependent perishable-housing consumption ratio.

Eq. (10) shows that χHt (1 + αB(t)) is the effective time t unit price of housing consump-

tion. Since B is decreasing over time, so is the effective price of housing, other things

equal. Housing consumption is relatively more expensive for young agents: through the

housing habit, the consumption of one extra unit of housing costs not only the current

rent but also future required rents due to the increase in the habit level. The present value

of the habit-induced required future rents is larger for young than for old agents. Since

perishable goods and housing services are substitutes, the optimal composition of con-

sumption is tilted towards perishable goods when young and towards housing when old.

Embedding this mechanism in a setting where overall consumption is optimally increasing

over life can lead to a hump-shaped life-cycle pattern in perishable consumption as seen

in the data. With housing habits, the housing expenditure share is time dependent, and

it decreases with qt and thus with disposable wealth X̂t. The housing expenditure share

is therefore higher in hard times than in good times, as seen in the data.

Figure 3 shows optimal consumption over a 50-year period, representing the situation

of a 30-year old, retiring at 65, and living on until age 80. Initial wealth and (after-tax)

income are set to 20—representing $20,000—in line with the median net worth and before-

tax income statistics for young individuals according to the 2013 SCF.11 The left panel

shows expenditures (in $1,000, per year) with a clear hump in perishable consumption

with, but not without, housing habits. The assumed habit is relatively weak in the sense

that ε−α = 0.1 so as long as the agent consumes housing at the minimum, this minimum

decreases by 10% per year. Optimal housing expenditures are increasing early in life, then

quite flat, and then increasing again in the final years. The housing expenditure share

shown in the right panel exhibits the shape seen in the data, cf. Figure 2.

Mortality risk is known to affect the life-cycle profile of consumption and can generate

a hump. In Appendix B we extend the above model to mortality risk and bequest. The

bequest utility is wγ 1
1−γX

1−γ
τ , where τ is the time of death, Xτ is the bequeathed wealth,

11
See http://www.federalreserve.gov/econresdata/scf/scfindex.htm. Summary results are pre-

sented in “Changes in U.S. Family Finances from 2010 to 2013: Evidence from the Survey of Consumer
Finances” published in the Federal Reserve Bulletin (Sep. 2014) and available on the above homepage.
According to Table 1 of this document, the before-tax median family income was $35.300 for age (of family
head) less than 35 and $60.900 for age 35-44. From Table 2, the median net worth per family was $10.400
for age less than 35 and $46.700 for age 35-44. Our numbers reflect after-tax income and wealth per adult.
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Figure 3: Consumption in the deterministic model. The left panel shows expendi-
tures on perishable goods and housing and the right panel shows the housing expenditure
share, with and without a housing habit. The graphs are based on the model of Section 4.1.
The parameter values are: δ = 0.02, γ = 2, t = 0, T̃ = 35, T = 50, X0 = 20, Y0 = 20,
µY = 0.01 (zero in retirement), Υ = 0.6, r = 0.03, χ = 0.06, H0 = 0.25, µH = −0.03.
Without habit formation b = 0.65. With habit formation q̄0 = 150, α = 0.8, ε = 0.9, and
b = 0.69 (to obtain the same average housing expenditure share as in the no-habit case).

and w is the preference weight of bequest. We use a deterministic mortality intensity

ζ(t) derived from the life tables for the total U.S. population as of 2009 with an imposed

maximum age of 100.12 Following Richard (1975), Blanchard (1985), and others, we

assume the agent has access to a life insurance contract that pays a continuous flow at the

rate of Γζ(t)Nt per year to the agent. Upon death the agent pays the amount Nτ− to the

contract issuer (formally the bequest is Xτ = Xτ−−Nτ−). Here Nt is chosen by the agent.

With a moderate or high bequest motive, the optimal Nt is typically negative. With a low

bequest motive, the optimal Nt tends to be positive except when the agent is relatively

young or very close to 100 years. We let Γ = 0.8, corresponding to a 20% margin to the

insurance company. The agent’s optimal strategy is similar to the no-mortality case but

with the (deterministically increasing) mortality intensity ζ(t) added to the constant time

preference δ, so that the agent effectively becomes more impatient with age.

Figure 4 depicts perishable consumption over the life cycle with mortality risk. The

agent is initially 30 years and retires at 65. The panels differ in bequest preference with

w = 1 in the left and w = 10 in the right panel; if surviving until 100, an agent with a

weak habit, ε− α = 0.1, leaves a wealth of 25.9 if w = 1 and 233.8 if w = 10. Each panel

shows the consumption profile for the no-habit case, a weak habit, and a strong habit

(ε−α = 0.02). The diamonds indicate the peaks. Without habit formation mortality risk

induces a consumption hump rather late in life, but habit formation produces an earlier

hump more in line with the observed hump. The bequest weight does not significantly

12
Published at the Centers for Disease Control and Prevention under the U.S. Department of Health

and Human Services, see http://www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_07.pdf.
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Figure 4: Perishable consumption with mortality risk and bequest. Each panel
shows perishable consumption over the life cycle without habit, with a weak habit (α =
0.8, ε = 0.9), and with a strong habit (α = 0.88, ε = 0.9). The graphs are generated using
the mortality and bequest extension of the deterministic model. The left (right) panel
assumes a bequest utility parameter of w = 1 (w = 10). For both panels the following
parameter values are used: δ = 0.01, γ = 5, t = 0, T̃ = 35, T = 70, X0 = 20, Y0 = 20,
µY = 0.01 (zero in retirement), Υ = 0.6, r = 0.03, χ = 0.06, H0 = 0.25, µH = −0.03,
Γ = 0.8. Without habit formation b = 0.65. With habit formation b = 0.69 and q̄0 = 150.

influence the shape or peak age of the consumption pattern. With a high bequest weight

consumption is scaled down throughout life to build up more wealth to bequeath.

Habits also impact the sensitivity of consumption with respect to changes in wealth or

income. The ratio ∂ct
∂X̂t

/ ∂(χqtHt)

∂X̂t
of the marginal propensities to consume out of disposable

wealth equals (1 +αB(t))b/(1− b), which is constant in the no-habit case, but bigger and

time-dependent with habits. With the parameters used to generate Figure 3, the ratio is

1.9 in the no-habit case, whereas it declines from 15.9 initially to 2.3 at the end of life with

the weak habit and from 38.2 to 2.3 with the strong habit. In the habit model, a young

agent being hit by a negative wealth or income shock reduces perishable consumption

expenditures much more than housing expenditures, as seen in the data.

4.2 A model with spanned risks and no frictions

Next we add the stock index and uncertainty about the house price, the income, and

the stock price. The agent can own any non-negative number of housing units and can

simultaneously rent out some of the owned housing units or rent additional housing units.

Hence, housing consumption can be disentangled from the housing investment position.

To obtain a closed-form solution, we let the agent continuously adjust the number of

units rented or owned without transaction costs. While changes in the physical ownership

of homes seem rare and costly, the remodeling or the extension of a house also constitutes

an increase in the number of housing units owned due to the higher quality or increased

space. In addition, individuals can indirectly invest in housing units by purchasing shares

in residential REITs, exchange-traded funds emulating the REIT market, or other financial
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assets linked to house prices such as the Case-Shiller derivatives.13 Home owners can

implement minor variations in the desired housing investment position through remodeling

or REITs, whereas they can implement larger changes in both desired housing consumption

and investment through infrequent physical house transactions. A pure housing investment

position is obtained by owning housing units and renting them out either directly or

through REITs. Ownership entails maintenance costs (including property taxes) equal to

a constant fraction m ≥ 0 of the property value. Hence the return on a pure investment

in a housing unit is dHt + (χ−m)Ht dt over the dt-interval following time t.

In this section we deliberately abstract from any portfolio constraints and assume that

all risks are spanned by traded assets.14 More precisely, the stock price St (including

reinvested dividends), the unit house price Ht, and the labor income rate Yt satisfy

dSt = St [(r + µS) dt+ σS dWSt] ,

dHt = Ht

[
(r + µH) dt+ σH

(
ρHS dWSt +

√
1− ρ2

HS dWHt

)]
, (12)

dYt = Yt

[
µY (t) dt+ σY (t)

(
ρY S dWSt +

√
1− ρ2

Y S dWHt

)]
, (13)

where WS and WH are independent standard Brownian motions. We define ρ̃HY =√
1− ρ2

Y S/

√
1− ρ2

HS and note that the house-income correlation is ρHY = ρHSρY S +

ρ̃HY (1− ρ2
HS). As there is no income-specific shock term, the agent can adjust the expo-

sure to both stock price, house price, and income shocks through her positions in the stock

and the housing units. The excess expected return µS and the volatility σS of the stock are

constant. Similarly, the excess expected house price growth rate µH and volatility σH are

constants, as are the stock-house price correlation ρHS and the stock-income correlation

ρY S . The instantaneous Sharpe ratios on investments in stocks and houses are then

λS =
µS
σS
, λH =

µH + χ−m
σH

.

Both the expected growth rate and volatility of income may depend on the individual’s

age. Where most life-cycle papers assume a constant retirement income, we allow for

risk. This is motivated by (i) some retirees continue to earn income from proprietary

businesses or other non-traded assets; (ii) uncertainty about medical expenses implies

13
Well-developed REIT markets exist in many countries. Cotter and Roll (2015) study the risk and

return characteristics of U.S. REITs. As explained by Ang (2014, Ch. 11), REIT returns exhibit only a
low short-run correlation with returns on directly owned real estate (and a higher correlation with common
stocks), but longer-term correlations are significantly higher, cf., e.g., Hoesli and Oikarinen (2012). Pagliari,
Scherer, and Monopoli (2005) argue that after various relevant adjustments REIT returns and direct real
estate returns are much more highly correlated even in the short run, and Lee, Lee, and Chiang (2008)
and others report that REITs behave more and more like real estate and less and less like ordinary stocks.

14
This model extends Kraft and Munk (2011) to housing habits (they allow stochastic interest rates).
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that the disposable income is risky (see De Nardi, French, and Jones 2010); (iii) because

of mortality risk, the individual may miss retirement payments and, when we do not model

mortality formally, retirement income risk captures this effect parsimoniously.

Let ΠSt be the fraction of tangible wealth invested in the stock, and let φot and φrt

denote the housing units owned (physically or through REITs) and rented. Then the

units of housing consumption and the fraction of tangible wealth invested in housing are

qt ≡ φot + φrt,ΠHt ≡
φotHt
Xt

, respectively. The wealth invested in the risk-free asset is

residually determined as Mt = Xt(1−ΠSt −ΠHt). The dynamics of tangible wealth are

dXt = ΠStXt
dSt
St

+Mtr dt+ φot (dHt −mHt dt)− φrtχHt dt− ct dt+ Yt dt

= (Xt [r + ΠStµS + ΠHt(µH + χ−m)] + Yt − ct − qtχHt) dt

+Xt (ΠStσS + ΠHtσHρHS) dWSt +XtΠHtσH

√
1− ρ2

HS dWHt. (14)

The value function is now defined as

J(t, x, h, y, q̄) = sup
c,q,ΠS ,ΠH

Et

[∫ T

t
e−δ(s−t)U(cs, qs, q̄s) ds

]
.

Theorem 2 The value function is given by (4)–(7) with

rG =
δ

γ
+
γ − 1

γ
r +

γ − 1

2γ2 Λ2 − k
(
r +

µH
γ
− γ − 1

γ
(χ−m) +

1

2
(k − 1)σ2

H

)
, (15)

rF (t) = r − µY (t) + σY (t) (λSρY S + ρ̃HY [λH − ρHSλS ]) , (16)

rB = ε− α+ χ−m, (17)

Λ2 = λ2
S +

1

1− ρ2
HS

(λH − ρHSλS)2 .

With disposable wealth X̂t defined in (3), the optimal consumption decisions are still given

by (9), and the optimal investment strategy is

ΠSt =
1

γ

λS − ρHSλH
σS(1− ρ2

HS)

X̂t

Xt
− σY (t)

σS
(ρY S − ρHS ρ̃HY )

YtF (t)

Xt
, (18)

ΠHt =
1

γ

λH − ρHSλS
σH(1− ρ2

HS)

X̂t

Xt
− σY (t)

σH
ρ̃HY

YtF (t)

Xt
+ k

X̂t

Xt
+ q̄tχB(t)

Ht

Xt
. (19)

The expected consumption E[ct] is a hump-shaped function of time if ε+ χ−m > 0 and

kαrB

(α+ rB)erBT − α
<
r − δ
γ

+
γ + 1

2γ2 Λ2 + k

(
r + µH +

µH + χ−m
γ

+
k − 1

2
σ2
H

)
< kα.

(20)
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Figure 5: Optimal portfolio shares over life when income risk is spanned. The left
panel shows the life-cycle variations in the portfolio weights of the risk-free asset (dotted
curve) and the stock (blue), with the latter decomposed into the speculative term (red)
and the income-adjustment term (green). The right panel shows the life-cycle variations in
the portfolio share of housing (dark blue) decomposed into the speculative term (red), the
income-adjustment term (green), the house price hedge term (purple), and the habit buffer
term (light blue). In both panels, the dashed red curve shows the speculative term in the
absence of habit formation. The parameter values listed in Table 1 are used except that
ρY S = ρHY = 0.7906 to ensure spanned income risk.

The value function and the consumption policy are as in the full-certainty model, only

the “discount rates” rF and rG are adjusted to account for risk premia. The housing habit

can generate a hump in expected perishable consumption. The optimal stock investment

in (18) is the sum of a speculative demand determined by the current risk-return tradeoff

and an income-adjustment term. In the optimal housing investment the first two terms

have a similar interpretation. The third term in (19) represents a hedge against increases

in the price of housing consumption, which is accomplished by having a higher wealth

exposure to house prices, cf. Sinai and Souleles (2005). The final term ensures that the

agent can reach at least the minimum housing consumption in the remaining life time. As

the costs of ensuring that the minimum is achieved vary with house prices, this calls for an

increased wealth exposure to house prices. Both the hedge term and the habit-insurance

term are thus positive. The income-adjustment terms undo the extent to which the human

capital resembles an investment in the stock or housing units.

Habit formation lowers the disposable wealth X̂t through the buffer q̄tχHtB(t), which

is typically slightly increasing early in life (since q̄t increases) and then decreasing as the

remaining life time shrinks (B(t) is decreasing). Therefore, the habit reduces the optimal

stock investment, in particular for young investors. The habit also reduces the speculative

housing demand and the house price hedge demand but, on the other hand, induces a

positive habit-insurance term so that the net effect is parameter dependent.

For a numerical example we fix most parameters values at the empirical estimates

explained in Section 6, including the expected returns and variances of the assets, and the

house-stock correlation of ρHS = 0.25. But, to ensure that the income risk is spanned,
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values of the income-asset correlations different from the empirical estimates have to be

used, which primarily affects the income-adjustment component of the portfolio. We let

ρY S = ρHY = 0.7906 so that stocks and houses are equally “income-like.” This generates

a large negative adjustment in the portfolio weights, which is not expected to be seen in

a realistic setting with unspanned income risk. The speculative term is unaffected by the

income-asset correlations except for a small effect on the human capital through rF .

The left panel of Figure 5 illustrates the life-cycle variations in the optimal fraction of

tangible wealth invested in the risk-free asset and the stock, with the latter decomposed

into the speculative and the income-adjustment part. The right panel shows the housing

portfolio share and its four components. We consider a modestly risk-averse agent (γ = 3)

with a 35-year working period and a subsequent 15-year retirement. The results presented

are averages over 10,000 simulated paths with strategies updated 50 times per year.

The optimal portfolio early in life is extreme. The human capital dominates the finan-

cial wealth so the ratio X̂t/Xt is much bigger than one. Consequently, unless the young

agent is highly risk averse, the speculative demand exceeds 100% of financial wealth as

seen in the figure both for stock and house investments, even though the habit damp-

ens the speculative term substantially. Imposing more realistic lower income-adjustment

terms, the overall portfolio weights of both stocks and housing units would be very large

early in life, which calls for significant borrowing. The main source of life-cycle variations

is the human capital, which is typically decreasing over life as the remaining working pe-

riod shrinks. This tends to reduce the ratios X̂t/Xt and YtF (t)/Xt and thus lead to the

speculative terms, income-adjustment terms, and a house price hedge term that decrease

in magnitude over life.15 Note that the habit-buffer component and, especially, the hedge

component of the housing share are sizable and thus important for the optimal investment

strategy. Next, we turn to the full-fledged model with short-selling constraints, limited

borrowing, and unspanned income risk.

5 The full-fledged model

5.1 Model specification

Our main model differs from the model considered in Section 4.2 by having unspanned

labor income risk and investment constraints. Instead of (13), the income rate follows

dYt = Yt [µY (t) dt+ σY (t) (ρY S dWSt + ρ̂HY dWHt + ρ̂Y dWY t)] , (21)

15
With a sufficiently high income growth rate, the human wealth can be locally increasing with age, but

eventually it decreases. Also note that the denominator Xt, the tangible wealth, is generally hump-shaped
over life with net savings during the working phase and consumption out of savings in retirement.
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where WY = (WY t) is a standard Brownian motion independent of WS and WH . Unless

ρ̂Y = 0, the income risk is unspanned by traded assets so the individual faces an incomplete

market. The income-house and income-stock correlations ρHY and ρY S are constant, and

ρ̂HY ≡
ρHY − ρY SρHS√

1− ρ2
HS

, ρ̂Y ≡
√

1− ρ2
Y S − ρ̂

2
HY .

Since income contains unspanned risk and is not bounded from below by a positive

level, non-negative terminal wealth can only be insured by keeping tangible wealth non-

negative throughout, i.e., Xt ≥ 0 for all t ∈ [0, T ]. Furthermore, we impose the constraints

ΠS ≥ 0, ΠH ≥ 0, ΠS + κΠH ≤ 1, (22)

which rule out short-selling and limits borrowing to a fraction (1−κ) of the current value

of the housing investment, where κ ∈ [0, 1].

An admissible strategy a = (c, q,ΠS ,ΠH) satisfies standard integrability conditions

and the above constraints, and it generates the expected utility

J(t, x, y, h, q̄; a) = Et

[∫ T

t
e−δ(s−t)U(cs, qs, q̄s) ds

]
, (23)

where the expectation is conditional on Xt = x, Yt = y, Ht = h, and q̄t = q̄. If A denotes

the set of all admissible strategies, the value function is defined as

J(t, x, y, h, q̄) = sup
a∈A

J(t, x, y, h, q̄; a).

Because of incomplete markets and portfolio constraints, we cannot solve the problem

in closed form. Due to the high number of state variables, grid-based methods are cum-

bersome to implement and lead to high computation times when used with the grid sizes

required for high precision. Below we outline the numerical solution method we apply.

5.2 Outline of the solution approach

We apply the SAMS (Simulation of Artificial Markets Strategies) approach introduced by

Bick, Kraft, and Munk (2013), henceforth BKM, and illustrated in Figure 6. The method

exploits that in each of various artificial markets a closed-form solution to the utility

maximization problem exists; the solution is similar to those presented in Theorems 1

and 2.16 In any of the artificial markets the agent is unconstrained, has access to the same

16
Artificial markets were introduced by Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanić and

Karatzas (1992). Already Haugh, Kogan, and Wang (2006) observed that artificial markets produce a util-
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θ∗θ∗

loss

loss bound

Figure 6: Our solution technique. The axis shows the agent’s expected utility. “Un-
known optimal” represents the indirect utility in the true market, i.e., the expected utility
generated by the unknown optimal consumption-investment strategy. Each point to the
right corresponds to the indirect utility in an artificial market with deterministic modifiers
characterized by some parameter set θ. The corresponding strategy is transformed into a
feasible strategy in the true market which generates an expected utility on the left part of
the axis. The best of these strategies is derived from the optimal strategy in an artificial
market for some θ∗. The arrows above the axis indicate the unknown utility loss and a com-
putable upper bound on the loss the agent suffers by following the best of the considered
feasible strategies instead of the unknown optimal strategy.

assets (with identical or higher returns) as in the true market, plus an additional asset

completing the market. Hence, the agent can achieve at least as high an expected utility

as in the true market. In Figure 6, the points marked to the right on the axis indicate the

maximal utility in different artificial markets denoted by θ1, θ2, etc. The lowest expected

utility among these artificial markets—indicated by θ̄ on the axis—is still at least as large

as the unknown maximum in the true market.

The explicit, optimal strategy in an artificial market is infeasible in the true market,

but can be feasibilized—transformed into a feasible strategy—and its expected utility in

the true market can be evaluated by Monte Carlo simulation. In this way we can generate

the points on the left part of the axis in Figure 6. Maximizing over these feasibilized

strategies, we obtain the expected utility indicated by θ∗ in the figure. The corresponding

near-optimal strategy is the strategy suggested by the SAMS approach.17

As with other numerical methods, the suggested strategy is unlikely to be identical to

the truly optimal strategy so the agent suffers a welfare loss by applying the suggested

strategy. We derive an upper bound on the welfare loss by comparing the expected utility

generated by the near-optimal strategy to the expected utility in the worst of the artificial

ity loss bound on any given feasible strategy. BKM search for the best possible strategy in a parameterized
family of strategies derived from artificial markets and search over a parameterized family of upper utility
bounds to find the tightest possible bound.

17
The most time-consuming part of the method is the maximization over the feasibilized strategies.

In fact, the feasibilized strategy corresponding to the least-favorable artificial market (indicated by θ̄)
performs almost as well as the near-optimal strategy and can be computed without the maximization and
thus much faster. BKM refer to this as the parsimonious SAMS method.
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markets considered. This upper bound represents a measure of precision of the approach.

In wealth-equivalent terms, the loss bound in our baseline case below is only 1.1% of the

agent’s wealth. In the examples of BKM, the true loss is significantly smaller than the

loss bound, and we expect the same in our model.

Relative to alternative numerical methods, this approach distinguishes itself by being

relatively easy to implement, being based on closed-form consumption and investment

strategies, and providing a measure of its accuracy. The following subsections provide

details on the SAMS method applied to our problem.

5.3 A family of artificial markets

Intuitively we search for artificial markets in which (i) we can solve the utility maximization

problem and (ii) the optimal consumption-investment strategy is close to what we expect

to be a good, feasible strategy in the true market. Because the portfolio weights in an

artificial market are unconstrained, whereas they must satisfy (22) in the true market, we

adjust the risk-free rate or the expected excess returns on stocks and houses. Following

Cvitanić and Karatzas (1992) and BKM (Sec. 8), and using ν− = max(−ν, 0), we define

µ̃S(t) = µS + νS(t), µ̃H(t) = µH + νH(t), r̃(t) = r + max
(
νS(t)−, 1

κ νH(t)−
)
.

The dynamics of stock and house prices in the artificial market are thus

dS̃t = S̃t [(r̃(t) + µ̃S(t)) dt+ σS dWSt] , S̃0 = S0, (24)

dH̃t = H̃t

[
(r̃(t) + µ̃H(t)) dt+ σH

(
ρHS dWSt +

√
1− ρ2

HS dWHt

)]
, H̃0 = H0. (25)

Irrespective of the signs and magnitudes of νS and νH , the risk-free rate and the expected

returns of stocks and houses are at least as big in the artificial as in the true market.

To complete the market we introduce an income derivative, i.e., an asset sensitive to

the income-specific shock WY . The price dynamics of this asset are of the form

dIt = It [(r̃(t) + νI(t)) dt+ ρIS dWSt + ρ̂IH dWHt + ρ̂I dWY t] , (26)

where

ρ̂IH ≡
ρIH − ρISρHS√

1− ρ2
HS

, ρ̂I ≡
√

1− ρ2
IS − ρ̂

2
IH ,

and we require ρ̂I > 0. The assumption of a unit volatility is without loss of generality.

The asset is characterized by the excess expected return νI(t) and the correlations ρIS , ρIH .

Let ΠIt be the fraction of tangible wealth invested in this asset.
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The housing consumption constitutes a challenge not covered by the single-good case

in which BKM introduced the SAMS approach. The house prices in the artificial market

and the true market are related through

H̃t = ω(t)Ht, ω(t) = e
∫ t
0 rω(u) du, rω(u) = νH(u) + max

(
νS(u)−, 1

κνH(u)−
)
≥ 0.

Hence, if we let the rental rate be the same as in the true market, the consumption of a

given number of housing units would be more expensive (and thus maybe not feasible) in

the artificial market. Therefore we set the rental rate and the maintenance rate inMθ to

χ̃(t) =
χ

ω(t)
, m̃(t) = m+ χ̃(t)− χ

which sustains the unit rental price χ̃(t)H̃t = χHt, as well as the net rental rate after

maintenance costs, χ̃(t) − m̃(t) = χ −m. The Sharpe ratios of the stock and the house

investment (including the net rental rate) are

λ̃S(t) =
µ̃S(t)

σS
, λ̃H(t) =

µ̃H(t) + χ−m
σH

,

while νI(t) is the Sharpe ratio of the income derivative.

An artificial market Mθ corresponds to a given choice of

θ = (νS(t), νH(t), νI(t), ρIS , ρIH) . (27)

Let Jθ(t, x, y, h, q̄) denote the value function in the artificial market Mθ, that is the ex-

pected utility of the remaining life maximized over all strategies (c, q,ΠS ,ΠH ,ΠI). In this

market the expected utility of any strategy is still determined by (23), but the relevant

dynamics are now given by (2), (21), (24), (25), and (26). We verify in Appendix A.3

that any strategy admissible in the true market leads to at least the same utility in each

artificial market. Since the set of admissible strategies in the artificial complete market is

greater than in the incomplete market, the next lemma follows.

Lemma 1 For any artificial market Mθ, the following inequality holds:

Jθ(t, x, y, h, q̄) ≥ J(t, x, y, h, q̄).

Let Θ represent the set of θ’s with deterministic modifiers νS(t), νH(t), νI(t). For θ ∈ Θ

we derive below closed-form expressions for Jθ and the corresponding optimal strategy.
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Minimizing over θ ∈ Θ, we get an upper bound on the true-market value function:

J̄(t, x, y, h, q̄) = min
θ∈Θ

Jθ(t, x, y, h, q̄) (28)

5.4 Optimal decisions in the artificial markets

Any artificial marketMθ, θ ∈ Θ, is very similar to that of Section 4.2, so the value function

and optimal strategies have the same form as found in that model. The only differences

are that there are now three risky assets instead of two, and that various quantities are

now time dependent.

Theorem 3 For θ ∈ Θ, the value function in the artificial market Mθ is

Jθ(t, x, y, h, q̄) =
1

1− γ
(χh)kγGθ(t)

γ(x+ yFθ(t)− q̄χhBθ(t))
1−γ , (29)

where

Gθ(t) = b̂

∫ T

t
e−

∫ u
t rG(s) ds (1 + αBθ(u))k du,

Fθ(t) =


∫ T
t e−

∫ u
t rF (s) ds du t ∈ (T̃ , T ],∫ T̃

t e−
∫ u
t rF (s) ds du+ Υ

∫ T
T̃ e−

∫ u
t rF (s) ds du t ∈ [0, T̃ ],

Bθ(t) =

∫ T

t
e−

∫ u
t rB(s) ds du,

rG(t) =
δ

γ
+
γ−1

γ
r̃(t) +

γ−1

2γ2 Λ̃(t)2

− k
[
r̃(t)− rω(t) +

µ̃H(t)

γ
− γ − 1

γ
(χ−m) +

k − 1

2
σ2
H

]
,

rF (t) = r̃(t)− µY (t) + σY (t)
(
ψSλ̃S(t) + ψH λ̃H(t) + ψY νI(t)

)
,

rB(t) = rω(t) + ε− α+ χ−m,

and ψS , ψH , ψY are defined by the correlations, cf. (59) in Appendix A.4, and Λ̃(t)2 is

defined by the Sharpe ratios and the correlations, cf. (53). In terms of disposable wealth

X̂t = Xt + YtFθ(t)− q̄tχHtBθ(t), the optimal consumption and investment strategy is

ct = bb̂
(1 + αBθ(t))

k

Gθ(t)
X̂t, (30)

qt = q̄t + (1− b)b̂ (1 + αBθ(t))
k−1

χHtGθ(t)
X̂t, (31)

ΠSt =
ξS(t)

γσS

X̂t

Xt
− σY (t)ψS

σS

YtFθ(t)

Xt
, (32)
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ΠHt =
ξH(t)

γσH

X̂t

Xt
− σY (t)ψH

σH

YtFθ(t)

Xt
+ k

X̂t

Xt
+ q̄tχBθ(t)

Ht

Xt
, (33)

ΠIt =
ξI(t)

γ

X̂t

Xt
− σY (t)ψY

YtFθ(t)

Xt
(34)

with ξS(t), ξH(t), ξI(t) being defined in terms of the Sharpe ratios and the correlation struc-

ture, cf. (56)–(58) in Appendix A.4.

Despite the rich setting, the solution has the same structure as in the special cases

in Section 4. Therefore, the optimal consumption strategy and the optimal stock and

house investment strategy have the same interpretation as given after Theorems 1 and 2.

The optimal investment in the income derivative consists of a speculative demand and

an income-adjustment term. If the income derivative is assumed uncorrelated with both

stock and house prices (ρIS = ρIH = 0 and thus ρ̂IH = 0 and ρ̂I = 1), then ξI(t) = νI(t)

and ψY = ρ̂Y so that the speculative demand is determined by the Sharpe ratio νI(t) and

the income-adjustment term by the unspanned income coefficient ρ̂Y .

Note that the elements of θ characterizing the artificial market enter most terms in the

optimal consumption and investment strategy (30)-(34) in this market. Recall that the

optimal strategy in any artificial market is infeasible in the true market. Intuitively, we

are looking for artificial markets in which the optimal investment in the artificial income

derivative is near zero and where the optimal strategies satisfy or are close to satisfying

all constraints in the true market. The choice of the functional form of νS , νH , and νI

influences the wealth loss. The affine specification

νS(t) = υS0 + υS1 t, νH(t) = υH0 + υH1 t, νI(t) = υI0 + υI1t

provides a good trade off between precision and computational complexity. The artificial

markets are then characterized by the six constants in these functions plus ρIS and ρIH .

5.5 Consumption and investment strategies in the true market

The optimal strategy in any artificial market is infeasible in the true market, but we trans-

form it into a feasible strategy. The time t true-market housing habit buffer q̄tχHtB(t)

is at least as large as the artificial-market buffer q̄tχHtBθ(t) since rω(t) ≥ 0. The agent

must ensure that tangible wealth exceeds the true-market buffer, i.e., that Xt ≥ q̄tHtB(t).

When wealth is close to the buffer, current consumption cannot be implicitly financed by

future income, which is therefore less valuable. Following BKM, we replace Fθ(t) by

F̃θ(t) = Fθ(t)
(

1− e−η[Xt−q̄tχHtB(t)]
)
,
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which parsimoniously captures this reduction in human capital. Here η is a positive

constant to be determined experimentally. Hence, we replace the disposable wealth in the

artificial market by

X̃
(θ)
t = Xt + YtF̃θ(t)− q̄tχHtB(t).

The adjusted consumption strategy derived from the artificial market Mθ is thus

c
(θ)
t = bb̂

(1 + αBθ(t))
k

Gθ(t)
X̃

(θ)
t , q

(θ)
t = q̄t + (1− b)b̂ (1 + αBθ(t))

k−1

χHtGθ(t)
X̃

(θ)
t .

The stock-house investment strategy must respect the constraints (22). Starting

from (32)–(33), we adjust the housing habit buffer and the disposable wealth as explained

above and take the positive part of the resulting expressions to get

Π̃
(θ)
St =

(
ξS(t)

γσS

X̃
(θ)
t

Xt
− σY (t)ψS

σS

YtF̃θ(t)

Xt

)+

,

Π̃
(θ)
Ht =

(
ξH(t)

γσH

X̃
(θ)
t

Xt
− σY (t)ψH

σH

YtF̃θ(t)

Xt
+ k

X̃
(θ)
t

Xt
+ q̄tχB(t)

Ht

Xt

)+

,

where x+ = max(x, 0). If Π̃
(θ)
St + κΠ̃

(θ)
Ht ≤ 1, we simply use the strategy

Π
(θ)
St = Π̃

(θ)
St , Π

(θ)
Ht = Π̃

(θ)
Ht.

In other cases we trim the portfolio weights as explained in Cvitanić and Karatzas (1992,

Example 14.9) to

(
Π

(θ)
St ,Π

(θ)
Ht

)
=


(1, 0), if Π̃

(θ)
St − κΠ̃

(θ)
Ht ≥ 1,(

0, 1
κ

)
, if Π̃

(θ)
St − κΠ̃

(θ)
Ht ≤ −1,(

1+Π̃
(θ)
St −κΠ̃

(θ)
Ht

2 ,
1−Π̃

(θ)
St +κΠ̃

(θ)
Ht

2κ

)
, if

∣∣Π̃(θ)
St − κΠ̃

(θ)
Ht

∣∣ < 1.

The transformation of the portfolio weights is illustrated in Figure 7.

For each θ ∈ Θ, the transformed strategy aθ =
(
c(θ), q(θ),Π

(θ)
S ,Π

(θ)
H

)
is a feasible

strategy in the true market and generates an expected utility J(t, x, y, h, q̄; aθ) that we

can estimate via Monte Carlo simulation. The performance of the strategy aθ can be

quantified by the wealth equivalent loss Lθ relative to the upper bound on the expected

utility, J̄ , defined in (28). The loss is implicitly defined by

J (t, x, y, h, q̄; aθ) = J̄(t, x[1− L], y[1− L], h, q̄), (35)
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Figure 7: The transformation of portfolio weights. The gray triangle is the feasible
region. The graph is drawn for κ = 0.2. The transformation depends on which colored area
the artificial market portfolio is located in. The arrows show examples of the transformation.

so L is an upper bound on the relative reduction in initial wealth x and income y the agent

would accept to get access to the truly optimal (but unknown) strategy. Note that L has

to be determined by a numerical search routine. The upper utility bound J̄ is the value

function in some artificial market θ̄ that we find by a numerical minimization of (29). The

left-hand side in (35) is determined by Monte Carlo simulation so to avoid a simulation

bias we also compute the right-hand side by simulation of the optimal strategy in the

market corresponding to the previously determined θ̄.

6 Results with baseline parameter values

6.1 Parameter values

Table 1 summarizes our baseline parameter values. We first estimate the parameter values

for the stock, house, and income dynamics using quarterly U.S. data from 1953q1 to 2010q4

on the stock market index, the national house price index, and aggregate labor income.

Subsequently some values are adjusted to be more representative of individual house prices

and labor income, and other values are slightly rounded. For stocks we use the returns on

the CRSP value-weighted market portfolio inclusive of the NYSE, AMEX, and NASDAQ

markets. The risk-free rate is the three month Treasury bill yield from the Risk Free File

on CRSP Bond tape. The house price is represented by the national Case-Shiller home
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Parameter Description Value

δ time preference rate 0.05
γ relative risk aversion 3
b perishable/housing utility weight 0.69
α habit scaling parameter 0.8
ε habit persistence parameter 0.9
q̄0 initial housing habit level 200
T remaining life time 50

T̃ time until retirement 35

X0 initial financial wealth 20
r risk-free rate 0.01
µS excess expected stock return 0.04
σS stock volatility 0.17
h0 initial unit house price 0.25
µH excess expected house price growth -0.01
σH house volatility 0.12
χ rental rate 0.067
m maintenance cost 0.035
κ collateral parameter 0.4

y0 initial income per year 20
µY expected income growth 0.01
σY income volatility 0.1
Υ replacement ratio 0.6

ρHS house-stock correlation 0.25
ρY S income-stock correlation 0.22
ρHY income-house correlation 0.16

Table 1: Baseline parameter values. Monetary quantities such as initial wealth and
income are measured in thousands of USD. The text explains how the parameter values are
determined.

price index with data taken from Robert Shiller’s homepage.18 We obtain quarterly U.S.

data for aggregate disposable personal income from the NIPA tables and divide by the

population size to compute the disposable labor income per capita. All time series are

deflated using the CPI taken from CRSP.

The stock price volatility is estimated at 17%, a standard value. We reduce the es-

timated equity premium from 5.3% to 4% to account for the survivorship bias (Brown,

Goetzmann, and Ross 1995) and the decline in discount rates and the implied unexpected

capital gains over the sample period (Fama and French 2002). Furthermore, the closely

related papers of Cocco, Gomes, and Maenhout (2005) and Yao and Zhang (2005) also

assume a 4% equity premium.

18
http://www.econ.yale.edu/~shiller/data.htm
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For the house price, the estimated expected real growth rate is r + µH = 0 as there

has been virtually no growth in real house prices over the full sample period, and the

same value was used, e.g., by Yao and Zhang (2005). We increase the volatility of the

house series from 6.1% to 12%, in line with Flavin and Yamashita (2002) and Yao and

Zhang (2005). The initial house price H0 = 0.25 corresponds to $250 per square foot, i.e.,

$250,000 for a home of 1000 square feet of average quality and location.19 We use a rental

rate of 6.7% as estimated by Fischer and Stamos (2013) and a maintenance rate of 3.5%

which includes property taxes that constitute 1-2% in many U.S. states. We let κ = 0.4

so that homeowners can borrow up to 60% of the home value (at the risk-free rate).

The average growth rate of the aggregate income series is 1.7% per year, but this

does not reflect the income growth that an individual can expect. As our benchmark we

assume an expected income growth rate of 1% throughout the working life. Over the

35-year working period the income is then expected to grow by a factor exp(0.01× 35) ≈
1.42, which seems reasonable and is close to the 38% reported as the median individual’s

income growth by Guvenen, Karahan, Ozkan, and Song (2015). We consider age- and

education-dependent income growth rates in Section 7.5. Furthermore, we adjust the

income volatility from 2.1% to 10% in line with Cocco, Gomes, and Maenhout (2005) and

others. As in Yao and Zhang (2005) and Kraft and Munk (2011), the replacement ratio is

0.6, implying a 40% income drop at retirement. We allow income volatility in retirement

as motivated earlier, and assume the same volatility as before retirement.

The pairwise correlations between stock prices, house prices, and labor income are all

slightly positive and close to values used, e.g., by Cocco (2005), Yao and Zhang (2005), and

Fischer and Stamos (2013). Other studies find income-stock correlations closer to zero,

but obviously with some variation across individuals (e.g., Cocco, Gomes, and Maenhout

2005, Heaton and Lucas 2000). Benzoni, Collin-Dufresne, and Goldstein (2007) argue

that the instantaneous correlation underestimates the longer-run stock-income correlation

which is more important for long-term household decisions. In Section 7.6 we consider the

effect of setting each of these correlation parameters to zero.

For concreteness, we study the decisions of a 30-year old who retires at 65 and dies

at 80. We use a risk aversion coefficient of γ = 3, which is lower than values often used

in this literature, but more in line with empirical estimates (Meyer and Meyer 2005).

However, because of the two consumption goods and the habit formation, γ cannot be

directly interpreted as the relative risk aversion. We assume an initial wealth and an

19
Home prices vary a lot across states and regions. According to www.zillow.com the March 2015 median

sale price per square foot was $260 in California so a housing unit in our model is roughly corresponding
to a square foot of housing of an average Californian location and quality. In Illinois, for example, the
median sale price was $122 per square foot so one housing unit is about two square foot of housing of an
average Illinois location and quality.
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initial annual income of $20,000 as motivated in Section 4.1. The time preference rate of

5% is a standard choice in the literature. The initial housing habit is set at 200 housing

units, which might represent a reasonable minimum home for a 30-year old individual.

The habit parameters are α = 0.8 and ε = 0.9 as in the simpler models of Section 4. The

utility weight parameter b is set to 0.69 (0.65) with (without) habit formation in order to

obtain the same average housing expenditure share in the two cases.

The results presented below are averages over 10,000 simulated paths with 50 time

steps per year. With our baseline parameters, the loss bound is 1.1%, so by applying

the consumption-investment strategy suggested by our method instead of the unknown

optimal strategy, the agent’s utility loss corresponds to at most 1.1% of her wealth.20

6.2 Results

Figure 8 illustrates various aspects of the optimal investments over the life cycle. First,

we focus on the case with habit formation as illustrated by the blue curves. Initially the

agent borrows 30 and invests that amount plus her initial wealth of 20 in housing units,

and nothing in stocks. This corresponds to a portfolio weight of 2.5 for housing, 0 for

stocks, and -1.5 for the risk-free asset. She invests nothing or very little in stocks early

in life, but then gradually increases her stock investments (both amount and portfolio

weight) until retirement, and then the amount invested in stocks decrease towards zero

through retirement but at a roughly constant share of about 40% of wealth. Note that

this is obtained for a risk aversion coefficient as low as three. This pattern is in stark

contrast to life-cycle models without housing and housing habits. For example, Cocco,

Gomes, and Maenhout (2005) find that even with a risk aversion of 10, the agent typically

starts out investing 100% of wealth in the stock market and after some years, the stock

weight is gradually reduced to around 50% around retirement. Our model thus provides an

explanation for the observed non-participation in stock markets of many young individuals

without referring to stock market entry costs.

The portfolio is dominated by housing investments, partly funded by collateralized

borrowing, throughout life. In the unconstrained case of Section 4.2, the speculative

demands for stocks and housing were of the same order. The house price hedge and habit

buffer components add to the importance of housing investments. Furthermore, housing

investments can be levered through collateralized borrowing, whereas stock investments

cannot. The housing investment peaks at around $200,000 at retirement. As shown in

the lower-right panel, the individual borrows throughout life, but only in the early years

20
The computer run time is approximately 90 minutes. With the parsimonious SAMS approach (cf.

footnote 17), the run time is just a couple of minutes and the loss bound is 1.5%. Recall that the results
of BKM indicate that the actual loss is considerably smaller than the loss bound.
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Figure 8: Investments over the life cycle in the full model. The graphs show
averages across 10,000 simulations in which the consumption and investment strategy de-
termined by our numerical method is used. The blue curves are for the case with a housing
habit, the red curves are for the case without. The baseline parameters listed in Table 1
are used.

at the maximum amount possible (i.e., 60% of the housing investment).

By comparing to the case without habit formation (red curves in the figure), we see

that the housing habits induce the individual to save more primarily through increased

housing investments, partly financed by borrowing. The habit-forming agent enters the

stock market at a later age and holds a somewhat lower fraction of wealth in stocks both

early and late in life.

Figure 9 depicts the optimal consumption over the life cycle. The graphs are similar

to those presented for the deterministic model in Section 4.1. The left panel shows that

perishable consumption in the no-habit model is increasing through life, although rela-

tively flat in retirement. With the housing habit, perishable consumption is hump shaped

and peaks around retirement. Cocco, Gomes, and Maenhout (2005), among others, also
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Figure 9: Consumption over the life cycle in the full model. The graphs show
averages across 10,000 simulations in which the consumption and investment strategy de-
termined by our numerical method is used. The blue curves are for the case with a housing
habit, the red curves are for the case without. The baseline parameters listed in Table 1
are used.

report a consumption hump around retirement and explain it by a mix of mortality risk,

borrowing constraints, and a hump-shaped income profile. We obtain the consumption

hump without mortality risk or a hump-shaped income profile, and with much less tight

borrowing constraints due to the access to borrowing collateralized by home ownership;

the determinants of the consumption hump is discussed further in Section 7. The right

panel confirms that the housing habits produce a realistic life-cycle pattern in the housing

expenditure share, unlike the constant share implied by the no-habit model.

Figure 10 compares optimal housing consumption and optimal housing investment

over the life cycle. Without housing habits, the optimal housing consumption exceeds

the optimal investment position at all ages. With the habit, housing consumption is first

above the investment position, then below, and then above again in retirement. This can

be interpreted as the agent preferring to rent her home early in life, then shifting to home

ownership, and later shifting back to renting. Such a pattern is often observed in real life.

As in the deterministic model of Section 4.1 we consider the relative sensitivity of

perishable and housing consumption to changes in wealth. For this purpose we have

computed the marginal propensities to consume (MPC) out of wealth from the closed-

form solution in the artificial market corresponding to our best feasible strategy. We

find that the MPC of perishable consumption is 14.2 times bigger than the MPC of

housing consumption early in life with this factor decreasing to 2.2 towards the end of

life (our numerical solution produces identical results). These numbers are similar to the

deterministic case and confirm that our model explains why households adjust perishable

consumption much more than housing consumption in response to wealth shocks.
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7 Robustness of results

Sections 7.1–7.6 illustrate the sensitivity of our results to the selected key parameters.

Section 7.7 summarizes the results of an extension to mortality risk and bequest.

7.1 The habit strength

Recall that the habit dynamics involve the two parameters ε and α with ε−α representing

the strength of the habit: if ε − α is small, the habit only declines very slowly even

with minimum housing consumption and therefore restricts the agent more. Figure 11

illustrates the importance of the habit strength by fixing ε = 0.9 and considering α = 0.7

(weak habit) and α = 0.88 (strong habit) in addition to the baseline α = 0.8.

The upper-left graph confirms that stronger habits imply more savings, and the upper-

right graph shows that the extra saving comes mainly by larger housing investments.

The amount invested in the stock is also increased, especially in the years leading up to

retirement, as shown in the panels in the middle. A stronger habit leads to the portfolio

share of the stock being higher before retirement and lower after retirement. The lower-

left panel reveals that the life-cycle pattern in perishable consumption is similar for the

different habit strengths, but with the strong habit the pattern is more curved and the

peak appears earlier in life, as also noticed in the deterministic model of Section 4.1. The

housing expenditure share in the lower-right panel is increasing through life, but with a

weak or modest habit the share is almost constant for a long mid-life period.
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Figure 11: Consumption and investments for different habit strengths. The case
of α = 0.8 is our baseline case, whereas α = 0.7 represents a weaker habit and α = 0.88 a
stronger habit. For all other parameters the baseline values in Table 1 are used.

7.2 The access to collateralized borrowing

In the baseline case the agent could borrow up to 60% of the value of her investment

position in the housing market, corresponding to κ = 0.4. In Figure 12 we compare this

with κ = 0.2 (borrowing up to 80% of house value) and κ = 1 (no borrowing at all).

In most situations, the agent optimally exploits the borrowing capacity early in life so

that access to more borrowing also generates more borrowing in combination with a higher

house investment. The upper-right panel confirms that the attractiveness of housing as

an investment asset is to a large extent due to the associated access to credit. If the agent

cannot borrow at all, she optimally invests a significant share of wealth in the stock market

already in the early years as illustrated in the lower-left panel.

Perishable consumption is significantly affected by the access to collateralized bor-

rowing. First, the level of consumption throughout life increases when the borrowing

constraint is relaxed. Secondly, perishable consumption peaks later when borrowing is
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Figure 12: Consumption and investments for different borrowing limits. The
case of κ = 0.4 is our baseline case, whereas κ = 0.2 allows for more borrowing and κ = 1
prohibits any borrowing. For all other parameters the baseline values in Table 1 are used.

allowed. Various papers explain the consumption hump by borrowing constraints and

have formulated and calibrated models in which optimal consumption is indeed hump

shaped typically with a peak around retirement, cf., e.g., Gourinchas and Parker (2002)

and Cocco, Gomes, and Maenhout (2005). However, these models restrict the agent from

any borrowing, whereas real-life homeowners have access to some collateralized borrow-

ing. The lower-right panel shows that the access to borrowing postpones the peak age of

consumption significantly. The housing habit in our model generates the hump-shaped

perishable consumption with or without borrowing. As discussed earlier, a stronger habit

leads to an earlier peak in consumption. Mortality risk can also contribute to a relatively

early peak as was illustrated in the simple model in Section 4.1, and we confirm this for

our full model in Section 7.7.

7.3 Risk aversion

Next we investigate how the risk aversion coefficient γ affects the results. As this depends

on the access to borrowing, Figure 13 considers γ-values of 3 (baseline value) and 5 together

with κ = 0.4 (baseline value, 60% borrowing) and κ = 1 (no borrowing). As expected a

higher risk aversion coefficient induces the agent to save more and consume less early in

life, whereas later in life the higher savings finance a larger consumption. Therefore, the

perishable consumption profile is steeper and peaks later when the risk aversion coefficient

is increased from 3 to 5. These observations hold with or without borrowing.
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Figure 13: Consumption and investments for different degrees of risk aversion.
Each panel considers the four combinations arising from (i) γ = 3 or γ = 5 and (ii) κ = 0.4
or κ = 1 (no borrowing). For all other parameters the baseline values in Table 1 are used.

The impact on optimal investments of an increase in risk aversion is more intrigu-

ing. The amounts invested in housing and stocks increase at least before retirement and

borrowing also increases in conjunction with the larger house investment. In terms of

fractions of wealth invested, the weight of the stock increases, while the weight of the

housing investment decreases. As shown by the lower-right panel, the difference between

the portfolio weight of the riskfree asset and its minimum value (defined by −(1 − κ)

times the weight of the housing investment) increases with the risk aversion, so in that

sense borrowing is reduced in relative terms. The increase in risk aversion thus leads the

agent to partially replace the leveraged housing investment by arguably less risky stock

investments. Without borrowing, the same increase in risk aversion leads to a significantly

higher housing investment and a significantly lower stock investment, both in absolute and

relative terms. Here stock investments are replaced by the less risky non-leveraged housing

investments. Again, it is striking to see how sensitive the optimal stock weight is to both

the access to borrowing and the risk aversion coefficient.

7.4 Initial wealth

How sensitive is the optimal portfolio to the initial financial wealth X0? The left panel of

Figure 14 shows that when collateralized borrowing is allowed, an increase in the initial

wealth leads to an increase in the optimal stock weight. This relation is seen in the data

(Wachter and Yogo 2010), but is inconsistent with the basic Samuelson-Merton model
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Figure 14: Portfolio weights and initial wealth. The red curves assume an initial
financial wealth of X0 = 20 as in the baseline case, whereas the green curves assume an
initial wealth of X0 = 40. The solid curves are for the baseline case of κ = 0.4 (60%
borrowing of house value), whereas the dotted curves are for the case κ = 1 (no borrowing).
For all other parameters the baseline values in Table 1 are used.

and various extensions thereof. The optimal house weight is decreasing in initial wealth.

These effects can be explained by the fact that, when wealth is increased, the habit-

induced wealth buffer seizes a smaller share of the sum of financial and human wealth.

Notably, initial wealth has the opposite effect on the portfolio if collateralized borrowing

is impossible as shown by the dotted curves in the figure. Higher wealth raises optimal

future housing consumption, and hedging considerations may rationalize a higher housing

investment.

7.5 Labor income depending on age and education

Above we assumed a constant expected income growth rate in the working phase, but

income is known to grow faster for young adults than for more mature adults. We follow

Cocco, Gomes, and Maenhout (2005) and use their estimated income profiles for three

different educational levels labeled ‘no high school’, ‘high school’, and ‘college.’ Their esti-

mated profiles determine µY (t) in our model, cf. Munk and Sørensen (2010). In addition,

the initial income is set to 20 for the agent with no high school, 25 with high school, and

29 with a college degree. These values roughly correspond to the average income of a

30-year old in the different educational groups according to Cocco, Gomes, and Maenhout

(2005). The other parameters are unchanged compared to the baseline case.

Figure 15 depicts the average income profiles in the upper-left panel. The other panels

show how wealth, consumption, and investments vary across the three profiles, both for the

case where the agent can borrow up to 60% of house value (corresponding to κ = 0.4) and

the case where the agent cannot borrow at all (κ = 1). The overall shape of the perishable

consumption curve is the same for all three educational levels, but of course the level of

consumption increases with income and thus education. The level of housing consumption
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Figure 15: Consumption and investments for different educational levels. The
average income profiles estimated by Cocco, Gomes, and Maenhout (2005) for three different
educational groups are used. The solid curves are for the baseline case of κ = 0.4 (60%
borrowing of house value), whereas the dotted curves are for the case κ = 1 (no borrowing).
For all other parameters the baseline values in Table 1 are used.

also increases with education, but the expenditure share of housing is initially lowest

for college graduates and highest for individuals without high school education, which

is consistent with the shares across income quintiles reported in the Introduction. This

can be understood from Eq. (11), which shows that the housing expenditure share in the

deterministic version of the model is increasing in the ratio q̄t/qt of the habit level to

current consumption. We assume the same initial habit level for all three educational

groups, and since optimal housing consumption increases with education, this ratio and

hence the housing expenditure share decrease with education. Eventually, the housing

expenditure shares for the three groups converge. Of course, results may be different if

the initial habit level or the habit strength depend on the education level.
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Figure 16: Consumption and investments for different correlations. Each panel
compares the baseline case with the three cases where each of the correlation parameters
ρHY , ρHS , and ρY S have been set to zero, but all other parameters assume the baseline
values listed in Table 1. The dotted curve for the baseline case is hardly visible in the upper
panels as it is almost indistinguishable from the blue curve.

In the early years, the college graduate saves very little and therefore invests less than

the other individuals. After a few years, the college graduate starts saving more than

the others, at first primarily through housing investments. In fact, the college graduate

enters the stock market later than the other individuals, and while the college graduate

eventually has the largest amount invested in stocks, the share of wealth invested in the

stock is very similar (first slightly lower, then slightly higher) to the other individuals.

Note again that the investment pattern is very different if borrowing is prohibited. In this

case, all three individuals participate in the stock market from the beginning with the

college graduate holding the largest share of wealth in stocks. Overall, with or without

access to borrowing, the optimal portfolio weights vary only modestly with education level.

7.6 Correlations

In the baseline case we used the pairwise stock-house-income correlations estimated from

the aggregate data in the solution of the individual’s problem. Now we consider the effect

of setting each of these correlations to zero. In Figure 16 the purple curves show the

results of our model for ρY S = 0, a value often used in the literature, instead of the

baseline value of 0.22. Since income is now less stock-like, the portfolio is more tilted

towards stocks and away from real estate, although the individual still stays out of the
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Figure 17: Perishable consumption over the life cycle with mortality risk and
bequest. The graphs show averages across 10,000 simulations in which the consumption
and investment strategy determined by our numerical method is used. The green curves are
for a strong habit (α = 0.88), the blue curves for the baseline habit strength (α = 0.8), and
the red curves for the case without habit formation. For each color the solid curve is for
the case with collateralized borrowing (κ = 0.4) and the dotted curve for the case without
borrowing (κ = 1). The mortality rates are derived from the 2009 life table of the total U.S.
population. We assume an insurance price parameter of Γ = 0.8 and a preference weight
on bequest of w = 10. For other parameters the baseline values listed in Table 1 are used.

stock market in the early years. Perishable consumption is somewhat lower and peaks a

little earlier than in the benchmark case. If the baseline income-house correlation ρHY of

0.16 is replaced by zero, the portfolio is naturally tilted somewhat to houses and thus away

from stocks. Finally, replacing the baseline house-stock correlation ρHS of 0.25 by zero

improves diversification so the individual generally invests slightly more in both stocks

and houses, and consumption is marginally increased.

7.7 An extension to mortality risk and bequests

We extend the main model to mortality risk and bequests just as we did for the simple

model in Section 4.1. Appendix B.2 presents a closed-form solution to the extended

problem in any of the artificial markets with deterministic modifiers. In conjunction with

the SAMS approach, this leads to the near-optimal strategies for the extended problem in

the true market.

The extension of the model has a limited impact on the optimal behavior. With a

preference for bequest, more wealth needs to be build up and maintained even late in

retirement, which leads to larger amounts invested in both stocks and housing units, but

the portfolio weights are very similar to the baseline case in Figure 8. Mortality risk and
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bequest preferences have more interesting effects on life-cycle consumption. Figure 17

shows six curves of perishable consumption over life. The three solid curves are for the

case with collateralized borrowing (κ = 0.4) and the corresponding dotted curves for the

no-borrowing case (κ = 1). The red curves are for no habit, the blue curves for the baseline

habit strength (α = 0.8), and the green curves for a stronger habit (α = 0.88). We assume

a bequest preference weight of w = 10, which leads to a sizeable bequest; for example, in

the standard case with α = 0.8 and κ = 0.4, the average bequest is 260.5 (thousand USD)

should the agent survive until age 100. Comparing the three solid curves, we see again

how a stronger housing habit leads to an earlier peak in consumption. This is also true

if borrowing is disallowed as revealed by a comparison of the dotted curves. The figure

also confirms that a relatively early hump can be obtained without habits if borrowing

is impossible which, however, is a questionable premise. With access to borrowing, the

housing habit can restore a hump around the retirement age.

8 Conclusion

We have solved for and investigated the optimal life-cycle consumption and investment

decisions in a rich model with many realistic features. In particular, we include preferences

for both perishable consumption and consumption of housing services with habit forma-

tion for housing. We have provided closed-form solutions for simplified settings to build

intuition and used an innovative numerical method to solve the full model with portfolio

constraints and unspanned income risk.

Our results show that the model can generate various stylized facts that seem puzzling

through the lens of standard life-cycle models. First, stock investments are low or zero for

many young agents and then gradually increasing over life. Housing investments crowd out

stock investments, in particular for young agents, because housing investments (i) provide

access to borrowing, (ii) hedge against increases in the price of housing consumption,

(iii) ensure that the agent can obtain the future minimum housing consumption generated

by her habits, and (iv) are not a bad investment from a purely speculative view. Secondly,

our model generates an age- and wealth-dependent housing expenditure share instead of

the counter-factually constant share found in standard models. Thirdly, in our model

perishable consumption is much more sensitive to wealth and income shocks than housing

consumption, in particular for young agents. Finally, the housing habit helps in explaining

the hump-shaped life-cycle pattern in non-housing consumption.
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A Proofs

A.1 Proof of Theorem 1

The Bellman equation is

0 = L1J + L2J,

where

L1J = sup
c,q

{
− cJx − (q − q̄)hχJx +

1

1− γ
cb(1−γ)(q − q̄)(1−b)(1−γ) + α(q − q̄)Jq̄

}
, (36)

L2J = Jt + rxJx + yJx + (r + µH)hJh + µY yJy − q̄hχJx + (α− ε)q̄Jq̄ − δJ. (37)

The first-order conditions imply

bcb(1−γ)−1(q − q̄)(1−b)(1−γ) = Jx,

(1− b)cb(1−γ)(q − q̄)(1−b)(1−γ)−1 = χhJx − αJq̄,

and by dividing one by the other we see that

c =
b

1− b
(q − q̄)

(
χh− α

Jq̄
Jx

)
.

Substituting this relation back into one of the first-order conditions we obtain

c = b
1
γ

(
b

1− b

) (1−b)(γ−1)
γ

(
χh− α

Jq̄
Jx

) (1−b)(γ−1)
γ

J
− 1
γ

x = b b̂

(
χh− α

Jq̄
Jx

)k
J
− 1
γ

x ,

and subsequently we get

q = q̄ + (1− b)b̂
(
χh− α

Jq̄
Jx

)k−1

J
− 1
γ

x .

After substitution of the optimal controls it follows that

L1J =
γ

1− γ
b̂

(
χh− α

Jq̄
Jx

)k
J
γ−1
γ

x . (38)

Conjecture a value function of the form (4). With x̂ = x + yF (t) − q̄χhB(t), the

relevant derivatives are

Jt = x̂−γ(χh)γkGγ−1

[
γ

1− γ
x̂G′ +GyF ′ − q̄χhB′G

]
, Jq̄ = −(χh)1+γkBx̂−γGγ ,

Jx = x̂−γGγ(χh)γk, Jy = x̂−γ(χh)γkGγF, Jh = x̂−γ(χh)γkh−1Gγ
[
kγ

1− γ
x̂− q̄χhB

]
,
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from which (9) follows. Note that Jq̄/Jx = −hχB(t). Now substitute the derivatives

into (37) and (38), replace rx by rx̂− ryF + rq̄χhB, and reduce to get

L1J = x̂1−γ(χh)γkGγ−1 γ

1− γ
b̂(1 + αB(t))k, (39)

L2J = x̂−γ(χh)γkGγ−1

{
γ

1− γ
x̂

[
G′(t)−

(
δ

γ
+
γ − 1

γ
r − (r + µH)k

)
G(t)

]
+G(t)y

[
F ′(t) + (µY (t)− r)F (t) + 1

]
− q̄hG(t)

[
B′(t)− (ε− α− µH)B(t) + 1

]}
. (40)

After adding up and dividing by x̂−γ(χh)γkGγ−1, each remaining term is either a multiple

of x̂ or does not involve x̂. Collecting the terms involving x̂, we conclude that G must

satisfy

0 = G′(t)− rGG(t) + b̂(1 + αB(t))k, (41)

where rG is given by (8). With G(T ) = 0 (due to no bequests), (41) has the solution (6).

The terms not involving x̂ add up to zero if

0 = F ′(t)− (r − µY (t))F (t) + 1, 0 = B′(t)− rBB(t) + 1 (42)

where rB is given by (8). With F (T ) = B(T ) = 0, the solutions are as stated in (7)

and (5).

Next we derive the dynamics of perishable consumption. By applying (42) as well as

the optimal controls (9), we obtain

dX̂t = dXt + F (t) dYt + YtF
′(t) dt− χHtB(t) dq̄t − q̄tχB(t) dHt − q̄tχHtB

′(t) dt

= rX̂t dt− ct dt− (qt − q̄t)χHt(1 + αB(t)) dt

= X̂t

(
r − b̂(1 + αB(t))k

G(t)

)
dt.

From (9), it follows that

dct = ct
dX̂t

X̂t

+ ct

(
kαB′(t)

1 + αB(t)
− G′(t)

G(t)

)
dt

= ct

(
r − rG +

kαB′(t)

1 + αB(t)

)
dt

= ct

(
r − δ
γ

+ k

[
r + µH +

αB′(t)

1 + αB(t)

])
dt,
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where we have used (41). Note that B′(t) = −e−rB(T−t) < 0. The growth rate µc(t) is

initially positive provided

r − δ
γ
≥ k

[
− αB′(0)

1 + αB(0)
− (r + µH)

]
= k

[
αrB

(α+ rB)erBT − α
− (r + µH)

]
.

Since B′′(t) = rBB
′(t), we get

µ′c(t) = kα
B′′(t)[1 + αB(t)]− α[B′(t)]2

(1 + αB(t))2 = kα
(rB + α)B′(t)

(1 + αB(t))2 = kα
(ε− µH)B′(t)

(1 + αB(t))2 ,

which is negative if µH < ε. Hence the consumption growth rate can eventually turn

negative and will do so provided

r − δ
γ
≤ −k

(
r + µH +

αB′(T )

1 + αB(T )

)
= k(α− [r + µH ]).

This completes the proof.

A.2 Proof of Theorem 2

It is useful to introduce some vector-matrix notation. Let

Π =

(
ΠS

ΠH

)
, µ =

(
µS

µH + χ−m

)
, Σ =

 σS 0

σHρHS σH

√
1− ρ2

HS

 ,

~ρH =

 ρHS√
1− ρ2

HS

 , ~ρY =

 ρY S√
1− ρ2

Y S .


For later use, note that

(ΣΣ>)−1µ =
1

1− ρ2
HS

(
λS−ρHSλH

σS
λH−ρHSλS

σH

)
, (43)

(Σ>)−1~ρH =

(
0
1
σH

)
,

(Σ>)−1~ρY =

(
ρY S−ρHS ρ̃HY

σS
ρ̃HY
σH

)
, (44)

Λ2 ≡ µ>(ΣΣ>)−1µ = λ2
S +

1

1− ρ2
HS

(λH − ρHSλS)2 , (45)

µ>(Σ>)−1~ρH = λH ,

µ>(Σ>)−1~ρY = λSρY S + ρ̃HY (λH − ρHSλS) . (46)
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The Hamilton-Jacobi-Bellman (HJB) equation in this case can then be written as

0 = L1J + L2J + L3J + L4J, (47)

where L1J and L2J are given by (36) and (37), and

L3J =
1

2
σ2
Hh

2Jhh +
1

2
σ2
Y y

2Jyy + ρHY σHσY hyJhy, (48)

L4J = sup
Π

{
JxxΠ>µ+

1

2
Jxxx

2Π>ΣΣ>Π + JxhxhσHΠ>Σ~ρH + JxyxyσY Π>Σ~ρY

}
.(49)

The first-order condition for Π implies

Π = − Jx
xJxx

(ΣΣ>)−1µ−
yJxy
xJxx

σY (Σ>)−1~ρY −
hJxh
xJxx

σH(Σ>)−1~ρH .

Substituting this back into L4J , we find after long and tedious computations that

L4J = −1

2

J2
x

Jxx
µ>(ΣΣ>)−1µ− 1

2

y2J2
xy

Jxx
σ2
Y −

yJxJxy
Jxx

σY µ
>(Σ>)−1~ρY

− 1

2

h2J2
xh

Jxx
σ2
H −

hJxJxh
Jxx

σHµ
>(Σ>)−1~ρH −

yhJxyJxh
Jxx

σY σHρHY .

As in the deterministic model we conjecture that J is of the form (4) for some functions

G,F,B. The derivatives Jt, Jx, Jq̄, Jy, and Jh are as stated in Appendix A.1. In addition,

we now need the following derivatives:

Jxx = −γ(χh)kγGγ x̂−γ−1,

Jyy = −γ(χh)kγGγ x̂−γ−1F 2,

Jhh = kγ(χh)kγGγ x̂−γh−2

(
kγ − 1

1− γ
x̂− 2q̄χhB + (χhq̄B)2k−1x̂−1

)
,

Jxy = −γ(χh)kγGγ x̂−γ−1F,

Jxh = γ(χh)kγGγ x̂−γ−1h−1 (kx̂+ q̄χhB) ,

Jyh = γ(χh)kγGγ x̂−γ−1h−1F (kx̂+ q̄χhB) .

Then

Π =
1

γ

x̂

x
(ΣΣ>)−1µ− yF

x
σY (Σ>)−1~ρY +

(
k
x̂

x
+
q̄χhB

x

)
σH(Σ>)−1~ρH ,

44



which leads to (18)–(19) by using (43)–(44). Furthermore,

L4J = (χh)kγGγ x̂−γ−1

{
x̂2
[ 1

2γ
µ>(ΣΣ>)−1µ+

k2γ

2
σ2
H + kσHµ

>(Σ>)−1~ρH

]
+ x̂
[
χhq̄BσH

(
kγσH + µ>(Σ>)−1~ρH

)
− yFσY

(
kγσHρHY + µ>(Σ>)−1~ρY

) ]
+
γ

2
(yF )2σ2

Y +
γ

2
q̄χhBσH (q̄χhBσH − 2yFσY ρHY )

}
,

L3J = (χh)kγGγ x̂−γ−1

{
x̂2kγ(kγ − 1)

2(1− γ)
σ2
H + x̂kγσH

[
yFρHY σY − q̄χhBσH

]
− γ

2
σ2
Hχ

2h2q̄2B2 − γ

2
σ2
Y y

2F 2 + γyFχhq̄BρHY σHσY

}
.

By adding up L3J and L4J , various terms cancel, and we are left with

L3J + L4J = (χh)kγGγ x̂−γ
{
x̂
[ 1

2γ
µ>(ΣΣ>)−1µ+

k(k − 1)γ

2(1− γ)
σ2
H + kσHµ

>(Σ>)−1~ρH

]
+ χhq̄BσHµ

>(Σ>)−1~ρH − yFσY µ
>(Σ>)−1~ρY

}
.

If we substitute this as well as (39) and (40) into the HJB equation (47) and then divide

by (χh)kγGγ−1x̂−γ , each remaining term is either a multiple of x̂ or does not involve x̂ at

all. Collecting the terms involving x̂ we conclude that G must satisfy

0 = G′(t)− rGG(t) + b̂(1 + αB(t))k,

where rG is now given by (15) if we use Eqs. (45)–(46). With G(T ) = 0 (due to no

bequests), the solution is (6). The terms not involving x̂ add up to zero if

0 = F ′(t)− rF (t)F (t) + 1, 0 = B′(t)− rBB(t) + 1, (50)

where rF (t) and rB are given by (16) and (17). With F (T ) = B(T ) = 0, the solutions are

as stated in the theorem.

Before deriving the consumption dynamics, we consider the dynamics of wealth. By

substitution of the optimal portfolio into the dynamics of tangible wealth, we find

dXt =
{
Xt

[
r + Π>

t µ
]

+ Yt − ct − qtχHt

}
dt+XtΠ

>
t Σ dWt

=
{
rXt +

1

γ
X̂tΛ

2 − YtF (t)σY µ
>(Σ>)−1~ρY
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+ (k + q̄tχHtB(t))σHλH + Yt − ct − qtχHt

}
dt

+
{1

γ
X̂tµ

>Σ−1 − YtF (t)σY ~ρ
>
Y +

(
kX̂t + q̄tχHtB(t)

)
σH~ρH

}
dWt.

By applying (50) as well as the optimal consumption decisions (9), we find that the

dynamics of disposable wealth are

dX̂t = dXt + F (t) dYt + YtF
′(t) dt− χHtB(t) dq̄t − q̄tχB(t) dHt − q̄tχHtB

′(t) dt

= X̂t

(
r +

1

γ
Λ2 + kσHλH

)
dt+ X̂t

(
1

γ
µ>Σ−1 + kσH~ρ

>
H

)
dWt

− ct dt− (qt − q̄t)χHt(1 + αB(t)) dt

= X̂t

(
r +

1

γ
Λ2 + kσHλH − b̂

(1 + αB(t))k

G(t)

)
dt+ X̂t

(
1

γ
µ>Σ−1 + kσH~ρ

>
H

)
dWt.

From (9) it follows that

dct = ct
dX̂t

X̂t

+ ct

(
kαB′(t)

1 + αB(t)
− G′(t)

G(t)

)
dt

= ct
dX̂t

X̂t

+ ct

(
kαB′(t)

1 + αB(t)
− rG + b̂

(1 + αB(t))k

G(t)

)
dt

= ct

(
Kc +

kαB′(t)

1 + αB(t)

)
dt+

(
1

γ
µ>Σ−1 + kσH~ρ

>
H

)
dWt,

where we have used (41) and introduced

Kc =
r − δ
γ

+
γ + 1

2γ2 Λ2 + k

(
r + µH +

µH + χ−m
γ

+
k − 1

2
σ2
H

)
.

The expected consumption is

E[ct] = c0e
∫ t
0 µc(s) ds, µc(t) = Kc +

kαB′(t)

1 + αB(t)
= Kc −

kαrB

(rB + α)erB(T−t) − α
.

Note that
dE[ct]

dt
= µc(t) E[ct] dt

with the sign determined exclusively by µc(t). Since B′(t) = −e−rB(T−t) < 0 and B′′(t) =

rBB
′(t) = −rBe

−rB(T−t), we get

µ′c(t) = kα
B′′(t)[1 + αB(t)]− α[B′(t)]2

(1 + αB(t))2 = kα
(rB + α)B′(t)

(1 + αB(t))2 = kα
(ε+ χ−m)B′(t)

(1 + αB(t))2 ,

which is negative if ε + χ − m > 0. Then we have a hump in expected consumption
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provided µc(0) > 0 and µc(T ) < 0, which is the case exactly when (20) holds, and the

hump occurs when µc(t) = 0 which implies a hump at

thump = T − 1

rB
ln

(
α(Kc + krB)

Kc(α+ rB)

)
.

A.3 Proof of Lemma 1

Let X̃t denote the tangible wealth in the artificial market. In analogy with (14), the wealth

dynamics generated by a strategy (c, q,ΠS ,ΠH ,ΠI) are

dX̃t =
{
X̃t [r̃(t) + ΠStµ̃S(t) + ΠHt (µ̃H(t) + χ̃(t)− m̃(t)) + ΠItνI(t)]

+ Yt − ct − qtχ̃(t)H̃t

}
dt+ X̃t (ΠStσS + ΠHtσHρHS + ΠItρIS) dWSt

+ X̃t

(
ΠHtσH

√
1− ρ2

HS + ΠItρ̂IH

)
dWHt + X̃tΠItρ̂I dWY t

=
{
X̃t [r̃(t) + ΠStµ̃S(t) + ΠHt (µ̃H(t) + χ−m) + ΠItνI(t)]

+ Yt − ct − qtχHt

}
dt+ X̃t (ΠStσS + ΠHtσHρHS + ΠItρIS) dWSt

+ X̃t

(
ΠHtσH

√
1− ρ2

HS + ΠItρ̂IH

)
dWHt + X̃tΠItρ̂I dWY t,

where the equality follows from χ̃(t)H̃t = χHt and χ̃(t) − m̃(t) = χ −m, which are true

by construction. In particular, if we take a strategy (c, q,ΠS ,ΠH) which is feasible in the

true market and let ΠIt ≡ 0, we have

dX̃t =
{
X̃t [r̃(t) + ΠStµ̃S(t) + ΠHt (µ̃H(t) + χ−m)] + Yt − ct − qtχHt

}
dt

+ X̃t (ΠStσS + ΠHtσHρHS) dWSt + X̃tΠHtσH

√
1− ρ2

HS dWHt.

A comparison with (14) reveals that the strategy leads to at least the same wealth in the

artificial market as in the true market provided that

r̃(t) + ΠStµ̃S(t) + ΠHtµ̃H(t) ≥ r + ΠStµS + ΠHtµH

or, equivalently,

ΠStνS(t) + ΠHtνH(t) + max
(
νS(t)−, 1

κνH(t)−
)
≥ 0 (51)

for any (νS(t), νH(t)). We verify (51) in the following cases that cover all situations:

(i) νS(t), νH(t) ≥ 0: obvious as all terms on left-hand side are non-negative
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(ii) νH(t) < 0 ≤ νS(t): the left-hand side is then

ΠStνS(t) + ΠHtνH(t)− 1
κνH(t) = ΠStνS(t)− 1

κνH(t) (1− κΠHt) ≥ 0

(iii) νS(t) < 0 ≤ νH(t): the left-hand side is then

ΠStνS(t) + ΠHtνH(t)− νS(t) = −νS(t) (1−ΠSt) + ΠHtνH(t) ≥ 0

(iv) νS(t) ≤ 1
κνH(t) ≤ 0: the left-hand side is then

ΠStνS(t) + ΠHtνH(t)− νS(t)

= −νS(t) (1−ΠSt − κΠHt) + κΠHt

(
1
κνH(t)− νS(t)

)
≥ 0

(v) 1
κνH(t) ≤ νS(t) ≤ 0: the left-hand side is then

ΠStνS(t) + ΠHtνH(t)− 1
κνH(t)

= ΠSt

(
νS(t)− 1

κνH(t)
)
− 1

κνH(t) (1−ΠSt − κΠHt) ≥ 0.

A.4 Proof of Theorem 3

In this appendix we consider a given artificial market as represented by a fixed θ, cf. (27).

For simplicity we notationally suppress θ. The proof is a relatively straightforward exten-

sion of the proof of Theorem 2 presented in Appendix A.2. Compared to that case, we

now have an additional risky asset, namely the income derivative, and some quantities are

time dependent instead of constant.

A.4.1 Setting and notation

The investor has access to a risk-free asset with a instantaneous rate of return r̃(t) and

three risky assets with price dynamics

dPt = diag(Pt) [(r̃(t)1 + µ̃(t)) + Σ dWt] ,

where W = (WS ,WH ,WY )> is a three-dimensional standard Brownian motion (with in-

dependent components), and

µ̃(t) =


µ̃S(t)

µ̃H(t) + χ−m
νI(t)

 , Σ =


σS 0 0

σHρHS σH

√
1− ρ2

HS 0

ρIS ρ̂IH ρ̂I

 .

48



The net rental rate χ̃(t)− m̃(t) = χ−m is compounded into the house price dynamics to

reflect the total return on a housing investment. We introduce the correlation vectors

~ρY =
(
ρY S ρ̂HY ρ̂Y

)>
, ~ρH =

(
ρHS

√
1− ρ2

HS 0

)>
.

For future use, we note that

Σ−1 =


1
σS

0 0

− ρHS

σS

√
1−ρ2HS

1

σH

√
1−ρ2HS

0

ρHS ρ̂HI−ρIS
√

1−ρ2HS
σS

√
1−ρ2HS ρ̂I

− ρ̂IH

σH

√
1−ρ2HS ρ̂I

1
ρ̂I

 ,

µ̃(t)>(ΣΣ>)−1 =
(
ξS(t)
σS

ξH(t)
σH

ξI(t)
)
, (52)

Λ̃(t)2 ≡ µ̃(t)>(ΣΣ>)−1µ̃(t) = ξS(t)λ̃S(t) + ξH(t)λ̃H(t) + ξI(t)νI(t), (53)

~ρ>
Y Σ−1 =

(
ψS
σS

ψH
σH

ψY

)
, (54)

~ρ>
HΣ−1 =

(
0 1

σH
0
)
, (55)

where

ξS(t) = λ̃S(t)
1− ρ2

IH

(1− ρ2
HS)ρ̂2

I

− λ̃H(t)
ρHS − ρISρIH
(1− ρ2

HS)ρ̂2
I

− νI(t)
ρIS − ρHSρIH
(1− ρ2

HS)ρ̂2
I

, (56)

ξH(t) = −λ̃S(t)
ρHS − ρISρIH
(1− ρ2

HS)ρ̂2
I

+ λ̃H(t)
1− ρ2

IS

(1− ρ2
HS)ρ̂2

I

− νI(t)
ρIH − ρHSρIS
(1− ρ2

HS)ρ̂2
I

, (57)

ξI(t) = −λ̃S(t)
ρIS − ρHSρIH
(1− ρ2

HS)ρ̂2
I

− λ̃H(t)
ρIH − ρHSρIS
(1− ρ2

HS)ρ̂2
I

+ νI(t)
1

ρ̂2
I

, (58)

ψY =
ρ̂Y
ρ̂I
, ψH =

ρ̂HY − ρ̂IHψY√
1− ρ2

HS

, ψS = ρY S − ρHSψH − ρISψY . (59)

A.4.2 Human capital

The artificial market is complete so a unique risk-neutral measure Q exists, and the human

capital can be valued as if the income was a dividend stream:

H(t, y) = EQ
[∫ T

t
Yse
−

∫ s
t r̃(u) du ds | Yt = y

]
.

We need the risk-neutral dynamics of Yt. The market price of risk is Σ−1µ̃(t) so

WQ
t = Wt +

∫ t

0
Σ−1µ̃(s) ds
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defines a standard Brownian motion under Q. Therefore

dYt = Yt

[(
µY (t)− σY (t)~ρ>Σ−1µ̃(t)

)
dt+ σY (t)~ρ> dWQ

t

]
.

It follows from standard asset pricing theory that H(t, y) satisfies the PDE

r̃(t)H = Ht +Hyy
(
µY (t)− σY (t)~ρ>Σ−1µ̃(t)

)
+

1

2
Hyyy

2σY (t)2 + y.

First consider the case after retirement, t > T̃ , where the terminal value is H(T, y) = 0.

The solution is of the form H(t, y) = yF (t) if F satisfies the ODE

F ′(t)− rF (t)F (t) + 1 = 0 (60)

and F (T ) = 0, where

rF (t) = r̃(t)− µY (t) + σY (t)~ρ>Σ−1µ̃(t)

= r̃(t)− µY (t) + σY (t)
(
ψSλ̃S(t) + ψH λ̃H(t) + ψY νI(t)

)
,

using (54). The solution is F (t) =
∫ T
t exp

{
−
∫ u
t rF (s) ds

}
du.

Before retirement, t < T̃ , we need to take the income drop at retirement into account.

The human capital still solves the above PDE but now with terminal condition H(T̃ , y) =

ΥYT̃−F (T̃ ). The solution is then H(t, y) = yF (t) with

F (t) =

∫ T̃

t
exp

{
−
∫ u

t
rF (s) ds

}
du+ Υ

∫ T

T̃
exp

{
−
∫ u

t
rF (s) ds

}
du.

A.4.3 The HJB equation and its solution

We write the portfolio strategy in the artificial market compactly as Π = (ΠS ,ΠH ,ΠI)
>.

The wealth dynamics generated by a strategy (c, q,ΠS ,ΠH ,ΠI) are

dXt =
{
Xt

[
r̃(t) + Π>

t µ̃(t)
]

+ Yt − ct − qtχ̃(t)H̃t

}
dt+XtΠ

>
t Σ dWt

=
{
Xt

[
r̃(t) + Π>

t µ̃(t)
]

+ Yt − ct − qtχHt

}
dt+XtΠ

>
t Σ dWt,

where the equality is due to χ̃(t)H̃t = χHt. We see that (t,Xt, Yt, Ht) constitutes a

controlled Markov diffusion so that these quantities are the relevant state variables for the

agent with the addition of the housing habit q̄t that directly affects the agent’s utility. The

dynamics of the state variables Yt, Ht, and q̄t are given by (21), (12), and (1), respectively.

The HJB equation for the value function J(t, x, y, h, q̄) in the artificial market can be
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written as

0 = L1J + L2J + L3J + L4J,

where

L1J = sup
c,q

{
− cJx − (q − q̄)χhJx +

1

1− γ
cb(1−γ)(q − q̄)(1−b)(1−γ) + α(q − q̄)Jq̄

}
,

L2J = Jt + r̃xJx + yJx + (r + µH)hJh + µY yJy − q̄χhJx + (α− ε)q̄Jq̄ − δJ,

L3J =
1

2
σ2
Hh

2Jhh +
1

2
σ2
Y y

2Jyy + ρHY σHσY hyJhy,

L4J = sup
Π

{
JxxΠ>µ̃+

1

2
Jxxx

2Π>ΣΣ>Π + JxhxhσHΠ>Σ~ρH + JxyxyσY Π>Σ~ρY

}
.

Note that L1J and L2J are exactly as in the simpler models, cf. (36)–(37), except that r̃

replaces r in front of xJx. Furthermore, L3J is exactly as in the spanned risk model of

Section 4.2, cf. (48). In addition, L4J has the same structure as (49) in the spanned risk

model, but µ is replaced by µ̃, Π is now three-dimensional because of the additional risky

asset, and ~ρH and ~ρY are also three-dimensional.

Just as in the simpler models we conjecture a solution of the form

J(t, x, y, h, q̄) =
1

1− γ
(χh)kγG(t)γ x̂1−γ , x̂ = x+ yF (t)− q̄χhB(t).

As in the proof of Theorem 1 (see Appendix A.1), this implies the optimal consumption

policy (30)–(31) and, suppressing t-dependence for clarity,

L1J = x̂1−γ(χh)γkGγ−1 γ

1− γ
b̂(1 + αB)k,

L2J = x̂−γ(χh)γkGγ−1

{
γ

1− γ
x̂

[
G′ −

(
δ

γ
+
γ − 1

γ
r̃ − (r + µH) k

)
G

]
+Gy

[
F ′ + (µY − r̃)F + 1

]
− q̄χhG

[
B′ − (r̃ − r − µH + ε− α)B + 1

]}
.

As in the proof of Theorem 2 (see Appendix A.2), we find

L3J = x̂−γ−1(χh)kγGγ
{
x̂2kγ(kγ − 1)

2(1− γ)
σ2
H + x̂kγσH

[
yFρHY σY − q̄χhBσH

]
− γ

2
σ2
Hh

2χ2q̄2B2 − γ

2
σ2
Y y

2F 2 + γyFhχq̄BρHY σHσY

}
.
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Regarding L4J , the first-order condition implies for Π implies

Π = − Jx
xJxx

(ΣΣ>)−1µ̃−
yJxy
xJxx

σY (Σ>)−1~ρY −
ωhJxh
xJxx

σH(Σ>)−1~ρH .

By our conjecture for J , we get

− Jx
xJxx

=
x̂

γx
, −

yJxy
xJxx

= −yF
x
, −hJxh

xJxx
=
kx̂+ q̄χhB

x
,

which, together with (52)–(55), implies that the optimal investment strategy can be writ-

ten as (32)–(34). Substituting the above expression for Π back into L4J , we obtain

L4J = −1

2

J2
x

Jxx
µ̃(t)>(ΣΣ>)−1µ̃− 1

2

y2J2
xy

Jxx
σ2
Y −

yJxJxy
Jxx

σY µ̃
>(Σ>)−1~ρY

− 1

2

h2J2
xh

Jxx
σ2
H −

hJxJxh
Jxx

σH µ̃
>(Σ>)−1~ρH −

yhJxyJxh
Jxx

σY σHρHY ,

and by substitution of our conjecture for J this leads to

L4J = (χh)kγGγ x̂−γ−1

{
x̂2
[ 1

2γ
µ̃>(ΣΣ>)−1µ̃+

k2γ

2
σ2
H + kσH µ̃

>(Σ>)−1~ρH

]
+ x̂
[
q̄χhBσH

(
kγσH + µ̃>(Σ>)−1~ρH

)
− yFσY

(
kγσHρHY + µ̃>(Σ>)−1~ρY

) ]
+
γ

2
(yF )2σ2

Y +
γ

2
q̄χhBσH (q̄χhBσH − 2yFσY ρHY )

}
.

By adding up L3J and L4J , various terms cancel, and we are left with

L3J + L4J = (χh)kγGγ x̂−γ
{
x̂
[ 1

2γ
µ̃>(ΣΣ>)−1µ̃+

k(k − 1)γ

2(1− γ)
σ2
H + kσH µ̃

>(Σ>)−1~ρH

]
+ q̄χhBσH µ̃

>(Σ>)−1~ρH − yFσY µ̃
>(Σ>)−1~ρY

}
.

By adding L1J and L2J to the above and equating the sum to zero, we have the full HJB

equation. After division by (χh)kγGγ x̂−γ , each remaining term is either a multiple of x̂ or

does not involve x̂ at all. Collecting the terms with x̂, we see that G must satisfy

0 = G′(t)− rG(t)G(t) + b̂ (1 + αB(t))k ,
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where

rG(t) =
δ

γ
+
γ − 1

γ
r̃(t) +

γ − 1

2γ2 Λ̃(t)2 − k
[
r + µH +

k − 1

2
σ2
H −

γ − 1

γ
σH µ̃

>(Σ>)−1~ρH

]
=
δ

γ
+
γ − 1

γ
r̃(t) +

γ − 1

2γ2 Λ̃(t)2

− k
[
r̃(t)− rω(t) + νH + µH +

k − 1

2
σ2
H −

γ − 1

γ
(µ̃H(t) + χ−m)

]
=
δ

γ
+
γ − 1

γ
r̃(t) +

γ − 1

2γ2 Λ̃(t)2

− k
[
r̃(t)− rω(t) +

µ̃H(t)

γ
− γ − 1

γ
(χ−m) +

k − 1

2
σ2
H

]
.

The terms not involving x̂ add up to zero provided

0 = F ′(t)− rF (t)F (t) + 1, 0 = B′(t)− rB(t)B(t) + 1,

where

rF (t) = r̃(t)− µY (t) + σY (t)µ̃(t)>(Σ>)−1~ρY

= r̃(t)− µY (t) + σY (t)
(
ψSλ̃S(t) + ψH λ̃H(t) + ψY νI(t)

)
as in Appendix A.4.2, and

rB(t) = r̃(t)− r − µH + ε− α+ σH µ̃(t)>(Σ>)−1~ρH

= rω(t)− νH(t)− µH + ε− α+ µ̃H(t) + χ−m

= rω(t) + ε− α+ χ−m.

Note that the ODE for F is satisfied according to our computation of the human capital,

cf. Eq. (60). With the relevant boundary conditions G(T ) = B(T ) = 0, the solutions to

the ODEs for G and B are as stated in the theorem.

B The extension to bequest and mortality risk

Let ζ(t) denote the mortality intensity. We assume the agent can invest in an insurance

contract that pays the agent a continuous stream at the rate Γζ(t)N as long as the agent

survives but, in return, when the agent dies the company receives an amount of N out

or the wealth of the agent. Here N is a choice variable of the agent, whereas Γ is an

exogenously given constant with Γ = 1 corresponding to a fairly priced contract.

In all our cases this adds two terms to the HJB equation:

53



(i) The term Γζ(t)NJx due to the insurance flow payment Γζ(t)N .

(ii) The term ζ(t)
(
wγ 1

1−γ (x−N)1−γ − J
)

reflecting the jump in utility upon death

multiplied by the death intensity.

Here J and x refer to values immediately before time t. The agent cannot live longer

than T . The optimal insurance goes to zero as time approaches T .

B.1 The model of Section 4.1

For the simple model of Section 4.1, the preferences are extended to include a power utility

of terminal tangible wealth, representing a bequest:

J(t, x, h, y, q̄) = sup
c,q,N

Et

[∫ τ

t
e−δ(s−t)U(cs, qs, q̄s) ds+ wγe−δ(τ−t)

1

1− γ
(Xτ− −N)1−γ

]
,

where the expectation is introduced because of the mortality risk and τ ≤ T denotes the

random terminal date. The terminal condition at T is J(T, x, h, y, q̄) = wγ 1
1−γx

1−γ .

Theorem 4 The value function is

J(t, x, h, y, q̄) =
1

1− γ

(
wA(t) + (χh)kG(t)

)γ
(x+ yF (t)− q̄hχB(t))1−γ ,

where

A(t) = e−
∫ T
t rA(s) ds + Γ

1− 1
γ

∫ T

t
e−

∫ u
t rA(s) dsζ(u) du, (61)

B(t) =

∫ T

t
e−

∫ s
t rB(u) du ds, (62)

G(t) = b̂

∫ T

t
e−

∫ s
t rG(u) du(1 + αB(s))k ds, (63)

F (t) =


∫ T
t e−

∫ u
t rF (s) ds du, t ∈ [T̃ , T ],∫ T̃

t e−
∫ u
t rF (s) ds du+ Υ

∫ T
T̃ e−

∫ u
t rF (s) ds du, t < T̃ ,

(64)

rA(t) =
δ + ζ(t)

γ
+
γ − 1

γ
(r + Γζ(t)) , rG(t) = rA(t)− (r + µH)k, (65)

rB(t) = Γζ(t) + ε− α− µH , rF (t) = r + Γζ(t)− µY (t). (66)

The optimal perishable and housing consumption rates are

ct = bb̂
(χHt)

k (1 + αB(t))k

wA(t) + (χHt)
kG(t)

X̂t, qt = q̄t + (1− b)b̂ (χHt)
k−1 (1 + αB(t))k−1

wA(t) + (χHt)
kG(t)

X̂t, (67)

where disposable wealth X̂t is defined in (3).
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Proof: The Bellman equation is now 0 = L1J + L2J, where

L1J = sup
c,q,N

{
− cJx − (q − q̄)hχJx +

1

1− γ
cb(1−γ)(q − q̄)(1−b)(1−γ) + α(q − q̄)Jq̄

+ Γζ(t)NJx + ζ(t)
wγ

1− γ
(x−N)1−γ

}
,

L2J = Jt + rxJx + yJx + (r + µH)hJh + µY yJy − q̄hχJx + (α− ε)q̄Jq̄ − (δ + ζ(t))J.

The first-order condition for the insurance variable N implies

N = x− wΓ−1/γJ−1/γ
x

and

Γζ(t)NJx + ζ(t)
wγ

1− γ
(x−N)1−γ = Γζ(t)xJx +

γ

1− γ
ζ(t)wΓ

1− 1
γ J

1− 1
γ

x .

Note that in the case ignoring mortality risk, this term is simply zero. As in the case

without bequest and mortality risk, the first-order conditions for c, q imply

c = b b̂

(
χh− α

Jq̄
Jx

)k
J
− 1
γ

x , q = q̄ + (1− b)b̂
(
χh− α

Jq̄
Jx

)k−1

J
γ−1
γ

x . (68)

Hence, L1J becomes

L1J = Γζ(t)xJx +
γ

1− γ

[
wζ(t)Γ

1− 1
γ + b̂

(
χh− α

Jq̄
Jx

)k]
J

1− 1
γ

x .

With a conjecture of the form

J(t, x, h, y, q̄) =
1

1− γ

(
wA(t) + (χh)kG(t)

)γ
(x+ yF (t)− q̄hχB(t))1−γ ,

we need A(T ) = 1 and G(T ) = F (T ) = B(T ) = 0 to satisfy the terminal condition. With

x̂ = x+ yF (t)− q̄hχB(t), we can write the relevant derivatives of J as

Jt = x̂−γ
(
wA+ (χh)kG

)γ−1
[
x̂

γ

1− γ

(
wA′ + (χh)kG′

)
+ (yF ′ − q̄hχB′)

(
wA+ (χh)kG

)]
,

Jx = x̂−γ
(
wA+ (χh)kG

)γ
, Jq̄ = −x̂−γ

(
wA+ (χh)kG

)γ
hχB, Jy = x̂−γ

(
wA+ (χh)kG

)γ
F,

Jh = x̂−γ
(
wA+ (χh)kG

)γ−1
[
x̂
kγ

1− γ
(χh)k−1G− q̄χB

(
wA+ (χh)kG

)]
,
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where we are suppressing t-dependence for notational simplicity. Note that Jq̄/Jx =

−hχB. Now we get

L1J = x̂−γ
(
wA+ (χh)kG

)γ−1
{
x̂

[
γ

1− γ

(
wζΓ

1− 1
γ + b̂(1 + αB)k(χh)k

)
+ ζΓ

(
wA+ (χh)kG

)]
− ζΓ (yF − q̄hχB)

(
wA+ (χh)kG

)}
,

L2J = x̂−γ
(
wA+ (χh)kG

)γ−1
{
x̂

[
w

(
γ

1− γ
A′ + rA− δ + ζ

1− γ
A

)
+

γ

1− γ
(χh)k

(
G′ − γ − 1

γ
rG+ (r + µH)kG− δ + ζ

γ
G

)]
+
(
wA+ (χh)kG)

)
y
[
F ′ − (r − µY )F + 1

]
−
(
wA+ (χh)kG

)
q̄χh

[
B′ − (ε− α− µH)B + 1

]}
.

If we substitute these terms into the Bellman equation 0 = L1J + L2J and divide by

x̂−γ
(
wA+ (χh)kG

)γ−1
, we obtain the equation

0 = x̂

[
γ

1− γ
w

(
ζΓ

1− 1
γ +

1− γ
γ

(Γζ + r)A+A′ − δ + ζ

γ
A

)

+
γ

1− γ
(χh)k

(
b̂(1 + αB)k +

1− γ
γ

(Γζ + r)G+G′ + (r + µH)kG− δ + ζ

γ
G

)]
+
(
wA+ (χh)kG

){
y
[
F ′ − (r + Γζ − µY )F + 1

]
− q̄h

[
B′ − (Γζ + ε− α− µH)B + 1

]}
.

Since this equation has to hold for all values of x̂, h, y, we conclude that the functions A,

G, F , and B must satisfy the ODEs

0 = A′(t)− rA(t)A(t) + ζ(t)Γ
1− 1

γ ,

0 = G′(t)− rG(t)G(t) + b̂(1 + αB(t))k,

0 = F ′(t)− rF (t)F (t) + 1, 0 = B′(t)− rB(t)B(t) + 1,

with rA(t), rB(t), rG(t), and rF (t) stated in (65)–(66). With A(T ) = 1 and G(T ) = F (T ) =

B(T ) = 0, the solutions are given by (61)–(64).

By applying the conjecture for J , the first-order condition (68) leads to the optimal

consumption strategy in (67). The optimal insurance is characterized by

N = x− wΓ−1/γ x̂

wA(t) + (χh)kG(t)
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Note that N = x without bequest, as the agent gives up all wealth upon death. 2

B.2 The full-fledged model of Section 5

For the full-fledged model of Section 5, we generalize preferences to bequest and mortality

risk as follows:

J(t, x, h, y, q̄) = sup
c,q,N,ΠS ,ΠH

Et

[∫ τ

t
e−δ(s−t)U(cs, qs, q̄s) ds+ e−δ(τ−t)

wγ

1− γ
(Xτ− −N)1−γ

]
,

where τ ≤ T is the random time of death with associated mortality intensity ζ(t), and N

is the amount of insurance. The terminal condition is J(T, x, h, y, q̄) = wγ 1
1−γx

1−γ . We

extend Theorem 3 to bequest and mortality risk:

Theorem 5 For θ ∈ Θ, the value function in the artificial market Mθ is

Jθ(t, x, h, y, q̄) =
1

1− γ

(
wAθ(t) + (χh)kGθ(t)

)γ
(x+ yFθ(t)− q̄χhBθ(t))

1−γ ,

where

Aθ(t) = e−
∫ T
t rA(s) ds + Γ

1− 1
γ

∫ T

t
e−

∫ u
t rA(s) dsζ(u) du,

Bθ(t) =

∫ T

t
e−

∫ s
t rB(u) du ds,

Gθ(t) = b̂

∫ T

t
e−

∫ s
t rG(u) du(1 + αBθ(s))

k ds,

Fθ(t) =


∫ T
t e−

∫ u
t rF (s) ds du, t ∈ [T̃ , T ],∫ T̃

t e−
∫ u
t rF (s) ds du+ Υ

∫ T
T̃ e−

∫ u
t rF (s) ds du, t < T̃ ,

rA(t) =
δ + ζ(t)

γ
+
γ − 1

γ
(r̃(t) + Γζ(t)) +

γ − 1

2γ2 Λ̃(t)2,

rB(t) = rω(t) + Γζ(t) + ε− α+ χ−m,

rG(t) = rA(t)− k
(
r̃(t)− rω(t) +

µ̃H(t)

γ
− γ − 1

γ
(χ−m) +

k − 1

2
σ2
H

)
,

rF (t) = r̃(t) + Γζ(t)− µY (t) + σY (t)
(
ψSλ̃S(t) + ψH λ̃H(t) + ψY νI(t)

)
.

Defining disposable wealth as X̂t = Xt + YtFθ(t) − q̄tχHtBθ(t), the optimal consumption

and investment strategy is

ct = bb̂
(χHt)

k (1 + αBθ(t))
k

wAθ(t) + (χHt)
kGθ(t)

X̂t,
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qt = q̄t + (1− b)b̂ (χHt)
k−1 (1 + αBθ(t))

k−1

wAθ(t) + (χHt)
kGθ(t)

X̂t,

ΠSt =
ξS(t)

γσS

X̂t

Xt
− σY (t)ψS

σS

YtFθ(t)

Xt
,

ΠHt =
ξH(t)

γσH

X̂t

Xt
− σY (t)ψH

σH

YtFθ(t)

Xt
+ k

(χHt)
kGθ(t)

wA(t) + (χHt)
kGθ(t)

X̂t

Xt
+ q̄tχBθ(t)

Ht

Xt
,

ΠIt =
ξI(t)

γ

X̂t

Xt
− σY (t)ψY

YtFθ(t)

Xt

with ξS(t), ξH(t), ξI(t) are defined in terms of the Sharpe ratios and the correlation struc-

ture, cf. (56)–(58) in Appendix A.4.

The proof combines the ideas of the proofs of Theorems 3 and 4, and is available upon

request.
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