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Non-Technical Summary 

 
Many quantitative economic models have to be solved with numerical methods. This is also 
true for many household models, e.g., standard models of consumption and savings. With an 
increasing number of variables that are of relevance for a household’s decision (=state 
variables), this may become very costly (in terms of computational time). One reason for this 
complexity is that household decisions are characterized as functions of state variables which 
have to be approximated on grids. The solution of the economic decision problem has to be 
computed numerically for each gridpoint. State variables are, e.g., financial assets and non-
financial assets such as housing, educational background or age of the household.  
 
The numerical solution of such a prototypical model is basically characterized by two 
computationally demanding numerical operations: the solution of a non-linear system of 
equations and interpolation of functions. Typically, the solution of the non-linear system of 
equations does not have a closed form. Recently, a method that has received considerable 
attention in the literature is the method of endogenous gridpoints (ENDGM). It is mainly 
applied to one-dimensional problems. In contrast to a standard method with exogenous grids 
(EXOGM), a smart redefinition of state variables in ENDGM may make it possible to solve the 
non-linear system of equations analytically. This greatly enhances speed of computations. 
However, we highlight that there exists a trade-off in higher dimensions: while the solution of 
the non-linear system of equations in ENDGM may still have a closed form, interpolation 
becomes much more complex. It is not clear how this trade-off is resolved vis-a-vis a standard 
EXOGM method.  
 
Against this background, we compare three numerical methods: The standard exogenous grid 
method (EXOGM), the method of endogenous gridpoints (ENDGM), and a hybrid method 
(HYBGM) as a combination of the former two. We do this comparison by solving a dynamic 
model with two continuous state variables (financial assets and health of the household) and 
occasionally binding borrowing constraints. Evaluation is based on speed and accuracy of the 
methods. Our conclusion is that HYBGM and ENDGM both dominate EXOGM. In dynastic 
models where representative households have long or infinite horizons, ENDGM also always 
dominates HYBGM. In a finite horizon model, the choice between HYBGM and ENDGM depends 
on the number of gridpoints in each dimension. For a standard choice of gridpoints, ENDGM is 
always faster.  
 
These insights will be very useful in applications of economic models with more than one 
continuous state variable. Such models include, amongst others, models with an explicit notion 
of portfolio choice decisions with respect to financial wealth and housing investments over a 
household’s life-cycle, models in health economics such as our application in this paper or 
human capital models. Enhancing the speed of computations in such models will simplify their 
use for policy analysis. 
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Abstract

This paper investigates extensions of the method of endogenous gridpoints

(ENDGM) introduced by Carroll (2006) to higher dimensions with more than one

continuous endogenous state variable. We compare three different categories of algo-

rithms: (i) the conventional method with exogenous grids (EXOGM), (ii) the pure

method of endogenous gridpoints (ENDGM) and (iii) a hybrid method (HYBGM).

ENDGM comes along with Delaunay interpolation on irregular grids. Comparison

of methods is done by evaluating speed and accuracy by using a specific model with

two endogenous state variables. We find that HYBGM and ENDGM both dominate

EXOGM. In an infinite horizon model, ENDGM also always dominates HYBGM.

In a finite horizon model, the choice between HYBGM and ENDGM depends on

the number of gridpoints in each dimension. With less than 150 gridpoints in each

dimension ENDGM is faster than HYBGM, and vice versa. For a standard choice

of 25 to 50 gridpoints in each dimension, ENDGM is 1.4 to 1.7 times faster than

HYBGM in the finite horizon version and 2.4 to 2.5 times faster in the infinite

horizon version of the model.
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1 Introduction

Dynamic models in discrete time are workhorse models in Economics. However, most

of these models do not have an analytic closed form solution and therefore have to be

solved numerically. To this purpose, numerous procedures have been developed in the

literature, cf. Judd (1998), Miranda and Fackler (2004). If the problem is differentiable,

a popular approach is to use first-order methods, i.e., to iterate on first-order conditions

based on an exogenous grid of state variables (EXOGM). An important contribution

to this literature is Carroll (2006) who introduces the method of endogenous gridpoints

(ENDGM). In comparison to EXOGM, ENDGM greatly enhances computational speed

because part of the problem can be computed in closed form.

This paper investigates extensions of Carroll’s ENDGM to dynamic problems with

more than one continuous endogenous state variable. We present and evaluate two al-

ternatives to EXOGM by use of a specific economic model with two endogenous state

variables. The first alternative is a full-blown ENDGM which avoids rootfinding pro-

cedures throughout but requires a rather complex interpolation method. As a second

method we investigate a hybrid method (HYBGM) which stands in between EXOGM

and ENDGM by using rootfinding procedures in one dimension combined with standard

fast interpolation methods.

To understand how the tradeoff between these alternatives arises in higher dimensions,

first focus on a simple consumption-savings problem in on one dimension as in Carroll

(2006). In a standard exogenous grid method (EXOGM) one solves in each iteration

for each grid point on grid Ga of today’s state variable a (=assets) some non-linear

problem. The solution is given by the associated control variable c (=consumption) and

next period’s endogenous state variable assets, a′. Solution of this equation also requires

interpolation on some function(s) f on a′ because generally a′ /∈ Ga—e.g., f could be the

policy function. To summarize, the mapping in EXOGM is a → c → a′ whereby this

mapping requires, among other numerical operations, solving a non-linear equation and

interpolation. Also observe that, for some regular grid Ga, the “endogenous” grid of a′

is generally irregular because the spacing between grid points is a result of the entire

mathematical operation.

The trick of ENDGM is to reverse the mapping, i.e., a′ → c→ a. Instead of working

on an exogenous grid for a, this is achieved by defining a grid on next period’s assets,

Ga′ . Depending on the nature of the problem it is then possible to solve for c analytically.

This is the crucial step: The speed advantage of ENDGM relative to EXOGM is achieved

because the mapping a′ → c has a closed form solution. For given contemporaneous

variables c and next period’s a′ one can endogenously compute today’s endogenous state a.

Given the regular grid Ga′ , the “endogenous” grid of a is generally irregular. In subsequent

iterations, it is necessary to interpolate on such an irregular grid. In one dimension this
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does not cause any specific problems.

In this paper we highlight, however, that this irregularity of endogenous grids is the

source of a problem specific to ENDGM in higher dimensions. We emphasize that this

drawback is not related to the solution of the system of equations per se but results from

the endogenously computed states. The resulting state grid is generally not rectangular

because gridpoints are irregularly distributed in the space. In consequence, even linear

interpolation is much more costly than for conventional rectangular grids.

This is easiest to understand again by example. Consider two endogenous state vari-

ables a and h, where h is human capital, as in our application. Accordingly, (a′, h′) are

next period’s endogenous state variables. Control variables are consumption c, as be-

fore, as well as investment in human capital, i. Corresponding to the one-dimensional

problem the mapping in EXOGM is (a, h) → (c, i) → (a′, h′) which requires solu-

tion of a system of two non-linear equations. In ENDGM, the mapping is reversed,

i.e., (a′, h′) → (c, i) → (a, h). As for the one dimensional problem, this mapping may

have a closed form solution but the endogenous grid formed of a, h is irregular. In subse-

quent iterations one has to interpolate on such an irregular grid. This irregularity severely

complicates location of points for interpolation in higher dimensions.

Hence, there exists a fundamental trade-off between EXOGM and ENDGM in higher

dimensions. On the one hand, EXOGM requires the use of numerical routines through-

out whereas ENDGM computes solutions to first-order conditions in closed form. On

the other hand, interpolation in EXOGM is on regular grids and therefore simple. In-

terpolation in ENDGM on irregular grids is much more complex. We solve this complex

interpolation by Delaunay triangulation (Delaunay 1934) which originates from the field

of Geometry and was only recently introduced to Economics by Brumm and Grill (2014).1

Our contribution is to investigate its performance in combination with ENDGM.

Our in-between method HYBGM uses exogenous gridpoints in one dimension and

endogenous gridpoints in the other.2 Consequently, the endogenously computed grid is

only irregular in one dimension whereas it is regular in the other, a so-called rectilinear

grid. Interpolation on a rectilinear grid is easy, just as in the one-dimensional problem.

The trade-off between HYBGM and ENDGM is therefore between numerically more

costly routines in some dimensions vis-à-vis analytical solutions in all dimensions but a

more complex interpolation. Another aspect is that HYBGM is easier to implement.

To analyze and to compare these methods we develop a simple consumption savings

model with endogenous human capital. Our specification is such that the model fea-

tures two endogenous state variables, financial assets and human capital. Evaluation of

methods in this two dimensional setup is done by comparing speed and accuracy of the

different approaches.

1For another application of the method in Economics see Broer, Kapicka, and Klein (2013).
2This is similar to the approach of Hintermaier and Koeniger (2010), also see below.

3



Our main finding is that HYBGM and ENDGM both dominate EXOGM: they are

substantially faster. The relative speed advantage of ENDGM decreases in the number

of grid points because the complex interpolation becomes increasingly costly whereby the

speed of solvers used in EXOGM and HYBGM improves when the density of the grid

increases due to improved initializations. In light of the positive speed results of ENDGM

reported for one-dimensional problems in Jørgensen (2013) and several others, the finding

that HYBGM dominates EXOGM is not surprising because it preserves the complexity

of EXOGM in the one dimension and the speed advantage of the endogenous grid method

in the other. That ENDGM dominates EXOGM is a quantitative finding because the res-

olution of the trade-off between the more complex interpolation method and the simpler

solution of the system of non-linear equations is a priori not clear. Furthermore, we also

find that ENDGM dominates HYBGM in our infinite horizon application. There we use

an “Approximate Delaunay” method which spares out a large part of the computational

burden of the interpolation in ENDGM. In our finite horizon application, which uses

“Pure Delaunay”, the choice between HYBGM and ENDGM depends on the number

of gridpoints in each dimension. For a relatively low number of gridpoints, ENDGM is

advantageous and vice versa for HYBGM.3

Related work by Krueger and Ludwig (2007) in heterogenous agent models and Baril-

las and Fernandez-Villaverde (2007) in the neoclassical growth model extends ENDGM to

problems with two control variables but just one endogenous state variable. Hintermaier

and Koeniger (2010) numerically solve a durable goods model with two endogenous state

variables by applying a hybrid method similar to our HYBGM. The key difference to

our version of HYBGM is that we solve the non-linear equation with a univariate solver

whereas Hintermaier and Koeniger (2010) use interpolation techniques that are generi-

cally less accurate. Other related literature evaluates the performance of ENDGM in the

context of estimating structural models (Jørgensen 2013) and/or extends ENDGM to a

class of dynamic programming problems with both discrete and continuous choices in

which the value function is non-smooth and non-concave, cf. Fella (2014) and Iskhakov

et al. (2015).

Most closely related to our contribution is White (2015) who builds on the earlier

working paper version of our paper (Ludwig and Schön 2013). White (2015) applies a

slight modification of our economic model to evaluate the performance of an alternative

interpolation method to Delaunay interpolation which superimposes more structure. To

understand this, notice that Delaunay interpolation comes in three steps. The first is

a triangulation of the state space. The second is the location of the triangle in which

a specific interpolation point is located which is a simple search. The third is the in-

3We also discuss limitations of ENDGM and HYBGM which are both only applicable to specific
problems at hand. A thorough treatment of the formal conditions that make ENDGM applicable is
contained in Iskhakov (2015) and White (2015). We provide simple examples for situations where such
conditions to not hold.
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terpolation itself. The costly step in the overall procedure is the triangulation. White

(2015)’s method circumvents this step by preserving the ordering of the exogenous and

endogenous grid points so that no new objects have to be created for the purpose of

interpolation. The state space is subdivided into irregular quadrilateral sectors on which

standard bilinear interpolation is possible. An important question is how the Delaunay

method compares with White (2015)’s approach. Given that White (2015) avoids the

costly triangulation step, the method is faster than Delaunay interpolation for a given

number of gridpoints. However, because triangles cover smaller areas in the state space

than quadrilateral sectors, we conjecture that accuracy is lower and that accuracy de-

creases more strongly in the irregularity of the endogenously constructed grid. For strong

irregularity standard methods to locate a grid point may also not work.4 We leave an

investigation of these aspects for future research.

Our analysis proceeds as follows. Section 2 presents the simple life-cycle model with

endogenous assets and human capital on which we base the evaluation of methods. Sec-

tion 3 introduces the main features of the methods under evaluation, the method of

exogenous gridpoints, the pure method of endogenous gridpoints and the hybrid method.

Section 4 presents results according to speed and accuracy of all three methods. Section 5

concludes. Additional material is contained in an appendix.

2 The Model

We develop a consumption and savings model which allows us to illustrate and to compare

three approaches to solve dynamic models with two endogenous state variables using first-

order methods. In addition to assets there is a second endogenous state variable, a human

or health capital stock (we will use both interpretations interchangeably). Human capital

can be accumulated over time and is produced with a nonlinear production function.

For expositional purposes we keep the model very simple, stripping it such that it is a

non-generate problem in two continuous state variables which makes the endogenous grid

method applicable. This requires specific assumptions on functional forms and arguments

of the respective functions which we make explicit in various places. Although many

applications of dynamic structural models are cast in stochastic environments, we focus

attention on the main trade-off by ignoring any stochasticity beyond the degenerate risk

of survival. Of course, the underlying trade-off between solution methods will also hold

in more complex problems. However, the exact resolution of this trade-off depends on

the specific application at hand.

4The standard method that we and White (2015) apply is the so-called visibility walk. It is known
that it may fall into a cycle in non-Delaunay triangulations, cf. Devillers et al. (2001).
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2.1 A Simple Human Capital Model

A risk averse agent with maximum time horizon T , T = ∞ possible, derives utility from

consumption, ct ≥ 0 in each period, with standard additive separable life time utility U =∑T
t=1 β

t−1πtu (ct), where β ∈ (0, 1) is the discount factor and πt =
∏t

i=2 ψ(hi), for t > 1,

π1 = 1 is the unconditional probability to survive from period 1 to t.5 Dependency of

survival on health is crucial to avoid that the decision problem collapses to one in a single

state variable, see Remark 1 below.

The instantaneous utility function u (ct) as well as the probability to survive to the

next period ψ (ht) are assumed to be strictly increasing and concave in their respective

arguments (uc > 0, ucc < 0, ψh > 0, ψhh < 0). We also assume that the utility function

satisfies the Inada conditions, i.e., limct→0 uc(ct) = ∞ and limct→∞ uc(ct) = 0 so that ct >

0 will be optimal in all t and there is no satiation. Income of the agent, yt, consists of labor

income which depends on the amount of accumulated human capital, ht, hence yt = wht,

where w is the wage rate.

In each period the household faces the decision to consume, ct, to invest savings, st,

in a risk-free financial asset, at, which earns (gross) interest R = 1 + r and to invest an

amount it into human capital, ht. Human capital depreciates at constant rate δ and is

produced by the production function f (i). We assume that fi > 0, fii < 0 and that f(i)

satisfies the Inada conditions, i.e., limit→0 fi = ∞ and limit→∞ fi = 0. These conditions

insure that it > 0 and, together with the assumptions on the utility function, it will

always be optimal to invest in both assets so that the decision problem never collapses to

a one dimensional one. The human capital accumulation equation is accordingly given

by

ht+1 = (1− δ) (ht + f (it)) , (1)

where h0 is given.

Financial markets are imperfect (there is no annuitization of wealth) and households

are not allowed to hold negative financial assets. The dynamic budget constraint writes

as

at+1 = R(at + wht − ct − it) ≥ 0, (2)

where a0 is given.

Remark 1 Assume that human (or health) capital does not affect the probability to sur-

vive so that human capital only enters the budget constraints (1) and (2). Then the setup

5The standard formulation of contingency of the survival rate on health capital—which depreciates
over time, see below—as we use it here has recently been criticized by Dalgaard and Strulik (2014) who
point out that a more appropriate way of modeling decay is the notion of appreciating deficits rather
than decreasing health capital.
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collapses to a situation with a single endogenous state variable. This can be seen by

combining the resource constraints to get

at+1 + ht+1 = atR + ht(1 + w − δ) + g(it)− ct

where g(it) ≡ (1− δ)f (it)−Rit. Next define total wealth as wt ≡ at+wt and let αt =
at
wt

be the period t share of assets in total wealth. Using these definitions rewrite the resource

constraint further as

wt+1 = wt (1 + w − δ + αt (r − (w − δ))) + g(it)− ct

so that the model reduces to a standard portfolio choice problem in the endogenous con-

tinuous state variable wt and the three continuous control variables αt, ct, it.

Recursive Formulation of the Household Problem The recursive formulation of

the household problem is as follows:

Vt(at, ht) = max
ct,it,at+1,ht+1

{u(ct) + βψ (ht+1)Vt+1(at+1, ht+1)}

subject to the constraints

at+1 = R (at + wht − ct − it)

ht+1 = (1− δ) (ht + f (it))

at+1 ≥ 0

ht+1 > 0. (3)

Assumptions on Functional Forms For our numerical approach we assume that

instantaneous utility has the CRRA property with coefficient of relative risk aversion

denoted by θ > 0:

u (ct) =


c1−θ
t

1−θ if θ ̸= 1

ln(ct) if θ = 1.

The human capital production function is f (it) = 1
ξ
iξt for curvature parameter ξ ∈

(0, 1). As to the functional form of the per-period survival probability we follow Hall and

Jones (2007) and assume that ψ (ht) = 1− ϕ 1
1+ht

, for ϕ ∈ (0, 1].

We assume that the value function is strictly concave and unique maximizers are

continuous policy functions, cf. Stokey and Lucas (1989). It is well-known that strict

concavity of the value function may be violated in models with endogenous human capi-

tal formation (value functions may have concave and convex regions). Hence, first-order
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conditions are generally necessary but not sufficient. In applications, one way to accom-

modate this is to use first-order methods at the calibration stage of the model (where

speed is an issue). Upon convergence, one can then test for uniqueness by checking for

alternative solutions by use of global methods. To focus our analysis we do not further

address these aspects here.6

Solution The optimal solution is fully characterized by the following set of first-order

conditions and constraints:

c−θt = βR

(
1− ϕ

1

1 + ht+1

)
Vt+1a (at+1, ht+1) (4a)

i
−(1−ξ)
t =

R

(1− δ)

Vt+1a (at+1, ht+1)
ϕ

(1+ht+1−ϕ)(1+ht+1)
Vt+1 (at+1, ht+1) + Vt+1h (at+1, ht+1)

(4b)

at+1 = R (at + wht − ct − it) (4c)

ht+1 = (1− δ) (ht + f (it)) (4d)

at+1 ≥ 0. (4e)

Vta and Vth are derivatives of the value function with respect to financial assets and human

capital, respectively. Notice that constraint (3) can be dropped because of the lower Inada

condition of the human capital investment function f(i). The envelope conditions are:

Vta (at, ht) = uc = c−θt (5a)

Vth (at, ht) =

(
w +

1

fi

)
uc =

(
w +

1

i
−(1−ξ)
t

)
c−θt . (5b)

Using (4a) together with (5a) gives the standard Euler equation of consumption.7

Searching for the solution of this model amounts to finding the four optimal policies for

consumption, ct (·, ·), investment in human capital, it (·, ·), next period’s financial assets,
at+1 (·, ·), and next period’s human capital, ht+1 (·, ·), as functions of the two endogenous

state variables, financial assets, at, and human capital, ht, that solve equation system (4)

using (5).

6We checked ex-post if value functions are globally concave which they are for the parameter space
considered here. A crucial parameter is ξ as it governs the curvature of the human capital production
function. If we were to choose a higher degree of curvature (lower ξ) than non-concavities may arise.
These results are available upon request. Also see Fella (2014) and Iskhakov et al. (2015) for sophisticated
methods to deal with non-convexities.

7For derivation of (4) and the Envelope conditions see Appendix A.
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2.2 Calibration

We choose the same parametrization of the model for all solution methods described in

Section 3. The coefficient of relative risk aversion is set to θ = 0.5 to assure a positive value

of life. We set the time preference rate to ρ = 0.04 so that the discount factor β ≡ 1
1+ρ

is

approximately 0.96. In order to provide sufficient incentives to save in the finite horizon

setting without introducing risk we set an interest rate of R − 1 = 0.05. In the infinite

horizon setting we set an interest rate of R − 1 = 0.03 which is smaller than ρ in order

to assure that financial assets are bounded. For the depreciation rate of human capital

we take δ = 0.05. The curvature parameter of the human capital production function

is ξ = 0.35. The wage rate w is set to 0.1. The survival rate parameter is ϕ = 0.5.

3 Solution Methods

The main idea of all methods is to exploit the FOCs (4a) and (4b) to compute optimal

policies at discrete points that constitute a mesh in the state space. All three methods

use the recursive nature of the problem. Correspondingly, in the finite horizon version,

the model is solved backwards from the last to the first period (t = T, T − 1, . . . , 0). In

the infinite horizon implementation the iteration continues until convergence on policy

functions (=time iteration).

Differences between methods arise because of different solution procedures to the

multi-dimensional nonlinear equation system (4) and different interpolation methods,

respectively. To provide a preview: The first algorithm (EXOGM) applies a multi-

dimensional Quasi-Newton method. Standard interpolation methods are used. The

second algorithm (ENDGM) solves the system of equations (4) analytically. It is accom-

panied by Delaunay interpolation. The third algorithm (HYBGM) combines the former

two, i.e., it applies the method of endogenous gridpoints in one dimension and uses a

one-dimensional Quasi-Newton method in the other dimension. As EXOGM, HYBGM

comes along with a standard interpolation procedure.

3.1 Multi-Dimensional Root-Finding with Regular Interpola-

tion (EXOGM)

The most direct approach to solve (4) is to insert the constraints into the FOCs and to

rely on a numerical multi-dimensional root-finding routine. Multi-dimensional solvers are

necessary because c and i show up on both sides of the respective non-linear equations

in (4). In our application we use a Quasi-Newton method, more specifically Broyden

(1965)’s method, cf. Press et al. (1996).
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The implementation steps of EXOGM are as follows:8

1. To initialize EXOGM predefine two grids, one for financial assets a, Ga =
{
a1, a2, ..., aK

}
and one for human capital h, Gh =

{
h1, h2, ..., hJ

}
and construct Ga,h = Ga ⊗ Gh.

2. In period T , savings and investment in human capital are zero as both assets are

useless in period T + 19 and income is completely consumed for all
(
ak, hj

)
∈ Ga,h:

cT (·, ·) = akT + whjT

iT (·, ·) = 0.

3. Iterate backwards on t = T − 1, . . . , 0. In each t for each
(
akt , h

j
t

)
∈ Ga,h:

(a) Solve (using interpolation methods, see below) the two-dimensional equation

system

(
ck,jt

)−θ
= βR

1− ϕ
1

1 + (1− δ)

(
hjt +

1
ξ

(
ik,jt

)ξ)


Vt+1a


ak,jt+1︷ ︸︸ ︷

R
(
akt + whjt − ck,jt − ik,jt

)
,

hk,jt+1︷ ︸︸ ︷
(1− δ)

(
hjt +

1

ξ

(
ik,jt

)ξ)


(
ik,jt

)−(1−ξ)
=

R

(1− δ)

Vt+1a

(
ak,jt+1, h

k,j
t+1

)
ϕ

(1+hk,jt+1−ϕ)(1+h
k,j
t+1)

Vt+1

(
ak,jt+1, h

k,j
t+1

)
+ Vt+1h

(
ak,jt+1, h

k,j
t+1

)
for ck,jt and ik,jt using Broyden’s method.

8Our descriptions of all algorithms leave out the numerical characterization and storage of the value
function (and its derivatives) as side products of the respective algorithm.

9This rationale does not imply that h must be zero in period T + 1 because human capital is—in
contrast to financial assets—inalienable.
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(b) If ck,jt +ik,jt > akt+wh
j
t (binding borrowing constraint) recompute ik,jt by solving

(
akt + whjt − ik,jt

)−θ
−

1(
(1− δ)

(
hjt +

1
ξ
(ik,jt )ξ

))2Vt+1a

(
0, (1− δ)

(
hjt +

1

ξ
(ik,jt )ξ

))
β (1− δ) (ik,jt )−(1−ξ)

−

1− 1(
(1− δ)

(
hjt +

1
ξ
(ik,jt )ξ

))
Vt+1h

(
0, (1− δ)

(
hjt +

1

ξ
(ik,jt )ξ

))
·

β (1− δ) (ik,jt )−(1−ξ) = 0

for ik,jt . Next, re-compute ck,jt = akt + whjt − ik,jt .

Steps 3a and 3b require interpolation on ct+1 and it+1, and updating of Vt+1a ,

Vt+1h using the envelope conditions (5).10

Since EXOGM requires to apply the solver for each point in Ga,h, this procedure entails
solving the multidimensional equation system [K · J ] times in each t = T − 1, . . . , 0.

Depending on the stopping criterion in the numerical routine this could be either quite

costly in terms of computing time or the computed solutions suffer under low accuracy.

An additional shortcoming of EXOGM compared to ENDGM and HYBGM is that the

region where the borrowing constraint is binding is not determined.11 In consequence,

policy functions are imprecise at the kink. This may also cause convergence problems.

Furthermore, numerical methods often require fine tuning so that stability of numerical

routines is ascertained. We initially encountered several such instability problems which

we managed to fix by setting options of the solver accordingly.12

Interpolation on a Rectilinear Grid Steps 3a and 3b require interpolation on ct+1, it+1

because, in general, (ak,jt+1, h
k,j
t+1) /∈ Ga,h. We apply standard bilinear interpolation, cf.,

e.g., Press et al. (1996) and Judd (1998).

10Since the policy functions generally feature less curvature than the derivatives of the value function,
it is more efficient to interpolate on the policy functions and then to use the envelop conditions to update
the derivatives of the value functions.

11In principle, this could be accommodated by an additional rootfinder to detect the kink—i.e.,
the a, h-combination at which the borrowing constraint just becomes unbinding—and to add in additional
grid points there. We do not extend the method along this dimension. A naive extension along these lines
would further slow down EXOGM. However, see Brumm and Grill (2014) for a sophisticated application.

12An alternative would be to avoid multivariate solvers and to instead use fixed point iterations with
nested univariate solvers. However, this would further slow down EXOGM.
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3.2 Analytical Solution with Delaunay Interpolation

(ENDGM)

The above setting has a straightforward economic interpretation. Given an exogenous

state today (at, ht) compute the endogenous state variables (at+1, ht+1). The main idea

of ENDGM is to redefine exogenous and endogenous objects in the numerical solution:

the grid of contemporaneous control variables is taken as exogenous whereas the grid of

today’s state variables is determined endogenously.

In our two-dimensional setup, implementation of the method requires definition of

two endogenous control variables on which to base the exogenous grids. To this purpose

define by

st ≡ at + wht − ct − it =
at+1

R
(6a)

zt ≡ ht + f (it) =
ht+1

1− δ
(6b)

the respective return adjusted stocks of physical and human capital. Our implementation

of the method defines grids on (st, zt) and maps from (st, zt) to (at+1, ht+1) by at+1 = Rst

and ht+1 = (1− δ) zt.
13 Next, the system of FOCs can be solved analytically to determine

the corresponding set of contemporaneous controls, (ct, it). Finally, we use the budget

constraint and the law of motion for human capital to get the corresponding endogenous

state variables, (at, ht). Precisely, the implementation steps are as follows:

1. To initialize ENDGM predefine two grids, one for gross savings s, Gs ≡
{
sn+1, sn+2, ..., sK

}
(where sn+1 = 0, for n > 0, is the interior solution with zero savings; the borrow-

ing constraint will be treated separately by adding n > 0 additional gridpoints, see

step 3e below) and one for gross investment in human capital z, Gz ≡
{
z1, z2, ..., zJ

}
as defined in (6) and form Gs,z = Gs ⊗ Gz.

2. For period T define Ga,h = Ga ⊗ Gh. Compared to Gs, the grid Ga includes n ad-

ditional gridpoints. These gridpoints represent the region with potentially binding

borrowing constraints (see the previous step and step 3e below). In period T , as in

step 2 of EXOGM, compute cT (·, ·) and iT (·, ·).

3. Iterate backwards from t = T − 1, ..., 0. In each t, for each
(
sk, zj

)
∈ Gs,z:

(a) Construct a Delaunay triangulation of (at+1, ht+1) to prepare interpolation

on ct+1, it+1.

13In a deterministic model such as ours, this mapping is of course deterministic. We could therefore
directly work on a grid of (at+1, ht+1). However, this would generally not be possible in a stochastic
model because the realizations of (at+1, ht+1) may depend on the realizations of shocks in period t+ 1,
e.g., if there are shocks to the interest rate. For sake of generality, we therefore define the grid on (st, zt).
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(b) Compute akt+1 and hjt+1:

akt+1 = Rsk,

hjt+1 = (1− δ) zj.

(c) Compute ck,jt and ik,jt :

ck,jt =

βR(1− ϕ
1

1 + (1− δ) zj

)
Vt+1a


akt+1︷︸︸︷
Rsk ,

hjt+1︷ ︸︸ ︷
(1− δ) zj




− 1
θ

,

ik,jt =

 R

(1− δ)

Vt+1a

(
akt+1, h

j
t+1

)
ϕ

(1+hjt+1−ϕ)(1+h
j
t+1)

Vt+1

(
akt+1, h

j
t+1

)
+ Vt+1h

(
akt+1, h

j
t+1

)
− 1

1−ξ

.

(d) Compute ak,jt and hk,jt :

hk,jt = zj − 1

ξ

(
ik,jt

)ξ
ak,jt = sk − whk,jt + ck,jt + ik,jt .

(e) At (sn+1, zj) if the endogenously computed an+1,j
t > 0, define an auxiliary grid

Gaux ≡ {a1, a2, ..., an} where a1 = 0 and an < an+1,j
t to represent the region

with the binding borrowing constraint. Compute ik,jt by solving

(
akt + w

(
hjt+1

1− δ
− 1

ξ
(ik,jt )ξ

)
− ik,jt

)−θ

− 1(
hjt+1

)2Vt+1a

(
0, hjt+1

)
β (1− δ) (ik,jt )−(1−ξ)

−

(
1− 1

hjt+1

)
Vt+1h

(
0, hjt+1

)
β (1− δ) (ik,jt )−(1−ξ) = 0

using a non-linear solver. Then compute ck,jt = akt +w

(
hjt+1

1−δ − 1
ξ
(ik,jt )ξ

)
− ik,jt .

If an+1,j
t ≤ 0, then the borrowing constraint is not binding at (sn+1, zj) and we

break the loop.14

As in EXOGM, steps 3c and 3e require interpolation on ct+1, it+1 and updating

of Vt+1a , Vt+1h using the envelope conditions (5).

14Observe that the procedure of dealing with the borrowing constraint can be further improved by
working with state and iteration dependent saving grids (cf., e.g., Krueger and Ludwig (2016)), an
approach we do not adopt here.
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The clear advantage of ENDGM compared to EXOGM becomes obvious in step 3c.

By conditioning on the grid of st and zt the system of FOCs can be solved for ct and it

analytically and hence no numerical root-finder is needed. Furthermore, ENDGM pro-

vides, by construction, an exact determination of the range of the borrowing constraint

and produces higher accuracy of the solution than EXOGM in this region. However,

in contrast to the standard one-dimensional problem considered by Carroll (2006), the

policy function itself does not have a closed form solution in this range, see step 3e.15

The key disadvantage is the construction of the Delaunay triangulation in step 3a

to prepare for Delaunay interpolation on ct+1, it+1. We provide a detailed description of

these methods in the next paragraph.

Remark 2 In contrast to EXOGM, ENDGM is not a general method. One specification

for which ENDGM does not work is a general Ben-Porath human capital function, cf. Ben-

Porath (1967), in which the level of human capital directly affects the productivity of

human capital investments, i.e., we replace f(i) in equation (1) with f(h, i). Another

specification would be to let the human capital stock enter the per period utility function

directly, i.e., u(ct, ht). This exemplifies that an application of ENDGM often requires

specific modeling assumptions. For a thorough formal treatment of the conditions under

which ENDGM is applicable see Iskhakov (2015) and White (2015).

Delaunay Interpolation In EXOGM the grid is rectilinear by construction whereas in

ENDGM the endogenously computed grid Ga,h is not. This constitutes the main drawback

of ENDGM because location of interpolation nodes is not obvious. As illustrated in

Figure 1, separating the multi-dimensional problem into several one-dimensional problems

is not possible. In each row not just the value of a changes but also the value of h so

that the concept of bi-linear interpolation in a square grid is not applicable. ENDGM

hence generates a situation where neighboring points in the state space do not need to

be neighboring elements in the grid matrix.

The most common approach adopted in other scientific fields such as geometry or

geography to locate neighboring points in an irregular grid is the concept of Delaunay

triangulation, required in Step 3a of the algorithm, and its related geometric construct,

the Voronoi diagram. We explain the geometric construction of the Voronoi diagram by

use of Figure 2. The Voronoi diagram (polygon)—shown in Panel (a) of Figure 2—is

the region of the state space consisting of all points closer to gridpoint P1 than to any

other gridpoint. The Voronoi diagram is obtained from the perpendicular bisectors of the

lines connecting neighboring points. Voronoi diagrams for all points form a tessellation

of the space, cf. Panel (a). Edges of the Voronoi diagram are all the points in the plane

15In a standard consumption-savings model with only one endogenous continuous state variable the
policy function is computed by linearly interpolating between the policy at zero saving and the origin,
cf. Carroll (2006).
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Figure 1: Irregular Grid
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Notes: Interpolation on irregular grids. Multidimensional interpolation cannot be separated into several
one-dimensional interpolations as the values of a and h change in each column or row.

that are equidistant to the two nearest gridpoints, cf. Panel (b). The Voronoi vertices

are the points equidistant to three gridpoints, i.e., they are the center of circumcircles

including the three neighboring gridpoints, cf. Panel (c). Connecting these gridpoints

constitutes the unique triangulation known as the Delaunay triangulation as displayed

in Panel (d), cf. Baker (1999). The vertices of a triangle are the nearest neighbors of all

points contained in that triangle. These concepts can also be generalized to more than

two dimensions.

The computational implementation of a Delaunay triangulation is done by the so-

called randomized incremental algorithm, illustrated in Figure 3. It is incremental in the

sense that it adds points to the triangulation one at a time to maintain a Delaunay trian-

gulation at each stage. It is randomized in that points are added in a random order which

guarantees O(N log N) expected time for the algorithm where N is the total number of

points in the point set, cf. Press et al. (2007). To construct the Delaunay triangulation

for a given point set we initially have to add three “fictitious” points [Θ1,Θ2,Θ3], forming

a large starting triangle which encloses all “real” points, cf. Panel (a) of Figure 3. This

is necessary in order to ensure that added points lie within an existing triangle. These

“fictitious” points are deleted once the triangulation is complete. In each following step

of Delaunay triangulation a point from the point set is added to the existing triangula-

tion and connected to the vertices of the enclosing triangle. We illustrate this step in

Panel (b) of the figure. Consider the existing triangle P1, P2, P3 and a new point from

the point set, P5, which is not yet connected to other points. Connecting P5 to P1, P2

and P3, respectively, gives rise to three new triangles. Next, it is checked whether the

newly created triangles are “legal”, i.e., whether the circumcircle of any triangle does not

15



Figure 2: The Voronoi Diagram
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Notes: Panel (a): Generating the Voronoi polygon: Edges are perpendicular bisectors of lines connecting
neighboring points. Panel (b): Several Voronoi tiles in a mesh grid. Panel (c): Circle with center at
vertex includes three closest points. Panel (d): Delaunay Triangulation: Vertices are nearest neighbors
of all points within triangle.

contain any other point of the point set.16 In our example, we first visit triangle P2, P3, P5

in Panel (c). As shown in the figure, the circumcircle contains point P4. Hence, trian-

gle P2, P3, P5 is not legal. Therefore, flip the edge opposite of P5 connecting P5 with P4.

This operation creates two new triangles, P3, P4, P5 and P2, P4, P5, cf. Panel (d) of the

figure, which must be checked for legality. In our example, triangle P3, P4, P5 is legal

because the circumcircle does not contain other existing points from the point set. The

process is recursive and never wanders away from any point P (point P5 in our example).

The only edges that can be made illegal by inserting a point P are edges opposite P (in

triangles with P as a vertex).17

16This principle is derived from the definition that a triangulation fulfills the Delaunay property if
and only if the circumcircle of any triangle does not contain a point in its interior, cf. de Berg et al.
(2008).

17This procedure is described in Press et al. (2007). We use the numerical package geompack3 based
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Figure 3: Incremental Algorithm
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Notes: Panel (a): Three ”fictional” points added to constitute the first triangle which includes all ”real”
points of the point set. Panel (b): Point added to existing Delaunay Triangulation and connected to
vertices of enclosing triangle. Panel (c): Circumcircle contains a point. and is therefore illegal triangle.
Panel (d): Circumcircle does not contain any point and is therefore legal.

At interpolation, required in steps 3c and 3e, to locate a (query) point X in a given

planar triangular mesh we adopt a procedure referred to as visibility walk, illustrated in

Figure 4. The search starts from an initial guess of a triangle, ∆1. Then, it is tested if

the line supporting the first edge e separates ∆1 from the query point X which reduces to

a single operation test. If this is the case, the next triangle being visited is the neighbor

of ∆1 through e, ∆2. Otherwise the second edge is tested in the same way. In case the

test for the second edge also fails then the third edge is tested. The failure of this third

test means that the goal has been reached. In Figure 4, this would be the case at triangle

∆X which contains X.18 Devillers et al. (2001) find that performance of the visibility

on Joe (1991) for both the Delaunay triangulation and the “visibility walk”, described next.
18In non-Delaunay triangulations, the visibility walk may fall into a cycle, whereas in Delaunay

triangulations the visibility walk always terminates, cf. Devillers et al. (2001).
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walk is better than other possible algorithms. The location step for the visibility walk

takes only O log (N) operations, cf. Press et al. (2007). The starting triangle may be

arbitrary. However, an informed choice may radically shorten the length of the walk.

We accommodate this by initializing the search with our solutions to gridpoints visited

previously.

Figure 4: Visibility Walk
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C
B

Notes: Visibility walk in Delaunay triangulation - Locate triangle ∆X containing X with initial guess
∆1. If the line supporting e separates ∆ from X, which reduces to a single orientation test, then the
next visited triangle is the neighbor of ∆ through e.

After locating the triangle we compute the normalized barycentric coordinates (weights)

of the query point X with respect to the vertices (A,B,C) of the triangle ∆X ,

φA =
(aX − aC) (hB − hC) + (aC − aB) (hX − hC)

(aA − aC) (hB − hC) + (aC − aB) (hA − hC)

φB =
(aX − aC) (hC − hA) + (aA − aC) (hX − hC)

(aA − aC) (hB − hC) + (aC − aB) (hA − hC)

φC = 1− φA − φB.

Finally, the interpolated value of any function F at point X is given as the weighted

average of the respective function values at the vertices19,

F (X) = φAF (A) + φBF (B) + φCF (C).

19In our code we also incorporate the option of a multi-linear interpolation used by Broer et al. (2013).
This alternative interpolation method is very useful in applications in which existing triangles are visited
frequently. In our specific applications, this is, however, not the case so that the method does not have
an advantage over the simple interpolation method we use. We therefore do not apply it when generating
our results below.
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3.3 One-Dimensional Root-Finding with Hybrid Interpolation

(HYBGM)

We next consider a hybrid method (HYBGM) which combines EXOGM and ENDGM.

Specifically, we use ENDGM in one dimension of the problem only. Hence, we define one

of the two state variables on an “endogenous” grid, whereas the other is on an “exogenous”

grid. The algorithm proceeds in three steps. In the first step, conditioning on control

variable st and period t endogenous state ht, we compute next period’s endogenous state

variable at+1 and exploit one of the two FOCs to derive the value of one period t control

variable—in this setup investment in human capital, it. In this step a one-dimensional

solver is required. To preserve comparability with the previously described methods we

choose Broyden’s method.20 In the second step, control it is used to get the value of the

second period t+1 endogenous state variable, ht+1 from the budget constraint. Exploiting

the second FOC we then compute the second control variable, ct. In the third step, we

compute the corresponding endogenous state variable at from the budget constraint. The

implementation steps are as follows:

1. To initialize HYBGM predefine two grids, one for gross savings s, Gs ≡
{
sn+1, sn+2, ..., sK

}
as in ENDGM and one for human capital h, Gh ≡

{
h1, h2, ..., hJ

}
and form Gs,h =

Gs ⊗ Gh.

2. For period T , define Ga,h = Ga ⊗ Gh. As in ENDGM Ga includes n additional

gridpoints compared to Gs representing the region of potentially binding borrowing

constraints. In period T , as in step 2, of EXOGM compute cT (·, ·), and iT (·, ·).

3. Iterate backwards on t = T − 1, ..., 0. In each t, for each
(
sk, hj

)
∈ Gs,h:

(a) Compute akt+1 = Rsk.

(b) Solve the one-dimensional equation for ik,jt

ik,jt =



R

(1− δ)

Vt+1a


akt+1︷︸︸︷
Rsk ,

hk,jt+1︷ ︸︸ ︷
(1− δ)

(
hjt +

1

ξ

(
ik,jt

)ξ)


ϕ

(1+hk,jt+1−ϕ)(1+h
k,j
t+1)

Vt+1

(
akt+1, h

k,j
t+1

)
+ Vt+1h

(
akt+1, h

k,j
t+1

)



− 1
1−ξ

20Using Brent’s method instead—which would be the standard choice in univariate problems—turns
out to slow down speed of HYBGM.
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using Broyden’s method. This includes multiple computations of

hk,jt+1 = (1− δ)

(
hjt +

1
ξ

(
ik,jt

)ξ)
.

(c) Compute ck,jt as

ck,jt =

(
βR

(
1− ϕ

1

1 + hk,jt+1

)
Vt+1a

(
Rsk, hk,jt+1

))− 1
θ

.

(d) As in ENDGM, compute ak,jt from the budget constraint.

(e) At (sn+1, hj) if the endogenously computed an+1,j
t > 0 define an auxiliary grid

Gaux ≡ {a1, a2, ..., an} as in ENDGM. Compute ik,jt by solving

(
akt + whjt − ik,jt

)−θ
−

1(
(1− δ)

(
hjt +

1
ξ
(ik,jt )ξ

))2Vt+1a

(
0, (1− δ)

(
hjt +

1

ξ
(ik,jt )ξ

))
β (1− δ) (ik,jt )−(1−ξ)

−

1− 1

(1− δ)
(
hjt +

1
ξ
(ik,jt )ξ

)
Vt+1h

(
0, (1− δ)

(
hjt +

1

ξ
(ik,jt )ξ

))
·

β (1− δ) (ik,jt )−(1−ξ) = 0

for ik,jt . Next, compute ck,jt as in ENDGM.

If an+1,j
t ≤ 0, then the borrowing constraint is not binding at (sn+1, hj) and

we break the loop.

As in EXOGM, steps 3b and 3e require interpolation on ct+1, it+1 and updating

of Vt+1a , Vt+1h using the envelope conditions (5).

As EXOGM, HYBGM requires to run a numerical solver [K · J ] times in each t =

T − 1, . . . , 0. However, computational burden is alleviated by reducing complexity of the

equation system. Furthermore, as in ENDGM, it is possible to exactly determine the

range of the borrowing constraint. In contrast to ENDGM in two dimensions, there is no

need for a complex interpolation method in steps 3b and 3e of the method.

Remark 3 As ENDGM, HYBGM is not a general method. Suppose that consumption

has an additional effect on human (or health) capital. Consider for example an application

where health capital is negatively affected by the consumption of junk food which, for sake

of simplicity, we let be g(ct), e.g., it could be a constant fraction of total consumption.

Correspondingly rewrite (1) to ht+1 = (1− δ) (ht + f(it)− g (ct)) to the effect that both

controls ct and it appear on both sides of the equation system even after applying the

reformulation of endogenous states. This renders HYBGM inapplicable.
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Hybrid Interpolation Hybrid interpolation, illustrated in Figure 5, is defined on a

curvilinear grid where one dimension is being held constant. To locate any query point X

hybrid interpolation proceeds in three steps. First, in the dimension of the exogenous grid

(current state ht) find the most narrow bracket of ht+1 and compute the weights according

to the relative distance to these gridpoints. Second, in both rows, find those gridpoints

that form the most narrow bracket of at+1 and compute the according weights. Third,

interpolation of any function of F at point X requires computing F (X) = φAF (A) +

φBF (B) + φCF (C) + φDF (D) with the four basis functions φ where φA = p · q, φB =

(1− p) · q, φC = r · (1− q) and φD = (1− r) · (1− q) with p = aB−aX
aB−aA

, r = aD−aX
aD−aC

and q = hC−hX
hC−hA

. Thus, HYBGM reduces complexity of the problem without involving

advanced interpolation procedures.

Figure 5: Hybrid Interpolation
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Notes: Hybrid Interpolation. First, in the exogenous dimension, locate the two rows G•,j and G•,j+1

that form the most narrow bracket of ht+1. Second, locate in these two rows the gridpoints that form
the most narrow bracket of at+1. Interpolation nodes: (k, j); (k, j + 1); (l, j + 1); (l + 1, j + 1).

4 Results

We present results separately for the finite and infinite horizon versions of our model.21

Throughout, we use triple exponential grids for a, h, s, z, respectively. We set the range

of grid Gs to [0, 500] and of Gz to [1, 500]. The according grids Ga and Gh are adjusted to

cover the corresponding range of the state space.22

21We implement the solution in Fortran using the Intel Visual Fortran Compiler 11.1. The computa-
tion is done on a desktop computer with a consumer grade processor (Intel Core Duo E8500).

22Also observe, by construction, that there is only one occasionally binding constraint in our model.
This would be different in a situation with durable consumption goods as in Hintermaier and Koeniger
(2010). As ENDGM is a very efficient way in dealing with occasionally binding constraints such an
alternative model may further improve the relative performance of ENDGM.
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4.1 Error Evaluation

In both the finite and the infinite horizon version of the model, evaluation of accuracy of

the solution is done by applying normalized Euler equation errors, cf. Judd (1992), as has

become standard in the literature, cf., e.g., Santos (2000) and Barillas and Fernandez-

Villaverde (2007). In our approach we get the Euler equation errors e1 and e2 by using

the respective envelope conditions and combine them with the FOCs to get:

e1,t = 1−

(
Rψ(ht+1)β (ct+1)

−θ
)− 1

θ

ct
, (7a)

e2,t = 1−

(
R

(1−δ)

(
ψh(ht+1)Vt+1

ψ(ht+1)(ct+1)
−θ + w + i1−ξt+1

)−1
)− 1

ξ

it
. (7b)

These errors are dimension free quantities. Equation (7a) expresses the optimization error

as a fraction of current consumption. An error of e1,t = 10−3, for instance, means that the

household makes a $1 mistake for each $1000 spent, cf. Aruoba, Fernandez-Villaverde,

and Rubio-Ramirez (2006). These errors are expressed in units of base 10-logarithm

which means that −4 is an error of 0.0001.

4.2 Finite Horizon

We iterate over T = 100 time periods. Computational speed of the respective algo-

rithms is measured in seconds. To compare all three methods in terms of accuracy we

simulate 100 life-cycle profiles and evaluate Euler equation errors accordingly. Initial

assets a0 are set in the range [10, 100] whereas initial human capital h0 is drawn from

the range [50, 100]. For each simulation and each age we compute e1,t and e2,t from equa-

tion (7).23 We next compute average and maximum errors across all simulations and

ages. These are provided in Table 1. Both are of similar magnitudes across algorithms.

To evaluate the relative performance of the different algorithms, we can therefore further

concentrate on comparison of speed only.

Table 1 shows computing times for EXOGM, ENDGM and HYBGM for different

numbers of gridpoints.24 We report absolute computing time as well as relative speed,

i.e., relative to the ENDGM method. As our model is (on purpose) very stylized, absolute

computing times are low across all models. However, relative speed is the relevant mea-

suring rod because absolute speed scales up in the complexity of the model’s specification,

e.g., in general equilibrium applications or in structural estimation. With regard to this

23Euler equation errors are not computed if the borrowing constraint is binding.
24Throughout, we have five points in the region of the binding borrowing constraint. The relative

time spent on the numerical solution in this region is slightly below 10% for N = 252 and decreases to
about 2% for N = 2002.
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relative comparison, observe from Panel (a) of Figure 6 that EXOGM is outperformed

by both ENDGM and HYBGM. As the size of the grid increases, the absolute speed

advantage of ENDGM over EXOGM stays roughly constant so that the relative speed

advantage decreases in the size of the grid.

Table 1: Finite Horizon Model: Performance Results

Speed Euler Equation Error
Number of
Gridpoints for
(a, h)

Seconds Relative to
ENDGM

Maximum for
c ; i

Average for
c ; i

ENDGM
(25, 25) 0.094 - −2.56; −2.17 −3.70; −2.94
(50, 50) 0.437 - −2.92; −2.60 −4.36; −3.53
(100, 100) 2.090 - −3.37; −3.07 −4.91; −4.05
(200, 200) 11.278 - −3.84; −3.47 −5.44; −4.51

HYBGM
(25, 25) 0.156 1.7 −2.62; −2.25 −3.88; −2.90
(50, 50) 0.624 1.4 −2.99; −2.71 −4.43; −3.52
(100, 100) 2.496 1.2 −3.43; −3.10 −5.00; −3.98
(200, 200) 10.218 0.9 −4.16; −3.52 −5.54; −4.45

EXOGM
(25, 25) 0.234 2.5 −2.60; −2.24 −3.89; −2.90
(50, 50) 0.982 2.3 −2.95; −2.71 −4.42; −3.52
(100, 100) 3.868 1.9 −3.42; −3.10 −4.99; −3.98
(200, 200) 15.663 1.4 −4.18; −3.52 −5.54; −4.45

Notes: Computing time for T = 100 and resulting maximum and average Euler equation errors.
Computing time is reported in seconds and absolute errors in units of base-10 logarithms.

Panel (b) of Figure 6 shows that ENDGM has a relative advantage in comparison to

HYBGM in solving the model with a relatively small number of gridpoints. At a grid

size of N = 252, ENDGM is about 1.7 times faster than HYBGM. For solving the model

with a higher number of gridpoints, however, HYBGM is advantageous. In our setting

the break-even point between both algorithms is at a number of N = 1802 gridpoints and

a computing time of 8.8s. As can be seen from Table 1, for a standard choice of 25 to 50

gridpoints in each dimension, ENDGM is about 1.4 to 1.7 times faster than HYBGM and

about 2.3 to 2.5 times faster than EXOGM.

The reason for these findings is that the construction of the triangulation in ENDGM,

cf. step 3a in the description of the algorithm, is O(N log N) so that the algorithm even-

tually becomes worth than HYBGM—and does no longer improve over EXOGM in terms

of absolute speed advantage—as the size of the grid (N) increases. Table 2 shows how

the share of time spend on the triangulation increases in the number of gridpoints from
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Figure 6: Finite Horizon Model: Speed
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Notes: Panel (a): Computing time as a function of gridpoints in seconds (with equally many gridpoints
in both dimensions). Solid line: computing time of EXOGM; dotted line: computing time of HYBGM;
dashed-dotted line: computing time of ENDGM. Panel (b): Ratio of computing time of ENDGM to
HYBGM as a function of gridpoints (with equally many gridpoints in both dimensions).

roughly 56% for N = 252 gridpoints to almost 80% for N = 2002 gridpoints. An addi-

tional force at work in favor of EXOGM and HYBGM is that numerical solvers become

faster as N increases because of the increasing density of the grid since we initialize the

non-linear solvers in EXOGM and HYBGM by using solutions to the respective previous

gridpoint as starting values.

Table 2: Time Requirements in ENDGM: Share of Triangulation

Finite Horizon Infinite Horizon
Number of Gridpoints for (a, h) Pure Approximate

(25, 25) 56.25% 37.83% 13.04%
(50, 50) 62.90% 63.57% 30.43%
(100, 100) 74.34% 75.55% 42.70%
(200, 200) 79.63% 81.22% 53.00%

Notes: This table shows the fraction of time that is required for the Delaunay triangula-
tion relative to total time of the ENDGM.

4.3 Infinite horizon

To compare the algorithms in the infinite horizon setting, we make the same initial

guesses for derivatives V0a and V0h and iterate until convergence on policy functions

subject to convergence criterion ε = 10−6 in terms of the maximum absolute distance

of policy functions. In the infinite horizon setting, speed of ENDGM can be increased

if the Delaunay Triangulation is not constructed every iteration. Instead, we hold the
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triangulation pattern fixed after a certain number of iterations—50 in our case. We call

this modification of the algorithm “Approximate Delaunay”. Figure 7 illustrates this.

Panel (a) of the figure shows how endogenous grid-points move in the (a, h) space from

one iteration to the next. Panel (b) shows the new triangulation, holding constant the

respective triangles from Panel (a). However, this triangulation is not Delaunay because

edge P1-P2 becomes illegal.

In “Approximate Delaunay” it is necessary to ensure that the endogenously computed

gridpoints form a convex hull. This might be violated without further adjustments. For

example, in our illustration in panel (b) of Figure 7 violation of convexity would occur if

point P3 is shifted even further to the right. In such cases we redo the entire Delaunay

tessellation.

Figure 7: Infinite Horizon Model: Approximate Delaunay

Panel (a) Panel (b)
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Notes: Panel (a): In each iteration of ENDGM the gridpoints are relocated. Distance and direction of
this movement is different for each gridpoint. Panel (b): The resulting grid might not be Delaunay -
Edge between P1 and P2 becomes illegal and must be flipped to P3 and P4. Approximate Delaunay keeps
the old triangulation in order to save computing time, accepting a less accurate interpolation.

To compute Euler equation errors we simulate the model for various different initial

conditions of financial assets and health capital over 50 periods. We set initial assets a0 in

the range of [100, 400] and the health capital stock in the range of [40, 80]. We compute e1,t

and e2,t from equation (7) for the first 50 periods. Average and maximum errors are

provided in Table 3.

As in the finite horizon setting, average Euler equation errors are of similar magni-

tudes across algorithms—which we also achieve by appropriate settings of the respective

numerical routines—so that we again concentrate on a comparison of speed only.25

25The maximum Euler equation errors are considerably higher for EXOGM. They occur in the simu-
lations just before the depletion of all financial assets. This is due to the fact that we do not determine
explicitly the region where the borrowing constraint becomes binding and accordingly have no gridpoints
located there.
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We find that ENDGM is the fastest method for all scenarios considered whereby the

relative speed advantage decreases in the number of gridpoints as also documented in the

finite horizon version of the model.26 The reason for the dominance of ENDGM is the use

of the variant “Approximate Delaunay” in the infinite horizon model, as described above.

Table 2 shows that, relative to “Pure Delaunay” triangulation, this approximate method

substantially reduces the time spend on the triangulation. As in the finite horizon model,

the comparative advantage of ENDGM decreases in the number of gridpoints. Both,

ENDGM and HYBGM, again clearly dominate EXOGM. For a standard choice of 25

to 50 gridpoints in each dimension, ENDGM is about 2.5 times faster than HYBGM and

about 4 times faster than EXOGM, cf. Table 3.

Table 3: Infinite Horizon Model: Performance Results

Speed Euler Equation Error
Number of
Gridpoints for
(a, h)

Seconds Relative to
ENDGM

Maximum for
c ; i

Average for
c ; i

ENDGM
(25, 25) 0.156 - −2.09; −2.10 −2.87; −2.87
(50, 50) 0.624 - −2.37; −2.40 −3.61; −3.52
(100, 100) 2.792 - −2.84; −2.91 −4.17; −4.15
(200, 200) 15.194 - −3.14; −3.24 −4.80; −4.66

HYBGM
(25, 25) 0.390 2.5 −2.16; −2.10 −2.92; −2.97
(50, 50) 1.513 2.4 −2.49; −2.58 −3.73; −3.66
(100, 100) 6.115 2.2 −2.91; −2.98 −4.29; −4.23
(200, 200) 27.175 1.8 −3.19; −3.29 −4.91; −4.80

EXOGM
(25, 25) 0.640 4.1 −1.53; −1.64 −2.80; −2.87
(50, 50) 2.527 4.0 −1.81; −1.92 −4.17; −4.52
(100, 100) 10.109 3.6 −2.44; −2, 55 −4.17; −4.15
(200, 200) 41.371 2.7 −2.40; −2.51 −4.69; −4.66

Notes: Computing time to convergence of policy functions (criterion ε = 10−6) and resulting maxi-
mum and average Euler equation errors. Computing time is reported in seconds and absolute errors
in units of base-10 logarithms.

5 Conclusion

We compare three numerical methods—the standard exogenous grid method (EXOGM),

Carroll (2006)’s method of endogenous gridpoints (ENDGM), and a hybrid method

26Again, we have five points in the region of the binding borrowing constraint and the fraction of the
overall computational time spent there varies between 1.2− 5.3%.
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Figure 8: Infinite Horizon Model: Speed
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Notes: Panel (a): Computing time to convergence of policy functions (criterion ε = 10−6) as a function
of gridpoints (with equally many gridpoints in both dimensions). Solid line: computing time of EXOGM;
dotted line: computing time of HYBGM; dashed-dotted line: computing time of ENDGM. Panel (b):
Ratio of computing time to convergence of ENDGM and HYBGM as a function of gridpoints (with
equally many gridpoints in both dimensions).

(HYBGM)—to solve dynamic models with two continuous state variables and occasion-

ally binding borrowing constraints. To illustrate and to evaluate these methods we de-

velop a life-cycle consumption-savings model with endogenous human capital formation.

Evaluation of methods is based on speed and accuracy in both a finite and an infinite

horizon setting. We show that applying ENDGM gives rise to irregular grids. We em-

phasize that this leads to a trade-off: On the one hand, closed form solutions in ENDGM

greatly simplify the problem relative to standard EXOGM. On the other hand, interpo-

lation becomes more costly due to the irregularity of grids. We apply Delaunay methods

(Delaunay 1934) to interpolate on these irregular grids.

Despite this more complex interpolation, we find that ENDGM outperforms EXOGM

in both the finite as well as the infinite horizon version of the model. In the infinite

horizon model, ENDGM also always dominates HYBGM. For a standard choice of 25 to 50

gridpoints in each dimension, ENDGM is 2.4 to 2.5 times faster than HYBGM and 4.0

to 4.1 times faster than EXOGM. As the number of gridpoints increases, construction

of triangles for interpolation on irregular grids becomes increasingly costly to the effect

that the relative speed advantage of ENDGM decreases. This becomes more apparent in

the finite horizon model. Here, ENDGM dominates HYBGM for small to medium sized

problems whereas HYBGM dominates for a large number of gridpoints. For a standard

choice of 25 to 50 gridpoints in each dimension, ENDGM is 1.4 to 1.7 times faster than

HYBGM and 2.3 to 2.5 times faster than EXOGM.

For sake of simplicity, we implement this comparison in a deterministic model. Our

findings therefore provide appropriate guidance to authors who use stochastic models with
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few shocks and few realizations per shock as in numerous general equilibrium models,

cf., e.g., Krueger and Ludwig (2016) and references therein. For partial equilibrium

applications with many shock realizations our results on the relative speed advantages of

ENDGM are likely to indicate a lower bound. The reason is that ENDGM solves a more

complex interpolation problem including the construction of the triangulation whereas

EXOGM and HYBGM require more function evaluations. Complexity of this operation

increases if there is risk, in particular for serial implementations. Therefore, in a relative

comparison across methods, the construction step in ENDGM receives lower weight.

Three additional remarks on ENDGM and HYBGM are in order. First, within the

class of problems solvable with first-order methods, neither of the two is a general method.

Applicability requires restrictions on the model’s specification and on functional forms.

We provide simple examples for cases under which ENDGM and HYBGM are not appli-

cable and refer the interested reader to White (2015) and Iskhakov (2015) for a rigorous

treatment of general conditions. Second, although our code is available to users, HYBGM

still has lower implementation costs than ENDGM. Third, as HYBGM uses analytical

solutions in only one dimension and standard numerical methods in others, its relative

advantage can be expected to decrease in the dimensionality of the problem. Complex-

ity of the interpolation and storage requirements in ENDGM will also increase. As we

restrict attention to two dimensional problems we cannot address how this trade-off is

ultimately resolved and leave an evaluation for future research.

While our paper addresses an important computational problem and provides appro-

priate solutions, we naturally leave several other questions for future research. We solve

the complex high dimensional interpolation by using the Delaunay method (Delaunay

1934) as a well established general interpolation method coming from Geometry. White

(2015) suggests an alternative which is specific to situations in which the endogenously

constructed grids feature substantial regularity. This alternative is faster for a given num-

ber of gridpoints but might be less accurate especially when the curvature of the higher

dimensional grid increases. It would be interesting to investigate the exact circumstances

under which one method dominates the other.27 Last, our implementation of the De-

launay (1934) triangulation is implemented as a sequential procedure which we treat as

an isolated subroutine thereby not exploiting information from previous iterations. How

the method performs under a parallel triangulation as suggested by Blelloch, Hardwick,

Miller, and Talmor (1999) and whether implementing an adaptive scheme is feasible are

further viable research questions.

27In the same vein, the envelope condition method suggested by Maliar and Maliar (2013) for infinite
horizon models might be adaptable to higher dimensions and could be tested against the methods used
in this paper.
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A Derivation of FOC

The dynamic version of the household problem reads as

Vt(at, ht) = max
ct,it,at+1,ht+1

{u(ct) + βψ (ht+1)Vt+1(at+1, ht+1)}

subject to

at+1 = R (at + wht − ct − it)

ht+1 = (1− δ) (ht + f (it))

at+1 ≥ 0.

Assigning multiplier µ to the borrowing constraint, the two first order conditions with

respect to ct and it are:

∂Vt (at, ht)

∂ct
= uc − βψ (ht+1)Vt+1aR−Rµ

!
= 0 ⇔ uc − βψ (ht+1)RVt+1a = Rµ, (8)

∂Vt (at, ht)

∂it
= ψh (ht+1) (1− δ) fiβVt+1 + ψ (ht+1) β (Vt+1a (−R) + Vt+1h (1− δ) fi)−Rµ

!
= 0

⇔ ψh (ht+1) (1− δ) fiβVt+1 + ψ (ht+1) β (Vt+1a (−R) + Vt+1h (1− δ) fi) = Rµ

(9)

and at+1 ≥ 0, µ ≥ 0 and at+1µ = 0.

In order to compute optimal policies we need to distinguish two cases.

Case 1: Interior Solution

In the first case the borrowing constraint is not binding so that µ = 0. This reduces the

system of equations to

uc − βψ (ht+1)RVt+1a = 0

ψh (ht+1) (1− δ) fiβVt+1 + ψ (ht+1) β (Vt+1a (−R) + Vt+1h (1− δ) fi) = 0.

Rearranging gives

uc = βψ (ht+1)Vt+1aR

fi =
R

(1− δ)

ψ (ht+1)Vt+1a

ψh (ht+1)Vt+1 + ψ (ht+1)Vt+1h

.
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Case 2: Corner Solution—Binding Borrowing Constraint

In the second case the borrowing constraint is binding so that a′ = 0 and µ > 0. From (8)

and (9) it then follows that

uc = ψh (ht+1) βVt+1 + ψ (ht+1) βVt+1h (1− δ) fi (10)

and

uc = β (1− δ) fi (ψh (ht+1)Vt+1 + ψ (ht+1)Vt+1h)

at+1 = 0 ⇔ ct = at + wht − it.

Making use of our assumptions on functional forms, equation (10) reduces in EXOGM

and HYBGM to

(at + wht − it)
−θ − 1(

(1− δ)
(
ht + iξt

))2Vt+1

[
0, (1− δ)

(
ht + iξt

))
β (1− δ) i

−(1−ξ)
t

−

1− 1

(1− δ)
(
ht +

1
ξ
iξt

)
Vt+1h

(
0, (1− δ)

(
ht +

1

ξ
iξt

))
β (1− δ) i

−(1−ξ)
t = 0

and in ENDGM to(
at + w

(
ht+1

1− δ
− i1−ξt

)
− it

)−θ

− 1

(ht+1)
2βVt+1 (0, ht+1) (1− δ) i

−(1−ξ)
t

−
(
1− 1

1 + ht+1

)
βVt+1h (0, ht+1) (1− δ) i

−(1−ξ)
t = 0.

Observe that this equation is not linear in it. We therefore need to use a numerical

routine in the region where the borrowing constraint is binding also for ENDGM, cf. our

discussion in the main text in Subsection 3.2.

In both cases—i.e., for interior solutions and for binding borrowing constraints—the
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envelope conditions are

∂Vt (at, ht)

∂at
≡ Vta = βVt+1aR +Rµ = uc

∂Vt (at, ht)

∂ht
≡ Vth

= βψh (ht+1)Vt+1(at+1, ht+1) (1− δ) + βψ (ht+1)Vta(at+1, ht+1)wR+

βψ (ht+1)Vt+1h(at+1, ht+1) (1− δ) +Rµ

=

(
w +

1

fi

)
uc.
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