
Kraft, Holger; Seiferling, Thomas; Seifried, Frank Thomas

Working Paper

Optimal consumption and investment with Epstein-Zin
recursive utility

SAFE Working Paper, No. 52

Provided in Cooperation with:
Leibniz Institute for Financial Research SAFE

Suggested Citation: Kraft, Holger; Seiferling, Thomas; Seifried, Frank Thomas (2016) : Optimal
consumption and investment with Epstein-Zin recursive utility, SAFE Working Paper, No. 52, Goethe
University Frankfurt, SAFE - Sustainable Architecture for Finance in Europe, Frankfurt a. M.,
https://doi.org/10.2139/ssrn.2444747

This Version is available at:
https://hdl.handle.net/10419/203276

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.2139/ssrn.2444747%0A
https://hdl.handle.net/10419/203276
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Holger Kraft - Thomas Seiferling - Frank Thomas Seifried 
 
 
 
 

Optimal Consumption and Investment 
with Epstein-Zin Recursive Utility 
 
 
 
 
SAFE Working Paper No. 52 

 



 
 
 
 

Non-Technical Summary 

 
Decision making of agents is described by utility functionals. For instance, in the representative 
agent model, that has dominated macroeconomics for the last three decades, there is one 
individual, the representative agent, whose preferences have to be described. In the classical 
version, the agent is assumed to have a time-separable von Neumann-Morgenstern utility 
function and to have access to a financial market that is complete. Both these specifications are 
potential sources of why the classical framework is not able to explain several empirical facts 
about asset prices. Economists have responded to these challenges by assuming that agents 
have more general preferences (e.g. recursive preferences) and/or by postulating more involved 
asset or endowment processes (e.g. jumps, disasters, unspanned diffusion) that lead to 
incomplete financial markets. 
 
To calculate the values of cash flows in such a representative agent economy, the stochastic 
discount factor is the key ingredient. A stochastic discount factor induces a pricing rule that 
determines all asset prices in an economy. It is thus of crucial importance that the agent's 
utility can be described in a tractable way. In every continuous-time model, this utility satisfies 
a certain partial differential equation that can be derived by applying a stochastic 
representation theorem for expectations. For recursive preferences, this can be reduced to an 
equation belonging to a particular class of semi-linear partial differential equations. Such 
equations are inherently difficult to solve and, in general, it is not even clear whether they 
admit (unique smooth) solutions. So far, researchers have usually resorted to approximation 
techniques of unclear precision (e.g. Campbell-Shiller approximation for non-unit elasticity of 
intertemporal substitution) and considered affine frameworks. 
 
In this context, our paper makes a significant contribution: For possibly non-affine models, we 
prove the existence of a solution and develop a fast and accurate numerical method to 
compute this solution. Our scheme solves the nonlinear partial differential equation by 
iteratively solving certain linear partial differential equations. We also derive worst-case 
bounds for the accuracy of our methodology. Therefore, our results provide a solid basis for 
future research in asset pricing with recursive preferences. 
 
Furthermore, we also contribute to the extensive literature on dynamic incomplete-market 
portfolio theory. This area is concerned with an agent's consumption-portfolio choice problem 
where returns are not necessarily independent and identically distributed. We study an 
incomplete-market consumption-portfolio problem that nests several classical frameworks. In 
contrast to the existing literature, we do not restrict our analysis to affine models but allow for 
recursive preferences. We reduce the Bellman equation to a partial differential equation that 
belongs to the same class as the above-mentioned equation in asset pricing. Researchers have 
so far relied on approximative methods in this context as well, although in general not even the 
issue of existence has been resolved. Therefore, as an additional contribution of this article, we 
provide a verification theorem demonstrating that a suitable smooth solution of the reduced 
Bellman equation is also the solution to the consumption-portfolio problem. Following the 



same agenda as outlined above, we then establish existence of a solution and construct this 
solution by fixed point arguments. Again, our numerical method provides a fast and accurate 
way of calculating the investor's indirect utility and optimal strategies. Our results thus also 
establish a tractable approach to incomplete-market consumption-portfolio choice problems 
with recursive preferences. 
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1 Introduction

This article contributes to the extensive literature on dynamic incomplete-
market portfolio theory, a research area that according to Cochrane [14] is at
the same time “important” and “hard”. We study a class of incomplete-mar-
ket consumption-portfolio problem that nests (suitably truncated1 versions of)
classical frameworks such as Kim and Omberg [24], Campbell and Viceira [8],
Barberis [2], Wachter [41], Chacko and Viceira [12] and Liu [30], among oth-
ers. With the exception of [12], these authors assume time-additive CRRA
preferences. We consider Epstein-Zin recursive utility, which contains time-
additive CRRA utility as a special case. The Hamilton-Jacobi-Bellman (short:
Bellman or HJB) equation of the associated consumption-portfolio problem
can be transformed into a semilinear partial differential equation. Nonlinear
equations of this class are challenging and, in general, it is not even clear
whether they admit unique smooth solutions. Moreover, in the absence of
affine dynamics, closed-form solutions of the HJB equation are not available.
Thus researchers so far have been forced to resort to linearization techniques of
unclear precision such as, e.g., the Campbell-Shiller approximation in models
with affine dynamics. In an extension of the framework of [26], this paper pro-
vides – for possibly non-affine models and assuming only suitable boundedness
conditions – existence and uniqueness of solutions to such equations. More-
over, we develop a fast and accurate numerical method for the computation
of both indirect utility and, even more importantly, optimal strategies. Our
results thus establish a tractable and constructive approach to incomplete-
market consumption-portfolio problems with Epstein-Zin recursive utility in
continuous time.

From a mathematical perspective, our contributions can be summarized as
follows: First, we establish a verification theorem which demonstrates that a
suitable C1,2 solution of the reduced HJB equation is the value function of
the consumption-portfolio problem. The proof is based on a combination of
dynamic programming arguments and utility gradient inequalities for recur-
sive utility. Second, we provide an explicit construction of such a C1,2 solution
based on fixed point arguments for the associated system of forward-backward
stochastic differential equations. We study the Feynman-Kac representation
mapping Φ that is associated with a power transform of the HJB equation
and obtain a fixed point in the space of continuous functions as a limit of
iterations of Φ. Using the probabilistic representation of this solution we are
able to improve this to convergence in C0,1. This not only yields a theoret-
ical convergence result, but also leads directly to a numerical method with
superexponential speed of convergence that allows us to determine optimal
strategies efficiently via iteratively solving linear partial differential equations.

1 Our analysis imposes no structural conditions on the underlying model coefficients, but
requires them to be bounded; see (A1) and (A2) in Section 4 and (A1’) in Section 7.
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The remainder of the paper is structured as follows: Section 2 discusses
the related literature. Section 3 introduces the agent’s utility functional for
continuous-time recursive preferences. In Section 4 we formulate the consump-
tion-portfolio problem, establish existence of a solution of the associated HJB
equation, and derive candidate optimal strategies. Section 5 provides a ver-
ification result which demonstrates that the candidate solutions are indeed
optimal. Section 6 provides the proof of our main existence and uniqueness
result (Theorem 4.6). Building on this, Section 7 sets the basis for our numer-
ical method, which is illustrated in Section 8. Section 8 also offers an informal
user’s guide on how to apply our theoretical results to concrete problems. The
Appendix contains proofs and auxiliary results.

2 Links to the Literature

This article is related to several strands of research. First, we contribute to
the literature on dynamic incomplete-market portfolio theory. Liu [30] con-
siders portfolio problems with unspanned risk and time-additive utility. The
framework of Liu [30] already nests a number of popular models, including
those of Kim and Omberg [24], Campbell and Viceira [8], Barberis [2], and
Wachter [41], as special cases. Given appropriate boundedness conditions on
the underlying coefficients, our approach can be used to generalize several of
his solutions to settings where asset price dynamics are non-affine or non-
quadratic and where the agent has recursive utility. Recursive utility has been
developed by Kreps and Porteus [27,28], Epstein and Zin [22] and Duffie and
Epstein [17]. Chacko and Viceira [12] study a consumption-portfolio problem
with affine stochastic volatility and recursive preferences. They find an explicit
solution for unit elasticity of intertemporal substitution (EIS) and approximate
the solution for non-unit EIS using the Campbell-Shiller technique. Our ap-
proach makes it possible to extend their analysis to problems with non-affine
specifications of stochastic volatility, without having to rely on a priori approx-
imations. Finally, our results are also related to Schroder and Skiadas [36], who
focus on complete markets, and to Schroder and Skiadas [37], who provide nec-
essary and sufficient optimality conditions in a general homothetic setting by
duality methods and obtain explicit solutions for unit EIS.

Second, the mathematical analysis of this article has ties to a number of arti-
cles. The verification argument used to solve the consumption-portfolio prob-
lem builds on the so-called utility gradient approach that has been developed
in a series of papers by Duffie, Schroder, and Skiadas including [19], [36], [37],
[38] and [39]; see also Seiferling and Seifried [40]. We generalize the verification
results in Duffie and Epstein [17], who derive a verification result for aggre-
gators satisfying a Lipschitz condition, and of [26], who consider Epstein-Zin
preferences under parameter restrictions. Our results are also related to the
findings of Duffie and Lions [18], who study the existence of stochastic dif-
ferential utility using PDE methods, and to Marinacci and Montrucchio [34],
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who establish existence and uniqueness of recursive utility in discrete time.
The analysis of Berdjane and Pergamenshchikov [3] is based on a fixed point
argument related to the one we use in this paper, but is focused on the spe-
cial case where the agent has time-additive utility with risk aversion below
unity and where the state process has constant volatility. In a recent paper
that appeared after this article had been finished, Xing [42] addresses a closely
related class of portfolio optimization problems using BSDE techniques. [42]
complements the analysis of this paper: It requires weaker boundedness (rsp.,
integrability) conditions,2 but does not provide information on how to deter-
mine optimal strategies. In addition, the analysis of [42] is restricted to the
case when both relative risk aversion and EIS are greater than one. This article
provides a constructive, fast and accurate numerical methodology (substan-
tiated by a rigorous convergence analysis) to find both indirect utility and,
more importantly, optimal strategies.

Finally, our analysis of existence and uniqueness also contributes to the liter-
ature on semilinear partial differential equations (PDEs) and backward and
forward-backward stochastic differential equations (BSDEs and FBSDEs, re-
spectively). We demonstrate that the FBSDE associated with the semilinear
PDE that is relevant for our applications in consumption-portfolio choice ad-
mits a unique bounded solution. Importantly, the driver of this FBSDE is not
Lipschitz, so standard results do not apply. We thus contribute to the grow-
ing literature on non-Lipschitz BSDEs and FBSDEs, including, among others,
Kobylanski [25], Briand and Carmona [5], Briand and Hu [6], and Delbaen, Hu
and Richou [16]. In addition, by deriving an associated Feynman-Kac represen-
tation, this paper adds to the literature that connects FBSDEs to semilinear
Cauchy problems; see, e.g., Pardoux and Peng [35], Delarue [15] and Ma, Yin
and Zhang [33] and the references therein.

3 Consumption Plans and Epstein-Zin Preferences

We fix a probability space (Ω,F , P ) with a complete right-continuous filtra-
tion (Ft)t∈[0,T ] that is generated by a Wiener process (W, W̄ ). We denote the

consumption space by C , (0,∞). In the following, we are interested in an
agent’s preferences on the space of dynamic consumption plans.

Definition 3.1 (Consumption Plans) A progressively measurable process
c with values in C is a consumption plan if

c ∈ C ,
{
c ∈ D+ : E

[∫ T
0
cpt d t+ cpT

]
<∞ for all p ∈ R

}
.

Here we denote the set of square-integrable progressive processes by

D ,
{
X = (Xt)t∈[0,T ] progressively measurable : E

[∫ T
0
X2
t d t+X2

T

]
<∞

}
and write D+ , {X ∈ D : Xt > 0 for t ∈ [0, T ]} for its strictly positive cone.

2 In particular, [42] covers specifications with (untruncated) affine dynamics as in Kim
and Omberg [24] and Heston [23].
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The agent’s preferences on C are described by a utility index ν : C → R. Thus

c ∈ C is weakly preferred to c̄ ∈ C if and only if ν(c) ≥ ν(c̄),

see [17], [22] and [40]. To construct the Epstein-Zin utility index, let

δ > 0, γ > 0, ψ > 0 with γ, ψ 6= 1.

be given and put φ , 1
ψ . If γ < 1 set U , (0,∞) and for γ > 1 set U , (−∞, 0).

Then the continuous-time Epstein-Zin aggregator is given by f : C× U→ R,

f(c, v) , δθv

[(
c

((1− γ)v)
1

1−γ

)1− 1
ψ

− 1

]
where θ ,

1− γ
1− φ ∈ R, θ 6= 0.

Here γ represents the agent’s relative risk aversion, ψ is his elasticity of in-
tertemporal substitution (EIS) and δ is his rate of time preference. Moreover
we define U : C → R, U(x) , ε1−γ 1

1−γx
1−γ as a CRRA utility function for

bequest where ε ∈ (0,∞) is a weight factor. For Epstein-Zin utility to be
well-defined, throughout this article we impose the following assumptions:

(E1) For every c ∈ C there exists a unique semimartingale V c such that
E[supt∈[0,T ]|V ct |p] <∞ for all p ∈ R and

V ct = Et

[∫ T
t
f(cs, V

c
s ) d s+ U(cT )

]
for all t ∈ [0, T ].

(E2) For every c̄ ∈ C we have the utility gradient inequality

V c0 ≤ V c̄0 + 〈m(c̄), c− c̄〉 for all c ∈ C

where the inner product on D is given by 〈X,Y 〉 = E[
∫ T

0
XtYt d t+XTYT ]

and the utility gradient at c̄ is defined via

mt(c̄) , exp
(∫ t

0
fv(c̄s, V

c̄
s ) d s

)
∇t(c̄)

with ∇t(c̄) , fc(c̄t, V
c̄
t ) for t ∈ [0, T ) and ∇T (c̄) , U ′(c̄T ).

It is shown in [40] that (E1) and (E2) are both satisfied if either

γψ, ψ ≥ 1 or alternatively γψ, ψ ≤ 1, 3 (3.1)

but we wish to stress that the analysis of this article applies to all parametriza-
tions of Epstein-Zin utility for which (E1) and (E2) can be verified. This leads
to the following definition:

Definition 3.2 (Utility Index) The Epstein-Zin utility index ν : C → U is
given by ν(c) , V c0 where V c is the unique process given by (E1).

3 Condition (3.1) holds if and only if one of conditions (a), (b), (c) and (d) in Proposi-
tion 3.2 of [26] is satisfied; see also (2) in [40]. We are not aware of rigorous results that
ensure (E1) and (E2) for parametrizations not subsumed by (3.1).
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The classical time-additive utility specification

ν(c) = E
[∫ T

0
e−δsu(cs) d s+ e−δTU(cT )

]
where u : C → R, u(x) , 1

1−γx
1−γ , is subsumed as the special case of the

Epstein-Zin parametrization where γ = φ. Note that (3.1) covers all addi-
tive utility specifications. Hence the analysis of this article applies in par-
ticular to consumption-portfolio optimization with additive crra preferences
and arbitrary risk aversion parameter γ 6= 1. In addition, (3.1) subsumes all
parametrizations with γ, ψ ≥ 1.

Remark. The specifications γ = 1 or ψ = 1 correspond to unit relative risk
aversion or unit EIS, respectively; γ = ψ = 1 represents time-additive loga-
rithmic utility. The case of unit EIS, ψ = 1, is well-understood and has been
studied extensively in the literature; see, e.g., Schroder and Skiadas [37] and
Chacko and Viceira [12]. The analysis of this article applies mutatis mutandis
to these special cases. �

4 Consumption-Portfolio Selection with Epstein-Zin Preferences

4.1 Financial Market Model

Two securities are traded. The first is a locally risk-free asset (e.g., a money
market account) M with dynamics

dMt = r(Yt)Mt d t,

while the second asset (e.g., a stock or stock index) S is risky and satisfies

dSt = St [(r + λ(Yt)) d t+ σ(Yt) dWt] .

The interest rate r : R → R and the stock’s excess return and volatility
λ, σ : R → R are assumed to be measurable functions of a state process Y
with dynamics

dYt = α(Yt) d t+ β(Yt)
(
ρdWt +

√
1− ρ2 d W̄t

)
, Y0 = y.

Here α, β : R → R are measurable functions and ρ ∈ [−1, 1] denotes the cor-
relation between stock returns and the state process. Throughout this article,
we assume:

(A1) The coefficients r, λ, σ, α are bounded and Lipschitz continuous; the co-
efficient β is bounded and has a bounded Lipschitz continuous derivative.

(A2) Ellipticity condition: infy∈R σ(y) > 0 and infy∈R β(y) > 0.
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The investor’s wealth dynamics are given by

dXπ,c
t = Xπ,c

t [(r(Yt) + πtλ(Yt)) d t+ πtσ(Yt) dWt]− ct d t, X0 = x (4.1)

where πt denotes the fraction of wealth invested in the risky asset at time t,
the constant x > 0 is the investor’s initial wealth and c his consumption plan.

Definition 4.1 (Admissible Strategies) The pair of strategies (π, c) is ad-
missible for initial wealth x > 0 if it belongs to the set

A(x) , {(π, c) ∈ D × C : Xπ,c
t > 0 for all t ∈ [0, T ] and cT = Xπ,c

T } .

Since the investor’s preferences are described by a recursive utility functional
of Epstein-Zin type, an admissible pair (π, c) ∈ A(x) yields utility

ν(c) , V c0 , where V ct , Et

[∫ T
t
f(cs, V

c
s ) d s+ U(Xπ,c

T )
]

for t ∈ [0, T ].

Definition 4.2 (Consumption-Portfolio Problem) Given initial wealth
x > 0, the investor’s consumption-portfolio problem is to maximize utility over
the class of admissible strategies A(x),

find (π?, c?) ∈ A(x) such that ν(c?) = sup
(π,c)∈A(x)

ν(c). (P)

Remark. Problem (P) has been widely studied in the literature: Schroder
and Skiadas [36] investigate the case of complete markets. Schroder and Ski-
adas [37–39] provide necessary and sufficient optimality conditions for gen-
eral homothetic and translation-invariant preferences. Moreover, [37] solve the
consumption-portfolio problem for an investor with unit EIS in closed form.
Chacko and Viceira [12] obtain closed-form solutions for an investor with unit
EIS in an inverse Heston stochastic volatility model, and Kraft, Seifried and
Steffensen [26] derive explicit solutions for a non-unit EIS investor whose pref-
erence parameters satisfy the condition

ψ = 2− γ + (1−γ)2

γ ρ2. (H)

Berdjane and Pergamenshchikov [3] study the above-described consumption-
portfolio problem in the special case where the investor has additive prefer-
ences with relative risk aversion γ ∈ (0, 1). Figure 4.1 depicts the parametriza-
tions for which solutions are known in the literature. Xing [42] focuses on the
quadrant northeast of γ = 1, ψ = 1. �
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Power utility with γ ∈ (0, 1)

Fig. 4.1 Known Solutions. This figure depicts combinations of risk aversion γ and elas-
ticity of intertemporal substitution ψ for which solutions to consumption-portfolio problems
with unspanned risk are known.

4.2 The HJB Equation

We consider the dynamic programming equation associated with problem (P),

0 = sup
π∈R, c∈(0,∞)

{
wt + x(r + πλ)wx − cwx + 1

2x
2π2σ2wxx + αwy

+ 1
2β

2wyy + xπσβρwxy + f(c, w)
}

(4.2)

subject to the boundary condition w(T, x, y) = ε1−γ 1
1−γx

1−γ . Following Za-

riphopoulou [43] we conjecture a solution of the form

w(t, x, y) = 1
1−γx

1−γh(t, y)k, (t, x, y) ∈ [0, T ]× (0,∞)× R (4.3)

where k is a constant and h ∈ C1,2([0, T ]×R) is strictly positive with h(T, · ) =

ε̂ , ε
1−γ
k . Choosing k , γ

γ+(1−γ)ρ2 and solving the first-order conditions leads

to the following definition:

Definition 4.3 The candidate optimal strategies are given by

π̂ ,
λ

γσ2
+
k

γ

βρ

σ

hy
h

and ĉ , δψhq−1x (4.4)

where q ∈ R, q 6= 1 is given by

q , 1− ψk

θ

and where h is a strictly positive solution of the semilinear partial differential
equation (PDE)

0 = ht − r̃h+ α̃hy + 1
2β

2hyy + δψ

1−qh
q, h(T, · ) = ε̂ (4.5)
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with r̃ , − 1
k

[
r(1− γ) + 1

2
1−γ
γ

λ2

σ2 − δθ
]

and α̃ , α+ 1−γ
γ

λβρ
σ . In the following

we refer to (4.5) as the reduced HJB equation.

Remark. The function h in (4.3) is closely related to the candidate for the
agent’s optimal consumption-wealth ratio as used in, e.g., [7], [9], and [12].

More precisely, by (4.4) we have ĉ
x = δψh−

ψk
θ so we can represent the candidate

for the value function equivalently as w(t, x, y) = 1
1−γx

1−γδθ
(
ĉ
x

)− θ
ψ . �

Lemma 4.4 If h ∈ C1,2([0, T ]×R) is a strictly positive solution of (4.5), then
the function given by w(t, x, y) = 1

1−γx
1−γh(t, y)k solves the HJB equation

(4.2).

Lemma 4.5 The functions r̃ and α̃ are bounded and Lipschitz continuous.

Remark. Note that for all ρ ∈ [−1, 1] we have

q = 1− 1− φ
1− γ C where C ,

ψγ

γ(1− ρ2) + ρ2
> 0.

Thus q < 1 if and only if 1−φ
1−γ > 0 and q > 1 if and only if 1−φ

1−γ < 0; see Table
4.1 and Figure 4.2. �

q < 1 q = 1 q > 1
1−φ
1−γ > 0 φ = 1 1−φ

1−γ < 0

Table 4.1 Ranges of q. This table reports the range of the exponent q in (4.5) depending
on the risk aversion γ and the reciprocal of the elasticity of intertemporal substitution φ.

We now state a general existence result for the semilinear PDE (4.5):

Theorem 4.6 For all γ, ψ, δ > 0 with γ, ψ 6= 1 there exist a solution h ∈
C1,2([0, T ]× R) to the reduced HJB equation (4.5) and positive constants 0 <
h < h such that

h ≤ h ≤ h and ‖hy‖∞ <∞. (4.6)

Moreover, h is the unique solution of (4.5) that is bounded above and away
from 0.

Theorem 4.6 is one of the main results of this article. A large part of Section 6
below is dedicated to its proof. Before that, we demonstrate in Section 5 how
Theorem 4.6 is fundamental for the solutions of consumption-portfolio choice
problems.
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Fig. 4.2 Range of q. This figure depicts the range of the exponent q in (4.5) depending
on the risk aversion γ and the elasticity of intertemporal substitution ψ. Condition (H) is
calculated for ρ =

√
0.5.

5 Verification

In this section we establish the following verification result:

Theorem 5.1 (Solution of the Consumption-Portfolio Problem (P))
Let h be a solution to the reduced HJB equation (4.5) as in Theorem 4.6. Then
the corresponding candidate strategies (π̂, ĉ),

π̂t =
λ(Yt)

γσ(Yt)2
+
k

γ

β(Yt)ρ

σ(Yt)

hy(t, Yt)

h(t, Yt)
, ĉt = δψh(t, Yt)

q−1X π̂,ĉ
t for t ∈ [0, T )

(5.1)

and ĉT , X π̂,ĉ
T are optimal for the consumption-portfolio problem (P).

Here we slightly abuse notation by setting π̂t = π̂(t, Yt) and ĉt , ĉ(t,X π̂,ĉ
t , Yt)

for t ∈ [0, T ). This will not give rise to confusion in the following.

5.1 Abstract Utility Gradient Approach

Let (π̄, c̄) ∈ A(x) be a given fixed consumption-portfolio strategy (below we
take the candidate solution in (5.1), but the general argument here does not
rely on that specific choice), and let m̄ , m(c̄) denote the utility gradient at c̄,
see condition (E2). For every strategy (π, c) ∈ A(x) define the deflated wealth
process Zπ,c via

Zπ,ct , m̄tX
π,c
t +

∫ t
0
m̄scs d s for t ∈ [0, T ].

Then we have the following general verification theorem:
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Theorem 5.2 (Abstract Verification) Suppose that for every admissible
strategy (π, c) ∈ A(x) the deflated wealth process Zπ,c is a local martingale,
and that Z π̄,c̄ is a true martingale. Then (π̄, c̄) is optimal for the consumption-
portfolio problem (P).

Proof The utility gradient inequality (E2) evaluated at c̄ implies

V c0 ≤ V c̄0 + 〈m̄, c− c̄〉 = V c̄0 + E
[∫ T

0
m̄s(cs − c̄s) d s+ m̄T (Xπ,c

T −X π̄,c̄
T )

]
where ∫ T

0
m̄s(cs − c̄s) d s+ m̄T (Xπ,c

T −X π̄,c̄
T ) = Zπ,cT − Z π̄,c̄T .

Here the process Zπ,c is a positive local martingale, hence a supermartingale,
while Z π̄,c̄ is a martingale by assumption. Since Xπ,c

0 = X π̄,c̄
0 = x, we obtain

E[Zπ,cT − Z π̄,c̄T ] ≤ E[Zπ,c0 − Z π̄,c̄0 ] = fc(c̄0, V
c̄
0 )(Xπ,c

0 −X π̄,c̄
0 ) = 0. ut

5.2 Admissibility of the Candidate Solution (π̂, ĉ)

In the proof of Theorem 5.1 below, we apply the abstract verification result
in Theorem 5.2 to the candidate (π̂, ĉ) in (5.1). Therefore in the following we
verify that the conditions of Theorem 5.2 are satisfied for that strategy.

We first establish admissibility of (π̂, ĉ). Thus suppose that h is the solution
of the reduced HJB equation (4.5) provided by Theorem 4.6, and let (π̂, ĉ) be
given by (5.1). For simplicity of notation we write

V̂ , V ĉ, X̂ , X π̂,ĉ, m̂ , m(ĉ)

for the utility process, the wealth process and the utility gradient associated
with (π̂, ĉ). The proofs of the following results are deferred to Appendix A.

Lemma 5.3 The candidate optimal wealth process has all moments, i.e.

E
[
supt∈[0,T ]X̂

p
t

]
<∞ for all p ∈ R.

In particular X̂t > 0 for all t ∈ [0, T ] a.s.

As a consequence we can show that ĉ ∈ C and V̂t = w(t, X̂t, Yt), where by
Lemma 4.4 the function w(t, x, y) , 1

1−γx
1−γh(t, y)k solves the HJB equation

(4.2):

Lemma 5.4 (Admissibility of ĉ) Let Vt , w(t, X̂t, Yt), t ∈ [0, T ]. Then
V = V̂ and wx(t, X̂t, Yt) = fc(ĉt, V̂t). Moreover we have

E
[
supt∈[0,T ]|ĉt|p

]
<∞ for all p ∈ R

and in particular ĉ ∈ C.

Combining Lemmas 5.3 and 5.4 it follows in particular that (π̂, ĉ) ∈ A(x).
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5.3 Optimality of the Candidate Solution

Next we show that the deflated wealth process Zπ,c is a local martingale for
every admissible consumption-portfolio strategy (π, c) ∈ A(x). The proofs can
again be found in Appendix A.

Lemma 5.5 (Dynamics of Zπ,c) For all (π, c) ∈ A(x) the deflated wealth
process Zπ,c is a local martingale with dynamics

dZπ,ct = m̂tX
π,c
t

[(
πtσ(Yt)−

λ(Yt)

σ(Yt)

)
dWt + k

√
1− ρ2β(Yt)

hy(t, Yt)

h(t, Yt)
d W̄t

]
.

For the candidate optimal process (π̂, ĉ) this implies

dZ π̂,ĉt = m̂tX̂t

[ (
1−γ
γ

λ(Yt)
σ(Yt)

+ k
γβ(Yt)ρ

hy(t,Yt)
h(t,Yt)

)
dWt

+k
√

1− ρ2β(Yt)
hy(t,Yt)
h(t,Yt)

d W̄t

]
.

Lemma 5.6 The process Z π̂,ĉ is a martingale.

Combining the preceding results, we can complete the

Proof (of Theorem 5.1) By Lemmas 5.5 and 5.6 the conditions of Theorem 5.2
are fulfilled. Thus Theorem 5.2 implies that (π̂, ĉ) is optimal for the consump-
tion-portfolio problem (P). ut

6 Feynman-Kac Fixed Point Approach to the HJB Equation

The goal of this section is to prove Theorem 4.6. We present a constructive
method to obtain a classical solution of the reduced HJB equation (4.5),

0 = ht − r̃h+ α̃hy + 1
2β

2hyy + δψ

1−qh
q, h(T, · ) = ε

1−γ
k = ε̂.

To this end, we study the following forward-backward stochastic differential
equation (FBSDE) that is associated with the reduced HJB equation:

d ηt0,y0t = α̃(ηt0,y0t ) d t+ β(ηt0,y0t ) dWt, ηt0,y0t0 = y0

(6.1)

dXt0,y0
t = −

[
δψ

1−q (Xt0,y0
t )q − r̃(ηt0,y0t )Xt0,y0

t

]
d t+ Zt0,y0t dWt, Xt0,y0

T = ε̂

(6.2)

where t0 ∈ [0, T ] and y0 ∈ R. We will demonstrate that there exists a unique

family (Xt,y)y∈Rt∈[0,T ] of bounded positive solutions to this FBSDE system, and
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that this yields a solution to the reduced HJB equation via the generalized
Feynman-Kac formula

h(t, y) = Xt,y
t = Et

[∫ T
t
e−

∫ s
t
r̃(ηt,yτ ) d τ δψ

1−q (Xt,y
s )q d s+ ε̂e−

∫ T
t
r̃(ηt,yτ ) d τ

]
.

Remark. In this context, a natural way to think of the function h is as the
fixed point of the Feynman-Kac operator Φ : Cb([0, T ]×R)→ Cb([0, T ]×R),

(Φh)(t, y) , Et

[∫ T
t
e−

∫ s
t
r̃(ηt,yτ ) d τ δψ

1−qh(s, ηt,ys )q d s+ ε̂e−
∫ T
t
r̃(ηt,yτ ) d τ

]
.

In Section 7 we elaborate this perspective in detail. �
The connection between semilinear PDEs and (F)BSDEs is well-established
in the mathematical literature. While classical results, including Pardoux and
Peng [35], Ma, Protter and Young [32] and Ma, Yin and Zhang [33], impose a
Lipschitz condition on the generator, recent research has focused on relaxing
that assumption. Starting from Kobylanski [25], existence and uniqueness re-
sults for BSDEs with quadratic and convex drivers have been obtained. Thus
Briand and Carmona [5], Delarue [15], Briand and Hu [6] and Delbaen, Hu
and Richou [16] replace the Lipschitz assumption by a so-called monotonicity
condition, while retaining a polynomial growth condition. In general, however,
the driver in the FBSDE system (6.1), (6.2) is neither Lipschitz, nor does it
satisfy monotonicity or polynomial growth conditions. Hence, results from this
literature cannot be applied to that equation. By establishing suitable a priori
estimates for (6.1), (6.2) and (4.5), we prove the relevant existence, uniqueness
and representation results in the following.

6.1 Solving the FBSDE System: A Fixed Point Approach

Until further notice, we fix t0 ∈ [0, T ] and y0 ∈ R and let η , ηt0,y0 be given
by (6.1). For a progressively measurable process (X)t∈[t0,T ] we write

‖X‖∞ = ess supd t⊗P |Xt|

and denote by D∞ the collection of all progressively measurable processes
(Xt)t∈[t0,T ] with ‖X‖∞ < ∞. Clearly (D∞, ‖ · ‖∞) forms a Banach space.
In the following we construct a fixed point of the operator Ψ : Db → D∞,
X 7→ ΨX defined via

(ΨX)t , Et

[∫ T
t
e−

∫ s
t
r̃(ητ ) d τ δψ

1−q (0 ∨Xs)
q d s+ ε̂e−

∫ T
t
r̃(ητ ) d τ

]
(6.3)

where Db , {X ∈ D∞ : (0 ∨X)q is well-defined and bounded}.
Remark. For every X ∈ Db the process ΨX is continuous and thus has a
progressive modification. Indeed, setting

Mt , Et

[∫ T
0
e−

∫ s
0
r̃(ητ ) d τ δψ

1−q (0 ∨Xs)
q d s+ ε̂e−

∫ T
0
r̃(ητ ) d τ

]
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we have that M is a bounded continuous martingale and

(ΨX)t = e
∫ t
0
r̃(ητ ) d τMt −

∫ t
0
e−

∫ s
t
r̃(ητ ) d τ δψ

1−q (0 ∨Xs)
q d s.

In the following we always work with that version of ΨX. �

Lemma 6.1 Let X ∈ Db with ΨX = X. Then X solves the BSDE4

dXt = −
[
δψ

1−q (0 ∨Xt)
q − r̃(ηt)Xt

]
d t+ Zt dWt, XT = ε̂. (6.4)

In particular, if X is positive then it is a solution of (6.2).

Proof Let X ∈ D∞ with ΨX = X and set

Yt , e
−

∫ t
t0
r̃(ητ ) d τ

Xt = Et

[∫ T
t
e
−

∫ s
t0
r̃(ητ ) d τ δψ

1−q (0 ∨Xs)
q d s+ ε̂e

−
∫ T
t0
r̃(ητ ) d τ

]
and

Mt , Et

[∫ T
t0
e
−

∫ s
t0
r̃(ητ ) d τ δψ

1−q (0 ∨Xs)
q d s+ ε̂e

−
∫ T
t0
r̃(ητ ) d τ

]
.

Then M is a bounded martingale and we have

Yt = Mt −
∫ t
t0
e
−

∫ s
t0
r̃(ητ ) d τ δψ

1−q (0 ∨Xs)
q d s.

With integration by parts it follows that X solves (6.4). If X is positive then
X = 0 ∨X and thus X also solves (6.2). ut

Our construction of a fixed point of Ψ is based on the following ramification
of the classical Banach fixed point argument for the space D∞:

Proposition 6.2 (Fixed Point Iteration in D∞) Let S : A → A be an
operator on a closed, non-empty subset A of D∞ and assume that there are
constants c > 0, % ≥ 0 such that for all X,Y ∈ A we have a Lipschitz condition
of the form

|(SX)t − (SY )t| ≤ c
∫ T
t

Et

[
e(s−t)%|Xs − Ys|

]
d s a.s. for all t ∈ [t0, T ].

Then S has a unique fixed point. Moreover, the iterative sequence X(n) ,
SX(n−1) (n = 1, 2, . . . ) with an arbitrarily chosen X(0) ∈ A satisfies

‖X(n) −X‖∞ ≤ eT%(‖X(0)‖+ ‖X‖∞)
(
ecT
n

)n
for all n > cT.

Proof The proof is provided in Appendix A. ut

The following general convergence theorem is the main result of Section 6.

4 Typically, the pair (X,Z) would be referred to as the solution of the BSDE (6.4). For
simplicity of notation, and since Z is not required for our further analysis, here and in the
following we also refer to X alone as the solution of (6.4).
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Theorem 6.3 (Fixed Point and Convergence) Let t0 ∈ [0, T ] and y0 ∈ R.
Then there is a unique progressively measurable process Xt0,y0 ∈ D∞ that
solves (6.2). Moreover there are constants 0 < h < h such that h ≤ Xt0,y0 ≤ h
for all (t0, y0) ∈ [0, T ] × R. The sequence defined by Xt0,y0

(0) , ε̂ and Xt0,y0
(n) ,

ΨXt0,y0
(n−1) (n = 1, 2, . . . ) satisfies

‖Xt0,y0
(n) −Xt0,y0‖∞ ≤ C

(
c
n

)n
for all n > c

e

where the constants C, c > 0 are explicitly given by C , eT‖r‖∞(ε̂+ h) and

c , eTq| δψ1−q |h
q−1 for q < 1, c , eTq| δψ1−q |h

q−1
for q > 1. (6.5)

In order to prove Theorem 6.3 we distinguish the cases q < 1 and q > 1.

Proof of Theorem 6.3 for q < 1. Throughout this paragraph we assume that
q < 1. We consider the operator Ψ defined in (6.3) on the closed subset

A<1 , {X ∈ D∞ : Xt ≥ h, d t⊗ P -a.e.}, where h , ε̂e−T‖r̃‖∞ > 0, (6.6)

of the Banach space D∞. Note that A<1 ⊂ Db.

Lemma 6.4 The operator Ψ : A<1 → A<1 is well-defined, and with c ,
| δψ1−q |qh

q−1 we have

|(ΨX)t − (ΨX̃)t| ≤ c
∫ T
t
e(s−t)‖r̃‖∞ Et[|Xs − X̃s|] d s for all X, X̃ ∈ A<1.

Proof For X ∈ A<1 we obviously have 0 ∨X = X and thus

(ΨX)t = Et

[∫ T
t
e−

∫ s
t
r̃(ητ ) d τ δψ

1−qX
q
s d s+ ε̂e−

∫ T
t
r̃(ητ ) d τ

]
≥ Et

[
ε̂e−

∫ T
t
r̃(ητ ) d τ

]
≥ h.

Moreover, (ΨX)t ≤ TeT‖r̃‖∞ δψ

1−q (hq + ‖X‖q∞) + ε̂eT‖r̃‖∞ and it follows that

Ψ : A<1 → A<1 is well-defined. For the second part of the claim, note that the
mapping [h,∞) → R, x 7→ xq is Lipschitz continuous with Lipschitz constant
L , qhq−1. Thus we have

|(ΨX)t − (ΨX̃)t| ≤ δψ

1−qL
∫ T
t
e(s−t)‖r̃‖∞ Et[|Xs − X̃s|] d s. ut

Theorem 6.5 (Fixed Point and Convergence: q < 1) Suppose that q < 1.
There exists a progressively measurable process X ∈ D∞ with

Xt = (ΨX)t = Et

[∫ T
t
e−

∫ s
t
r̃(ητ ) d τ δψ

1−qX
q
s d s+ ε̂e−

∫ T
t
r̃(ητ ) d τ

]
.

Starting from X(0) = ε̂ the iterative sequence h ≤ X(n) , ΨX(n−1) (n =
1, 2, . . . ) converges to X in D∞. In addition we have h ≤ X ≤ h where both
h, given by (6.6), and h > 0 are independent of (t0, y0). Finally, the process
X is the unique fixed point of Ψ that is bounded below by h.
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Proof It is clear that h ≤ ε̂ = X(0) and thus X(0) ∈ A<1. Lemma 6.4 implies
that X(n) ∈ A<1 for each member of the sequence X(n) = ΨX(n−1). Applying
Proposition 6.2 to the mapping Ψ : A<1 → A<1 it follows that this sequence
converges in norm to the unique fixed point X = ΨX. In particular we have
0 < h ≤ X and

Xt = (ΨX)t = Et[
∫ T
t
e−

∫ s
t
r̃(ητ ) d τ δψ

1−qX
q
s d s+ ε̂e−

∫ T
t
r̃(ητ ) d τ ].

To establish the upper bound, observe that by Lemma 6.1, X satisfies

dXt = −
[
δψ

1−qX
q
t − r̃(t, ηt)Xt

]
d t+ dMt, XT = ε̂

where M is an L2-martingale. Hence for every stopping time τ we have

1{τ>t}Xt = Et

[
1{τ>t}

∫ τ
t

(
δψ

1−qX
q
s − r̃(s, ηs)Xs

)
d s+ 1{τ>t}Xτ

]
≤ Et

[
1{τ>t}

∫ τ
t

(aXs + b) d s+ 1{τ>t}Xτ

]
where a , δψ

1−q + ‖r̃‖∞ > 0 and b , δψ

1−q (1 + hq). Thus we can apply a variant
of the stochastic Gronwall-Bellman inequality, see Proposition B.1, to obtain

Xt ≤ Et

[∫ T
t
ea(s−t)bd s+ ea(T−t)ε̂

]
≤ TeaT b+ eaT ε̂ , h

where h is a constant depending only on δ, ψ, q, r̃, ε̂ and T . ut

Proof (of Theorem 6.3 for q < 1) Theorem 6.5 yields a unique process Xt0,y0

that satisfies Xt0,y0 = ΨXt0,y0 and 0 < h ≤ Xt0,y0 ≤ h < ∞, where the
constants h, h are independent of (t0, y0). By Lemma 6.1 the process Xt0,y0

is a solution of (6.2). Proposition 6.2 shows that the convergence rate of the
iterative sequence Xt0,y0

(0) = ε̂, Xt0,y0
(n) , ΨXt0,y0

(n−1) (n = 1, 2, . . . ) is given by

‖Xt0,y0
(n) −Xt0,y0‖∞ ≤ eT%(‖Xt0,y0

(0) ‖+ ‖Xt0,y0‖∞)
(
ecT
n

)n
where % , ‖r̃‖∞ and c , | δψ1−q |qh

q−1 by Lemma 6.4. In view of the fact that

‖Xt0,y0
(0) ‖∞ = ε̂ and ‖Xt0,y0‖∞ ≤ h, this completes the proof. ut

Proof of Theorem 6.3 for q > 1. In the following we suppose that q > 1. In
contrast to the previous paragraph, we now consider the operator Ψ on

A>1 , {X ∈ D∞ : Xt ≤ h, d t⊗ P -a.e.}, where h , ε̂eT‖r̃‖∞ . (6.7)

Note that A>1 ⊂ D∞ is closed and satisfies A>1 ⊂ Db.

Lemma 6.6 The operator Ψ : A>1 → A>1 is well-defined, and with c ,

| δψ1−q |qh
q−1

we have

|(ΨX)t − (ΨX̃)t| ≤ c
∫ T
t
e(s−t)‖r̃‖∞ Et[|Xs − X̃s|] d s for all X, X̃ ∈ A>1.
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Proof For any X ∈ D∞ we have

(ΨX)t = Et

[∫ T
t
e−

∫ s
t
r̃(ητ ) d τ δψ

1−q (0 ∨Xs)
q d s+ ε̂e−

∫ T
t
r̃(ητ ) d τ

]
≤ Et

[
ε̂e−

∫ T
t
r̃(ητ ) d τ

]
≤ h.

In addition we have (ΨX)t ≥ −TeT‖r̃‖∞ | δ
ψ

1−q |‖X‖q∞ so that Ψ : A>1 → A>1

is well-defined. Since the function [0, h] → R, x 7→ (0 ∨ x)q is Lipschitz with

Lipschitz constant L , qh
q−1

we obtain

|(ΨX − ΨX̃)(t, y)| ≤ | δψ1−q |L
∫ T
t
e(s−t)‖r̃‖∞ Et[|Xs − X̃s|] d s. ut

Theorem 6.7 (Fixed Point and Convergence: q > 1) Let q > 1. There
is a progressively measurable process X ∈ D∞ with

Xt = (ΨX)t = Et
[∫ T
t
e−

∫ s
t
r̃(ητ ) d τ δψ

1−qX
q
s d s+ ε̂e−

∫ T
t
r̃(ητ ) d τ

]
and the iterative sequence h ≥ X(n) , ΨX(n−1) (n = 1, 2, . . . ) with X(0) , ε̂
converges to X in D∞. Besides we have h ≤ X ≤ h where h > 0 and h in
(6.7) are independent of (t0, y0), and X is the unique positive fixed point of Ψ
that is bounded above by h.

Proof We have X(0) = ε̂ ≤ h and thus X(0) ∈ A>1. By Lemma 6.6 each
member of the iterative sequence satisfies X(n) = ΨX(n−1) ∈ A>1 and in
particular X(n) ≤ h. Proposition 6.2 applies to Ψ : A>1 → A>1 to show that
there is a unique X ∈ A>1 with ΨX = X and ‖X(n)−X‖∞ → 0. In particular
X satisfies X ≤ h.

To demonstrate that X ≥ 0, recall from Lemma 6.1 that

dXt = −
[
δψ

1−q (0 ∨Xt)
q − r̃(t, ηt)Xt

]
d t+ dMt, XT = ε̂

with an L2-martingale M . Thus for all stopping times τ we have

1{τ>t}Xt = Et

[
1{τ>t}

∫ τ
t

(
δψ

1−q (0 ∨Xs)
q − r̃(s, ηs)Xs

)
d s+ 1{τ>t}Xτ

]
.

With L , qh
q−1

denoting the Lipschitz constant of (−∞, h)→ R, x 7→ (0∨x)q,
we obtain

1{τ>t}Xt ≥ Et

[
1{τ>t}

∫ τ
t

(
δψ

1−qL1{Xs>0}Xs − r̃(s, ηs)Xs

)
d s+ 1{τ>t}Xτ

]
= Et

[
1{τ>t}

∫ τ
t
asXs d s+ 1{τ>t}Xτ

]
where the process as , δψ

1−qL1{Xs>0} − r̃(s, ηs) is bounded and progressively
measurable. Now Proposition B.1 yields

Xt ≥ Et

[
e
∫ T
t
as d sε̂

]
≥ eT (

δψ

1−q L−‖r‖∞)
ε̂ , h > 0
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where h is a constant that depends only on δ, ψ, q, r̃, ε̂ and T . In particular X
is positive and we have

Xt = (ΨX)t = Et[
∫ T
t
e−

∫ s
t
r̃(ητ ) d τ δψ

1−qX
q
s d s+ ε̂e−

∫ T
t
r̃(ητ ) d τ ]. ut

Proof (of Theorem 6.3 for q > 1) The proof is the same as in the case q < 1,
with Theorem 6.5 replaced by Theorem 6.7 and Lemma 6.4 replaced by Lemma
6.6. ut

6.2 Differentiability of the Fixed Point

In this section we demonstrate that the solutions Xt0,y0 of (6.2) provided by
Theorem 6.3 yield a solution h to the reduced HJB equation (4.5)

ht − r̃h+ α̃hy + 1
2β

2hyy + δψ

1−qh
q = 0, h(T, · ) = ε̂.

For that purpose we cut off the nonlinearity using the a priori estimates pro-
vided by Theorem 6.3, which leads us to a PDE that is known to have a clas-
sical solution g ∈ C1,2

b ([0, T ] × R). We then conclude by proving that g = h,

where h(t0, y0) = Xt0,y0
t0 . Here and in the following C1,2

b ([0, T ]×R) denotes the
Banach space of all functions u : [0, T ]× R, (t, y)→ u(t, y) that are once con-
tinuously differentiable with respect to t and twice continuously differentiable
with respect to y and have norm ‖u‖C1,2 <∞. The norm is given by

‖u‖C1,2 , ‖u‖∞ + ‖ut‖∞ + ‖uy‖∞ + ‖uyy‖∞ for u ∈ C1,2
b ([0, T ]× R).

Theorem 6.8 (Differentiability, Probabilistic Representation)
Let Xt0,y0 denote the solutions to the FBSDEs (6.2) given by Theorem 6.3 and
define

h(t0, y0) , Xt0,y0
t0 for (t0, y0) ∈ [0, T ]× R.

Then h ∈ C1,2
b ([0, T ] × R) and h satisfies the reduced HJB equation (4.5).

Moreover, h is the unique solution of (4.5) that is bounded from above and
away from 0. In addition, h admits the probabilistic representation

h(t, y) = Et

[∫ T
t

(
−r̃(ηt,ys )h(s, ηt,ys ) + δψ

1−qh(s, ηt,ys )q
)

d s+ ε̂
]
. (6.8)

Proof We take h and h as in Theorem 6.3 and choose a smooth cut-off function
ϕ ∈ C1

b (R) with

ϕ(v) = 1
2h for v ≤ 1

2h, ϕ(v) = v for v ∈ [h, h], ϕ(v) = h+ 1 for v ≥ h+ 1.

We set f(v) , δψ

1−qϕ(v)q and consider the semilinear Cauchy problem

gt − r̃g + α̃gy + 1
2β

2gyy + f(g) = 0, g(T, · ) = ε̂. (6.9)



Optimal Consumption and Investment with Epstein-Zin Utility 19

The function f is clearly continuously differentiable and bounded with a
bounded derivative. Hence by a classical result on semilinear PDEs, see Corol-
lary C.4, there exists a unique classical solution g ∈ C1,2

b ([0, T ]× R) to (6.9).

To show that g = h we fix (t0, y0) ∈ [0, T ]× R and set X̄t0,y0
t , X̄t , g(t, ηt),

t ∈ [t0, T ], where η , ηt0,y0 is given by (6.1). By Itō’s formula and (6.9)

d X̄t = −[f(X̄t)− r̃(ηt)X̄t] d t+ Z̄t dWt, X̄T = ε̂, (6.10)

where Z̄t , gy(t, ηt)β(ηu,yt ) is bounded. On the other hand, Theorem 6.3 yields

a unique solution X , Xt0,y0 of (6.2), i.e.

dXt = −
[
δψ

1−qX
q
t − r̃(ηt)Xt

]
d t+ Zt dWt, XT = ε̂.

Since h ≤ X ≤ h we have f(Xt) = δψ

1−qX
q
t and therefore X also satisfies

dXt = −[f(Xt)− r̃(ηt)Xt] d t+ Zt dWt, XT = ε̂.

Thus we conclude that X solves (6.10), too. Since (6.10) is a BSDE with a Lip-
schitz driver, it follows from Theorem 2.1 in El Karoui, Peng and Quenez [20]
that X = X̄. In particular we have h(t0, y0) = Xt0,y0

t0 = X̄t0,y0
t0 = g(t0, y0).

To show uniqueness, let 0 < u ≤ u ≤ u satisfy (4.5). Replacing h and h by
h ∧ u and h ∨ u in the first part of the proof, it follows that both u and h
coincide with the unique solution of (6.9). ut

Proof (of Theorem 4.6) This follows from Theorem 6.3 and Theorem 6.8. ut

7 PDE Iteration Approach

In this section we develop an explicit constructive method to obtain the so-
lution of the reduced HJB equation. Existence and uniqueness of the solu-
tion are guaranteed by Theorem 4.6 above. More precisely, we will show that
hn , Φnε̂

n→∞−→ h in C0,1, where the operator Φ is given by

Φ : D(Φ) ⊂ C1,2
b ([0, T ]× R)→ C1,2

b ([0, T ]× R), f 7→ Φf

and g , Φf is the unique classical solution of the linear Cauchy problem

0 = gt − r̃g + α̃gy + 1
2β

2gyy + δψ

1−q (0 ∨ f)q with g(T, · ) = ε̂.

Thus h can be determined by iteratively solving linear PDEs.
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7.1 PDE Iteration

Our first step is to show that the iteration of PDEs as above is feasible. Thus
we verify that the operator Φ is well-defined on its domain D(Φ) where

D(Φ) , {f ∈ C1,2
b ([0, T ]× R) : f ≥ h} for q < 1, and

D(Φ) , {f ∈ C1,2
b ([0, T ]× R) : f ≤ h} for q > 1.

Here h, h are the constants specified in Theorem 6.3.

Lemma 7.1 If u ∈ D(Φ) then there exists a unique g ∈ C1,2([0, T ]× R) with

0 = gt − r̃g + α̃gy + 1
2β

2gyy + δψ

1−q (0 ∨ u)q, g(T, · ) = ε̂. (7.1)

Proof If q < 1 and u ≥ h > 0, then f , δψ

1−q (0 ∨ u)q ∈ C1,2([0, T ] × R). If

q > 1 with u ≤ h <∞, then f is Lipschitz continuous since

|f(t, y)− f(t′, y′)| ≤ | δψ1−q |qh
q−1|u(t, y)− u(t′, y′)|.

In either case Corollary C.2 yields a unique g ∈ C1,2([0, T ] × R) satisfying
(7.1). ut

To establish the link between the iterated solutions hn of the Cauchy prob-
lem and the stochastic processes Xt0,y0

(n) of Section 6, we first record a simple

uniqueness result:

Lemma 7.2 For every n ∈ N the process X(n) , Xt0,y0
(n) defined in Theorem

6.3 is the unique solution of the linear BSDE

dX
(n)
t = −

[
δψ

1−q
(
0 ∨X(n−1)

t

)q − r̃(ηt0,y0t )X
(n)
t

]
d t+ Z

(n)
t dWt, X

(n)
t = ε̂.

(7.2)

Proof With ϕ , δψ

1−q (0 ∨X(n−1))q, by definition of X(n), we have

X
(n)
t = Et

[∫ T
t
e−

∫ s
t
r̃(ηt0,y0τ ) d τϕs d s+ ε̂e−

∫ T
t
r̃(ηt0,y0τ ) d τ

]
.

By Proposition 2.2 in [20], X(n) is the unique solution of the linear backward

equation dX
(n)
t = −[ϕt − r̃(ηt0,y0t )X

(n)
t ] d t+ Z

(n)
t dWt. ut

The connection between hn and Xt0,y0
(n) is now given as follows:

Theorem 7.3 For each n ∈ N we have hn = Φnε̂ ∈ D(Φ) and

hn(t, ηt0,y0t ) =
(
Xt0,y0

(n)

)
t

for all t ∈ [t0, T ], (t0, y0) ∈ [0, T ]× R.
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Proof The assertion is clearly true for n = 0 since h0 = Φ0ε̂ = ε̂ andXt0,y0
(0) = ε̂.

Assume by induction that hn−1 = Φn−1ε̂ ∈ D(Φ) with

hn−1(t, ηt0,y0t ) =
(
Xt0,y0

(n−1)

)
t

for all t ∈ [t0, T ], (t0, y0) ∈ [0, T ]× R. (7.3)

By Lemma 7.1 g , hn = Φhn−1 ∈ C1,2
b ([0, T ]×R) is well-defined and satisfies

0 = gt − r̃g + α̃gy + 1
2β

2gyy + δψ

1−q (0 ∨ hn−1)q, g(T, · ) = ε̂. (7.4)

Let (t0, y0) ∈ [0, T ]×R and η , ηt0,y0 be given by (6.1) and set Xt , g(t, ηt).
By (7.3), (7.4) and Itō’s formula we have

dXt = −
[
δψ

1−q

(
0 ∨

(
Xt0,y0

(n−1)

)
t

)q
− r̃(ηt)Xt

]
d t+ Zt dWt,

where Zt , gy(t, ηt)β(ηt) is bounded. Consequently X is a solution of (7.2),
so by Lemma 7.2 we must have X = Xt0,y0

(n) . Hence it follows that

hn(t, ηt0,y0t ) =
(
Xt0,y0

(n)

)
t

for all t ∈ [t0, T ], (t0, y0) ∈ [0, T ]× R.

For q < 1 Theorem 6.5 implies h ≤ Xt0,y0
(n) , whereas for q > 1 we have Xt0,y0

(n) ≤
h by Theorem 6.7. Thus hn ∈ D(Φ), and the induction is complete. ut

The convergence hn → h is now a corollary of the analysis in Section 6.

Corollary 7.4 Let h ∈ C1,2
b ([0, T ]× R) be the unique solution to the reduced

HJB equation (4.5). Moreover let hn , Φnε̂ ∈ C1,2
b ([0, T ] × R) be defined

recursively as the unique bounded solution of the Cauchy problem

0 = (hn)t − r̃hn + α̃(hn)y + 1
2β

2(hn)yy + δψ

1−q (0 ∨ hn−1)q, hn(T, · ) = ε̂.

Then, with the constants C, c > 0 given by (6.5), we have

‖hn − h‖∞ ≤ C
(
c
n

)n
for all n > c

e .

Proof By Theorem 7.3 we have hn(t, ηt0,y0t ) =
(
Xt0,y0

(n)

)
t

for all t ∈ [t0, T ] and

all (t0, y0) ∈ [0, T ]× R. Thus Theorem 6.3 yields

|hn(t0, y0)− h(t0, y0)| = |
(
Xt0,y0

(n)

)
t0
−Xt0,y0

t0 | ≤ ‖Xt0,y0
(n) −Xt0,y0‖∞ ≤ C

(
c
n

)n
for all n > c

e uniformly in (t0, y0) ∈ [0, T ]× R. ut
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7.2 Convergence Rate of the PDE Iteration in C0,1

In this section we use the probabilistic representation (6.8) of h established in
Theorem 6.8 to demonstrate that both hn and (hn)y converge uniformly to
h and hy. We also identify the relevant convergence rate. We replace (A1) by
the slightly stronger regularity condition

(A1’) The coefficients r, λ, σ, α, β are bounded with bounded, Lipschitz con-
tinuous derivatives.

Similarly as in Lemma 4.5 this assumption guarantees that α̃ and β have a
bounded Lipschitz continuous derivative. This implies the following estimate
for the derivative of the semigroup (Ps)s∈[0,T ] generated by η0, · :

Proposition 7.5 (Derivative of the Semigroup) Assume that (A1’) and
(A2) are satisfied and let (Ps)s∈[0,T ] be the semigroup associated with the pro-
cess η0, · given by (6.1). Then there exists a constant M > 0 such that for all
f ∈ Cb(R) we have

‖D(Ptf)‖∞ ≤Mt−
1
2 ‖f‖∞ for all t ∈ [0, T ].

Proof See Theorem 1.5.2 in Cerrai [11] or Theorem 3.3 in Bertoldi and
Lorenzi [4]. ut

Remark. We refer to Elworthy and Li [21] and Cerrai [10] for related results.
For Hölder-continuous f ∈ Cb(R), results like Proposition 7.5 are well-known
in the literature on parabolic PDEs; see, e.g., [29]. �
We are now in a position to establish the convergence of our fixed point itera-
tion in C0,1([0, T ]×R) endowed with the norm ‖h‖C0,1 , ‖h‖∞+‖ ∂∂yh‖∞. This
provides the rigorous basis for the numerical method we develop in Section 8.

Theorem 7.6 (Convergence in C0,1) The functions hn (n = 1, 2, . . . ) are
uniformly bounded in C0,1([0, T ]× R) and we have

‖hn − h‖C0,1 ≤ 2cM
√
T
(
‖r‖∞C

n + 1
eT

) (
c

n−1

)n−1

for all n > c
e + 1,

where C, c > 0 are given by (6.5) and M > 0 is given in Proposition 7.5.

Proof First, for each n ∈ N Theorem 7.3 implies that hn(t, ηt0,y0t ) =
(
Xt0,y0

(n)

)
t

so by Lemma 7.2

hn(t, ηt0,y0t ) = Et
[∫ T
t

δψ

1−q (0 ∨ hn−1(s, ηt0,y0s ))q − r̃(ηs)hn(s, ηt0,y0s ) d s+ ε̂
]

for all t ∈ [t0, T ]. Hence with fn , δψ

1−q (0 ∨ hn)q we can represent hn via

hn(t0, y0) =
∫ T−t0

0
(Psh̃n(t0, s, · ))(y0) d s+ ε̂
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where (Ps)s∈[0,T ] denotes the semigroup corresponding to η0, · and h̃n(t, s, y) ,
fn−1(s+ t, y)− r̃(y)hn(s+ t, y). Analogously, by Theorem 6.8 we obtain

h(t0, y0) =
∫ T−t

0
(Psh̃(t0, s, · ))(y) d s+ ε̂,

with h̃(t, s, ·) , δψ

1−qh(s+ t, ·)q− r̃h(s+ t, ·). Setting vn , h̃n− h̃, we thus have

hn(t0, · )−h(t0, · ) =
∫ T−t0

0
Psvn(t0, s, · ) d s. With C, c > 0 given by (6.5) and

Corollary 7.4 it therefore follows that

‖vn‖∞ ≤ ‖r‖∞‖hn − h‖∞ + Lq| δ
ψ

1−q |‖hn−1 − h‖∞
≤ C‖r‖∞( cn )n + Lq| δ

ψ

1−q |( c
n−1 )n−1,

where Lq , 1{q<1}q| δ
ψ

1−q |h
q−1 + 1{q>1}q| δ

ψ

1−q |h
q−1

. Proposition 7.5 implies

‖ ∂∂yhn(t0, · )− ∂
∂yh(t0, · )‖∞ ≤M‖vn‖∞

∫ T−t0
0

1√
s

d s ≤ 2
√
TM‖vn‖∞.

Since Lq| δ
ψ

1−q | = c
eT and ( cn )n−1 ≤ ( c

n−1 )n−1 this completes the proof. ut

8 Numerical Results

8.1 User’s Guide

Before we study specific applications, we provide a general outline that ex-
plains how to apply our theoretical results to concrete consumption-portfolio
problems. By Theorem 5.1, the solution to the consumption-portfolio prob-
lem (P) is given by the optimal policies (π̂, ĉ) in (5.1). These depend on the
solution of the reduced HJB equation

0 = ht − r̃h+ α̃hy + 1
2β

2hyy + δψ

1−qh
q, h(T, · ) = ε̂, (4.5)

see also Definition 4.3. Theorem 4.6 implies that this PDE admits a unique
bounded classical solution. Algorithm 8.1 below provides a step-by-step method
for the construction of solutions to PDEs of the form (4.5). This algorithm
is easy to implement and relies solely on an efficient method for solving lin-
ear PDEs as a prerequisite. Consistency of this approach is guaranteed by
Theorem 7.6, which demonstrates that the sequence of solutions provided by
Algorithm 8.1 converges to the solution of (4.5). Theorem 7.6 also implies
that the same is true for the associated derivatives. Additionally, Theorem 7.6
ensures a superexponential speed of convergence.

Algorithm 8.1

(1) Set h0 , ε̂ and n , 1.
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(2) Compute hn as the solution g of the linear inhomogeneous PDE

0 = gt − r̃g + α̃gy + 1
2β

2gyy + δψ

1−q (0 ∨ hn−1)q, g(T, · ) = ε̂. (∗)
(3) If hn is not sufficiently close to hn−1, increase n by 1 and return to (2).

To solve the linear PDE (∗) in Step (2), we use a semi-implicit Crank-Nicolson
scheme. Notice that the relevant finite-difference matrices depend on the linear
part of the PDE (∗) only. Therefore, the construction and LU decomposition of
these matrices must be carried out only once in a precomputation step. This is
one important feature that contributes to the excellent numerical performance
of our method.

Remark. Our results require the coefficients of the state process to satisfy as-
sumptions (A1’) and (A2). These are standard regularity conditions, but they
may not be satisfied for specific models such as the Heston model below. In
this case, we apply our analysis to suitably truncated versions of these models
(e.g., stochastic volatility is truncated below 0.0001% and above 10000%). No-
tice that truncations of this kind are implicit in any numerical implementation
of a possibly unbounded model on a finite grid. �

8.2 Generalized Square-Root and GARCH Diffusions

We first illustrate our approach for the model specification

dSt = St[(r + λ̄Yt) d t+
√
Yt dWt] (8.1)

with constant interest rate r and constant λ̄, i.e. we consider a stochastic
volatility model with stochastic excess return. The state process satisfies

dYt = (ϑ− κYt) d t+ β̄Y pt (ρdWt +
√

1− ρ2 d W̄t) (8.2)

with mean reversion level ϑ/κ, mean reversion speed κ, and p ∈ [0.5, 1]. For
p = 0.5 we obtain the Heston [23] model and for p = 1 a GARCH diffusion
model. Christoffersen, Jacobs and Mimouni [13] test the empirical performance
of stochastic volatility models and find that models with p = 1 outperform
the Heston model. Note that closed-form solutions for consumption-portfolio
problems with such dynamics are only available in the special case p = 0.5, but
solely with specific parameter choices. Further note that for p > 0.5 the model
is not affine, i.e. explicit solutions cannot be expected. The model coefficients
are chosen as follows:

r = 0.02, κ = 5, ϑ
κ = 0.152, λ̄ = 3.11, ρ = −0.5, and β̄ = 0.25 (8.3)

so that for p = 0.5 the calibration is similar to that of Liu and Pan [31].
Furthermore, we assume that the agent’s rate of time preference is δ = 0.05
and that the bequest motive is ε = 1. The time horizon is set to T = 10 years,
and we truncate the state space of the process Y to ensure (A1’) and (A2). We
begin with numerical examples for the Heston model (i.e., p = 0.5 in (8.2)).
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Computational Efficiency. The theoretical convergence rate identified in The-
orem 7.6 materializes quickly in practice. Typical running times for the solu-
tions reported below are well under 5 seconds.5 To quantify the convergence
speed, Figure 8.1 depicts the logarithmic relative deviations

log10

(‖hn − hn−1‖∞
‖hn−1‖∞

)
and log10

(
‖ ∂∂yhn − ∂

∂yhn−1‖∞
1 + ‖ ∂∂yhn−1‖∞

)
(8.4)

as a function of the number of iterations n. Figure 8.1 clearly illustrates the
superlinear convergence of our method. Figure 8.2 shows the convergence of
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Fig. 8.1 Logarithmic Deviation from Previous Solution. This figure depicts the
convergence speed (8.4) of the value function. This figure is based on a Heston model with
parameters (8.3).

Algorithm 8.1. We plot the intermediate solutions after n = 1, 2, . . . , 5, 10, 15
steps of the iteration. It is apparent that the algorithm converges quickly: After
n = 5 steps the solution is visually indiscernible from subsequent iterations;
the solutions for n ≥ 15 are even numerically indistinguishable.

Optimal Strategies. Figure 8.3 illustrates the optimal consumption-wealth ra-
tio (c/x)? at time t = 0 as a function of initial volatility σ0 for a risk aversion
of γ = 5 and an EIS of ψ ∈ {0.5, 1, 1.5}. For reasonable risk aversions, the
optimal stock allocations as a function of σ0 are almost flat. For instance, for
γ ∈ {3, 4, 5, 6, 10} and ψ = 0.5 the demands vary between about 110% and
30%.

Comparison with Known Solutions. Figure 8.4 shows a range of solutions of
(4.5) as the EIS ψ varies. Here we have chosen γ = 2 so that for ψ = 0.125
(the lowest graph in Figure 8.4) an explicit solution is available (see [26]). For
ψ = 1 we use the finite-horizon analog of the explicit solution in [12]. The
solutions for the other values of the EIS are computed by applying Algorithm

5 Machine: Intel R© CoreTM i3-540 Processor (4M Cache, 3.06 GHz), 4 GB RAM.
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Fig. 8.2 Approximation after n Iteration Steps. The functions hn described in Algo-
rithm 8.1 converge to the solution h of the reduced HJB equation. This figure is based on a
Heston model with parameters (8.3).
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Fig. 8.3 Optimal Consumption-Wealth Ratio. This figure depicts the optimal
consumption-wealth ratio (c/x)? at time t = 0 as a function of initial volatility σ0 for a
risk aversion of γ = 5. This figure is based on a Heston model with parameters (8.3).
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Fig. 8.4 Value Function for Different EIS. This figure compares the function h
k

1−γ at
time t = 0 for a risk aversion of γ = 2 and an EIS of ψ ∈ {0.125, 0.25, 0.5, 0.9, 1, 1.1, 1.5, 2}.
It is based on a Heston model with parameters (8.3).
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8.1. Note that Figure 8.4 depicts g , h
k

1−γ so that the value function can be
represented as w(t, x, y) = 1

1−γx
1−γh(t, y)k = 1

1−γ (g(t, y)x)
1−γ

where in this
context g can be interpreted as a cash multiplier.

Finally, we present comparative statics for the model (8.1) where we vary the
power p. Figure 8.5 shows the value of the stock demand π? at time t = 0 as
a function of the initial volatility σ0 and the power p. Here γ = 5 and the EIS
is ψ = 1.5.
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Fig. 8.5 Optimal Stock Demand and Power. This figure depicts the optimal stock
demand π? at time t = 0 as a function of initial volatility σ0 and the power p. The model
is (8.1) so p = 0.5 corresponds to the Heston model. The calibration is given by parameters
(8.3), the agent’s risk aversion is γ = 5 and his EIS is ψ = 1.5.

8.3 Exponential Vasicek Model

As another application, we consider a stochastic volatility model where the
volatility is lognormally distributed. The asset price dynamics are

dSt = St[(r + λ̄e2Yt) d t+ eYt dWt]

with interest rate r = 0.05 and λ̄ = 3.11. The state process has Vasicek
dynamics dYt = (ϑ−κYt) d t+ β̄(ρdWt +

√
1− ρ2 d W̄t) with mean reversion

speed κ = 5 and mean reversion level ϑ/κ = −1.933. The correlation is set to
ρ = −0.5 and we put β̄ = 0.57. These parameters are chosen in such a way that
the long-term mean and variance of the squared-volatility process σt = e2Yt

coincide with those of the squared volatility process in the Heston model (8.2)
calibrated according to (8.3). We continue to use the time preference rate
δ = 0.05 and bequest ε = 1. The state space of Y is truncated to ensure (A1’)
and (A2).
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Fig. 8.6 Optimal Consumption-Wealth Ratio. This figure depicts the optimal
consumption-wealth ratio (c/x)? at time t = 0 as a function of initial volatility σ0 for
γ = 5. This figure is based on an exponential Vasicek model with κ = 5, ϑ/κ = −1.933,
ρ = −0.5, and β̄ = 0.57.
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Fig. 8.7 Optimal Stock Demand and Risk Aversion. This figure shows the optimal
stock allocation π? at time t = 0 as a function of initial volatility σ0. The risk aversion
varies and the EIS is ψ = 0.5. This figure is based on an exponential Vasicek model with
κ = 5, ϑ/κ = −1.933, ρ = −0.5, and β̄ = 0.57.

Optimal Strategies. Figure 8.6 depicts the optimal consumption-wealth ratio
at time t = 0 as a function of initial volatility for a risk aversion of γ = 5 and
an EIS of ψ ∈ {0.5, 1, 1.5}. Figure 8.7 shows optimal stock allocations as a
function of initial volatility for γ ∈ {3, 4, 5, 6, 10} and ψ = 0.5.
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A Proofs Omitted from the Main Text

Proof (of Lemma 4.4) Since h solves the reduced HJB equation (4.5) we have

H(z, π̂, ĉ) , wt +x(r + π̂λ)wx − ĉwx + 1
2x

2π̂2σ2wxx + αwy

+ 1
2β

2wyy + xπ̂σβρwxy + f(ĉ, w) = 0

where z , (t, x, y, wx, wy, wxywxx, wyy). Separating H(z, π, c) , u(z, π) +
s(z, c) + q(z), it is easy to see that the candidate solutions π̂ and ĉ defined in
(4.4) are the unique solutions of the associated first-order conditions

0 = sc(z, c) = −wx + fc(c, w),

0 = uπ(z, π) = xλwx + πx2σ2wxx + xσβρwxy. (A.1)

Concavity of u and s implies that H(z, π̂, ĉ) = supπ∈R, c∈(0,∞)H(z, π, c). ut

Proof (of Lemma 4.5) By (A1) and (A2), α̃ and r̃ are bounded. Moreover

|α̃(y)− α̃(ȳ)| ≤ |1−γγ |ρ
(
|λ(y)
σ(y) |β(y)− β(ȳ)|+ |β(ȳ)

σ(y) ||λ(y)− λ(ȳ)|
)

+|β(ȳ)λ(ȳ)|σ(ȳ)−σ(y)
σ(y)σ(ȳ) |+ |α(y)− α(ȳ)|

so α̃ is Lipschitz continuous. Finally,

k|r̃(y)− r̃(ȳ)| ≤ |1− γ||r(y)− r(ȳ)|+ | 1−γγ |‖λ‖∞( inf
x∈R

σ(x))−2|λ(y)− λ(ȳ)|

+| 1−γγ |‖λ‖2∞‖σ‖∞( inf
x∈R

σ(x))−4|σ(ȳ)− σ(y)|. ut

Proof (of Lemma 5.3) The candidate optimal wealth process X̂ has dynamics

d X̂t = X̂t

[
(rt + 1

γ
λ2
t

σ2
t

+ k
γ
λtβtρ
σt

hy
h − δψhq−1) d t+ ( 1

γ
λt
σt

+ k
γβtρ

hy
h ) dWt

]
.

Put at , rt+ 1
γ
λ2
t

σ2
t

+ k
γ
λtβtρ
σt

hy
h − δψhq−1 and bt , 1

γ
λt
σt

+ k
γβtρ

hy
h . Our assump-

tions on the coefficients and on hy and h imply that both a and b are bounded.
By Itō’s formula

X̂p
t = xp exp

(
p
∫ t

0

(
as + 1

2 (p− 1)b2s
)

d s
)
Et
(
p
∫ ·

0
bs dWs

)
where Et( · ) denotes the stochastic exponential. Choose M > 0 such that
|pat| + |p(p − 1)b2t |, |pbt| < M for all t ∈ [0, T ]. By Novikov’s condition
Et
(
p
∫ ·

0
bs dWs

)
is an L2-martingale, so using Doob’s L2-inequality we get

E[supt∈[0,T ]X̂
p
t ] ≤ 2xpeMT E[ET

(
p
∫ ·

0
bs dWs

)2
]
1
2 <∞. ut
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Proof (of Lemma 5.4) Lemma 5.3 and the boundedness of δψh(t, Yt)
q−1 imply

that E[supt∈[0,T ]|ĉt|p] <∞ for all p ∈ R. In particular ĉ ∈ C. By Itō’s formula

dVt =
[
wt + X̂t(rt + π̂tλt)wx − ĉtwx + 1

2X̂
2
t π̂

2
t σ

2
twxx + αtwy + 1

2β
2
twyy

+X̂tπ̂tσtβtρwxy
]

d t+ dMt

where M is a local martingale. Hence dVt = −f(ĉt, Vt) d t + dMt by Lemma
4.4. Moreover, exploiting the special form of w we get

dMt = Vt

[
1−γ
γ

λt
σt

+ ρk
γ βt

hy
h

]
dWt + Vtk

√
1− ρ2βt

hy
h d W̄t.

Here Vt can be rewritten as Vt = w(t, X̂t, Yt) = 1
1−γ X̂

1−γ
t h(t, Yt)

k. By (4.6) the

function h is bounded and bounded away from zero. Thus E[supt∈[0,T ]|Vt|p] <
∞ for all p ∈ R, by Lemma 5.3. Hence V is a utility process associated with
ĉ; by (E1) it follows that V = V ĉ. Finally, the first-order condition (A.1) for
optimal consumption implies wx(t, X̂t, Yt) = fc(t, w(t, X̂t, Yt)) = fc(ĉt, V̂t).

ut

Proof (of Lemma 5.5) For simplicity of notation we set rt , r(Yt), λt , λ(Yt)
and σt , σ(Yt). We have dZπ,ct = m̂tct d t+m̂t dXπ,c

t +Xπ,c
t d m̂t+d[m̂t, X

π,c
t ],

by the product rule. Inserting the dynamics of Xπ,c from (4.1) we get

dZπ,ct = m̂tX
π,c
t [(rt + πtλt) d t+ πtσt dWt] +Xπ,c

t d m̂t + d[m̂t, X
π,c
t ].

By Lemma 5.4, V̂t = w(t, X̂t, Yt) and m̂t = e
∫ t
0
fv(ĉs,V̂s) d swx(t, X̂t, Yt). From

here on we abbreviate fv = fv(ĉt, V̂t), wx = wx(t, X̂t, Yt) etc. Clearly d m̂t =

m̂t[fv d t+ dwx
wx

]. Since fv(c, v) = δ φ−γ1−φ c
1−φ[(1− γ)v]

φ−1
1−γ − δθ, we obtain that

fv(ĉt, w(t, X̂t, Yt)) = φ−γ
1−φ δ

ψhq−1 − δθ. By Itō’s formula

dwx = wx

[
wxt
wx

d t+ wxx
wx

d X̂t + 1
2
wxxx
wx

d[X̂t] + 1
2
wxyy
wx

d[Yt] +
wxxy
wx

d[X̂t, Yt]
]
.

Substituting for w we find

dwx
kwx

= ht
h d t− γ

k
d X̂t
X̂t

+
hy
h dYt + 1

2
γ(1+γ)

k
d[X̂t]

X̂2
t

+ 1
2

(
(k − 1)

h2
y

h2 +
hyy
h

)
d[Yt]− γ

X̂t

hy
h d[X̂t, Yt].

Plugging in the candidate π̂ from (5.1) and the dynamics of X̂ and Y yields

dwx
kwx

= A1
t d t+A2

t d t− 1
k
λt
σt

dWt +
√

1− ρ2βt
hy
h d W̄t, where

A1
t ,

ht
h −

γ
k rt + 1

2
1
k

1−γ
γ

λ2
t

σ2
t

+ 1
γ
λtβtρ
σ

hy
h + γ

k δ
ψhq−1 + k

2
1+γ
γ β2

t ρ
2 h

2
y

h2

A2
t ,

hy
h

(
αt − ρβtλt

σt

)
+

h2
y

h2

(
k−1

2 β2
t − kβ2

t ρ
2
)

+
β2
t

2

hyy
h
.
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For the sum of the
h2
y

h2 -terms we have

k
2

1+γ
γ β2

t ρ
2 h

2
y

h2 +
h2
y

h2

(
k−1

2 β2
t − kβ2

t ρ
2
)

= β2
t
h2
y

h2

(
k
2ρ

2 1+γ
γ + k−1

2 − ρ2k
)

= 0

by our choice of k. Combining the above we obtain

d m̂t = km̂t

[
ht
h + 1

k

(
−γrt + 1

2
1−γ
γ

λ2
t

σ2
t
− δθ

)
+ α̃t

hy
h +

β2
t

2
hyy
h + φθ

k δ
ψhq−1

]
+km̂t

[
− 1
k
λt
σt

dWt +
√

1− ρ2βt
hy
h d W̄t

]
and it follows that d[m̂t, X

π,c
t ] = −λtπtm̂tX

π,c
t d t. Since h solves (4.5) we get

dZπ,ct = m̂tX
π,c
t [(rt + πtλt) d t+ πtσt dWt] +Xπ,c

t d m̂t + d[m̂t, X
π,c
t ]

= m̂tX
π,c
t

1
h

[
ht − r̃th+ α̃thy + 1

2β
2
t hyy + δψ

1−qh
q
]

d t+ dMt = dMt

where dMt , m̂tX
π,c
t [(πtσt − λt

σt
) dWt + k

√
1− ρ2βt

hy
h d W̄t] defines a local

martingale M . A direct calculation using the definition of π̂ yields the state-
ment for Z π̂,ĉ. ut

Proof (of Lemma 5.6) Recall that h ≤ h ≤ h so

fv(ĉs, V̂s) = φ−γ
1−φ δ

ψh(s, Ys)
q−1 − δθ ≤ |φ−γ1−φ |δψ

(
hq−1 + h

q−1
)

+ |δθ| , m1

and we get 0 ≤ exp(p
∫ T

0
fv(ĉs, V̂s) d s) ≤ eTpm1 . On the other hand, Lemma

5.4 implies E[supt∈[0,T ]fc(ĉt, V̂t)
p] <∞ for all p ∈ R. It follows that

E
[
supt∈[0,T ]m̂

p
t

]
<∞ for all p > 1.

To show that Z π̂,ĉ is a martingale, note that 1−γ
γ

λt
σt

+ k
γβtρ

hy
h is uniformly

bounded by some c > 0. Hence by Lemma 5.3 we have∫ T
0

E
[
m̂2
t X̂

2
t ( 1−γ

γ
λt
σt

+ k
γβtρ

hy
h )2

]
d t ≤ c2

∫ T
0

√
E[m̂4

t ] E[X̂4
t ] d t <∞.

Analogously we obtain
∫ T

0
E[m̂2

t X̂
2
t (k
√

1− ρ2βt
hy
h )2] d t < ∞. From this and

Lemma 5.5, we conclude that Z π̂,ĉ is an L2-martingale. ut

Proof (of Proposition 6.2) For any fixed κ > c+%, define a metric d equivalent
to ‖ · ‖∞ by d(X,Y ) , ess supd t⊗P e

−κ(T−t)|Xt−Yt|. Then (A, d) is a complete

metric space. By definition |Xs − Ys| ≤ eκ(T−s)d(X,Y ) d t⊗ P -a.e., so

e−κ(T−t)|(SX)t − (SY )t| ≤ e−κ(T−t)c
∫ T
t
e(s−t)%eκ(T−s)d(X,Y ) d s

≤ c
κ−%d(X,Y )

and we conclude that d(SX, SY ) ≤ c
κ−%d(X,Y ), where c

κ−% < 1. Hence S

is a contraction on (A, d). Thus by Banach’s Fixed Point Theorem there is
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a unique X ∈ A with SX = X, and for all n ∈ N we have d(X(n), X) ≤
( c
κ−% )nd(X(0), X). Hence it follows that

|(X(n))t −Xt| ≤ eκT d(X(n), X) ≤ ( c
κ−% )neκT d(X(0), X)

≤ eκT (‖X(0)‖∞ + ‖X‖∞)( c
κ−% )n

and thus ‖X(n) −X‖∞ ≤ eκT (‖X(0)‖∞ + ‖X‖∞)( c
κ−% )n, for every n ∈ N and

every choice of κ > c+ %. Setting κ = n+T%
T for n > cT we obtain the asserted

error bound. ut

B Stochastic Gronwall Inequality

This appendix provides the ramification of the stochastic Gronwall-Bellman
inequality required for the proofs in this article. Related results can be found
in [17], [1], and [36]. We work on a general probability space (Ω,F , P ) that is
endowed with a filtration (Ft)t≥0 that is right-continuous and complete.

Proposition B.1 (Stochastic Gronwall-Bellman Inequality) Let A =
(At)t∈[0,T ] be bounded and progressively measurable, Z ∈ Lp(P ) and let
B = (Bt)t∈[0,T ] be a progressively measurable process in Lp(d t⊗ P ) for some
p > 1. Moreover let X = (Xt)t∈[0,T ] be right-continuous and adapted with
E[supt∈[0,T ] |Xt|] <∞. If

1{τ>t}Xt ≥ Et
[
1{τ>t}

∫ τ
t

(AsXs +Bs) d s+ 1{τ>t}Xτ

]
a.s. for t ∈ [0, T ]

(B.1)
for every stopping time τ and XT ≥ Z, then

Xt ≥ Et

[∫ T
t
e
∫ s
t
Au duBs d s+ e

∫ T
t
As d sZ

]
for all t ∈ [0, T ] a.s.

Proof We set

Mt , Et

[∫ T
0
e
∫ s
0
Au duBs d s+ e

∫ T
0
As d sZ

]
.

Since A is bounded above, Z ∈ Lp(P ) and B ∈ Lp(d t ⊗ P ), it follows from
Doob’s Lp-inequality that E[supt∈[0,T ] |Mt|p] < ∞. In particular M is well-
defined as a uniformly integrable martingale. Now set

Yt , e−
∫ t
0
As d s

(
Mt −

∫ t
0
e
∫ s
0
Au duBs d s

)
.

Since A is bounded below we have E[supt∈[0,T ] |Yt|p] <∞, and integration by
parts yields

dYt = e−
∫ t
0
As d s

(
dMt − e

∫ t
0
Au duBt d t

)
− Yt−At d t

= − [AtYt +Bt] d t+ dNt
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where Nt ,
∫ t

0
e−

∫ s
0
Au du dMs is a uniformly integrable martingale. For an

arbitrary stopping time τ we obtain

1{τ>t}(Yt − Yτ ) = 1{τ>t}

(
−
∫ t

0
(AsYs +Bs) d s+Nt +

∫ τ
0

(AsYs +Bs) d s−Nτ
)

so

1{τ>t}Yt = 1{τ>t}
∫ τ
t

(AsYs +Bs) d s+ 1{τ>t}(Nt −Nτ ) + 1{τ>t}Yτ .

Since (1{τ>t}(Nt −Nτ ))s∈[t,T ] is a martingale, it follows that

1{τ>t}Yt = Et
[
1{τ>t}

∫ τ
t

(AsYs +Bs) d s+ 1{τ>t}Yτ
]
. (B.2)

We set ∆t , Xt−Yt and obtain ∆T = XT −Z ≥ 0 and E[supt∈[0,T ] |∆t|] <∞.
Moreover (B.1) and (B.2) imply that, for any stopping time τ ,

1{τ>t}∆t ≥ Et
[
1{τ>t}

∫ τ
t
As∆s d s+ 1{τ>t}∆τ

]
a.s. for all t ∈ [0, T ].

Thus Proposition C.2 in [40] applies to yield ∆t ≥ 0 for all t ∈ [0, T ] a.s., i.e.

Xt ≥ Yt = e−
∫ t
0
Au du Et

[∫ T
t
e
∫ s
0
Au duBs d s+ e

∫ T
0
As d sZ

]
. ut

C Some Facts on Parabolic Partial Differential Equations

This appendix collects the relevant results on linear and semilinear parabolic
partial differential equations that are used in this article. Following [29] we first
introduce the Hölder spaces Hr/2,r([0, T ] × Rd) for r ∈ R+. For a continuous
function u : [0, T ] × Rd → R, (t, x) 7→ u(t, x) and q ∈ (0, 1) we define the
Hölder coefficient 〈u〉qx in space via

〈u〉qx , sup
t∈[0,T ], x,x′∈Rd, |x−x′|≤1

|u(t, x)− u(t, x′)|
|x− x′|q

and the Hölder coefficient 〈u〉qt in time via

〈u〉qt , sup
t,t′∈[0,T ], x∈Rd, |t−t′|≤1

|u(t, x)− u(t, x′)|
|t− t′|q .

The space Hr/2,r([0, T ]×Rd) consists of all functions u : [0, T ]×Rd → R that
are continuous along with all derivatives Dα

t D
β
xu with “order” 2|α| + |β| ≤ r

and that satisfy ‖u‖r/2,rH <∞. Here the norm ‖u‖r/2,rH of u is given by

‖u‖r/2,rH , 〈u〉r/2,r• +
∑

2|α|+|β|≤brc

‖Dα
t D

β
xu‖∞
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where the mixed space-time Hölder coefficient 〈u〉r/2,r• of u is given by

〈u〉r/2,r• ,
∑

2|α|+|β|=brc

〈Dα
t D

β
xu〉r−brcx +

∑
r−2<2|α|+|β|<r

〈Dα
t D

β
xu〉

r−2|α|−|β|
2

t .

Thus ‖u‖r/2,rH sums up the L∞-norms of all relevant derivatives, plus the
Hölder coefficients of the highest-order derivatives. Analogously, for r ∈ R+

the space Hr(Rd) is defined as the collection of all brc-times continuously
differentiable functions u : Rd → R with ‖u‖rH <∞ where6

‖u‖rH , 〈u〉r• +
∑
|β|≤brc

‖Dβu‖∞ and 〈u〉r• ,
∑
|β|=brc

〈Dβu〉r−brc .

Linear Cauchy Problem. Consider a linear second-order differential operator

Lu , ∂u
∂t −

∑d
i,j=1aij(t, x) ∂2u

∂xi∂xj
−∑d

i=1bi(t, x) ∂u∂xi − c(t, x)u

where the coefficients a, b, c are defined on [0, T ] × Rd and (ai,j(t, x))i,j is a
symmetric matrix for all (t, x) ∈ [0, T ]×Rd. The main existence and uniqueness
result for linear Cauchy problems in Rd, Theorem C.1 below, relies on the
following conditions:

(P1) The operator L is uniformly parabolic, i.e. there exist 0 < c1 < c2 <∞
such that for every (t, x) ∈ [0, T ]× Rd we have

c1|y|2 ≤
∑d
i,j=1aij(t, x)yiyj ≤ c2|y|2 for all y ∈ Rd.

(P2)
r

The coefficients satisfy ai,j , bi, c ∈ Hr/2,r([0, T ] × Rd) for all i, j =
1, . . . , d.

Theorem C.1 (Linear Cauchy Problems) Suppose (P1) and (P2)
r

are
satisfied with r ∈ R+, r /∈ N, and let ϕ ∈ Hr+2(Rd) and f ∈ Hr/2,r([0, T ]×Rd).
Then there exists a unique u ∈ H(r+2)/2,r+2([0, T ]× Rd) such that

Lu = f, u(0, · ) = ϕ.

Moreover u satisfies

‖u‖r/2+1,r+2
H ≤ c

(
‖ϕ‖r+2

H + ‖f‖r/2,rH

)
where c > 0 is a global constant that is independent of ϕ and f .

Proof See Theorem 5.1 in [29], p. 320. ut
6 Here we slightly abuse notation since 〈u〉qx has only been defined for functions on

[0, T ] × Rd. Of course, for u : Rd → R and q ∈ (0, 1) we understand that 〈u〉qx ,

supx,x′∈Rd, |x−x′|≤1
|u(x)−u(x′)|
|x−x′|q .
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As a special case we obtain the result we have used in the proof of Lemma 7.1:

Corollary C.2 Suppose that

(C1) a, b, c : R→ R are bounded and Lipschitz continuous,
(C2) the function a has a bounded Lipschitz continuous derivative and

satisfies infy∈R a(y) > 0,
(C3’) ε̂ ∈ Hr+2(R) for some r ∈ (0, 1).

Then for each bounded and Lipschitz continuous function f : [0, T ] × R → R
there exists a unique g ∈ C1,2

b ([0, T ]× R) that solves

0 = gt + agyy + bgy + cg + f, g(T, · ) = ε̂.

Proof Consider the second-order differential operator

Lu = ∂u
∂t − a ∂2u

∂y∂y − b∂u∂y − cu.

By assumption (C1) and (C2), the differential operator L satisfies (P1) and
(P2)

r
for r ∈ (0, 1). Moreover, f ∈ Hr/2,r([0, T ] × R), since f is Lipschitz

continuous. Hence Theorem C.1 yields u ∈ H(r+2)/2,r+2([0, T ]× R) such that

Lu = f(T − t, ·), u(0, · ) = ε̂ and ‖u‖C1,2 ≤ ‖u‖(r+2)/2,r+2
H <∞.

Thus defining g ∈ C1,2
b ([0, T ]× R) by g(t, y) , u(T − t, y) we obtain

0 = gt + agyy + bgy + cg + f, g(T, ·) = ε̂. ut

Quasilinear Cauchy Problem. Next consider the nonlinear differential operator

Lu , ut −
∑d
i=1

(
d

d xi
ai(t, x, u, ux)

)
+ a(t, x, u, ux)

with principal part in divergence form. We set

aij(t, x, u, p) ,
∂ai(x, t, u, p)

∂pj
and (C.1)

A(t, x, u, p) , a(t, x, u, p)−∑d
i=1

(
∂ai
∂u pi + ∂ai

∂xi

)
.

We now state the conditions required for the main result in [29].

(Q1) For all t ∈ (0, T ], x, p ∈ Rd and u ∈ R we have∑d
i,j=1aij(t, x, u, p)yiyj ≥ 0 for all y ∈ Rd.

(Q2) There exist b1, b2 ≥ 0 such that for all t ∈ (0, T ], x ∈ Rd and u ∈ R
we have

A(t, x, u, 0) ≥ −b1u2 − b2.
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(Q3) The functions a and ai are continuous, and ai is differentiable with
respect to x, u, and p. Moreover there exist c1, c2 > 0 such that for all
v = (t, x, u, p) ∈ [0, T ]× Rd × R× Rd we have

c1|y|2 ≤
∑n
i,j=1aij(v)yiyj ≤ c2|y|2 for all y ∈ Rd

and, with aij given by (C.1),

|a(v)|+∑d
i=1

(
|ai(v)|+ |∂ai(v)

∂u

)
(1 + |p|) +

∑d
i,j=1|aij(v)|

≤ c2(1 + |u|)(1 + |p|)2.

(Q4)
β

There exists β ∈ (0, 1) such that for all compact sets K ⊂ R, K̄ ⊂ Rd
the functions

ai, a, ai,j ,
∂ai
∂u ,

∂ai
∂xi

: [0, T ]× Rd ×K × K̄ → R

are Hölder continuous in t, x, u and p with exponents β
2 , β, β and β, re-

spectively.

Here we say that f : [0, T ] × Rd ×K × K̄ → R, z = (z1, z2, z3, z4) 7→ f(z) is
β-Hölder continuous in zi if

〈u〉βi , sup
z,z̄∈Dom(f), zj=z̄j , j 6=i, |zi−z̄i|≤1

|f(z)− f(z̄)|
|zi − z̄i|β <∞.

Theorem C.3 (Quasilinear Cauchy Problems) Suppose ψ0 ∈ H2+β(Rd)
and that (Q1), (Q2), (Q3) and (Q4)β are satisfied for some β ∈ (0, 1). Then
there exists a solution u ∈ H(2+β)/2,2+β([0, T ]× Rd) of the Cauchy problem

Lu = 0, u(0, ·) = ψ0.

Proof See Theorem 8.1 in [29], p. 495. ut

In the proof of Theorem 6.8 we require the following ramification of this result:

Corollary C.4 Suppose that

(C1) a, b, c : R→ R are bounded and Lipschitz continuous,
(C2) the function a has a bounded Lipschitz continuous derivative and

satisfies infy∈R a(y) > 0,
(C3’) ε̂ ∈ Hr+2(R) for some r ∈ (0, 1),

and let f ∈ C1
b (R). Then the semilinear PDE

0 = gt + agyy + bgy + cg + f(g), g(T, ·) = ε̂.

has a solution g ∈ C1,2
b ([0, T ]× R).
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Proof After setting a1(t, x, u, p) , pa(x) and

ā(t, x, u, p) , −b(x)p− c(x)u− f(u) + pa′(x)

we can represent the relevant differential operator as

Lu , ut − d
d xa1(t, x, u, ux) + ā(t, x, u, ux)

= ut − d
d x (uxa(x))− b(x)ux − c(x)u− f(u) + uxa

′(x)

= ut − a(x)uxx − b(x)ux − c(x)u− f(u).

Hence if u ∈ C1,2
b ([0, T ]×R) solves Lu = 0, u(0, ·) = ε̂, then g(t, x) , u(T−t, x)

defines member of C1,2
b ([0, T ]× R) that satisfies

0 = gt + agyy + bgy + cg + f(g), g(T, ·) = ε̂.

We now verify the assumptions of Theorem C.3 for L. Note that

a11(t, x, u, p) = ∂a1(x,t,u,p)
∂p1

= a(x)

so (Q1) holds since

a11(t, x, u, p)y2 = a(x)y2 ≥ 0 by (C2).

Next observe that

A(t, x, u, p) = ā(t, x, u, p)− ∂a1(t,x,u,p)
∂u p− ∂a1(t,x,u,p)

∂x

= −b(x)p− c(x)u− f(u)

Thus (Q2) is satisfied since

A(t, x, u, 0) = −c(x)u− f(u) ≥ −‖c‖∞|u| − ‖f‖∞ ≥ −b1u2 − b2

with b1 , ‖c‖∞ and b2 , ‖c‖∞+ ‖f‖∞. To check (Q3) note that by (C1) and
(C2) the functions a1 and ā are continuous, and a1 is differentiable; moreover

inf
x∈R

a(x)|y|2 ≤ a11(t, x, u, p)y2 ≤ ‖β‖∞|y|2

for all t ∈ [0, T ], and x, u, p, y ∈ R. In addition for v = (t, x, u, p) ∈ [0, T ] ×
R× R× R

|ā(v)|+
(
|a1(v)|+ |∂a1(v)

∂u |
)

(1 + |p|) + |a11(v)|
≤ ‖b‖∞|p|+ ‖c‖∞|u|+ ‖f‖∞ + ‖a′‖∞|p|+ |p|‖a‖∞(1 + |p|) + ‖a‖∞
≤ (‖a‖∞ + ‖b‖∞ + ‖c‖∞ + ‖f‖∞ + ‖a′‖∞)(1 + |u|)(1 + |p|)2

since a, b, c, f, and a′ are bounded. Thus (Q3) holds with

c2 , ‖a‖∞ + ‖b‖∞ + ‖c‖∞ + ‖f‖∞ + ‖a′‖∞



38 Kraft, Seiferling, Seifried

and c1 , infx∈R a(x) > 0. Finally, by assumptions (C1), (C2) for any compact
set K ⊂ R the functions

a1(v) = pa(x), a(v) = −b(x)p− c(x)u− f(u) + pa′(x),

a11(v) = a(x), ∂a1
∂u (v) = 0, ∂a1

∂p (v) = a′(x)

restricted to [0, T ]×R×K×K are Lipschitz continuous in x, u and p, because
a, a′ b, c and f are bounded and Lipschitz by (C1), (C2) and since f ∈ C1

b (R).

Hence (Q4)
1
2 holds as well. Thus by Theorem C.3 the Cauchy problem

Lu = 0, u(0, ·) = ε̂

has a solution u ∈ H5/4,5/2([0, T ]×Rd) ⊂ C1,2
b ([0, T ]×Rd). Uniqueness follows

from standard BSDE arguments; see, e.g., Proposition 4.3 in [20]. ut
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