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Abstract

Large trades have a smaller price impact per share than medium-sized trades. So

far, the literature has attributed this effect to the informational content of trades.

In this paper, we show that this effect can arise from strategic order placement.

We introduce the concept of a liquidity elasticity, measuring the responsiveness of

liquidity demand with respect to changes in liquidity supply, as a major driver for

a declining price impact per share. Empirical evidence based on Nasdaq stocks

strongly supports theoretical predictions and shows that the aspect of liquidity coor-

dination is an important complement to rationales based on asymmetric information.
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1 Introduction

Information on financial markets is aggregated through trading. A key aspect in market

microstructure analysis and financial practice is to understand which trades move prices

and by how much. In their seminal paper, Barclay and Warner (1993) show that 92% of a

stock’s cumulative price change over a given period takes place on medium-size trades.

Since these trades, however, contribute significantly less to total trading volume and the

total number of shares, their relative price impact (per share) is significantly higher than

for small-size and large-size trades. This gave rise to the so-called stealth trading hypothesis

that privately informed traders concentrate on medium-size trades. This hypothesis is

in line with classical information-based theory (e.g., Kyle (1985)) suggesting that (large)

informed traders slice their orders into smaller pieces in order to avoid revealing too much

information to other traders.

Over the past two decades, the stealth trading hypothesis has received much attention

due to a large body of confirming empirical evidence. Chakravarty (2001), Blau et al.

(2009) and Ascioglu et al. (2011) replicate the methodology of Barclay and Warner (1993)

and confirm the price-size regularity based on data from the New York Stock Exchange

and Tokyo Stock Exchange.1 While the separation between small-size and medium-size

trades is not necessarily clear-cut on all markets, one central finding is common to basically

all studies: the per-share trade-to-trade price change of small-size or medium-size trades

is significantly larger than that of large-size trades. This result is strikingly robust across

markets, assets and methodologies, and is also confirmed by studies focusing on price

effects over longer intervals.2

1For instance, Chakravarty (2001) find that medium-sized trades account for roughly 47% of trade
volume with their contribution to overall price changes being around 78%. In contrast, large orders
account for about 51% of trade volume, but their contribution to overall price changes is just 25%.

2Employing error-correction methodology for changes in log ask and bid quotes at NYSE, Engle
and Patton (2004) come to the same conclusion. Alexander and Peterson (2007) use 5-minute price
changes, Frino et al. (2010) employ returns over intervals covering several trades, and Menkhoff and
Schmeling (2010) focus on the long-run impact, estimated based on a structural VAR process. Anand
and Chakravarty (2007) report similar effects based on options data by quantifying information shares
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One way of formalizing the relatively larger impact of medium-size trades compared

to large-size trades is to study the trade impact per share (henceforth TIPS), which –

according to the stealth trading hypothesis – should be a declining function in the trade

size. Recent evidence from Nasdaq trading reveals that this negative relationship is true

even instantaneously. Figure 1 shows estimates of the average TIPS, computed as the

per-share difference between the mid-quote instantaneously before and after a trade, as a

function of trade size for all 100 stocks in the Nasdaq 100 composite index through the

first quarter of 2014. As shown in this paper, this is a common regularity, which strongly

holds for a wide range of stocks across the Nasdaq universe. The empirical evidence in

Figure 1: Nonparametric estimates of the trade impact per share (TIPS) for
all stocks in the Nasdaq 100 index. The grey lines correspond to nonparametric
estimates of the trade impact per share for the individual stocks as presented in more
detail in Section 4.3. The solid line is the pointwise cross-sectional median of the stockwise
estimates. The dashed lines are the cross-sectional 2.5% and 97.5% pointwise quantiles of
the stockwise estimates.

support of the stealth trading hypothesis, however, is not fully conclusive. The underlying

according to Hasbrouck (1995).
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economic rationale typically builds on the theory of investors’ trade-size choices in the

spirit of Kyle (1985) and Admati and Pfleiderer (1988). In equilibrium, market makers

infer from the size of a trade on the potential informational content and accordingly adjust

their quotes. Such a framework is natural to explain the relationship between trade size

and price changes over longer time spans (as in Alexander and Peterson (2007), Frino

et al. (2010) and Menkhoff and Schmeling (2010)) or in classical market maker markets

with comparably low trading frequencies as analyzed by Barclay and Warner (1993).

Trade-to-trade price changes in liquid markets (as, e.g., analyzed by Ascioglu et al. (2011))

or even instantaneous price changes around trades in electronic order driven markets

markets as illustrated by Figure 1, however, are not easily explained by the information

content of trade sizes.

In this paper, we provide an alternative explanation for the price-size regularities

observed in more recent data. We theoretically and empirically show that time-varying

liquidity is a major driver of the observed effect. Our findings contribute to the ongoing

literature by adding a perspective, which in the given context has been widely ignored so

far and complements the reasoning beyond the argument of stealth trading. The intuition

for the underlying mechanism builds on two effects. First, traders face liquidity costs in

public limit order book markets and therefore strategically select the timing and location

of their trades. This strategic selection ensures that market orders are submitted at times

of high liquidity supply. The price impact of strategically placed orders is therefore lower

than for randomly placed orders. Secondly, such a strategic placement of orders is more

important for large orders than for smaller orders as large orders face higher downside

costs when they are traded in illiquid periods. Consequently, large market orders have

a lower price impact per share on prices than smaller orders. We therefore argue that

stealth trading is not necessarily a pre-condition for the price-size regularity observed

in Barclay and Warner (1993). It rather (or additionally) arises from the interaction of
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time-varying market liquidity and strategic order placement.

Our theoretical setting is based on a simple one-period limit order book model, where

traders arrive randomly at the market, but have discretion over the timing and placing of

their orders. We assume that traders are pre-committed to trading in the sense that they

are supposed to liquidate a given volume over a given time horizon. Their trading costs are

determined by the limit order book depth determining the expected price of a market order.

Assessing prevailing order book liquidity, traders can either submit market orders or can

defer their trade decision to the future. This strategic placement is particularly important

for large market orders, which generally cause significant imbalances between the demand

and supply side of liquidity and thus induce non-trivial price reactions. In our theory,

however, large imbalances do not occur since rational traders avoid submitting large orders

in illiquid periods, but tend to synchronize their order placement with prevailing market

liquidity.

Strategic order placement thus induces a link between time-varying liquidity supply

and order placement decisions. To quantify the strength of this relation, we introduce the

concept of a so-called liquidity elasticity. It measures the responsiveness of the demand side

of liquidity with respect to changes in the underlying supply side (i.e., order book depth)

due to strategic order placement. We show that the liquidity elasticity is a key concept

for understanding the relationship between trade sizes and price impact. A high liquidity

elasticity indicates a strong strategic placement of (large) orders, i.e., (large) orders tend to

cluster at times when order book liquidity is high. Conversely, a small liquidity elasticity

reveals that decisions on order placements are (widely) random. We empirically and

theoretically show that a sufficiently high market liquidity elasticity induces a downward

sloping TIPS profile as displayed by Figure 1, causing larger market orders to have a

proportionally smaller price impact.

We show, moreover, that there is a second channel driving the price-size effect, which
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arises from the shape of the prevailing limit order book. When the depth is comparably

small on top of the book, but is more concentrated deeper in the book, larger orders cause

a relatively smaller price impact than smaller orders since marginal shifts in the order

book due to liquidity retraction decline with order size. Thus, a downward sloping TIPS

may also arise in a market where trade decisions are purely random, as long as the depth

per price level is increasing if one moves away from the best quotes.

Our theory provides a structural condition for the link between the monotonic decline

of the TIPS profile and the combined effect of both channels, i.e., the liquidity elasticity

and the order book shape. Under flexible parametric assumptions for the distribution of

limit order book depth across price levels and the functional form of the liquidity elasticity,

this structural condition boils down to a non-linear restriction on parameters in price

impact regressions and regressions of order book depth on trading volumes. Nonparametric

regression analysis based on message-level data from the Nasdaq100 composite index from

January to April 2014 provides support for the imposed functional forms and the validity

of underlying parametric (log-linear) regressions. We find strong empirical support for

our theoretical predictions and the implied monotonicity of declining TIPS profiles. We

particularly show that limit order book depth is a key determinant of strategic order

placement and thus is an attractor of liquidity demand. Consequently, it is a major driving

force behind the monotonicity of TIPS, explaining the price-size regularity as observed in

Barclay and Warner (1993).

To identify which types of stocks are mostly affected by the two channels governing a

declining TIPS, we analyze the cross-sectional variation of the estimated liquidity elasticity,

the order book shape and the tightness of the TIPS monotonicity condition. We relate

them to stock-specific liquidity characteristics, such as the quoted bid-ask spread, the

market depth and the cumulative trading volume. We show that the liquidity elasticity

and therefore a downward sloping TIPS profile is more pronounced in liquid markets.
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This confirms the findings in Barclay and Warner (1993) and Chakravarty (2001), who

argue that the price-size effect is more prevalent in markets with institutional investors.

Our theory, however, suggests a different rationale. While Barclay and Warner (1993)

interpret the pronounced size effect in liquid markets as evidence for more informed

trades from institutional investors, our model shows that these effects can alternatively

(or additionally) arise from liquidity coordination effects.

Several other theoretical papers have studied the role of market liquidity. These studies,

however, mainly focus on the effect of the market design on market liquidity (see Parlour

and Seppi (2003), Hendershott and Mendelson (2002), Foucault and Menkveld (2008)

and Foucault et al. (2013)). In contrast, we analyze how liquidity itself affects the price

formation process without making assumptions on possible asymmetric information.

This enables us to provide a complemenatry perspective to the information-driven

arguments by Barclay and Warner (1993). While the latter effects certainly do play

an important role in price formation, market liquidity, nevertheless, governs a wide

spectrum of trading decisions, which in turn additionally affect the price formation process.

This is evidently so, as most trading decisions, nowadays, are channeled to markets via

dedicated brokerage services, irrespective of a trader’s underlying motif, informed or not.

Broker services are typically specialized in trading orders so as to minimize their client’s

transaction costs. Thus, at this stage, the process of trading eventually becomes influenced

by liquidity considerations, which ultimately leads to distinct price effects. Hence, by

linking the observed price-size regularities in high-frequency data to rather mechanical

effects in a liquid electronic limit order book market, we provide an additional perspective

complementing the empirical asset pricing literature and showing that market liquidity

is a key aspect in explaining hitherto unresolved price regularities, as reported in, e.g.,

Amihud and Mendelson (1986), Brennan and Subrahmanyam (1996), Stoll (2000), Chordia

et al. (2001), Holmström and Tirole (2001), Pastor and Stambaugh (2003), O’Hara (2003),
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Acharya and Pedersen (2005), Avramov et al. (2006), Sadka (2006) and Bekaert et al.

(2007).3

Our paper is structured as follows. In Section 2, we introduce the trade-impact-per-

share, TIPS, and outline the underlying framework for the modeling of price changes in a

limit order book market with noise traders. In this market, we will show that a decreasing

TIPS can solely arise by virtue of the order book shape. In Section 3, we extend the

theory to include traders with strategic order submissions and analyze how liquidity and

order book shape are capable of determining a decreasing TIPS. Section 4 empirically

investigates the TIPS and the role of the order book shape and liquidity in determining

its shape using tick data from the Nasdaq 100 universe. We formulate testable predictions

that can be taken to the data and provide nonparametric evidence for the models used

to formally test the predictions. The results indicate that there is strong evidence for a

decreasing TIPS, which is mainly driven by liquidity considerations. Finally, Section 5

concludes.

2 Trade Impact in Limit Order Book Markets

2.1 Trade Impact per Share

Let ti and xi > 0 (i ∈ N) denote the random times and sizes of trades, respectively. For

convenience and without loss of generality, throughout this paper, we focus on buy market

orders. Implications for sell market orders are derived analogously.

Let pi and pi+1 denote the price immediately before and after a trade execution. We

3Further evidence is reported in Lakonishok et al. (1992), Eleswarapu and Reinganum (1993), Datar
et al. (1998), Vayanos (1998), Vayanos and Vila (1999), Chan and Fong (2000), Chordia et al. (2002),
Amihud (2002), Huang (2003), Chordia et al. (2008), Narayan and Zheng (2010), Chordia et al. (2014).
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define the total price impact of a trade of size xi by

∆(xi) := pi+1(xi)− pi, (1)

where the notation pi+1(xi) highlights the dependence of the price in ti+1 on the trade

size xi chosen in ti. We assume that for a given trade size x, ∆(x) is a random variable.

The (conditionally) expected trade impact per share (TIPS) is then defined as

δ(x) := E
[

1

xi
∆(xi)

∣∣∣∣xi = x

]
=

1

x
E[∆(x)] (2)

for a given trade size x. The price-size regularity, as observed by Barclay and Warner

(1993), implies that, on a per-share basis, large orders have a lower price impact than

smaller orders, i.e.,

δ(xS) > δ(xL), xS < xL, (3)

where xS denotes a medium or small trade size, and xL denotes a large trade size. Hence,

the observed price effect providing basis for the stealth trading hypothesis is linked to the

monotonicity of δ(x) in the trade size x. Henceforth, we assume that δ(x) is differentiable

in x. We then define a market exhibiting a decreasing TIPS if δ(x) is monotonically

decreasing for sufficiently large trades, i.e., if

δ′(x) < 0

for x > 0.

2.2 A Limit Order Book Model

The key feature of a limit order book market is the central order book, which aggregates

outstanding limit orders according to a price-time priority convention. Let di ∈ R+ denote
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the cumulative order book depth at ti and Fi the cumulative distribution function of

sell-side market depth, characterizing how depth is distributed across price levels. Finally,

let ai denote the prevailing best ask price.

In order to make the analysis tractable, we make the following assumptions. First, the

cumulative density function (c.d.f.) of market depth is time-invariant, i.e., Fi = F for

all i ∈ N. Second, price levels take on continuous values in R+.4 Third, F possesses a

continuous density f ≥ 0, such that

F (∆) =

∫ ∆

0

f(p)dp, (4)

and F has a unique inverse function F−1.

The function F (∆) represents the proportion of order volume standing between the

price level ai and ai + ∆, instantaneously before the arrival of the ith market order. Hence,

if di is the total order volume on the sell side, then the total number of shares standing

between prices ai and ai + ∆ is given by

d∆
i := diF (∆) = di

∫ ∆

0

f(p)dp. (5)

Note that di = lim∆→∞ d
∆
i because lim∆→∞ F (∆) = 1.

Equation (5) gives the central link between the trade impact and the trade size.

Accordingly, a buy market order of xi = d∆
i shares shifts the prevailing best ask price by

∆. Therefore, in a limit order book market with order book shape distribution F and

total depth di, we obtain the trade impact by inverting (5), i.e.,

∆(xi) = F−1

(
xi
di

)
. (6)

4This assumption should especially hold for stocks that are traded at high price levels, where the
relative price variation (or relative tick size) is small.
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Thus, the price impact of a trade of size xi is just the value of the quantile function of the

limit order distribution function, F−1, evaluated at the ratio of the executed volume to

the overall standing order volume, xi/di. Hence, together with Equation (2), the TIPS

can be written as

δ(x) =
1

x
E
[
F−1

(
xi
di

)∣∣∣∣xi = x

]
=

1

x
Ex
[
F−1

(
xi
di

)]
, (7)

where Ex[·] is shorthand notation for the conditional expectation E[·|xi = x].

2.3 Power-Law Shaped Order Books

To further characterize the TIPS, we assume a power-law for the order book shape.

The power-law family is sufficiently flexible to capture a wide range of realistic order

book shapes while allowing for a convenient and parsimonious representation of the key

quantities of interest.

Let ∆ denote the highest ask price prevailing in the book. Then, the power-law

specification of the sell-side order book satisfies

f(∆) =


A∆

1
α
−1 if ∆ < ∆,

0 otherwise,

(8)

with α > 0 and A denoting a normalization constant. The normalization restriction

lim∆→∆ F (∆) = 1 implies A = 1/(α
α
√

∆).

In this setting, the trade impact ∆(xi) can be easily derived. Integrating f(∆) with

respect to ∆, we obtain F (∆) = αA∆
1
α for 0 ≤ ∆ ≤ ∆. Using (6), we obtain the resulting

trade impact as

∆(xi) = ∆

(
xi
di

)α
. (9)
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Hence, power-law shaped order books generate power-law trade impact functions, which

have been extensively studied in the literature. For instance, many studies suggest that

price impact functionals follow a square-root law.5

Exploiting (2) and (9), we can calculate the TIPS as

δ(x) =
∆

x
· Ex

[(
xi
di

)α]
= xα−1 ∆ · Ex

[(
1

di

)α]
︸ ︷︷ ︸

=:K(x)>0

=: xα−1K(x), (10)

where K(x) := ∆Ex[d−αi ] with K(x) > 0 since di > 0. Accordingly, a decreasing TIPS,

i.e., δ(x)′ < 0, arises if and only if

(α− 1)K(x) + xK ′(x) < 0 (11)

for all x ≥ 0. Hence, the monotonicity of TIPS and of the order book shape are linked

and depend on α. Condition (11), however, also depends on the interaction between the

market liquidity di and the trade volume xi as captured by the term K ′(x). The latter

captures the sensitivity of Ex[d−αi ] with respect to changes of the trade size x. This term

vanishes as long as market depth di and trade volume xi are conditionally independent,

implying K ′(x) = 0. This benchmark case arises if the market order traders are noise

traders who submit their orders randomly and independently from market prices and

liquidity. In this case, trade sizes xi and liquidity di are independent and therefore

Ex
[(

1

di

)α]
= E

[(
1

di

)α]
= K, (12)

5A linear price impact (α = 1) is assumed in a range of studies focusing on optimal trade execution
strategies, see, e.g., Bertsimas and Lo (1998), Almgren (2001), Almgren and Chriss (1999), Almgren
(2003a), Alfonsi et al. (2010), Alfonsi and Schied (2010) or Obizhaeva and Wang (2013). Various other
theoretical and empirical studies suggest non-linear power laws for the price impact such as the square-root
law (α = 1/2), see, e.g., Lillo et al. (2003), Gabaix et al. (2003), Almgren (2003b) and Bershova and
Rakhlin (2013).

12



Figure 2: Absolute trade impact and TIPS functional in power-law order
books. For a given trade size xi, the figure illustrates the absolute trade impact ∆(xi)
as of Equation (9) and the per-share trade impact (TIPS) δ as of Eqution (2) under a
power-law book specification as of Equation (8). We set ∆ = 1$ and di = 3000 shares,
corresponding to a realistic scenario for stocks that trade above 80$. The trade size xi is
given in number of shares, whereas ∆(xi) is given in Dollars and δ(xi) (TIPS) is given in
Dollar/share.

implying K ′(x) = 0.

In this case, Equation (11) simplifies and the shape of TIPS is entirely driven by α.

This is summarized in the following lemma:

Lemma 1 (Decreasing TIPS under Noise Trading). If market order traders are noise

traders implying K ′(x) = 0, the TIPS is decreasing in x, i.e., δ′(x) < 0, if and only if

α < 1. (13)

Accordingly, α < 1 implies an upward sloping order book shape. Hence, if the

order book shape is monotonically increasing, the per-share price impact of a trade is

monotonically declining. In this case, a decreasing TIPS arises from a simple mechanical

effect of liquidity consumption as illustrated in Figure 2.

Thus, even in this very simple setting without information asymmetry or strategic

order submission behavior, we obtain a decreasing TIPS solely by virtue of the order book

shape.
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3 TIPS under Strategic Order Submission

The assumption of pure noise trading may be unrealistic as traders generally act strate-

gically when they submit their orders, even when they are uninformed. In fact, brokers

carefully choose the timing and placement of their orders in order to guarantee best

execution.6 Therefore, it is more realistic to assume that market liquidity di and trade

volume xi are generally interrelated, implying that K ′(x) 6= 0.

We moreover assume that traders are pre-committed, that is, they need to trade an

order of a specific size (due to informational or other reasons). The trader, however, has

the strategic freedom about the timing of the trade, i.e., he may postpone his trade when

trading is expected to be costly.

3.1 The Traders’ Trading Decision

We assume that at ti, a risk-neutral trader enters the market and needs to buy ni shares.

We denote the trader’s decision variable by σ. The trader can trade at ti at the price

provided by the limit order book, i.e., σ = trade, and thus his trading volume equals

xi = ni. In this case, he faces transaction costs Πprime(ni, di) implied by his trading

volume ni and the depth di currently prevailing on the (primary) market. Alternatively,

he can defer his trade to the future, i.e., σ = defer, with xi = 0. Postponing the trade

implies that the trader is neither explicit about the timing nor about the trading platform

chosen for his (future) transaction. While he rules out to trade at ti on the primary

market, he may also decide to choose another trading platform, e.g., an upstairs market

or brokerage network. We generically denote the resulting (expected) trading costs by

6Brokerage businesses that operate client orders from institutional investors or hedge funds are
specialized in trading strategies that guarantee best execution. Most of these trading strategies internalize
the liquidity of the market, when they process client orders.
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Πother. Consequently, the trader’s transaction costs Π depending on σ can be written as

Π(σ, di, ni) =


Πprime(ni, di) if σ = trade,

Πother(ni) if σ = defer.

(14)

We define Π as the so-called shortfall costs, i.e., the achieved price in excess of the best

ask ai. Thus, when the trader submits a buy market order of ni shares, the transaction

costs Πprime are given by

Πprime(ni, di) = di

∫ ∆(ni)

0

f(p)pdp = di

∫ F−1(ni/di)

0

f(p)pdp

=
∆ · di
α + 1

(
ni
di

)α+1

.

(15)

The upper bound ∆(ni) corresponds to the shift of the best ask price when ni shares

of market depth are matched by the order, which, according to Equation (9) equals

∆(ni) = F−1(ni/di) = ∆ (ni/di)
α. Note that at time ti, Πprime is known and thus

deterministic, because the order book is observed.

In case the trader decides to defer his trading decision (or to move to another trading

platform), we assume that he has an expectation of the future per-share transaction costs,

µ. Accordingly, the expected costs of trading at another point of time or on an alternative

market are given by

Πother(ni) = (µ+ ξ)ni, (16)

where ξ is a zero-mean random variable representing uncertainty in commissions or costs

associated with off-exchange trading. Note that Equation (16) is a linear pricing rule,

which is generally considered to be consistent with the trading practice on trading venues,

such as dark pools or upstairs brokerage markets, see, e.g., Keim and Madhavan (1996),
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Booth et al. (2002) or Harris (2003).

We assume that the trader’s objective is to choose the trading venue (or trade timing)

that minimizes his expected transaction costs. Thus, his optimal choice is

σ∗i = arg min
σ∈Σ

Ei[Π(σ, di, ni)], (17)

with Σ := {trade, defer} and Ei denoting the expectation taken at time ti. The trader

chooses to trade on the primary limit order book market at time ti if and only if Πprime <

Ei[Πother]. This decision depends on the market liquidity di, off-exchange per-share trading

costs µ and the trade size ni. The following lemma summarizes the optimal decision rule

and the resulting executed trade volume xi in the primary market.

Lemma 2 (Optimal Trade Decision). The trader’s optimal trading strategy σ∗i at time ti

satisfies

σ∗i =


trade if µ > Φ(ni

di
),

defer else,

⇔ xi =


ni if µ > Φ(ni

di
),

0 else,

(18)

with Φ(y) = 1
y

∫ F−1(y)

0

f(p)pdp being the per-share transaction costs of a trade in the

primary market that consumes a proportion of y of overall liquidity in the book.

Proof: See A.

Hence, if the expected per-share transaction costs for deferring the trade, µ, are large

relative to the current per-share transaction costs, Φ(ni/di), the trader prefers to defer

his trade to the future. The market liquidity di thus affects the trade size decision xi

through its impact on the per-share trading costs Φ(ni/di). A higher depth di reduces

the per-share trading costs and thus makes it more likely to trade at ti in the primary

market. This is easily seen by the fact that Φ is a monotonously increasing function

of ni/di. Hence, a higher depth di attracts more market order submissions by virtue of

reduced trading costs. This makes di and xi positively correlated.
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As a convenient characterization for the interdependence between di and xi, we

introduce the concept of a liquidity elasticity, defined as

EL(x) := x · g
′(x)

g(x)
, (19)

where g(x) := E[di|xi = x] denotes the expected depth when a trade size x is executed at

ti. A high liquidity elasticity indicates that liquidity supply strongly attracts liquidity

demand. We can therefore conclude that in markets with strategic order submission, the

liquidity elasticity is positive, i.e.

EL(x) > 0 for all x. (20)

In the following section, we will show that the liquidity elasticity EL(x) is a key determinant

of a decreasing TIPS, which in turn is a major driver of the price-size regularities according

to Barclay and Warner (1993).

3.2 Liquidity Elasticity and Decreasing TIPS

By defining the conditional expectation of the total price impact of a trade ∆(xi) =

pi+1(xi)− pi as

∆̃(x) := E[∆(xi)|xi = x] = Ex[∆(xi)],

we can re-write the definition of the TIPS according to Equation (2) as δ(x) = ∆̃(x)/x.

Its first-order derivative δ′(x) is then obtained by

δ′(x) =
1

x

(
∆̃′(x)− ∆̃(x)

x

)
=

1

x

(
∆̃′(x)− δ(x)

)
. (21)

To conveniently express the condition for a monotonically decreasing TIPS, δ′(x) < 0,
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in terms of EL, we decompose di into its conditional expectation g(xi) := E[di|xi] and an

error term,

di = g(xi) + εi, (22)

with εi := di − g(xi), and E[εi|xi] = 0. Inserting Equation (22) into Equation (6) and

applying a Taylor expansion in εi around εi = 0 yields

∆(xi) = F−1

(
xi

g(xi) + εi

)
= F−1

(
xi
g(xi)

)
− 1

f

(
F−1

(
xi
g(xi)

)) xi
g(xi)2

εi +R,
(23)

where R denotes the remainder term. Under the assumption of the error being small, i.e.,

εi ≈ 0, we have R ≈ 0 and can show that

∆̃(x) := Ex[∆(xi)] ≈ F−1

(
x

g(x)

)
(24)

and

∆̃′(x) ≈
[
F−1

(
x

g(x)

)]′
=

1

g(x)f(F−1(x/g(x)))

(
1− xg

′(x)

g(x)

)
=

1

g(x)f(F−1(x/g(x)))

(
1− EL(x)

)
.

(25)

The assumption εi ≈ 0 implies that the transaction volume executed at ti is a relatively

precise indicator for the prevailing depth, i.e., traders strategically choose their trade size
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in accordance with the depth in the market. Under this assumption, we define

Ψg,f (x) :=
g(x)

x
f(F−1(x/g(x)))F−1(x/g(x)). (26)

Then, exploiting the approximations Equation (24) and Equation (25), we can formulate

a condition for a decreasing TIPS as provided in the following proposition.

Proposition 1 (Decreasing TIPS). Let f be the density of the limit order book shape

distribution F given by Equation (4) and x be the trade size. Then, TIPS is monotonically

decreasing, i.e., δ′(x) < 0, if and only if

1−Ψg,f (x) < EL(x) ∀x > 0. (27)

Proof: See A.

The inequality (27) is determined by the two factors EL(x) and Ψg,f(x). Note that

the liquidity elasticity EL(x) solely depends on g(x) and measures the degree of liquidity

coordination in the market, whereas Ψg,f(x) depends on g(x) and the order book shape

via f(x). Thus, a decreasing TIPS arises in two scenarios (or combinations thereof): In

the first scenario, the liquidity elasticity EL(x) is sufficiently high, so that large orders

are subject to a systematic self-selection mechanism and are dis-proportionally strongly

absorbed by a thick order book (so-called ”liquidity attraction”). In the second scenario,

Ψg,f(x) is sufficiently high and large orders are strategically posted in periods of high

market depth.

In the power-law case, it is easy to show that Ψg,f(x) = 1/α, i.e., Ψg,f(x) does not

depend on the trade size x and is inversely related to the order book shape parameter α.

In this case, the TIPS monotonicity condition (27) is given by

1− 1

α
< EL(x). (28)
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In this case, the positivity of EL(x) is satisfied if α < 1, corresponding to an upward-sloping

order book.

Note that the approximations (24) and (25), resting on the assumption εi ≈ 0 and

leading to Equation (27), are only heuristic. In B, we establish testable conditions for the

case of a power law shaped limit order book under which the inequality (28) is sufficient

for δ′(x) < 0, i.e., a monotonously decreasing TIPS. These conditions rest on an upper

bound for the relative prediction error εi/g(xi) and a restriction on α and EL(x). The

corresponding conditions are summarized in Proposition 2 in B.

4 Empirical Evidence

In this section, we empirically test whether our underlying theory is consistent with data

from Nasdaq trading. We will proceed as follows. In Section 4.1, we formulate testable

hypotheses by making use of flexible parametric assumptions on the order book shape and

the relationship between depth and trade size. These parameterizations operationalize the

relationships derived in the previous sections and yield testable hypotheses. In Sections

4.2 and 4.3, we present the underlying data and provide an initial nonparametric analysis

yielding data-driven support for the choice of our parametric specifications. The latter

are then used in Section 4.4 to conduct parametric statistical inference. Section 4.5 shows

that the liquidity elasticity is the major driver of a decreasing TIPS. Finally, Section 4.6

explores in how far the stockwise variation of the driving forces behind a decreasing TIPS

condition can be explained by certain stock-specific characteristics.

4.1 Testable Model Predictions

To test the validity of the condition in Proposition 1 based on minimal assumptions, one

would need nonparametric estimates of Ψg,f and EL, which in turn depend on the unknown
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functions g and f , capturing the relationship between depth and trade size and the order

book shape, respectively. Given estimates for g and f and thus also for g′ and F−1, one

could obtain plug-in estimates of Ψg,f and EL by replacing the unknown quantities with

their estimates. The estimates for Ψg,f and EL could then be used to construct a test for

the condition in Proposition 1. However, any such nonparametric procedure suffers from

numerous severe drawbacks. Firstly, the complicated dependence of Ψf,g and EL on g and

f makes the task of deriving distributional results extremely daunting. Secondly, even if

one were able to derive the asymptotic distribution of the estimates for Ψg,f and EL, there

would still remain the issue of selecting several smoothing parameters, which is further

complicated by the absence of theoretical statistical guidance on how to optimally do this

for testing purposes.

Hence, in order to formally test the validity of the decreasing TIPS condition, we

additionally impose flexible parametric forms on the order book shape and the relationship

between depth and trade size. In doing so, we are able to state testable hypotheses in terms

of parameters in (log) linear regression models. Denote the instantaneous price impact

induced by a trade by ∆i. Then, we assume that ∆i can be modeled as ∆i = ∆(xi)ε̃
∆
i

with ε̃∆i being a multiplicative error term satisfying E[ε̃∆i |xi] = 1 and ∆(xi) following a

power-law function of xi/di as given by Equation (9). Such multiplicative specifications

provide a natural framework for the modelling of positive-valued random variables, see,

e.g., Hautsch (2012) for an overview.

In a similar vein, we assume that the relationship between depth and trade size can

be modelled using a power law relationship. This implies a multiplicative specification

di = g(xi)ε̃
d
i with

g(xi) := E[di|xi] = Bxqi , c̃ > 0, (29)

where ε̃di denotes an error term with E[ε̃di |xi] = 1, q > 0 is the power law parameter, and
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B is a constant. Such a specification implies EL = q.

Using these flexible functional form assumptions allow us to restate the main model

prediction in terms of the parameters α and q:

Testable Prediction 1 (Decreasing TIPS under power law assumptions).

Assume a trade size xc ≥ 1 such that g(x) = Bxq for all x ≥ xc and a power-law

trade impact as given by Equation (9). Then, the necessary and sufficient condition for a

decreasing TIPS is

1− 1

α
< q.

Taking logarithms of the multiplicative specifications di = g(xi)ε̃
d
i and ∆i = ∆(xi)ε̃

∆
i

results in the log-linear specifications

ln(di) = c+ q ln(xi) + εdi , (30)

ln(∆i) = b+ α ln(xi/di) + ε∆i , (31)

with εdi = ln ε̃di−E[ln ε̃di ], c = lnB+E[ln ε̃di ], and εdi = ln ε̃di−E[ln ε̃di ] and b = ln(∆)+E[ln ε̃∆i ].

Additionally, a necessary condition for the adequacy of the power law shaped limit

order book model is that the shape parameter is positive:

Testable Prediction 2 (Power law limit order book).

The power-law limit order book model is appropriate if

α > 0.
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4.2 Data

We use order message data from the platform LOBSTER processing Nasdaq TotalView

data.7 The data contains submissions, cancellations and executions of any limit order.

Morevoer, it provides a precise identification on trade directions. We employ data of the

Nasdaq 100 composite index constituents from the first three months of 2014. For the

ith trade , we record the trade size xi and compute the instantaneous price impact ∆i

as the signed difference between the mid-quote immediately before and after the trade.

This ensures that price changes are only due to trades and are all non-negative. For

each trade, we record the cumulative order book depth from level 1 up to 5, denoted

by dj,i, j = 1, . . . , 5, respectively. These quantities yield alternative measures for di. By

neglecting depth beyond the 5th level, we presume that this part of the order queue is

widely irrelevant for most trading decisions.

The upper panel of Table 1 contains cross-sectional summary statistics of stockwise

time averages of the number of shares per trade, the cumulative depth up until the 5th

level, the bid-ask spread, the midquote price, and the daily realized variance, computed

as the daily sum of squared price changes. Given our research objective, it is natural

to focus only on trades with non-zero impact. As reported in the last row of Table 1,

this reduces the data set by about 50%. In the second panel of the table, we report the

relative proportions of trades with trade sizes exceeding the cumulative depth on a given

level. These quantitites indicate how often the respective order book levels are depleted

by the execution of a single trade. We observe that for the vast amount of trades, the

trade size equals the number of shares on the first level of the order book. Conversely,

the percentage of trade sizes exceeding the cumulative depth on higher levels tails off

rapidly. Finally, there are hardly any trades, whose size exceeds the 5th level of cumulative

depth d5, thus indicating that basically no information is lost by not considering order

7See https://lobsterdata.com/.
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book levels beyond the 5th level. We shall see later that our parametric assumptions are

mostly plausible for trades exceeding a critical size of 100 shares. This size seems to be a

typical minimal trading volume which is undercut in just 3% of all transactions (see the

penultimate row of Table 1).

Table 1: Cross-sectional summary statistics of stock and trading characteris-
tics. The table provides cross-sectional summary statistics of time averages of the number
of shares per trade, the cumulative depth in terms of number of shares up until level 5, the
bid-ask spread measured in cents, the price computed as the midquote in dollars, and the
daily sum of squared impacts (in squared cents). The averages are computed for all buy
side trades with a positive impact. We moreover report the relative proportions of trades
with trade sizes exceeding the cumulative depth on up to five levels and trades with trade
sizes greater than 100 shares. Zero impacts gives the percentage of zero impacts in the
original data set, which has to be dropped for the analysis.

Mean St. Dev. Min. 10th Median 90th Max.
Trade Size x 729 3490 60 100 185 804 34807
d1 775 3847 54 96 184 869 38386
d2 4258 25809 121 230 658 4644 258045
d3 8078 48425 177 358 1271 9045 484062
d4 12220 71890 232 489 1996 14443 718613
d5 16220 93539 294 607 2819 19910 935068
Spread (cents) 2.65 3.92 1.00 1.02 1.23 5.20 28.56
Midquote (Dollar) 111.13 179.95 3.54 25.00 63.31 184.45 1236.71
Daily Tick RV (cents2) 18675 62507 9 163 1136 34014 494258
Observations 64359 48527 2217 23638 51910 106543 354090
x = d1 (%) 95.3 2.3 83.8 93.0 96.2 97.3 97.8
x > d1 (%) 2.85 2.44 0.55 0.98 1.86 6.19 11.87
x > d2 (%) 0.516 0.768 0.000 0.060 0.205 1.285 3.889
x > d3(%) 0.178 0.290 0.000 0.015 0.075 0.440 1.592
x > d4 (%) 0.069 0.117 0.000 0.006 0.031 0.158 0.678
x > d5 (%) 0.030 0.048 0.000 0.002 0.014 0.063 0.274
x < 100 (%) 3.09 1.75 0.00 0.67 2.99 5.30 9.47

Zero impact (%) 49.33 13.07 31.03 33.89 46.59 69.52 90.42

4.3 Nonparametric (Pre-)Analysis

To provide support for the functional form assumptions made above, we perform a nonpara-

metric analysis. In particular, we investigate the validity of the log-linear representations
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in (30) and (31) by estimating the following nonparametric regression model counterparts

using the cumulative three-level depth as a measure for market depth di,

ln(d3,i) = md(ln(xi)) + υdi , (32)

ln(∆i) = m∆(ln(xi/d3,i)) + υ∆
i , (33)

where md(ln(xi)) and m∆(ln(xi/d3,i)) denote the conditional mean of ln(d3,i) and ln(∆i),

respectively, and υdi and υ∆
i are corresponding error terms. By treating md and m∆ as

unknown functions of the underlying regressors ln(xi) and ln(xi/d3,i), we let the data

“speak” on how the regressor in each equation is related to the corresponding dependent

variable. This allows us to assess how reasonable the linear relationships postulated in (30)

and (31) are. The estimation of md and m∆ is done using local linear kernel regression with

an optimal bandwidth. As an optimality criterion, we choose the prediction accuracy of

the dependent variable in the final month of our sample. The local linear kernel regression

estimator is chosen as it automatically corrects for boundary bias issues in nonparametric

regression problems, when the support of the data is bounded, which naturally arises

here due to the positivity of trade sizes. Furthermore, the behaviour of the local linear

regression estimator is well understood. In particular, it is well known that under suitable

regularity conditions, the estimators are consistent and asymptotically normal, see, for

instance, Fan and Gijbels (1996) or Li and Racine (2007). We now provide details of the

procedure for the estimation of md. The procedures for estimating m∆ are analogous, any

deviations will be mentioned below. By construction, for E[υdi | ln(xi)] = 0, the regression

function md is the conditional expectation of log depth given the (log) trade size. Let the

sample of observations of log depth and log trade sizes be given by {(ln(d3,i), ln(xi))}Ni=1.
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Figure 3: Local linear estimates of md in Equation (32) for CA, FAST, ILMN
and XLNX. The solid black line corresponds to the estimate. The grey lines are estimates
for 500 booststrap replications of the estimator. The dashed lines are the pointwise 2.5%
and 97.5% quantiles over the boostrap estimates. The estimation range for each stock
covers trade sizes up until the 99th sample percentile.
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Then, the local linear estimator solves the locally weighted least squares problem

N∑
i=1

(ln(d3,i)− au − bu ln(xi))
2K

(
ln(xi)− u

h

)
(34)

with respect to the parameters (au, bu)′. The function K(x) is a kernel weight function with

the bandwidth given by the parameter h. For each value u, the minimizer âu is the estimator

of the regression function at the point u, i.e., âu = m̂d(u). Under suitable regularity

conditions, it can be shown that m̂d is a (pointwise) consistent estimator of md. Under
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additional conditions it can be shown to be (pointwise) asymptotically normally distributed.

We implement the estimator using the Epanechnikov kernel K(x) = 3
4
(1− x2)1|x|≤1. The

estimates are computed based on an equidistant grid of the regressor values between one

share and the 99th sample percentile of the trade size distribution. There are too few

observations to be able to estimate the function well in the extreme tail of the distribution.

For the same reason, we estimate m∆ on a grid between the 0.5th and the 99.5th sample

percentiles of the observed trade size to depth ratio. Details on the (optimal) choice of the

bandwidth are provided in C. To quantify the estimation uncertainty, we utilize a bootstrap

procedure. Corresponding details are given in D. Figure 3 displays the estimation results

Figure 4: Local linear estimates of md in Equation (32) for all 100 stocks. The
grey lines correspond to the estimates for the individual stocks. The solid line is the
pointwise cross-sectional median of the stockwise estimates. The dotted dashed vertical
line is at ln(100), i.e. the regressor value for a trade size equal to 100 shares. The dashed
lines are the pointwise cross-sectional 2.5% and 97.5% quantiles of the stockwise estimates.
By definition, the cross-sectional quantiles of the estimates can only be computed over
the range of the regressor that is observed for all 100 stocks. The estimation range for
each stock covers trade sizes up until the 99th sample percentile.
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for md in Equation (32) for four randomly selected stocks. The solid black line is the

estimate using the actual data. In order to gauge the uncertainty in the estimation results,
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the grey lines provide estimates for 500 empirical bootstrap samples, whose pointwise

2.5% and 97.5% quantiles are given by the two dashed lines. Even though the estimation

uncertainty for smaller trades is larger, one can still clearly see some stock-dependent

nonlinear structure. Most importantly, however, the estimates are linear for sufficiently

large trade sizes.

According to Figure 4, which plots the estimates for all 100 stocks together, this

linearity is confirmed across the entire Nasdaq 100 universe. Each grey line represents the

estimate from a stock, the solid line and the dashed lines are the cross-sectional median,

and 2.5% and 97.5% quantiles, respectively (which are only computable for regressor

values that are observed for all stocks). The estimation results for all 100 stocks reveal

the same qualitative features: stock-specific (idiosyncratic) relationships for small trade

sizes and linear relationships for large sizes. The linear behaviour is generally present

for stocks with trade sizes above 100 shares (corresponding to 4.6 in logarithmic terms),

which is true in approximatey 97% of all cases in our sample (see Table 1).

Corresponding estimates for m∆ in Equation (33) are slightly less easily interpreted.

The inherent discreteness of the dependent variable in combination with bandwidths,

which are comparably small in most cases, lead to relatively irregular fits as illustrated

in the top left and lower right panels of Figure 5. The extreme spikes are due to a lack

of observations for some bootstrap samples. Most smoother fits, such as in the top right

figure, are basically constant and only increase for large regressor values. In contrast, the

lower left panel provides an example of a fit with more variation. Again, the estimate

is fairly constant with a linear increase for regressor values between about −1.5 and 0.

The discreteness in the dependent variable leads to small bandwidths and to wigglier fits

making the comparison of the estimates over all stocks more difficult. For this reason, we

have chosen a slightly larger bandwidth in Figure 6 to illustrate the appropriateness of

the linear approximation across all stocks.
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Figure 5: Local linear estimates of m∆ in Equation (33) for ADBE, CSCO,
PCLN and WFM. Based on data with trades of size at least 100 shares. The solid
black line corresponds to the estimate. The grey lines are estimates for 500 booststrap
replications of our estimator. The dashed lines are the 2.5% and 97.5% pointwise quantiles
over the boostraps estimates. The estimation range for each stock covers regressor values
up until the 99th sample percentile and above the 0.5th sample percentile.
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4.4 Parametric Analysis

The nonparametric pre-analysis in Section 4.3 provides convincing support for the linearity

assumption in md for trades of at least 100 shares. The evidence in favour of the linearity

of m∆ is mixed in large part due to the discreteness in price changes. Nevertheless, since

a linear approximation does not seem inconceivable and there is no obvious alternative

parametric form, the log-linear specifications in Equations (30) and (31) can be viewed as
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Figure 6: Local linear estimates of m∆ in Equation (33) for all 100 stocks.
Based on data with trades of size at least 100 shares. The grey lines correspond to the
estimates for the individual stocks. The bandwidths are set to 0.075 of the estimation
range. The fits are plotted for regressor values between −4 and 0.
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convenient data-driven approximations.

Note, however, that in case of Equation (30), as soon as we impose the linearity

assumption, it no longer holds that the regressor and the error term are uncorrelated.

Recall that we take the perspective of a liquidity demander who strategically posts his

order in response to the currently observed liquidity supply. From an empirical viewpoint,

this perspective is natural as market depth di is known before the trading volume xi is

placed. Consequently, di can be easily assumed to be (weakly) exogenous for xi but not

vice versa. While this reversed causality does not affect the validity of the nonparametric

analysis in Section 4.3, it makes least squares estimates in regression (30) inconsistent. A

simple procedure to produce consistent estimates of q is to run the reverse regression,

ln(xi) = k + 1/q ln(di) + εxi , (35)

whose linearity is obviously supported by the strong evidence for the linearity of md, while
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the regressor di can be assumed to be weakly exogenous. Consequently, running regression

(35) yields a consistent estimate of 1/q, which in turn allows us to test the validity of the

decreasing TIPS condition.

Figure 7: Cross-sectional estimates of 1/q in Equation (35) and α in (31) for
all 100 stocks. Based on data with trades of size at least 100 shares. The left hand
panel provides a kernel density estimate of the cross-sectional estimates of 1/q in Equation
(35). The right hand panel provides a corresponding kernel density estimate of the cross-
sectional estimates of α in Equation (31). Depth k refers to using the cumulative order
book depth up until level k as the underlying depth measure. The kernel density estimates
are constructed using the density function in R with the default rule of thumb bandwidth
and a Gaussian kernel.
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4.4.1 Parameter estimates

For each stock in our sample, we obtain estimates of α and 1/q based on Equation (31)

and Equation (35) using different order book levels as underlying depth measure. These

estimates are graphically summarized in Figure 7. We observe that the cross-sectional

density of 1/q tends to be bi-modal and shifts to the left as more depth levels are utilized.

In any case, the estimates of 1/q are clearly positive and in nearly all cases below one,

thus yielding estimates for q exceeding one. The same is true for a wide majority of

the estimates of the order book shape parameter α, as shown in the right-hand panel of
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Figure 7. We find values of α between 0 and 0.2 in most cases with the cross-sectional

distribution of α being essentially independent of the underlying depth measure. These

findings are supported by stock-specific estimation results.8

Note that the condition for a decreasing TIPS according to Prediction 1, can be

formulated in terms of 1/q and α as

γ := γ(1/q, α) = α/q − 1/q − α < 0.

According to Figure 8, showing the cross-sectional density of γ(1/q̂, α̂), we observe that the

estimates are clearly negative, with modal values between −0.4 and −0.6, thus strongly

confirming Prediction 1.

Figure 8: Cross-sectional estimates of γ for all 100 stocks. Based on data with
trades of size at least 100 shares. The lines refer to the cross-sectional densities of
the respective estimates over all stocks. The lines Depth k refer to the estimates of
γ := γ(1/q, α) = α1/q − 1/q − α using the estimates for the slope parameters from
Equation (31) and Equation (35) based on cumulative order book depth up to level k.
The kernel density estimates are constructed using the density function in R with the
default rule of thumb bandwidth and a Gaussian kernel.
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8 Available upon request from the authors.
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The testable predictions 1 and 2 can thus be formally tested as

H1
0 : γ ≥ 0 vs. H1

a : γ < 0

and

H2
0 : α ≤ 0 vs. H2

a : α > 0.

To test the decreasing TIPS condition γ < 0, we exploit the asymptotic normality of the

estimates in Equation (31) and Equation (35) along with the delta method to establish

√
N(γ̂ − γ)

d→ N(0, σ2
γ),

with σ2
γ = (α−1)2σ2

1/q+(1/q−1)2σ2
α, where σ2

α and σ2
1/q denote the asymptotic variances of

α̂ and 1̂/q, respectively. Denote by s2
α and s2

1/q the heteroscedasticity and autocorrelation-

consistent covariance estimates of σ2
α and σ2

1/q according to Andrews (1991). Then, σ2
γ

can be consistently estimated by s2
γ = (α̂− 1)2s2

1/q + (1̂/q − 1)2s2
α.

Table 2 provides the number of stocks for which the null hypothesis is rejected. We

obtain strong evidence in favour of a decreasing TIPS for nearly all Nasdaq 100 stocks

based on all depth measures and various significance levels. The empirical support for

the validity of a power law order book shape, however, is less strong but still convincing

in favor of the underlying hypothesis. This is particularly true if the cumulative depth

across more than two levels is used.9

We finalize our discussion by formally testing the validity of the predictions for the entire

set of Nasdaq 100 stocks. Conducting tests for each stock individually, the significance

level for the simultaneous test over all stocks is no longer guaranteed to correspond to the

9Results for a third test on an upward sloping order book shape corresponding to H3
0 : α ≥ 1 vs. H3

a :
α < 1 are not provided here. Given that the estimates of α are considerably closer to zero than to one,
there is very strong evidence supporting the hypothesis on all customary significance levels.
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Table 2: Rejections of H1
0 and H1

1 . The table entries give the number of rejections of
the underlying null hypotheses for all 100 stocks. We report the outcomes when carried
out for each stock individually as well as those using the Bonferroni correction to control
the family wise error rate at the given significance levels 0.1, 0.05, 0.01 and 0.001.

Individual Simultaneous
test levels test levels

Depth (d) 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001

H1
0

d1 100 100 100 100 100 100 99 99
d2 100 100 100 100 100 100 100 100
d3 100 100 100 100 100 100 100 100
d4 100 100 100 100 100 99 99 99
d5 100 100 99 99 99 99 99 99

H2
0

d1 75 75 74 72 72 72 72 67
d2 95 95 95 95 95 95 94 91
d3 94 94 93 92 92 92 92 87
d4 93 93 91 89 89 89 88 85
d5 90 90 89 83 83 83 83 79

significance level we provided for the individual tests.10 In order to control for this effect,

we also provide the results from our tests using the Bonferonni correction in the last four

columns of Table 2. Although the Bonferroni correction is conservative in the sense that

it suffers from low power to pick up the alternative hypothesis, we find that the number of

rejections of H1
0 is basically unchanged. Hence, these results provide clear support for the

validity of a decreasing TIPS and slightly lower but still convincing evidence for power-law

shaped order books.

Finally, an alternative way to investigate the validity of the predictions for the entire set

of stocks is by aggregating the estimates over the stocks and performing the corresponding

tests on the aggregate level. Here, we make use of methods employed in random effects

meta-analyses as can be found, for instance, in Higgins et al. (2009). The procedure

essentially computes a weighted average of the stockwise estimates with the weights

inversely depending on the stockwise variance estimates. The details of the procedure are

given in E. The results, provided in Table 3, strongly support the validity of our testable

10It may be the case that we are picking up lots of false positives, which in our case would correspond
to supporting evidence though the model is incorrect.
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predictions.

Table 3: Cross-sectional aggregates of the estimates of α, 1/q and γ. Stock-
specific estimates of α, 1/q and γ = α1/q − 1/q − α, aggregated based on the randomized
effect meta-analysis methods according to Higgins et al. (2009), see E. Standard errors
given in parentheses.

Equation Depth const 1̂/q α̂ γ̂

(35)

d = d1
1.3386 0.7367 -0.7337

(0.0796) (0.0165) (0.0150)

d = d2
1.5655 0.5561 -0.591

(0.1151) (0.0163) (0.0136)

d = d3
1.9717 0.4546 -0.494

(0.0858) (0.0118) (0.0010)

d = d4
2.2466 0.3961 -0.4368

(0.0813) (0.0110) (0.0093)

d = d5
2.3783 0.3649 -0.4046

(0.0804) (0.0106) (0.0092)

(31)

d = d1
4.2902 0.0306 -0.7337

(0.0519) (0.0067) (0.0150)

d = d2
4.3521 0.066 -0.591

(0.0404) (0.0049) (0.0136)

d = d3
4.3862 0.0631 -0.494

(0.0178) (0.0033) (0.0010)

d = d4
4.4098 0.0607 -0.4368

(0.0175) (0.0034) (0.0093)

d = d5
4.4261 0.058 -0.4046

(0.0180) (0.0034) (0.0092)

4.5 Drivers of γ

According to our model, the TIPS monotonicity condition γ(1/q, α) = α/q − 1/q − α < 0

rests on a non-linear relationship of the order book shape α and the liquidity elasticity

q. To quantify the relative importance of these two channels for a decreasing TIPS, we

analyze the relative importance of α̂ and q̂ in a linearized relationship as captured by the

cross-sectional regression model

γ̂i = β0 + βq q̂i + βαα̂i + ui, i,= 1, . . . , 100, (36)
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where γ̂i, q̂i, and α̂i denote the stock-specific estimates of γ, q, and α and ui denotes a

zero mean error term uncorrelated with the regressors. To assess the relative importance

of the two regressors, we consider three simple measures that are easily computed from

least squares estimates of Equation (36) and are reported in Table 4.

The first importance measure is the absolute value of the estimated standardized

regression coefficients in Equation (36), i.e., estimates that are standardized by the

standard error (and are thus independent of the measurement scale) after the regressors

have been centred. Such standardized regression coefficients are interpreted as the

estimated change in the dependent variable measured in standard deviations due to a

one standard deviation increase in the regressor, holding all else fixed. According to the

second and 3rd column in Table 4, the standardized regression coefficients associated with

liquidity, |β̂q|, are larger than that for the order book shape, |β̂α|, particularly, when depth

execceding two levels is utilized.

The 4th and 5th column of Table 4 give the product of the estimated standardized

regression coefficient and the sample correlation of the corresponding regressor with the

dependent variable. This measure was originally introduced by Hoffman (1960) and

formally derived by Pratt (1987). It can be interpreted as the fraction of the model

R2 due to the respective variable. Again, the liquidity elasticity is found to be more

important than the order book shape. The effect is most pronounced when using more

than two depth levels. The main drawback of this methodology, however, is that in

certain situations, such as here, due to correlation between the regressors, the measure

may become negative (see, e.g., Thomas et al. (1998)). As a third measure of relative

importance, we consider the increase in explanatory power in terms of R2 due to the

inclusion of the respective regressor. Since each of the two regressors in Equation (36)

can be added as the first or second variable, we compute the increase in R2 for both cases

and report the corresponding average in the 6th and 7th column of Table 4. The idea of
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averaging increases in R2 over all possible orderings has been introduced in Lindeman et al.

(1980). Confirming the findings above, also this measure indicates that liquidity elasticity

is relatively more important than the order book shape for a decreasing TIPS. We can thus

conclude that the liquidity coordination is the major driver behind a downward-sloping

TIPS profile.

Table 4: Relative importance of the order book shape and liquidity elasticity
in explaining TIPS. The table contains estimated measures of the relative importance

of the estimated order book shape α̂ and the estimated liquidity elasticity q̂ := (1̂/q)−1 in
explaining γ̂ over the cross-section. The 2nd and 3rd column give the absolute values of the
estimated standardized regression coefficients. The 4th and 5th column contain estimates
of the Pratt measure, defined as the product of the standardized regression coefficient
and the sample correlation between the dependent variable and the respective regressor.
The 6th and 7th column contain the average increase in R2 due to the inclusion of the
variable in parenthesis. Finally, the last two columns provide the R2 of the fitted model
in Equation (36) and the correlation between the two corresponding regressors.

Depth |β̂q| |β̂α| β̂qρ̂q̂ β̂αρ̂α̂ LMG(q̂) LMG(α̂) R2 ρ̂q̂,α̂
d1 0.56 0.46 0.56 0.44 0.74 0.68 0.86 −0.66
d2 0.98 0.19 1.12 −0.12 0.71 0.22 0.73 0.68
d3 1.00 0.26 1.09 −0.09 0.75 0.07 0.80 0.52
d4 0.97 0.19 1.05 −0.05 0.80 0.04 0.83 0.41
d5 0.95 0.13 1.02 −0.02 0.84 0.01 0.86 0.25

4.6 Cross-sectional Determinants

In this section, we analyze to which extent the cross-sectional variation of the estimates

α̂, q̂ and γ̂ can be explained by stock-specific characteristics, represented by the daily

averages of the bid-ask spread and the depth as well as the daily realized variance and

trading volume. We perform the following cross-sectional regressions,

γ̂i = cγ + βγ,sprspri + βγ,d1d1,i + βγ,rvrvi + βγ,volvoli + uγ,i (37)

q̂i = cq + βq,sprspri + βq,d1d1,i + βq,rvrvi + βq,volvoli + uq,i (38)

α̂i = cα + βα,sprspri + βα,d1d1,i + βα,rvrvi + βα,volvoli + uα,i, (39)
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where i = 1, . . . , 100 indexes the stocks and spri, and d1,i denote the time-average over

stock i’s dollar bid-ask spread and the depth on top of the book immediately before

a trade, respectively. The variables rvi and voli represent the daily realized variance

computed as the sum of the squared instantaneous price impacts over each day and the

cumulative daily trading volume, respectively. The left-hand variables are the estimates of

α, q, and γ resulting from Section 4.4. All regressors are centered and standardized (i.e.,

scaled by their respective sample standard deviation) in order to remove scale effects.

Table 5 reports the resulting least squares estimates. The results can be summarized

as follows. The TIPS condition γ̂, reflecting the ”strength of evidence” of a declining

TIPS significantly decreases with smaller spreads, larger volatility and larger volume.

Hence, these results suggest that a declining TIPS profile becomes more likely for more

liquid stocks. For the estimated liquidity elasticity q̂ we observe analogous relationships,

confirming our previous evidence that the liquidity elasticity is the major driver of the

TIPS profile monotonicity. Finally, we observe R2 values ranging roughly around 50%

to 60%, indicating that a substantial part of the cross-sectional variation of the TIPS

parameters can be indeed explained by liquidity characteristics and volatility.

5 Conclusions

The stealth trading hypothesis is one of the most intriguing observations of price returns.

Barclay and Warner (1993) suggests that this effect arises from informed trading as large

informed traders try to slice their trades into smaller orders. Thus, the informational

impact of trades should only be seen in non-large orders.

In this paper, we provide an alternative non-informational rationale for the observed

effect that alludes to the phenomenon of liquidity begets liquidity. We develop a simple

but stylized model of trading in limit order book markets, where traders strategically

choose whether to trade in the primary public limit order book based on their perception
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Table 5: Estimates of cross-sectional determinants of γ̂, q̂, and α̂. The table
contains the OLS estimates of the models in Equations (37), (38) and (39). The superscript
stars reflect significance on the 0.1, 0.05, and 0.001 level.

Model Dep. Var. Depth spr d1 rv vol R2

(37) γ̂ := 1̂/q(α̂− 1)− α̂

d1
1.9∗∗∗ −0.03 −1.22∗∗∗ −0.17∗∗∗

0.75
(0.19) (0.05) (0.19) (0.06)

d2
1.62∗∗∗ −0.16∗∗ −1.28∗∗∗ −0.3∗∗∗

0.53
(0.26) (0.07) (0.25) (0.08)

d3
1.58∗∗∗ −0.04 −1.34∗∗∗ −0.33∗∗∗

0.44
(0.28) (0.08) (0.28) (0.08)

d4
1.53∗∗∗ 0.1 −1.27∗∗∗ −0.36∗∗∗

0.43
(0.28) (0.08) (0.28) (0.08)

d5
1.52∗∗∗ 0.17∗∗ −1.19∗∗∗ −0.36∗∗∗

0.46
(0.28) (0.08) (0.27) (0.08)

(38) q̂ := (1̂/q)−1

d1
1.67∗∗∗ −0.002 −0.82∗∗∗ −0.05

0.87
(0.14) (0.04) (0.13) (0.04)

d2
1.82∗∗∗ −0.06 −1.12∗∗∗ −0.18∗∗∗

0.79
(0.17) (0.05) (0.17) (0.05)

d3
1.66∗∗∗ −0.04 −1.05∗∗∗ −0.25∗∗∗

0.68
(0.21) (0.06) (0.21) (0.06)

d4
1.42∗∗∗ 0.05 −0.86∗∗∗ −0.3∗∗∗

0.58
(0.24) (0.07) (0.24) (0.07)

d5
1.24∗∗∗ 0.15∗∗ −0.7∗∗∗ −0.32∗∗∗

0.53
(0.26) (0.07) (0.25) (0.08)

(39) α̂

d1
−1.87∗∗∗ −0.12∗ 1.24∗∗∗ 0.07

0.61
(0.23) (0.07) (0.23) (0.07)

d2
−0.06 −0.09 0.66∗∗ −0.25∗∗∗

0.5
(0.26) (0.08) (0.26) (0.08)

d3
−0.66∗∗ −0.08 1.17∗∗∗ −0.28∗∗∗

0.45
(0.28) (0.08) (0.27) (0.08)

d4
−1.26∗∗∗ −0.09 1.53∗∗∗ −0.35∗∗∗

0.35
(0.3) (0.09) (0.3) (0.09)

d5
−1.79∗∗∗ −0.09 1.74∗∗∗ −0.39∗∗∗

0.34
(0.3) (0.09) (0.3) (0.09)

of transaction costs. Under these assumptions, large traders prefer to trade in the limit

order book market, when sufficient liquidity is provided. Therefore, observed large trades

in these markets have a proportionally smaller price impact compared to smaller trades.

Hence, the mutual attraction of market liquidity and trade volume can explain the presence

of a decreasing price impact per share (TIPS).
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From our model we derive certain testable predictions that are extensively investigated

using high-frequency order-message data from the first quarter of 2014 for all constituents

of the Nasdaq 100 index. We are capable of showing that a decreasing TIPS is virtually

universally present in our data. Furthermore, we also show that liquidity coordination,

as captured by our estimate of liquidity elasticity, seems to be the main driver behind

this result. Finally, we show that the magnitude of the TIPS and thus the strength of the

evidence for a decreasing TIPS depends on the liquidity of the respective stock.
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Appendix

A Proofs

Proof of Lemma 2. The trader decides to trade if and only if the costs of trading are

less than the expected costs of defering, thus when Πprime < Ei[Πother]. Plugging in the

expression after the second equality of Equation (15) for Πprime and the expresssion for

Πother given in Equation (16) as well as using that ξ is a zero mean random variable, the

condition for trading simplifies to

di

∫ F−1(ni/di)

0

f(p)pdp < µni,

which yields the result after dividing both sides by ni.
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Proof of Proposition 1. From the discussion preceding the statement of the proposition,

we have

δ′(x) ≈ 1

x

(
∆̃′(x)− δ(x)

)
(40)

as well as

∆̃′(x) ≈ 1

g(x)f(F−1(x/g(x)))

(
1− EL(x)

)
, (41)

δ(x) ≈ 1

x
F−1

(
x

g(x)

)
. (42)

Thus, approximately up to first order, a decreasing TIPS can be characterized by

δ′(x) < 0

⇔ ∆̃′(x)− δ(x) < 0

⇔ 1− EL(x)

g(x)f(F−1(x/g(x)))
− 1

x
F−1

(
x

g(x)

)
< 0

⇔ 1− EL(x) <
g(x)

x
f(F−1(x/g(x)))F−1

(
x

g(x)

)
︸ ︷︷ ︸

=Ψf,g(x)

⇔ 1−Ψf,g(x) < EL(x).

In the power law order book case, we have f(p) = Ap1/α−1 = 1
α
F (p)
p

. Thus,

f(F−1(p)) =
1

α

F (F−1(p))

F−1(p)
=

1

α

p

F−1(p)
,

from which it follows that

Ψf,g(x) =
g(x)

x

1

α

x/g(x)

F−1(x/g(x))
F−1(x/g(x)) =

1

α
.
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B Sufficient Conditions for the TIPS Monotonicity

Condition (28)

Using di = g(xi) + εi, we can write

∆(xi) = F−1(
xi

g(xi) + εi
) =: Ψ(εi).

In case of a power law shaped order book we have

Ψ(εi) = ∆

(
xi

g(xi) + εi

)α
,

with all derivatives of Ψ(εi) existing and the k-th derivative given by

Ψ(k)(εi) = (−1)k
k−1∏
j=0

(α + j)
1

(g(xi) + εi)k
Ψ(εi).

Under the assumption of the prediction error relative to the prediction being less than

100%, i.e.,

|xi|
g(xi)

≤M

for some M < 1, and for α ∈ [0, 1], we have
∏k−1

j=0(α+ j) ≤ αk!, from which it follows that

|Ψ(k)(0)|
k!

|ε|ki ≤ αM < 1.
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In this case, the Taylor expansion of Ψ(εi) around 0 is given by

Ψ(εi) = Ψ(0)

[
1 + Υ

(
α,

εi
g(xi)

)]

with

Υ

(
α,

εi
g(xi)

)
=

[
∞∑
k=1

(−1)k

k!

k−1∏
j=0

(α + j)

(
εi

g(xi)

)k]
.

Then, the approximation in (24) can be formalized as |Υ
(
α, εi

g(xi)

)
| ≤ δ for δ = α M

1−M ,

which, with an application of Fubini’s theorem, yields

∆̃(x) : = E[Ψ(εi)|xi = x] = Ψx(0)

[
1 + E[Υ

(
α,

εi
g(xi)

)
|xi = x]

]
∈ [Ψx(0)(1− δ),Ψx(0)(1 + δ)],

where Ψx(0) := F−1(x/g(x)).

Using the above approximation ∆̃(x) = Ψx(0)
[
1 + E[Υ

(
α, εi

g(xi)

)
|xi = x]

]
, we obtain

δ′(x) = Ψ′x(0)− Ψx(0)

x
+R(α, x)

with remainder term

R(α, x) =

[
Ψ′x(0)− Ψx(0)

x

]
E
[
Υ

(
α,

εi
g(xi)

)
|xi = x

]
+ Ψx(0)

dE[Υ
(
α, εi

g(xi)

)
|xi = x]

dx
].

(43)

In the following we will establish |R(α, x)| < |Ψ′x(0)− Ψx(0)
x
| ensuring that the condition

|Ψ′x(0)− Ψx(0)

x
| < 0

is sufficient for δ′(x) < 0.
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Under the assumption |xi|
g(xi)
≤M and α ∈ [0, 1], the first term in (43) is bounded by

|Ψ′x(0)−Ψx(0)/x| · αM/(1−M).

In order to deal with the second term in (43), we write E[Υ(α, εi/g(xi))|xi = x] =∑∞
k=1 Υk(α, εi/g(xi)) with

Υk(α, εi/g(xi)) =
(−1)k

k!

E[εki |xi = x]

gk(x)

k−1∏
j=0

(α + j),

from which we get

Υ′k(α, εi/g(xi)) =
(−1)k

k!

dE[εki |xi=x]

dx

gk(x)

k−1∏
j=0

(α + j)− kg
′(x)

g(x)
Υk(α, εi/g(xi)).

Assuming supx |g′(x)/g(x)| <∞ and
∣∣∣dE[εki |xi=x]

dx
/gk(x)

∣∣∣ < Lk with L < 1 for all k and all

x, then

|Υ′k(α, εi/g(xi))| ≤ αLk + k sup
x

|g′(x)|
g(x)

αMk.

Consequently, we have
∑∞

k=1 supx |Υ′k(α, εi/g(xi))| ≤ αL/(1−L)+supx |g′(x)/g(x)|αM/((1−

M)2) establishing the uniform convergence of
∑∞

k=1 Υ′k(α, εi/g(xi)). Therefore, the second

term of (43) is bounded by Ψx(0){αL/(1−L) + supx |g′(x)/g(x)|αM/((1−M)2)} yielding

|R(α, x)| ≤ |Ψ′x(0)−Ψx(0)/x|α M

1−M
+ Ψx(0)

{
α

L

1− L
+ sup

x

|g′(x)|
g(x)

α
M

(1−M)2

}
.

Hence, a sufficient condition for |R(α, x)| < |Ψ′x(0)−Ψx(0)/x| is given by

Ψx(0)

|Ψ′x(0)− Ψx(0)
x
|

{
sup
x

|g′(x)|
g(x)

α
M

(1−M)2
+ α

L

1− L

}
< 1− α M

1−M
=

1−M − αM
1−M

.
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In the power law case Ψx(0) = ∆
(

x
g(x)

)α
, we have

Ψx(0)

Ψ′x(0)− Ψx(0)
x

α
g′(x)

g(x)
=

xg′(x)/g(x)

1− 1/α− xg′(x)/g(x)
=

EL(x)

1− 1/α− EL(x)
.

Then, choosing a constant C > 0 such that αL/(1−L)+supx |g′(x)/g(x)|αM/((1−M)2) <

C supx |g′(x)/g(x)|αM/((1−M)2) yields

sup
x

|EL(x)|
|1− 1/α− ELx|

≤ 1

C

(1−M)(1−M − αM)

M
(44)

as a sufficient condition to guarantee |R(α, x)| < |Ψ′x(0)− Ψx(0)
x
|.

Under the assumption that the prediction error is independent of the trade size we have

L = 0 and can choose C = 1. We summarize the analysis in the following proposition.

Proposition 2. (Sufficient conditions for decreasing TIPS).

In the case of power law shaped limit order book markets with α ∈ (0, 1], if

(a) the prediction errors of traders are bounded in the sense that di−E[di|xi=x]
E[di|xi=x]

=: εi
g(x)
≤

M < 1 and supx |g′(x)/g(x) < |∞,

(b) the prediction error εi is independent of the trade size xi,

then the following two conditions are jointly sufficient to ensure a decreasing TIPS:

(i) 1− 1/α− EL(x) < 0,

(ii) |EL(x)|
|1−1/α−EL(x)| <

(1−M)(1−M−αM)
M

. �

These conditions are directly testable under the assumption that the liquidity elasticity

is constant, i.e, EL(x) = q. Then, given estimates of α and q the first of these conditions

is Testable Prediction 1 as formulated in Section 4.4. To test the second condition we can
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compute M given estimates of q and α and check whether M < 1. Solving

1

1̂/q − 1/α̂1̂/q − 1
=

(1−M)2

M

for M gives a solution that is less than one for all stocks irrespective of the depth measure

utilized to estimate 1/q and α in Equations (31) and (35). This procedure yields a

cross-sectional mean of M between 0.7 and 0.75 depending on the depth measure used.

C Bandwidth Choice

The bandwidth is chosen such that the prediction error of the fit in the last month of our

sample is minimized. Given the data {(ln(di), ln(xi))}Ni=1, the steps are as follows:

1. Split the sample in two parts: A training sample {(ln(di), ln(xi))}Mi=1} consisting of

the data in the first two months and a test sample {(ln(di), ln(xi))}Ni=M+1} consisting

of the data in the third month. The index M + 1 is thus the index of the first trade

in the third month.

2. Find the unique regressor values in the test sample that are within the estimation

range and collect them to form X = (ln(xtest
1 ), . . . , ln(xtest

q ))′. Estimate the function

md at each value in X using a bandwidth h from a grid of bandwidth values H. For

each h ∈ H we then get an estimator m̂d
h.

3. Choose h ∈ H to minimize the squared prediction error for points in the test set

within the estimation range

ĥ = arg min
h∈H

N∑
i=M+1

[ln(di)− m̂d
h(ln(xi))]

21ln(xi)∈X .

4. The final estimate of md as presented in Section 4.3 is md
ĥ
, the local linear kernel
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regression estimator with bandwidth parameter ĥ, estimated using the entire sample

{(ln(di), ln(xi))}Ni=1.

In Step 3, the grid of bandwidth values used should preferably be chosen so that ĥ is

an interior solution, taking neither the largest nor the smallest value of the grid. The

chosen bandwidth grids encompasses values in terms of fractions of the estimation range

from 0.001 to 1. Whenever X contains more than 1000 points (as in the case of mδ), the

estimator is computed on an equidistant grid of points spanning the range of X . The fits

needed in step 4 are then based on linearly interpolating the estimates.

D Bootstrap Procedure

A simple bootstrap procedure is used to quantify the uncertainty of the nonparametric

estimates m̂d and m̂∆. We only detail the procedure for m̂d as the steps for the other estima-

tors are analogous. Recalling that m̂d is estimated based on the data {(ln(di), ln(xi))}Ni=1,

the steps of the bootstrap procedure are as follows:

1. For b ∈ {1, . . . , 500}, draw with replacement N data points from the original sample

to form the boostrap sample {(ln(d
[b]
i ), ln(x

[b]
i ))}Ni=1.

2. For each bootstrap sample, estimate md yielding B = 500 estimates {m̂d,[b], b =

1, . . . , B}. The bandwidth used in the estimation is taken to be ĥ, i.e., the one

determined in the estimation of the orginal data.

3. The reported quantile curves are pointwise, i.e., for every u, we compute the desired

quantile of m̂d,[b](u), b = 1, . . . , B.

It is conceivable to include a bandwidth selection step as detailed in the previous subsection

for each bootstrap estimate in Step 2. However, this greatly increases the computational

burden of the procedure. On inspection for some selected stocks, we observe only little

change in the selected bandwidth compared to ĥ.
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E Cross-sectional aggregation

In this section, we provide some details on the aggregation procedure used to obtain the

estimates in Table 3. The procedure is based on random effects meta analysis as detailed

in Higgins et al. (2009). In contrast to the related Bayes Hierarchical approach as in

DuMouchel (1994), we do not have to specify prior distributions for the parameters of

the distribution governing the overall effects. We give the details for the computation of

the aggregate estimate of the slope parameter γ. For the other parameters we proceed

analogously.

Let γ̂i be the estimate of γ for stock i denoted by γi. Similarly, s2
i is the corresponding

(heteroscedasticity and autocorrelation consistent) estimate of the (asymptotic) variance

of γ̂i. The method assumes that the estimates for each stock are normally distributed,

γ̂i ∼ N(γi, σ
2
i ). (45)

Furthermore, it is assumed that all realizations γi are i.i.d. draws from an unknown

distribution, whose first two moments are given by E[γi] = γ and Var[γi] = σ2. The

aim of the exercise is to obtain estimates of γ and σ2. We will ignore any uncertainty in

estimating the variance of the estimates, i.e., we replace the unknown σ2
i by the estimates

s2
i . Then, estimates for γ and σ2 according to Higgins et al. (2009) (see also DerSimonian

and Laird (1986) and Whitehead and Whitehead (1991)) are given by

γ̂ =
100∑
i=1

wiγ̂i with weights wi =
(s2
i + σ̂2)−1∑100

j=1(s2
j + σ̂2)−1

,

where

σ̂2 = max

{
0,

Q− (100− 1)∑100
j=1 s

−2
j −

∑100
j=1 s

−4
j /

∑100
j=1 s

−2
j

}
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with

Q =
100∑
i=1

(γ̂i − γ̃)2s−2
i and γ̃ =

∑100
i=1 γ̂is

−2
i∑100

i=1 s
−2
i

.

Table 3 reports γ̂ along with its standard error ŜE(γ̂) =
√

1/
∑100

i=1wi. Note, that γ̂ is

simply a weighted average of the stock specific estimates with weights wi that are inversely

related to s2
i .
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