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Abstract 

This paper investigates the interplay between aging of a society and its carbon dioxide 

emissions. The existing literature based on US data predicts lower overall emissions due to the 

lower emission intensity of consumption of a growing old-age share of the population. This 

conjecture is reexamined by a multivariate approach. The underlying hypothesis is that the 

individual levels of emissions do not only depend on age but also on income and employment 

status, which are correlated with age. Thus, bivariate analyses, neglecting other relevant 

variables, might overstate the decline in emissions for older cohorts. The paper shows that this 

hypothesis is correct. A bivariate approach overestimates the decline of emissions caused by 

population aging. Policy decisions favoring a longer work life may reverse the dampening effect 

of aging on emissions.  
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1 Introduction 

Global greenhouse gas emissions need to be cut drastically within the next decades. The goal 

laid down in the 2015 Paris Agreement is to cap the rise of average global temperature at 2°C 

or lower until 2050 compared to the pre-industrial era. The human impact on climate can be 

divided into its components via the IPAT-identity, 𝐼 = 𝑃𝐴𝑇, where I is the impact on the 

environment, P is population, A is affluence, and T is technology measured by GDP per capita 

and emissions per unit of GDP, respectively. This identity can be applied to countries as well 

as to individuals. The individual impact is determined by consumption and its emission 

intensity. Due to personal needs and restrictions, consumption good bundles change over the 

individual’s life-cycle and therefore the corresponding emissions of greenhouse gases vary as 

well. 

From a demographic perspective, the societal impact would be calculated as the sum of 

emissions of all cohorts alive. The age composition of a society, however, is not constant. 

Societies undergoing demographic change age on average. Shares of older people rise relative 

to shares of younger people. Moreover, life expectancy rises in most countries. In order to 

identify the impact of aging on greenhouse gas emissions, one has to determine age-specific 

emissions and analyze the influence of restrictions such as budget constraints.  

Several studies identify emission-intensive age groups in cross-country studies. Cole and 

Neumayer (2004) use dependent (0-14), economically active (15-64) and elderly (65+) as age 

groups in a linear regression model with IPAT controls. For 86 countries and 24 years (1975-

1998) they find an only small, but significant effect of the economically active age group on 

the emission levels, which becomes insignificant if the average household size is added as a 

control. A reduction of the average household on the national level by one person leads to 49.9 

% additional emissions. Menz and Welsch (2012) propose a similar channel resulting in higher 

emissions. They use a panel of 26 OECD countries from 1960-2005 and a larger number of age 

groups than Cole and Neumayer (2004). Their regression results show that age group 60-74 has 

the most emission-intensive lifestyle, which the authors argue to be caused by a higher 

probability of older people living alone (and also in larger houses). Furthermore, they find that 

cohorts born after 1960 are associated with the largest carbon footprints. Different results are 

reported by Lugauer et al. (2014). They identify the prime-age workers (35-49 years) to be 

those associated with the highest emissions. They use a two-stage OLS procedure to show that 

a one percentage point increase in the share of the prime-age workers (instrumented by lagged 

birth rates) raises emissions by 6.1 percentage points. It follows from their results that 60% of 
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the actual increase of emissions in their data (46 OECD countries from 1990-2006) is due to 

the higher share of the prime-age working group. 

Age profiles of emissions differ across all goods. Therefore, disaggregation of aggregate CO2 

emissions into good-specific emissions yields further insight. Liddle (2011) studies emissions 

from transportation and residential energy use for five different age groups, young people under 

20 being the benchmark. In transportation, people aged 20-34 consume most emission-

intensively while other age groups have lower emissions, the lowest being the group 50-69. 

Emissions follow a u-shaped age profile for residential energy use, the highest emissions being 

caused by the groups of people 70+ and 20-34. Zagheni (2011) uses nine different consumption 

categories of emission-intensive goods to calculate the age-specific emission profiles. 

Analyzing 2003 Consumer Expenditure data, he shows that the average CO2 emissions from 

consumption are hump-shaped with respect to age in the US, the peak being around the age of 

62. Combining those age profiles with population forecast, he calculates future levels of 

emissions. Zagheni concludes that, due to population ageing, there will be a negative effect on 

overall emissions. The share of people associated with lower emissions is rising compared to 

the shares of high-emission age groups. He also considered that levels of consumption will 

change over time with commodity-specific trends. These trends are the same for all cohorts. 

The joint effect of an aging population and changing consumption leads to a small increase in 

overall emissions. Other economic factors, e.g. income and employment status, are left out in 

Zagheni’s study. Those variables, e.g. the age-dependent heterogeneity of labor supply or 

income, are described by Dalton et al. (2008) and  O'Neill et al. (2010) to be major determinants 

of emissions in the future. Both studies use the PET model1 with different good categories to 

simulate future paths of emissions with age-specific labor supply. Dalton et al. (2008) 

developed a multi-dynastical model of households and combine it with three different 

population scenarios (high, medium, low) for the US until 2100. In the low population scenario, 

households are small and old and emissions can be reduced by 38% per year. In contrast, in the 

high population scenario emissions can be reduced up to only 11% with households being large 

and young. O'Neill et al. (2010) use expenditure data in four categories for 34 countries to 

                                                 
1 PET stands for Population-Environment-Technology. “The Population-Environment-Technology (PET) model 

is an intertemporal general equilibrium economic growth model that projects global fossil-fuel based CO2 

emissions over time horizons of a century or more.” (Dalton and Goulder (2001), Overview, P.1)  
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calibrate the PET-model. They state that the effect of reduced labor supply due to aging of the 

society can cut emissions by 20% until 2100, mainly for industrialized countries.   

The main objective of this paper is to further investigate the age-specific carbon footprint à la 

Zagheni (2011) by considering additional variables emphasized by Dalton et al. (2008) and 

O'Neill et al. (2010). A multivariate approach to age-specific CO2 emissions is needed due to 

the nature of consumption, which depends on many other variables besides age. Several 

adjustments are to be made to Zagheni’s model. First, unemployment and retirement need to be 

considered as factors affecting the emission profiles, as individuals without jobs tend to 

consume less compared to employed people. Second, the shapes of the CO2 emissions profiles 

might change over time due to changes in the macroeconomic environment. We apply the 

simple and multivariate models to datasets from two different years, 2003 and 2014, and 

compare the corresponding age profiles. Third, policy decisions regarding the extension of the 

work life may have an important impact and shift the peak of the individual emissions profile 

to the right. Future changes in participation rates of older age groups could raise overall 

emissions substantially. Policies are not explicitly examined, but the effect of changing age-

specific employment shares on overall emissions is investigated. On aggregate these three 

effects could lead to a revision of Zagheni’s conclusion.  

The remainder of the paper is organized as follows. First, the process of data generation is 

explained as the translation from monetary spending to consumption related emissions is not 

trivial. Next, the simple and multivariate models are presented and their results are compared. 

Afterwards, the effect of changing age-specific employment shares is analyzed. The paper 

concludes with an interpretation of the empirical results and a summary of their implications. 

2 Data 

We use data from the 2003 and 2014 Consumer Expenditure Surveys2 for the US. Eight broad 

consumption categories are taken to approximate energy-intensive goods: food, clothes, 

gasoline, natural gas, electricity, air flights, tobacco, and furniture. Furthermore, the datasets 

contain information on age, employment status, financial assets, total expenditures of 

consumers and many more. For simplicity only single-person households are considered. This 

avoids the economy of scale bias of household size described by Nelson (1988). The use of 

equivalence scales for multi-person households is possible, but more common if consumption 

                                                 
2 The Consumer Expenditure Survey is published annually by the Bureau of Labor Statistics (2018). Public-use 

microdata can be found at https://www.bls.gov/cex/pumd_data.htm#stata . 

https://www.bls.gov/cex/pumd_data.htm#stata
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is aggregated or if income is the dependent variable. Using equivalence scales for consumption 

of multi-person households inflates the sum of overall consumption and emissions compared 

to the observed data. It is questionable if scale effects of larger households would be represented 

correctly in the regressions. Such effects are obviously excluded if only single-person 

households are used, but this avoids problems regarding the estimation procedure of the scale 

parameters. The overall emission level from the relevant goods can be interpreted as an upper 

bound. Quarterly expenditures are calculated based on the interview files3.  

To translate expenditures into CO2-equivalent emissions, informations from several sources are 

combined. As in Zagheni (2011), the Economic Input-Output Life Cycle Assessment Model 

(EIO-LCA) created by Carnegie Mellon University Green Design Institute (2018) is used for 

coefficients of the year 2003. Unfortunately, later versions are not available. Therefore, input-

output tables from the World Input-Output Database (WIOD)4 published by Timmer et al. 

(2015) are used, which include emissions of different greenhouse gases5 (GHG) from 

production of each sector. Intersectoral relationships from the input-output tables are translated 

from Dollar values into CO2 -equivalent emissions by 

𝑒𝑖𝑗 =
𝑎𝑖𝑗

𝑏𝑗
, (1) 

where 𝑎𝑖𝑗 are inputs required from sector j for production in sector i and 𝑏𝑗 is the CO2-equivalent 

emission of sector j per US-Dollar of its output. The matrix 𝐸 includes all intersectoral 

relationships eij. The input-output model in terms of emissions is 𝐸𝑥 + 𝑓 = 𝑥, where 𝑥 is 

representing emissions from production and 𝑓 final demand, and by rearranging terms we 

get 𝑥 = (𝐼 − 𝐸)−1 𝑓. Additional emissions from additional demand can be calculated as 

∆𝑥 = (𝐼 − 𝐸)−1∆𝑓. (2) 

This is done for the years 2003 and 20096 and the percentage changes of the coefficients are 

calculated for all categories of goods. To get 2014 conversion factors, the percentage change 

from 2003 to 2009 is linearly extrapolated up to 2014. This percentage change is applied to the 

2003 EIO-LCA model coefficients. This is done since the EIO-LCA model uses a finer 

differentiation of goods, e.g., food and tobacco are in the same category in the WIOD input-

output tables, but in the EIO-LCA model they are not. Therefore, their conversion factors differ 

                                                 
3 The public-use microdata contains interview and diary files. The diary files are not included because it wasn’t 

possible to calculate the same expenditures for the overlapping households in both files. 
4 Environmental accounts have been provided by Genty et al. (2012) available at: http://www.wiod.org/release13. 
5 The CO2 equivalents from the GHGs are calculated using the coefficients shown in Table 8 in the appendix. 
6 Environmental accounts are only available until 2009. 
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Figure 1: Average CO2-equivalent emissions for persons employed and not employed in 2003 and 2014 by 

age groups 

Age group shows the minimum age of five (seven for age 18 to 24) year age groups, 65p: 65 and older. 

but have the same relative change from 2003 to 2014 (almost 30%). For all fossil sources of 

energy, e.g., gasoline, coal and natural gas, emissions per unit are a physical constant, and 

emissions per US-Dollar can change only if prices change. CO2-equivalent7 emissions per unit 

are divided by the average prices per unit8for respective goods9. Conversion factors for the 

relevant goods are shown in Table 1.Table 1 

Table 1: CO2-equivalent emissions (kg) per US-Dollar spent 

 Food Clothes Electricity 
Air 

flights 
Furniture Tobacco Gasoline 

Natural 

Gas 

2003 1.70 0.96 9.37 1.98 0.62 0.31 5.505 5.133 

2014 1.19 0.53 6.07 1.50 0.31 0.22 2.561 4.207 

Source: 2003: Carnegie Mellon University Green Design Institute (2018). 2014: own calculations. 

 

Applying the coefficients to the expenditure data and separating individuals by employment 

status, we can depict the impact of employment on emissions. A very broad concept of 

employment is used here. Employed and self-employed people are counted as employed, 

everyone else is not employed (including persons that do not work because they are old, sick, 

or do not want to work without being officially counted as unemployed). 

 
 

                                                 
7Conversion factors are calculated from data of the U.S. Environmental Protection Agency (available at: 

https://www.epa.gov/sites/production/files/2015-11/documents/emission-factors_nov_2015.pdf) 
8Calculations use average annual retail prices from the Energy Information Administration (available at: 

https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMM_EPM0_PTE_NUS_DPG&f=M and 

https://www.eia.gov/dnav/ng/hist/n3010us3m.htm) 
9Additional information on calculations for gasoline and natural gas can be found Table 9 in the appendix. 
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3 The Simple and the Multivariate Approach  

3.1 OLS regressions and evaluation method 

We distinguish bivariate and multivariate models. For each good considered, the two models 

are estimated separately. To replicate the use of the average consumption of one-year cohorts 

in Zagheni’s version in regressions, emissions from consumption of good j by individual i are 

estimated using only age and its square as covariates: 

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗 𝑎𝑔𝑒𝑖 + 𝛽2𝑗 𝑎𝑔𝑒𝑖
2 + 𝑢𝑖 . (3) 

 

The second model is the multivariate approach which includes unemployment and income with 

control variables retirement and financial stock10 as additional regressors: 

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑗 = 𝛾0𝑗 + 𝛾1𝑗𝑎𝑔𝑒𝑖 + 𝛾2𝑗𝑎𝑔𝑒𝑖
2 + 𝛿1𝑗𝑛𝑜𝑡𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑𝑖 + 𝛿2𝑗𝑖𝑛𝑐𝑜𝑚𝑒𝑖

+ 𝜃1𝑟𝑒𝑡𝑖𝑟𝑒𝑑𝑖 + 𝜃2𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝑠𝑡𝑜𝑐𝑘𝑖 + 𝜀𝑖. 

 

(4) 

 

The results from these regressions are used to calculate the age-specific change of emissions in 

both models, holding other factors constant in the second approach. For each good the marginal 

impact of age on emissions is calculated, i.e. 

𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑗

𝑑 𝑎𝑔𝑒
= 𝛽1𝑗 + 2𝛽2𝑗𝑎𝑔𝑒   and      

𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑗

𝑑 𝑎𝑔𝑒
= 𝛾1𝑗 + 2𝛾2𝑗𝑎𝑔𝑒 (5) 

 

respectively. These results are used to address over- or underestimation of emissions for older 

or younger shares of the population. The age at the intersection of those functions is called the 

crossover-age. For higher ages than the crossover-age, the multivariate model estimates a 

higher marginal effect from age on emissions than the simple model.  

Datasets from different years are used. The 2003 dataset is used to discuss Zagheni’s results 

and to show the bias of the results of the simple approach. To control for stability of the relation 

between emissions and age, the exercise is repeated with the 2014 dataset. 

3.2 Regression results and age profiles 

Table 2 and Table 3 show the estimated regression results for the four most relevant goods, the 

peak-ages of emissions, and crossover-ages in 2003 and 2014. Regarding the emissions from 

food and gasoline consumption in 2003, the crossover-age is lower than the peak-age11 of 

                                                 
10 Financial stock includes all financial assets recorded in the datasets, e.g. savings and stocks. 
11 The age with maximum consumption can be calculated as −

𝛽1

2𝛽2
 and for the control model respectively. Graphical 

presentation can be found in Figure 3 and Figure 4 in the 1ppendix. 
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emissions. For emissions from natural gas and electricity consumption, the opposite is 

observed. 

Table 2: 2003 - regression results 

 

If the simple model is used to project the change of emission of a one-year age cohort over the 

life-cycle, the influence of age seems to be overestimated. In a society undergoing demographic 

change with population aging, overall emissions are projected to decline while the multivariate 

model suggests rising emissions. Results for the analysis of the data from 2014 are similar in 

regard to over- and underestimation of emissions. Other results such as the relationship of the 

peak-age of emissions and the crossover-age are different. For food and electricity, the 

qualitative relationship does not change but the peak-ages are further apart and the crossover-

age moves into the opposite direction of the peak-age, resulting in a higher distance from the 

peaks to the crossover-age. Changes are visible for emissions from gasoline and natural gas 

consumption. The sequence of peak and crossover-age is inverted. This indicates, that age-

specific behavior changes over time. Figure 2 shows the estimated age profiles for both models 

 food gasoline natural gas electricity 

age 
48.349* 

(2.666) 

31.085* 

(2.708) 

37.668* 

(2.627) 

28.612* 

(2.752) 

21.838* 

1.509 

19.648* 

(1.693) 

93.178* 

(3.650) 

80.296* 

(4.230) 

age2 
-0.492* 

(0.025) 

-0.326* 

(0.027) 

-0.460* 

(0.024) 

-0.354* 

(0.027) 

-0.169* 

(0.015) 

-0.150* 

(0.019) 

-0.773* 

(0.037) 

-0.650* 

(0.045) 

not employed 

 

-233.538* 

(28.927) 

 

-502.416* 

(32.121) 
 

-92.679* 

(18.151) 
 

-216.643* 

(48.441) 

retired 
272.317* 

(35.050) 

368.591* 

(35.072) 
 

115.355* 

(27.631) 
 

251.608* 

(62.311) 

income 
10.533* 

(0.774) 

4.726* 

(0.592) 
 

1.773* 

(0.291) 
 

8.110* 

(1.096) 

financial stock 
1.398* 

(0.645) 

0.547 

(0.648) 
 

-0.414 

(0.332) 
 

-0.102 

(0.914) 

constant 
301.614* 

(62.109) 

447.972* 

(56.329) 

397.435* 

(62.183) 

515.728* 

(61.028) 

 -280.611* 

(30.036) 

-261.901* 

(31.597) 

-983.406* 

(74.763) 

-873.715* 

(76.669) 

R2 0.0453 0.1519 0.0785 0.1288 0.0365 0.0470 0.0870 0.1166 

peak-age 49.17 47.74 40.92 40.41 64.63 65.49 60.25 61.80 

crossover-age 51-52 42-43 58-59 52-53 

N=8480, *: significantly different from zero (α=0.01), standard errors in parentheses. 
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of CO2-equivalent emissions summarized for eight goods in 2003 and 2014. The profiles in 

2014 are flatter than in 2003. This indicates a declining effect of age on emissions. Forecasting 

emissions and presuming constant age-specific behavior with a changed age structure ignores 

the influence of a changed economic environment. 

Table 3: 2014 - regression results  

 food gasoline natural gas electricity 

age 33.044* 

(3.131) 

19.662* 

(3.175) 

41.660* 

(2.591) 

32.838* 

(2.558) 

17.522* 

(1.700) 

15.696* 

(1.830) 

78.213* 

(3.889) 

71.528* 

(4.086) 

age2 -0.360* 

(0.030) 

-0.241* 

(0.032) 

-0.451* 

(0.024) 

-0.342* 

(0.025) 

-0.136* 

(0.017) 

-0.123* 

(0.020) 

-0.629* 

(0.038) 

-0.560* 

(0.042) 

not employed 

 

-245.947* 

(33.310) 

 

-485.160* 

(27.151) 

 

-84.521* 

(18.005) 

 

-57.826 

(51.041) 

retired 336.057* 

(39.956) 

270.595* 

(33.308) 

118.730* 

(25.437) 

26.127 

(64.442) 

income 9.162* 

(0.593) 

3.550* 

(0.439) 

1.734* 

(0.277) 

3.293* 

(0.652) 

financial 

stock 

-0.0003 

(0.0005) 

0.0004 

(0.0005) 

0.0000 

(0.0003) 

0.0005 

(0.0007) 

constant 808.289* 

(73.852) 

885.108* 

(71.235) 

51.793 

(61.065) 

194.652* 

(59.083) 

-196.702* 

(35.516) 

-186.957* 

(36.396) 

-667.424* 

(84.215) 

-616.890* 

(85.302) 

R2 0.0253 0.1493 0.529 0.1261 0.0219 0.0405 0.0659 0.0750 

peak-age 45.94 40.83 46.15 48.07 64.37 63.59 62.13 63.91 

crossover-age 56-57 40-41 71-72 47-48 
 

N=7207, *: significantly different from zero (α=0.01), standard errors in parentheses. 

The age profiles derived from the multivariate approach are flatter than those derived from the 

simple model in both years. The discrepancy is caused by economic factors such as income and 

the employment status. As age and economic factors are correlated, the simple model suffers 

from omitted variable bias. From these results the marginal effect of age on emissions in both 

models is calculated as described in chapter 3.1. The change of emissions with respect to age 

from both models can be compared. 

For all goods considered, this comparison gives the same result: The simple model estimates 

stronger impact of age on emissions than the multivariate model. For the young part of the 
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Figure 2:  Profile of CO2-equivalent emissions with respect to age. 

population, an additional year results in a higher increase of emissions than in the multivariate 

model, for older people a larger reduction of emissions is estimated. 

 

 

 

Table 4 lists crossover-ages of the four most relevant goods in 2003 and 2014 and the percentage 

of the population older than the crossover-age. From a demographic perspective it should be 

noted that the share of the population older than the crossover-age rose from 2003 to 2014 and 

it is predicted to rise even further from 2014 to 2025.  

Table 4: Crossover-age and population forecast 

good food gasoline natural gas electricity 

year (t) 2003 2014 2003 2014 2003 2014 2003 2014 

crossover-age (ν) 51-52 56-57 42-43 40-41 58-59 71-72 52-53 47-48 

Pop. (%) over ν 
t 25.9 24.3 39.3 46.0 17.6 8.1 24.6 36.8 

t+11 31.3 28.5 43.4 47.7 21.6 11.0 29.9 39.0 
 

Data for the year 2025 is published by U.S. Census Bureau (2018a) and is available at: 

https://www.census.gov/data/datasets/2017/demo/popproj/2017-popproj.html 

 

4 Shifts in age-specific unemployment 

4.1 Treatment regressions 

The structure of the datasets bears the problem that all individual variables are not observed 

over a longer time span. The employment status is defined at the date of the interview, e.g. an 

individual that was not employed at this day but worked during the twelve months prior to this 
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date is counted as not employed. In contrast, the income variable is defined as income of the 

last twelve months prior to the interview and the consumption variable covers the past three 

months. Therefore, the effects of income and employment status on the individual budget 

constraint and therefore consumption might not be represented correctly. Unfortunately, it is 

not possible to correct for this bias within the datasets. Moreover, since the dataset is a pure 

cross-section, single individuals are either employed or not employed, the counterfactual cannot 

be observed. That would be the case if the dataset would be panel data. Analyzing the effect of 

the employment status on consumption in a ceteris-paribus fashion ignores the obvious change 

in income resulting from a change of the employment status. Usual OLS estimates may 

significantly underestimate the effect of employment status on consumption. These 

simultaneous changes can be addressed by treatment regressions (Heckman (1979)). The 

probability of the treatment, in this case not being employed, is estimated by individual 

characteristics. In the first step, a probit regression is done for the binary variable of 

notemployed:  

Pr(𝑛𝑜𝑡𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 = 1|𝑋) = 𝛽𝑜 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑎𝑔𝑒2 + 𝛽3𝑚𝑎𝑙𝑒 + 𝛽4𝑑𝑠𝑎𝑣𝑒 + 𝛽5𝑠𝑡𝑜𝑐𝑘𝑠 + 𝑢, 

where 𝑚𝑎𝑙𝑒 is a dummy (man=1,woman=0). The variable 𝑑𝑠𝑎𝑣𝑒 is the change of savings in 

the last 12 months prior to the interview. Accumulating higher savings in the last 12 months 

might indicate that the individual was employed and able to save out of income while dissaving 

implies lower income due to possible unemployment. The dichotomous variable 𝑠𝑡𝑜𝑐𝑘𝑠 

indicates if an individual holds any kind of bonds or stocks. It is a proxy for wealth income of 

individuals. Including metric information on income leads to collinearity problems in the 

second step of the estimation. Information on the change of savings and other financial assets 

are available only for the 2014 CES and a replication in the 2003 dataset was not possible. 

Therefore, only the 2014 dataset is used here. From the probit regression, the hazard ratios are 

computed for each observation. The hazard ratio is then used as a further covariate in the OLS 

regressions for each consumption good. In such a linear regression the coefficient for 

𝑛𝑜𝑡𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 describes the average treatment effect (ATE).  

The values of variables predicted by the OLS regressions are used to calculate overall emissions 

in the US for a population of 300 Million. Average consumption of five-year age groups12 

separated into employed and not employed is calculated from the treatment regressions. We 

multiply average group-specific emissions with the respective number of people, which was 

                                                 
12 Different for: age 0-17, 18-24 and Age 65 and older. 



Henrik Carlhoff  Carbon Footprint, Demography and Employment Status 

12 

 

derived using population shares published by the US Census Bureau (2018b) and information 

on the age-specific employment status from the CES data13. Overall emissions are the sum of 

emissions of all groups. Finally, we assume that in each age group the share of persons 

employed is raised by one percent and calculate the resulting change in overall emissions. 

4.2 Results of the treatment regressions 

Results from the probit regression are shown in Table 5. Most variables show the expected 

signs. The impact of age on the probability of not being employed is u-shaped over the life-

cycle, men have a lower probability of not being employed and owning stocks has a negative 

impact. The change of savings has an unexpected positive but small influence on the probability 

of not being employed.  

Table 5: Margins for probability of unemployment from probit regression 

 

From the OLS regressions with hazard ratio we get the ATE for the most relevant goods as 

shown in Table 6.  

Table 6: 2014 - Average Treatment Effects (in kg CO2-equivalent emissions) 

 

The estimated emissions for all eight goods with a population of 300 million is about 4.4 billon 

metric tons, which is roughly 65% of US overall CO2-equivalent emissions in 201414. If the 

number of people in each age group15 that is not employed is reduced by one percent, this leads 

to an increase of emissions about of 3.524 million kg CO2-equivalent per year, i.e. by 0.08%. 

This effect can be decomposed into age-specific effects. Table 7 shows the percentage change 

of emissions in different age groups as a response to a one percentage decrease in the share of 

                                                 
13 No other information on age-specific unemployment was available. 
14 EPA calculated the CO2 equivalent emissions as 6.76 billion metric tons in 2014 for the US (information 

available at: https://cfpub.epa.gov/ghgdata/inventoryexplorer/#allsectors/allgas/gas/all)  
15 Exception: Age group 0-17 is per definition not unemployed. Because of the low representation in single 

households they are excluded for the purpose of this analysis. 

 age age2 male dsave stocks 

d notemployed

dx
 

-0.02324** 

(0.001430) 

0.000337** 

(0.000014) 

-0.01788* 

(0.009520) 

0.00124** 

(0.00051) 

-0.1169** 

(0.0448) 

significance levels: **: α=0.05, *: α=0.1, standard errors in parentheses.  

 food Gasoline natural gas electricity 

ATE 389.844** -544.276*** -188.024* 147.282 

significance levels: ***: α=0.01; **: α=0.05; *: α=0.10, complete regression results: Table 10 in the appendix  
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not employed people in each age group. The potential increases of CO2-equivalent emissions 

are larger for older than for younger people.  

Table 7: Percentage change of CO2-equivalent emissions as a response to a decline in unemployment 

or inactivity 

age 18-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65+ 

𝑑 𝐶𝑂2𝑒

𝑑 𝑛𝑜𝑡𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑
(%)  0.13 0.03 0.03 0.04 0.06 0.07 0.07 0.09 0.10 0.19 

Age group 0-17 is not shown. People in this age group are per definition employed, therefore a decline in unemployment is not 

possible. 

 

5 Conclusion 

In this paper a multivariate analysis of the age-specific carbon footprint is performed and the 

results are compared to those of a simple model à la Zagheni. Furthermore, the effects of 

changes in age-specific employment shares on the overall emission levels are calculated.  

The main conclusion is that a simple model using only age to explain emissions overstates the 

impact of age. The multivariate approach shows that the age profile is flatter if other relevant 

variables, in particular economic factors, are controlled for. This indicates that a substantial part 

of the decline of emissions after peak-age 62 in Zagheni’s model is a result of economic 

inactivity, e.g. unemployment and reduced income, rather than of aging. Changing the age 

structure in a way predicted by demographic forecasts, the multivariate model projects higher 

overall emissions as a response to population aging than the simple model because shares of 

population older than the crossover-age rise.  

There are also important insights regarding the forecast of future emissions based on simple 

models that use only age to explain emissions. First, using age-specific consumption from the 

simple model at one point of time to project future emissions perpetuates the error of 

overestimating the decline of emissions due to aging. To get reliable forecasts with the 

multivariate model, future age-specific employment shares and income have to be estimated. 

Second, the comparison of the results from 2003 and 2014 indicates a declining effect of age 

on emissions, visible through the flatter age profile of emission. In summary, future cohorts 

that reach a certain age will behave differently from current cohorts at the same age. 

Activating labor market policies in countries with aging societies target those parts of the 

population that are associated with lower carbon footprints. A simple model with age as the 

only explanatory variable by assumption excludes the possibility that emissions rise due to 



Henrik Carlhoff  Carbon Footprint, Demography and Employment Status 

14 

 

higher labor participation of elderly. The results derived in this paper show that the increases 

in employment significantly raise overall emissions, especially for older age groups. This trade-

off of economic vs. environmental policy in an aging society should be considered further. 
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Appendix 

Table 8: Global Warming Potentials 

Gas CO2 CH4 N2O NOX CO NMVOC 

GWP 1 25 298 4.5 3 3.4 

Source: IPCC 2007 (Forster et al. 2007) and for CO: Fuglestvedt et al. (1996). 

 

Table 9 Overview for calculations of Emission factors for natural gas and gasoline 

 Average price of natural gas (tscf) Kg CO2-equivalent per tscf of natural gas 
CO2-equivalent/$ spent on 

natural gas 

2003 10.62 $ 
54.496 

5.133 

2014 12.95 $ 4.207 

 Average price of gasoline Kg CO2-equivalent per gallon of gasoline CO2-equivalent/$ spent on gasoline 

2003 1.60 $ 
8.813 

5.505 

2014 3.44 $ 2.561 

 

Table 10 2014 Treatment regression - OLS results 

 food gasoline natural gas electricity clothes furniture tobacco air flights 

age 16.292*** 

(4.404) 

31.826*** 

(3.988) 

13.911*** 

(2.665) 

70.408*** 

(5.814) 

1.0566 

(0.7862) 

0.501 

(0.879) 

1.077*** 

(0.227) 

0.305 

(1.604) 

age2 -0.188*** 

(0.594) 

-0.325*** 

(0.054) 

-0.094*** 

(0.036) 

-0.581*** 

(0.0784) 

-0.226** 

(0.011) 

-0.009 

(0.012) 

-0.009*** 

(0.003) 

-0.017 

(0.0216) 

unemployed -389.844** 

(178.381) 

-544.276*** 

(161.256) 

-188.024* 

(107.945) 

147.282 

(235.524) 

36.311 

(31.817) 

9.890 

(35.640) 

-12.932 

(9.161) 

20.355 

(65.025) 

retired 329.417*** 

(43.585) 

272.900*** 

(39.445) 

122.683*** 

(26.366) 

16.755 

(57.548) 

17.014** 

(7.758) 

9.610 

(8.718) 

-3.096 

(2.227) 

48.159*** 

(15.906) 

income 8.801*** 

(0.320) 

3.543*** 

(0.289) 

1.720*** 

(0.193) 

3.109*** 

(0.422) 

0.870*** 

(0.057) 

0.589*** 

(0.064) 

0.004 

(0.016) 

1.466*** 

(0.117) 

financial 

stock 

-0.0003 

(0.0005) 

0.0003 

(0.0004) 

-0.00004 

(0.0003) 

0.0005 

(0.0006) 

-0.0001 

(0.0001) 

0.0002** 

(0.0001) 

-0.00003 

(0.00002) 

0.0002 

(0.0002) 

hazard 89.201 

(102.131) 

34.405 

(92.326) 

60.330 

(61.803) 

-117.388 

(134.848) 

-24.953 

(18.216) 

-7.239 

(20.406) 

9.782* 

(5.245) 

-14.327 

(37.230) 

constant 915.201*** 

(103.554) 

194.652** 

(59.083) 

-186.957** 

(36.396) 

-660.156*** 

(136.726) 

30.946* 

(18.490) 

7.143 

(20.677) 

-10.567** 

(5.332) 

43.610 

(37.726) 

 

N=7207, significance levels: ***: α=0.01; **: α=0.05; *: α=0.10, standard errors in parenthesis 



 

 

Figure 3: 2003 - estimated change in CO2-equivalent emissions   

 

Own calculations, d CO2-equivalent in kg. 
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Figure 4: 2014 - estimated change in CO2-equivalent emissions   

 

Own calculations, d CO2-equivalent in kg 
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Figure 5: Overall CO2-equivalent emissions (kg) in 2003 and 2014 in different age groups 

 

The graphs in Figure 5 compare the emissions in 2003 and 2014 (in kg, vertical axis) for 

different five-year age groups (different for 18-24, horizontal axis with maximum age in group). 
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