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Abstract:
We examine how extreme market risks are priced in the cross-section of asset
returns at various horizons. Based on the frequency decomposition of covariance
between indicator functions, we define the quantile cross-spectral beta of an asset
capturing tail-specific as well as horizon-, or frequency-specific risks. Further, we
work with two notions of frequency-specific extreme market risks. First, we define
tail market risk that captures dependence between extremely low market as well as
asset returns. Second, extreme market volatility risk is characterized by dependence
between extremely high increments of market volatility and extremely low asset
return. Empirical findings based on the datasets with long enough history, 30 Fama-
French Industry portfolios, and 25 Fama-French portfolios sorted on size and book-
to-market support our intuition. Results suggest that both frequency-specific tail
market risk and extreme volatility risks are significantly priced and our five-factor
model provides improvement over specifications considered by previous literature.
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1 Introduction

Classical result of asset pricing literature states that price of an asset should be equal to its
expected discounted payoff. In the Capital Asset Pricing Model (CAPM) introduced by [Sharpe
(1964), Lintner| (1965)), Black (1972), we assume that stochastic discount factor can be approxi-
mated by return on market portfolio and thus expected excess returns can be fully described by
their market betas based on covariance between asset return and market return. Yet, decades
of the consequent research show that we are unable to sufficiently explain the cross-section of
asset returns with this notion. Instead, literature calls for more accurate characterization of
risks associated with assets that will better reflect preferences of investors. We aim to show
that in order to understand formation of expected returns, one has to look into some special
features of asset returns that are crucial in terms of preferences of a representative investor. We
argue that the two important features are risk related to tail events, and frequency-specific risk.
To characterize the risks, we derive novel quantile cross-spectral representation of beta. Our
work nests classical representation that simply averages beta with equal weights over different
quantile levels, as well as frequencies.

Economists has long recognized that decisions under risk are more sensitive to changes in
probability of possible extreme events compared to probability of a typical event. The expected
utility might not reflect this behavior since it weights probability of outcomes linearly. Conse-
quently, CAPM beta as an aggregate measure of risk may fail to explain the cross-section of
asset returns. Several alternative notions emerged in the literature. [Mao| (1970)) presents survey
evidence showing that decision makers tend to think of risk in terms of the possibility of out-
comes below some target. For an expected utility maximizing investor, [Bawa and Lindenberg
(1977)) has provided a theoretical rationale for using lower partial moment as a measure of port-
folio risk. Based on the rank-dependent expected utility due to |Yaari| (1987), [Polkovnichenko
and Zhao| (2013) introduce utility with probability weights and derive corresponding pricing
kernel. More recently, |Ang et al.| (2006); Lettau et al.| (2014) argue that downside risk — risk of
negative returns — is priced across asset classes and is not captured by CAPM betas. Further,
Farago and Tédongap (2017)) extend the results using general equilibrium model based on gen-
eralized disappointment aversion and shows that downside risks in terms of market return and
market volatility are priced in the cross-section of asset returns!T]

The results described above leads us to question appropriateness of the expected utility
maximizers in asset pricing. A recent strand of literature solves the problem by considering
quantile of the utility instead of expectation. This literature complements the literature focusing
on downside risk as it highlights the notion of economic agents particularly averse to outcomes
below some threshold compared to outcomes above this threshold. The concept of a quantile
maximizer and its features was proposed by [Manski (1988)), and later axiomatized by Rostek
(2010). Most recently, |de Castro and Galvao| (2017)) develop a model of quantile optimizer
in a dynamic setting. A different approach to emphasizing investor’s aversion towards least
favorable outcomes defines theory based on Choquet expactations. This approach is based

n addition, it is interesting to note that equity and variance risk premium are also associated with com-
pensation for jump tail risk (Bollerslev and Todorov, 2011)). More general exploration of asymmetry of stock
returns is provided by |Ghysels et al.| (2016), who propose a quantile-based measure of conditional asymmetry
and show that stock returns from emerging markets are positively skewed. |Conrad et al.| (2013) use option
price data and find a relation between stock returns and their skewness. Another notable approach uses high
frequency data to define realized semivariance as a measure of downside risk (Barndorff-Nielsen et al., 2008).
From a risk-measure standpoint, dealing with negative events, especially rare events, is highly discussed theme
in both practice and academics. The most prominent example is Value-at-Risk (Adrian and Brunnermeier; 2016;
Engle and Manganelli, [2004]).



on distortion function that alters probability distribution of future outcomes by accentuating
probabilities associated with least desirable outcomes. This approach was utilized in finance,
for example, by |Bassett Jr et al. (2004).

Whereas aggregating linearly weighted outcomes may not reflect the sensitivity of investors
to tail risk, aggregating linearly weighted outcomes over various frequencies, or economic cycles
may not reflect risk specific to different investment horizons. One can suspect that an investor
cares differently about short-term and long-term risk according to their preferred investment
horizon. Distinguishing between long-term and short-term dependence between economic vari-
ables was proven to be an insightful approach since the introduction of co-integration (Engle
and Granger, [1987)). Frequency decomposition of risk thus uncovers another important fea-
ture of risk which cannot be captured solely by market beta which captures risk averaged over
all frequencies. This recent approach to asset pricing enables to shed light on asset returns
and investor’s behaviour from a different point of view highlighting heterogeneous preferences.
Empirical justification is brought by Boons and Tamoni| (2015 and Bandi and Tamoni| (2017))
who show that exposure in long-term returns to innovations in macroeconomic growth and
volatility of matching half-life is significantly priced in variety of asset classes. The results are
based on decomposition of time series into components of different persistence proposed by
Ortu et al| (2013). [Piccotti (2016) further sets portfolio optimization problem into frequency
domain using matching of utility frequency structure and portfolio frequency structure, and
Chaudhuri and Lo, (2016]) present approach to constructing mean-variance-frequency optimal
portfolio. This optimization yields mean-variance optimal portfolio for a given frequency band,
and thus optimizes portfolio for a given investment horizon.

From a theoretical point of view, preferences derived by [Epstein and Zin! (1989)) enables to
study frequency aspects of investor’s preferences, and quickly became a standard in the asset
pricing literature. With the important results of Bansal and Yaron| (2004), long-run risk started
to enter asset pricing discussions. Dew-Becker and Giglio (2016)) investigate frequency-specific
prices of risk for various models and conclude that cycles longer than business cycle are signif-
icantly priced in the market. Other papers utilizes frequency domain and Fourier transform to
facilitate estimation procedures for parameters hard to estimate using conventional approaches.
Berkowitz (2001]) generalizes band spectrum regression and enables to estimate dynamic ratio-
nal expectations models matching data only in particular ways, for example, forcing estimated
residuals to be close to white noise. | Dew-Becker| (2016) proposes spectral density estimator of
long-run standard deviation of consumption growth, which is a key component for determining
risk premiums under Epstein-Zin preferences, and shows its superior performance compared to
the previous approaches. (Crouzet et al.| (2017) develop model of multi-frequency trade set in
frequency domain and show that restricting trading frequencies reduces price informativeness
at those frequencies, reduces liquidity and increases return volatility.

The debate clearly indicates that the standard assumptions leading to classical asset pricing
models do not correspond with reality. In this paper, we suggest that more general pricing
models have to be defined and they should take into consideration both asymmetry of depen-
dence structure among stock market, and different behavior of investors at various investment
horizons.

The main contribution of this paper is threefold. First, we define a simple theoretical model
in which the representative investor cares differently about long- and short-term risk associated
with an asset. Moreover, we propose an extension of the model that incorporates notion of
aversion to losses into the investor’s decision making. This model then leads to the five-factor
representation of the risk premium and is used for building our empirical model.

Second, based on the frequency decomposition of covariance between indicator functions,



we define the quantile cross-spectral beta of an asset capturing tail-specific as well as frequency-
specific risks. The newly defined notion of beta can be viewed as disaggregation of a classical
beta to a frequency-, and tail- specific beta. With this notion, we examine how extreme market
risks are priced in the cross-section of asset returns at various horizons. We define frequency-
specific tail market risk that captures dependence between extremely low market and asset
returns, as well as extreme market volatility risk that is characterized by dependence between
extremely high increments of market volatility and extremely low asset return.

Third, based on the quantile cross-spectral betas, we define five-factor model that provides
considerable improvements in explaining cross-section of asset returns. Results on a 30 Fama-
French Industry portfolios, and 25 Fama-French portfolios sorted on size and book-to-market
suggest extreme market risk is priced in cross section of asset returns and it is differently priced
for long and short horizon. This extreme market risk is characterized by the risk of extremely
low returns or extremely high volatility.

The rest of the paper has the following structure. Section [2| defines a simple theoretical
model of the representative investor’s preferences. Section [3| introduces concept of quantiles
cross-spectral betas later employed in defining empirical models. Section [5| defines the empirical
models used for testing significance of extreme risks. Section [6] conducts the empirical analysis
of the extreme risks and provides definition of tested robustness checks. Section [7] concludes.
In Appendix we report some robustness checks and give details on estimating quantile cross-
spectral betas.

2 Economic model

Our goal is to show that extreme risk is priced in cross-section of asset returns. Specifically, we
focus on two types of extreme risk: tail market risk, and extreme volatility risk. Further, we are
interested to decompose the tail risks into frequencies to be able to define short- and long-run
extreme risks. We start the discussion with theoretical motivation using simple economic model
and show how the aversion of tail market risk which varies with different investment horizons
may emerge. In the next section, we propose a method how to robustly measure these kind of
risks.

2.1 General framework

The aim of this subsection is to show how the frequency dependent utility may emerge. We
present a general notion of a consumption (wealth) process that consists of two parts: short-,
and long-term. In our setting, the corresponding utility function is additive in those two parts
of consumption. This feature then leads to the stochastic discount factor which is influenced
by both parts of the consumption.

Let’s assume that some function of the consumption process is sum of two parts, which are
functions of short- and long-term components of the consumption

flet) = fs(ets) + frlenr) (1)

where ¢; is consumption at time ¢ and ¢; g and ¢ are short- and long-term parts of the
consumptionﬂ Of course, the simplest case is when the consumption is additive in both these

2This general framework nests, for example, long-run risk model proposed by Bansal and Yaron| (2004). It
can be simply shown that the log of consumption is sum of log of the short-term part and long-term part.



parts

¢ =c¢p 8+ Csr, (2)

and these two parts are orthogonal to each other

Couvt(cty1,8, ct+1,0) = 0. (3)

For the simplicity reasons, we will use this simple case throughout the rest of the paper. Based
on this decomposition, the representative agent cares differently about the short term and long
term partﬂ The utility from the consumption is function of its short-term part and long-term
part and it is additive in utility from these parts

u(c) = uleys, c,r) = us(cys) +ur(cr). (4)

In the conventional setting, the representative agent maximizes expected value of infinite
sum of discounted utilities subject to the budget constraints in the form of

U =E Z Blu(eryj),
0 ®)

s.t. Ct — € — Ptft
Ctyl4j = €pyj + diy &
where {e;4;} is an endowment process, {d;4;} is a stream of payoffs which is purchased by the
investor at time ¢ for price p; in quantity &. On the other hand, in our approach, we assume
two parts of consumption process and the utility in additive form of these two parts, so the
long-term objective changes to

Ui = Ey Z B (us(cryjs) +ur(cissn))
j=0

St Ciyj = Ct4j,S + Ctyj L (6)
cr = aper — pe&e) + (1 — au)(er — pit)
Cip1+j = Qpvi(erri + diyibe) + (1 — cupi) (e + diyibe)

where a; determines proportion of the consumption due to the short-term fluctuations (¢;,s) and
the rest of the consumption, given by 1 — a4, is due to the long term trend in the consumption

(ct,L)-
By obtaining the first order condition with respect to &, we may solve the problem for price
of the asset

—g Y P, 7)
Pt = 1&g e t+j-
where we have used the fact that the partial derivative of the utility at time ¢ with respect to
& is

ou(ct)
&t

= ufg (at(et - ptft))(—ptoét) + u’L((l - at)(et - pt&,))(—pt(l - Oét))

= —pi((on)uls(crs) + (1 — ag)uly (cop))
= —peut'(cr).-

3This setting is very similar to the one of [Bandi et al.| (2018).



Analogously, we can obtain derivatives of ¢;414; in expectations.
Knowing that [7 holds at time ¢ + 1

(c
Pey1 = Erpq Zﬂ] t+1+] dit14, 9)

and using law of iterated expectations, we can rewrite the price at time ¢ as

B e 0 L ) o
R R o Y ot B
=E :3 U;(,C(Z)l) (dey1 + pt+1)} : (12)

This can be rewritten using well-known stochastic discount factor (SDF) and payoff at time
t+1as

pt = Et[mep1241] (13)

where x¢41 = di41 + pe+1 and the SDF is defined as m;11 = 5“;(,0@)1 ),

We can observe that the SDF can be split into sum of two parts, each part depending on
only one part of the consumption process

M1 = Myt1,5(Ce41,8) + Mey1,L(ci1,0) (14)
_ apug(crn,s) (1 — auq1)us(cit1,1) (15)
(a)ulg(ers) + (1 — ar)uf(crr) (a)ug(er,s) + (1 — Oét)U'L(Ct,L)

By dividing both sides of [13| by p;, defining the gross return as Ry;+1 =

that E[XY] = Cov[XY] + E[X]E[Y], and the fact that risk-free rate is given by R =
we can rewrite it as

E¢ [mt+1]’

Ey[Res1] — Rl = —R[ Covi(myt1, Rita). (16)
Using[14]and knowing that Cov[X +Y, Z] = Cov[X, Z]+Cov|Y, Z], we can split the last equation
into

Et [Rprl] — R{ = —R{ (Covt(mHLg, Rt+1) + Covt(mt—&-l,La Rt+1)) . (17)

Moreover, following [Bandi et al.| (2018)), we assume that the return process of the asset also
consists of two parts which are orthogonal to each other

Ri=Ris+ Ry, (18)
Covi(Ri41,5, Riv1,0) =0 (19)

and that the short-term and long-term parts of the consumption process and return process are
orthogonal to each other, too, which leads to the following

Covi(Ri41,5,¢ct41,0) =0 (20)
(COUt(RtJrLL, Ct+175) = 0 (21)



The risk premium then can be rewritten as
Ei[Rit1] — R = —R] (COUt(th,& Riy1,5) + Cove(mey1 1, Rt+1,L)> (22)

We can see that the risk premium of an asset is given by two covariances. One is given by
the covariance between short-term part of the return process and a function of the short-
term consumption part. Second is defined analogously using long-term parts. Thus, the risk
premium is given by short-term dependence between consumption process and return process,
and long-term dependence.

2.2 Specific example

We present here a specific candidate for the utility function which is dependent on both parts
of the consumption process separately. It leads to the model in which the risk premium is given
by weighted linear combination of beta for the short-term part of the consumption process, and
beta for the long-term part.

2.2.1 Power utility

We argue that the possible utility function of the representative agent is sum of two power
utility functions, i.e.

1—vs 1—vL
— _ G5 CtL
u(er) = ulcrss erp) = us(ers) +urlenr) = 7 ol (23)

This separation enables to model different risk attitude towards the long-term part and short-
term part of the consumption. One can be a long-term investor and be more risk averse to the
long-term risk than to the short-term fluctuations and this framework enables to model this
explicitly. We now derive the results which were discussed in the previous subsection for some
general utility function u(c).

The partial derivative of the utility at time ¢ with respect to & is

82(‘£jt) = (au(er = pi&e)) 775 (=pree) + (1 — o) (er = pi&e)) " (—pe(1 — o)) (24)
= —pe(a) (€))7 + (1= ar)(cf) ) (25)
= —pu'(cr), (26)

and the same applies to the differentiation of u(ci4145) in expectations.
By substituting u'(ci11) = 16t g + (1 — aug1)e, {7 into 22 and after few algebraic
operations, we obtain the following

E(Ryt] - RS = Cov(airic,} gy Rit1,s) ( B Vart(awlctﬁﬁs))_i_
t Vary(arsic, 5 ) E(u/(cr11)) o
Cov((1 — 1), p Regr,n) ( Vary((1 — at+1)c;jﬁL))
Vard(1— aes1)6.05 ) E, (v (cer1))
which in terms of betas reduces to
B[R] — R] = Bisidsy + Biidns (28)



where we stress that the beta coefficient (quantity of risk) is specific for every asset i, and
lambda (price of risk) is common for every asset. We can see that ;g is a function of
covariance between transformed short-term part of the consumption and short-term part of
asset return, and f3; 1 ; is a function of covariance between the transformed long-term part of
the consumption and long-term part of asset return.

To summarize it, we expect that price of risk of short-term and long-term part will differ.
As stated in Bandi et al. (2018)), frequency is a dimension of risk and thus investors may care
differently about various parts of it.

2.3 Implementing tail risk aversion

There are many ways how to introduce loss or tail-risk aversion into the economic model defined
in[6] We will propose two approaches how this can be done. First one is based on the asymmetric
utility function and the second one on the utility functional over the whole infinite stream of
the consumption process which overweights the left-tail events.

2.3.1 Asymmetric utility function

One of the possibilities how to introduce the aversion to losses into our economic model is
to define some utility function over consumption which incorporates this feature. We will do
that by adapting the utility function based on the one from the cumulative prospect theory
of Tversky and Kahneman| (1979)) and Tversky and Kahneman| (1992)) which posses a kink at
some reference pointlﬂ The original utility function of Tversky and Kahneman (1979) is in the
form of

v(z) = 2°I{x > 0} — M(—z)PI{z < 0} (29)

where the utility is not computed directly over the consumption (wealth) but over gain or loss
T = ¢ — ¢g relative to a reference point cg; so, in terms of consumption this can be rewritten as

v(e) = (¢ — o) I{c > co} — AM(—(c — ¢0))PI{c < cp}. (30)

In our setting, we may assume that the reference point is given by the value of some quantile of
distribution of consumption, i.e. ¢y = ¢.(7) where g, is quantile function of the consumption.

Because of the presence of the kink at the reference point, the original utility function is
not differentiable at the point of the kink. This feature makes the utility hard to incorporate
into the intertemporal setting. So, instead of using the original utility function of [Tversky and
Kahneman| (1979)), we use the specification introduced in Hung and Wang| (2005)

v(c) = (1 —e Pl {e > o} — A1 — eé(c_co))f{c < co}- (31)

In our setting, the utility of the economic agent defined in {4] is computed as a sum of two
utilities; these utilities are computed over different parts of the consumption - short- and long-
term. This means that both parts of the utility posses the form of [31] with distinct values of

“In the setting of the original prospect theory |[Tversky and Kahneman| (1979) and cumulative prospect theory
Tversky and Kahneman| (1992), not only the utility function posses a kink in the reference point, but also the
probabilities are non-linearly transformed mimicking the loss aversion. We do not aim to fully incorporate this
theory into our model as it is not of the main interest of this paper.



parameters 8 and A
]
ug(cg) = (1 — 6755(05700’5))1{03 > co,s} — As(1 — eﬁ(CS_CO’S))I{cs <cogs} (32)
—Br(cr—co.r) SL (e, —co,r)
ur(cp) = (1 —e PR OLN{er, > cor} — An(l —e’c "N I{cr < cor} (33)
and the overall utility is sum of those two utilities

u(c) = us(cs) +urlcr) (34)

where the reference values are computed using the same value of 7 for computing reference
point as a T—quantile of the respective part of the consumption. Parameters § and A\ may be
the same for both parts of the consumption, or they may be different to introduce different
degrees of loss aversion for each part of the consumption.

Derivative of [31] with respect to the corresponding part of the consumption is computed as

wj, () = Be Plen=con) [{e, > o} + Beg(chfcovh)l{co <con}, h={S,L} (35)

where we can see that the utility posses a derivative at every point. Knowing that [§ holds, we
can substitute this into [22| to obtain excess return representation

_ Covg(apr1ug(cern,s), Riy1,s) ( ~ Vary(apug(cir,s) .

R N T TATY) £ ((cr)
Cove((1 — oveqr)uf,(c41,0), Rev,1) ( ~ Var((1— 04t+1)uf9(0t+1,s)))
Vary((1 — ag1)ur (ceq1,L)) Eq(u'(cer1))
yielding the same beta representation as in the case of power utility model but additionally the
consumption is weighted differently for values below quantile threshold and above it making
the agent averse to the losses or event left tail events.

Moreover, using the formula for the derivative of each part of the utility, we can decompose
the last equation into

Ei[Rir1] — RS =
Covy (aus1B8sePs(es=08) [{cg > ¢y g}, Rys1,9) ( _ Var (as1BgePsles—0s) [{cg > Co,s}))
Vary (au18se Ps(es=0.8) [{cg > co 5}) Eq¢ (v (ct41))

Covy ((1 — agyr)BrePrier=on) [{c;, > co 1}, Riya,1) (_ Vary ((1 — ougr)Bre Prlee—on) [{c, > ¢ 1}) )+
Vart((l — 1) BrePrlee—cl)[{cy > CO7L}) Ey(u/(ci+1))

(36)

BS (co— BS (co—
Cov (ov18g€>s (cs CO’S)I{CS < cos}, Riy,s) ( Var (a18s€e*s (cs CO’S)I{CS < cos}) >+

g /
Vary (arp185e3s ™) [{eg < cp,5}) By (' (cr41))

BL(¢p—c BL(¢p—c
(Covt((l - at+1)6Le*L( r O’L)I{CL < CO,L}aRt-i-l,L) (_ Vart((l - at+1)6Le*L( r O’L)I{CL < C(),L}))

2 /
Var,((1 - 1) Bret O ey < co,L}) E(w/(eei1)

(37)
That can be rewritten in terms of betas and lambdas as
E, [Rt+1] - R{ = Bf,]s,tkls],t + @%Mgt + ﬂiL,S,t)‘é,t + BiL,L,t)\%,t (38)

where the superscript indicates the part of the distribution of the consumption where we mea-
sure the dependence (U for upper part of the distribution given by the values above the kink,
and L for lower part).



2.3.2 Rank-dependent intertemporal utility functional

Another way how to incorporate aversion to losses into the economic model is to transform
the probabilities associated with the continuation value of the utility regardless the contem-
poraneous utility function employed. We will briefly introduce the model based on |[Chew and
Epstein| (1990), which is slightly modified for our purposes. In their specification, based on the
nonexpected utility preferences, they work with utility functional of [Yaari (1987) defined on
D(R), the set of cumulative distribution functions (c.d.f.’s) on the real line, in the form

Vy (F) Z/Zd(g(F(Z))) = /zg'(F(Z))dF(Z% F e D(R) (39)

where g is a probability weighting function such that g : [0, 1] — [0, 1] is continuous and strictly
increasing, g(0) = 0, and g(1) = 1. By denoting probability weighting density as W = ¢/, we
can rewrite the utility functional as

Vy (F) = E[zW(F(2))], (40)

which belongs to the class of rank-dependent expected utility (RDEU). Following |(Chew and
Epstein| (1990)), we employ the utility functional 39 to the model [6] and obtain the following

Uyt = Vv (FYy,) (41)

where we define ¥y = 3772 B9 (us(ctyj,5) + ur(cetjr)) and Fy, is its c.d.f. We can rewrite it
in the form

Uy = B¢ [SW (F (%)) (42)

If the g(F(z)) = F(z), then [42|reduces to the standard specification of [f] based on the expected
utility. On the other hand, W may be defined in the way that it strongly overweights the left
tail outcomes making the agent extremely averse to the left-tail outcomes. This specification
clearly depends on both parts of the consumption process and the utility is influenced by the
weighting feature of the rank dependent utility functional.

3 Measuring quantile-frequency risk

In this section, we propose methods how to robustly measure the relation between asset return
and some economic variable over some specific horizon in a given part of the joint distribution.
The aim is not to precisely estimate the theoretical models proposed earlier, but to introduce
general measures that estimate risk in various parts of the joint distribution and over various
investment cycles. Frequency part is important because of the fact that the risk premium in
the setting described above is determined by the covariance between asset return and two parts
of the consumption process - short- and long-term. The measure of dependence between asset
return and consumption in specific part of the distribution is important because agent is highly
averse to extremely low outcomes and thus requires a premium for assets that posses high
covariance with weighted consumption.

First, we define quantile risk measure based on covariance between indicator functions, which
has natural economic interpretation in terms of probabilities. Second, we introduce frequency
decomposition, and combine these two frameworks into quantile cross-spectral risk measure,
which are the building blocks for our empirical model. These measure enable us to robustly



test for the presence of extreme market risks over various horizons in the asset prices. The aim
is not to convince the reader that the functional form of the preferences follows precisely our
model, but to show that there is a heterogeneity in the weights that investors put to the risk for
different investment horizons and different parts of the distribution of their future wealth. By
estimating prices of risk for short- and long-term part, we are able to identify the horizon the
investor care most about, and by estimating prices of risk for various parts of the distribution,
we are able to identify the part of the joint distribution towards which is the investor the most
risk averse. This is done by controlling for CAPM beta and the influence of these new measures
is measured as an incremental information over simplifying assumptions that lead to the CAPM
beta asset pricing models.

3.1 Tail risk

Based on many simplifying assumptions, asset pricing theory states that risk premium of an
asset or portfolio can be explained by its covariance with some reference economic or financial
variable such as consumption growth or return on market portfolio. This measure may not be
sufficient if the assumptions are wrong, mainly in the cases in which the the investor cares about
different parts of the distribution of his future wealth differently. For example, as discussed in
Ang et al. (2006), if the investor’s decisions are characterized by the rational disappointment
utility function, classical covariance-based measure of dependence cannot fully explain asset
prices. Hence, the most widely used measure of dependence between two variables r;; and ry ;,
cross-covariance,

’}/Zimj = Cov (Tt+k,i7 rhj) = ]E[(Tt-i-k,i — fi)(T'th — fj)], (43)
is due to its averaging nature unable to describe asymmetry features of dependence structure
between two variables unless the variables are jointly normal. If we want to measure dependence
separately in different parts of a distribution - and obtain dependence measure in various parts
of joint distribution, we have to employ more flexible measures. Since we are interested in
pricing extreme negative events, we want to measure dependence and risk in lower quantiles of
the joint distribution. We propose to use quantity of the following form

Vzi’Tj (7_7’1'7 TT]') = Cov (I{rtJrk,i S dr; (T’ri)}7 I{Ttyj S qrj (TTj )})7 (44)
where r;; and 1, j are two time series of strictly stationary random variables, ¢x (7) is a quantile
function of random variable X, 7;,7; € (0,1), and I{A} is indicator function of event A. The
measure is given by the covariance between two indicator functions and can fully describe
joint distribution of the pair of random variables r; and r;. If distribution functions of r; and
rj are continuous, the quantity is essentially difference between copula of pair r; and r; and
independent copula, thus the following quantity Pr (TH_M < @, (1), tm < Gr,, (Trm)) — T Trym.-
Thus, covariance between indicators measures additional information from the copula over
independent copula about how likely is that the series are jointly less or equal to their given
quantiles. It enables to flexibly measure both cross-sectional structure and time-series structure
of the pair of random variables.

The quantity introduced in Eq. can be further generalized in the way that one can
replace quantiles of respective variables by some general threshold values

’V?Jj (an er) = Cov (I{Tt-I—k,i < Qn’)}’ I{Tt,j < er}) (45)

where @), and @, are general threshold values, which do not necessary need to be equal.
These threshold values may be derived from distribution of some reference variable. Since we
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are interested in explaining risk premiums of assets, we follow the usual setting and denote
returns of some asset or portfolio 7 as r; 4, and returns of market portfolio denoted as 7, .

In our model, we set threshold values to be equal, Q,, = Q,,, and are derived from dis-
tribution of market returns. These values are given by 7, unconditional quantile of market
returns

Q'f‘m = qrm (7-) (46)
and thus our measure of dependence between asset ¢ and market return can be written as
(1) = Cov(I{rern < gr (M)} Hrtm < a7, (7)) (47)

Simple tail risk beta (not decomposed into horizons) is defined using measure given in [47| for
k = 0 and normalized by variance of the indicator function of the market return

o7 Sl _ COU(I{Tt,z‘ < @r (7))} Hrem < @, (T)})

grn(n) = 25 Var(I{{rom < o (7)) )
B (Cov([{rm- < @ (TN} I{rem < qu(7'>})
o (1 —17) (49)

This definition of beta will be used in the simple model defined later.

3.2 Frequency-specific risk

It is natural to assume that economic agents care differently about long-, and short-term invest-
ment horizon in terms of expected returns and associated risk. Investors may be interested in
long-term profitability of their portfolio and do not concern with short-term fluctuations. One
possibility how the preferences may look like is in the Subsection 2.1} Frequency-dependent
features of an asset return then play an important role for an investor. Bandi and Tamoni
(2017) argues that covariance between two returns can be decomposed into covariance between
disaggregated components evolving over different time scales, and thus the risk on these com-
ponents can vary. Hence, market beta can be decomposed into linear combination of betas
measuring dependence at various scales, i.e.dependence between fluctuations with various half-
lives. Frequency specific risk at given time plays an important role for determination of asset
prices, and the price of risk in various frequency bands may differ, i.e. the expected return can
be decomposed into linear combination of risks in various frequency bands.

The most simple and natural way how to decompose covariance between two assets into
dependencies over different horizons is via its Fourier and inverse Fourier transform. Frequency
domain counterpart of cross-covariance is obtained as Fourier transform of the cross-covariance
functions. Conversely, cross-covariance can be obtained from inverse Fourier transform of its
cross-spectrum in the following way

1 o0
T, T _ E TiyT'm —ikw
S i I'm (w) — % ,yk e
k=—oc0
T .
,Yzzﬂ"m — QTiTm (w)ezk:wdw
—7

isT'm

where S (w) is cross-spectral density of random variables r; and ry,, 7, is cross-covariance
function given by equation It is important to note that cross-covariance can be decomposed
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into frequencies, more specifically, for k = 0, we can decompose covariance between two time
series into the covariance components at each frequency w

Cov(ri, rm) = ST (w)dw.

—T

Following the same logic decomposition of variance follows as

™
Var(r;) = S" (w)dw.
—Tr
where S"(w) is spectrum of r;.
Since we can decompose cross-covariance between two returns into covariances at each fre-
quency, we can disentangle the dependence at short- and long-term components. Then, beta
for an asset ¢ and factor m can be decomposed to as

i "m — OOU(Ti’Tm) _ T wlw Sri7rm(w) o = T wlw i,m w)dw
grom = ot [ () S o = [ w@)p ) (50)

Srm (w)

where w(w) = Var(rm) represent weights. The decomposition is important step since it pro-
vides decomposition of classical beta into the weighted frequency-specific betas. Using similar
approach, Bandi and Tamoni (2017)) estimate price of risk for different investment horizons and
show that investors posses heterogeneous preferences over various economic cycles instead of
looking only on averaged quantities over the whole frequency spectrum.

4 Quantile-frequency specific risk

Since we argue that both tail risk as well as frequency-specific risk are important in explaining
formation of asset returns, we aim to combine these risks into a single model. We start by
defining measure of risk associated with various combinations of quantile and frequency in
order to determine the most important combination priced across assets.

Our measures of risk in the quantile-frequency domain are based on the dependence measures
recently introduced by Barunik and Kley| (2015). To quantify risk premium across frequencies
and across the joint distribution, we use the quantile cross-spectral densities to build a quantile
cross-spectral beta. Both these points are explained in more detail in Section

4.1 Quantile cross-spectral beta

The cornerstone of the new beta representation lies in quantile cross-spectral density kernels
which are defined as
1 o0
fr(Ws Ty Try ) = o Z ’yzimm (TrmTrm)e_ka (51)

k=—o00

where 7,,, 7, € [0,1]. A quantile cross-spectral density kernel is obtained as a Fourier transform
of covariances of indicator functions defined in Equation and will allow us to define beta
that will capture the tail risks as well as frequency specific risks. As stated earlier, in our model
we will use as a threshold value the 7 unconditional quantile of market returns and thus we will
work with
T ,Tm 1 — T ,rm —ikw
f (wyT) = o Z Vi . (52)

k=—o00
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A quantile cross-spectral (QS) betas in the general case in which the threshold values are
given by 7,, quantile of asset returns and 7, quantile of market returns are defined as

. isI'm —ik
B'fiﬂ"m( . ) — frz’rm(w;ﬂ"i?ﬂ"m) — Zzozfoo 7]: ’ (7—7"2'77_7"m)e " (53)
w’ 7—7'7:? Trm - fqnm ((/J T ) - ZOO Tm (7_ )e*lkw *
s I Tm k=—oc0 Vk Tm
QS betas for given asset quantify the dependence between asset ¢ and market factor m for a
given frequency w at chosen quantiles 7,; and 7,,, of the joint distribution. Once again, we will
work with the following quantities

f’f’i7r7n (w; 7—) Zzo:_oo /_y;iﬂ"m (T)G_ka

TisT'm . = = i . 54
ﬂ (Wa 7-) frm (w7 7.) ZZO:—OO ,yzm (T)efzkw ( )
We can also construct beta for a given frequency band, accordingly
Ti,"'m .
gromm(r) = [ L@ g, (55)
Q me (W, T)

where Q = [w1,w2), wi,ws € [—m, 7|, w1 < ws is a frequency band. This definition is important
since it allows to define short-run, or long-run bands covering corresponding frequencies, and
hence disaggregate beta based on the specific demands of a researcher.

4.2 Quantile cross-spectral beta under Gaussianity

Before we continue and use the new beta representation, it is important to note how newly
defined quantity relates to a classical beta under the assumption of Gaussian distribution, as
commonly assumed by many asset pricing models. Assuming that returns of an asset and re-
turns of market portfolio are jointly normal random variables independently distributed through
the time (correlated Gaussian white noises), QS betas would be in the following form

. CGauss(Trys Try s P) — Try T,
T3 ,T auss T T Tylr
i) = Gl

(56)

where Cgauss 18 Gaussian copula with correlation coefficient p. This stems from the fact that
quantile cross-spectral density corresponds to a difference of probabilities Pr (Ttﬂ' < @, (1), Teom <
r,, (Trm)) — Ty, Trym, Where {7, Tr,m } are probability levels under Gaussian distribution.

In our case, the threshold values are given by the market quantile. So, if we want to compute
beta for some asset ¢ and market under the Gaussian distribution assumption, the the value of
7, has to be estimated, first. We do that using the empirical distribution function ., of asset
i’s returns, i.e. 7, = F}, (g, (7)). The rest is the same as in the case described earlier.

QS betas are constant over frequencies under Gaussian white noise assumption, and depend
only on chosen quantiles and correlation coefficient between asset and market return. Hence
Eq. provides the quantile cross-spectral counterpart to classical CAPM beta as these are
equivalent. We will use this fact to construct our model later. In the spirit of |Ang et al.| (2006])
and |Lettau et al.| (2014)), we define relative QS betas which capture additional information not
contained in the classical CAPM beta.

Finally, we note that for serially uncorrelated variables (no matter of their joint or marginal
distributions), the Fre¢het/Hoeffding bounds gives the limits that QS beta can attain

min{ 7., 7, } — Tr;Trm,

TTm(]‘ - TTm)

) — 1,0} — 7.
max{7,, + T, 0} — 70,7, < BT (w3 Ty T ) <
7-7‘711,(]‘ - Trm)
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5 Pricing extreme risks across frequency domain

Quantile cross-spectral betas defined in the previous section will be the cornerstone of the
empirical model defined in this section. Using the theoretical motivation, we assume that QS
betas for low values of threshold values will be significant determinants of risk. We expect
that weighting density strongly overweights the outcomes from the left part of the distribution
of future outcomes. Using QS betas, we define pricing model encompassing tail market risk
and extreme volatility risk. Both these risks are further decomposed into long- and short-term
components in order to obtain their prices of risk separately.

Tail market risk (TR) represents dependence between extreme negative events of both mar-
ket as well as asset return. It differs from downside risk used in Ang et al. (2006)); Lettau
et al| (2014) since downside betas are computed based on covariates of asset return with a
market return being under some threshold value. In contrast, QS betas captures risk that both
market as well as asset return will be extremely unfavorable. In other words, it captures joint
probability that market as well as asset returns will be below some threshold level.

Extreme market volatility risk (EVR) captures unpleasant situations in which extremely
high increments of market volatility are linked to the extremely low asset asset returns. We
argue that both these risks are significant determinants of risk of an asset and thus should be
priced in cross-section of asset returns.

Values of 7,,, percentage value for the quantiles for asset thresholds, are not explicitly fixed to
quantile of their returns because we do not explicitly care about dependence between quantile
values in the cross-section. We rather care about dependence in extreme market situations.
Thus the threshold values for asset returns are given by values of quantile of market returns;
these threshold values are same for all the assets, which corresponds to different quantiles for
each asset. Formally, for each portfolio we obtain threshold values as a 7,, quantile of its
distribution where 7., = F}.,(qr,,(7r,,)). Let’s consider a model in which we set threshold value
to be equal to 5% quantile of market return. Value of 7, in Equation [53|is equal to 5% but
7, must be estimated. First, this 5% market quantile must be transformed using empirical
cumulative distribution functions into probability that given asset return is below this value

for each asset, and then the QS betas are computed as f""™(w; 7, ,7,) where T,él_ differs
across assets (for one asset 5% quantile of market return may correspond to 1% quantile of its
distribution, for another asset it may correspond to 8% quantile of its distribution). Same logic
is applied to both tail market risk betas and extreme volatility risk betas. By setting market
return and portfolio threshold equal, we avoid problem of potential data-mining. Potentially
better fit could be obtained by finding threshold values with the best model fit for a specific
dataset, but may not be robust across datasets.

Regarding the frequency decomposition of the risks, we specify our models to include disag-
gregation of risk into two horizons - long and short. Long horizon is defined by corresponding
frequencies of cycles of 1.5 year and longer, and short horizon by frequencies of cycles shorter
than 1.5 year. Procedure how to obtain these betas is explained in Section [6]

In each of the models defined in the paper we control for CAPM beta as a baseline measure
of risk. This ensures that if the QS betas are significant determinants of risk premium, they do
not simply duplicate information contained in CAPM beta. Moreover, in case of tail market
risk, we define relative betas that explicitly capture only the additional information over CAPM
beta. Throughout the paper we impose the restriction that market price of risk is correctly
priced implying that it is equal its average return.

14



5.1 Tail market risk

We assume that dependence between market return and asset return during extreme negative
events is priced across assets. The stronger the relationship between market and asset during
an extreme events is, the bigger the risk premium investors demand. Tail market risk is a direct
extension of downside risk discussed above. Whereas downside risk captures risk of negative
events, tail risk is connected to negative events with more severe impact.

Because we want to quantify risk which is not captured by CAPM beta, we propose to test
significance of tail market risk via differences of the estimated QS beta and QS beta implied
by the Gaussian white noise assumption. We call this difference relative QS betas. For a given
frequency band €); and given quantiles 7, and 7., the relative beta is defined as follows

B:;}Tm (Qj ) Trz’ TT'm) = Bri7rm (9]7 7_7"1'7 TT'm) Bgé:z;s( T) (57)

In our case, beta is function of frequency band €2; and threshold value given by 7 quantile of
market returns

B:é’lrm (Q]a 7—) = /Brimm (ij 7—) - Bgt;::;s(gja T)' (58)

Relative QS betas measure additional information not captured by classical CAPM beta.
In case the CAPM beta captures all information, and returns are Gaussian, the relative QS
beta will be zero at all frequencies and quantiles.

Our first model is a three-factor market model which contains only tail market risk, and is
defined as

Z 57’1,7‘m Q]a T (Qﬁ 7_) + ﬁiCAPM)\CAPM’ (59)

rel

where f; is classical CAPM beta, AAPM ig price of risk for market risk captured by the classical
beta, and )\TR(Qj, 7) is price of tail risk (TR) for given quantile and given frequency band. We
impose restriction that market risk is correctly priced, i.e. AY4FM is equal to average market
return, and portfolio threshold is the same as market threshold and, 7., = F} (qy,, (7,,)). If
asset returns do not posses features of deviations from assumptions mentioned above, then
the relative betas will be equal to zero and thus all the information about dependency during
extreme events is captured by CAPM betas. On the other hand, if there is a significant difference
between information captured by CAPM beta and QS betas, then the difference will be nonzero
and may be priced in cross section of asset returns, which will be assessed based on significance
of related prices of risk.

This model directly relates to the model proposed in the Equation More specifically,
we approximate the betas for the lower part of the distribution of consumption (superscript
L) with QS betas and for the upper part of the distribution with CAPM beta. Although
the CAPM beta captures dependence over the whole distribution, because the QS betas are
estimated mostly for very low parts of the distribution, the additional information contained in
the CAPM beta (in comparison with betas defined for the upper part of the distribution) can
be neglected.

5.2 Extreme volatility risk

Volatility risk is important risk priced across assets. |Ang et al. (2006) document that assets
with high sensitivities to innovations in aggregate volatility have low average returns. Because
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of the fact that time of high volatility within the economy is perceived as a time with high
uncertainty, investors are willing to pay more for the assets that yield high returns during
these turmoils and thus positively covary with innovations in market volatility. This drives
the prices of these assets up and decreases expected returns. In addition, decomposition of
volatility into short-run and long-run when determining asset premium was proven to be useful
as well (Adrian and Rosenberg, [2008). Moreover, Bollerslev et al.| (2016) incorporated notion of
downside risk into concept of volatility risk and showed that stocks with high negative realized
semivariance yield higher returns. Farago and Tédongap| (2017)) examine downside volatility
risk in their five-factor model and obtain model with negative prices of risk of volatility downside
factor yielding low returns for assets that positively covary with innovations of market volatility
during disappointing events.

We assume that assets that yield highly negative returns during times of large innovations
of volatility are less desirable for investors and thus should be rewarded by holding these assets.
For simplicity reasons, we estimate market volatility using basic GARCH(1,1) model E] and
obtain estimates of squared volatility. Then the changes in squared volatility are calculated as

Ac? =o? — ol . (60)

Because of the nature of covariance between indicator functions, we work with negative differ-
ences of the volatility, —Ac?, then the high volatility increments correspond to low quantiles of
distribution of the negative differences. We investigate whether dependence between extreme
market volatility and tail events of assets is priced across assets. Threshold values for port-
folio returns are obtained in the same manner as for tail market risk and are derived from
distribution of market returns, 7., = Fy.(gr,,(7r,,)). For example, for model with 7., = 0.05,
extreme market volatility beta is computed using threshold for innovations of market squared
volatility as 5% quantile of its distribution of negative values (corresponding to 95% quantile
of the original distribution), and threshold for portfolio returns is computed as 5% quantile of
distribution of market returns.
Three-factor model containing extreme volatility risk betas solely is defined as

2
. 2
E[rf] =) B8 (Qm)APY () 4 BEATMACAPA, (61)
j=1
where we also impose restriction that market risk is correctly priced, i.e. ACAPM ig equal to

average market return.

5.3 Full five-factor model

Finally, we combine the risks into a single five-factor model that includes both tail market
risk and extreme volatility risk for both short- and long-run horizons, as well as market risk
associated with classical CAPM beta. Model posses the following form

2
Elrfl = Bl (s AT (5 7) + BEATMACAPM
= (62)

2
+3 TR (s )APY (95 7)
j=1

5As a robustness check, we compute volatility as realized volatility from daily data
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where we restrict ACA”M to be equal to the average market return. We remind that the market
threshold is equal to portfolio threshold. This means that 7, is given and 7,, is computed for
each portfolio from its respective empirical distribution. Threshold value for extreme volatility
risk is given by quantile of distribution of differences of market volatility, and for given model,
tau for extreme volatility risk is the same as tau for tail market risk, 7po,2 = 7,,, and portfolio
threshold is the same as for tail market risk.

Throughout the paper, we focus on results for 7, equal to 5% and 10% (models denoted
as QS05 and QS10). In addition, we report various results for 1%, 15%, and 25% quantiles.
Moreover, root mean squared pricing error of the fitted models is reported for continuum of
quantiles between 1% and 50% for completeness. The choice of 5% and 10% quantiles is natural
and arises in many economic and finance applications. Probably the most prominent example
is Value-at-Risk, which a benchmark measure of risk widely used in practice and studied among
academics.

5.4 Simple three-factor model

As an intermediary step, we define model which contains both tail market risk and extreme
market volatility risk but does not take into consideration frequency decomposition. It posses
the following form

E[rf] = B " ()N (r) + BTAPMACAPM y grodot(m) APV (r) (63)

) rel

where we define quantile betas as

TiyTj5

B Ty Try) = v’sr‘m (64)

where 7, stands either for return on market portfolio, or changes in negative of squared market
volatility. Relative beta in case of TR is defined as difference between quantile beta and beta
defined under normality assumption

Brei (1) = BTT(T) = Beiuss (Wi T) (65)

where beta under normality assumption is the same as in Equation [56|since it does not depend
on frequency. Threshold values are obtained in the same way as in case of Full 5-factor model.

6 Testing for quantile-frequency specific risk

In this section, we estimate the models defined in the previous section and assess whether the
tail risks are priced in the cross section of asset returns and whether we capture new features
of priced risk not described by other competing models.

6.1 Estimation of QS betas

Estimation of QS betas (for both TR and EVR) relies on proper estimation of quantile cross-
spectral densities using rank-based copula cross-periodograms, which are then smoothed in
order to obtain consistency of the estimator. Technical details are provided in the Appendix [A]
Betas from the simplified model defined in Equation [63] are simply estimated using empirical
distribution function of the market return distribution.
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6.2 Fama-MacBeth regressions

To test our models, we employ procedure of [Fama and MacBeth (1973). In the first stage,
we estimate all required QS betas, relative QS betas, and CAPM betas for all portfolios. We
define two non-overlapping horizons: short and long. Horizon is specified by the corresponding
frequency band. We specify long horizon by frequencies with corresponding cycles 1.5 year and
longer, and short horizon by frequencies with corresponding cycles below 1.5 year. QS betas
for these horizons are obtained by averaging QS betas over these frequency bands

P57 1 Q- 4,7
Brm Qi) = — > B (wf7)

n
L33

i7" 1 O T4,T
Brir Qi) = — > B (w)7)

n
Si=t

(66)

where Q, (Qg) is frequency band for long (short) horizon, and wk € Q, (w? € Qg).

In the second stage, we use these betas as explanatory variables and regress average portfolio
returns on them. We assess significance of a given risk by significance of the corresponding price
of risk ﬁ Thus, in the second stage in case of the Full 5-factor full model, we estimate model
of the following form

Z/@ﬁﬂ’m )\TR(Q ) 4 IBCAPM)\CAPM

rel

3B QA (57) +

The same estimation logic applies to the simplified three-factor model.

As mentioned earlier, we estimate our models for various values of threshold value given by
7 quantile of market return. In the scatter plots of actual and predicted returns, we focus on
versions of our model where 7 = 0.05 (QS05) and 7 = 0.10 (QS10). We compare the results
for our models with i) classical CAPM ii) downside risk model by Ang et al.| (2006) (DR1)
iii) GDA3 and GDAS5 models by Farago and Tédongap| (2017). Performance of all models is
assessed based on their root mean squared pricing error (RMSPE), which is widely used metric
for assessing model fit in asset pricing literature. All the competing models are estimated for
comparison purposes without any restrictions except that the market price of risk is correctly
priced (equal to the average market return over the observed period) using OLS. Thus, GDA3
and GDAJb are despite their theoretical background estimated without setting any restriction
to their coefficients and are also estimated in two stages.

6.3 Data

To illustrate the main findings, we use 30 Fama-French industry portfolios data monthly sam-
pled between July 1926 and November 2017 (1097 observations). These data satisfy the need
of our model to posses long enough history in order to obtain reliable results. In Appendix [D]
we report also results for 25 Fama-French portfolios sorted on size and book to market over
the same time span. Regarding the market data, instead of using consumption data, we follow

6As shown in [Shanken| (1992), if the betas are estimated over the whole period, the second stage regression
is T-consistent.
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Tail market risk Extreme volatility risk

Trm  AMong  Apere A9APM RMSPE AV E ARVE A\APM RMSPE

long long short

0.01 0.8 1.14 0.66 14.66 032 -1.01 0.66 23.61
(3.50)  (7.32) (7.85)  (-1.61)

0.05 086  1.10 0.66 20.15 045  -3.26 0.66 17.70
(4.29) (1.82) (11.72)  (-2.84)

01 138 085 0.66 19.65 055  -2.61 0.66 16.44
(5.19)  (1.14) (14.62)  (-2.22)

015 153  1.26 0.66 17.51 0.71  -3.64 0.66 14.41
(8.45)  (1.58) (14.97)  (-3.35)

0.25 236 124 0.66 21.24 0.93  -4.06 0.66 16.64
6.77)  (1.14) (14.14)  (-2.91)

Table 1: Estimated coefficients. Prices of risk of two versions of three-factor model estimated on
monthly data of 30 Fama-French equal-weighted industry portfolios sampled between July 1927 and
November 2017. Models are estimated for various values of thresholds. Market price of risk is imposed
to be equal to the average market return.

Campbell (1993) and use data on broad market index to avoid problems connected to the con-
sumption data. Excess market return is computed using value-weighted average return on all
CRSP stocks and Treasury bill rate from Ibbotson Associated’]

We also estimate our models using daily data. Various models do not perform very well on
a daily sampling frequency and we want to assess whether this is the case for our models, too.
We employ the same datasets as in the main analysis but with daily frequency. The sampling
period for daily data is between July 1926 and March 2019. The performance in this case will
be also compared with above mentioned competing models.

6.4 Estimation results
6.4.1 Three-factor models

We report estimation results of the three-factor models in the Table I, To take into account
multiple hypothesis testing, we follow Harvey et al.| (2016) and report ¢-statistics of estimated
parameters (in parenthesis). Regarding the TR model, beta for short-horizon is more significant
for 7, being equal to 0.01, in the rest of the cases, beta for long horizon is more significant.
In case of the EVR model, beta for the long-horizon is more significant determinant of risk
premium for all the values of 7, in comparison to short-horizon beta. We can see that the TR
model model outperforms the EVR model for 7, being equal to 0.01.

6.4.2 Full model

As a preliminary investigation, we conduct an analysis in which we examine tail risk and extreme
volatility risk without taking into consideration the frequency aspect. Estimated coefficients
can be found in left panel of Table[2 We can observe that tail risk is significantly priced across
low quantiles with expected positive sign. Extreme volatility risk is significantly priced for 10%,
15%, and 25% quantiles suggesting that investors price dependence between assets and market
volatility, but focus on more probable market situations. RMSPE of the model for various
market threshold defined as 7 quantile of market return is depicted in left panel of Figure
We can deduce that better fit is obtained for lower values of thresholds and for very low 7 it

TAll the data were obtained from Kenneth French’s online data library.
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Simple model Full model

>\TR )\EVR )\CAP]\I RMSPE >\TR )\TR )\EVR )\EVR )\CAP]\/I RMSPE

Trm long short long short

0.01 1.56 0.35 0.66 15.57 -0.12 1.14 0.22 0.02 0.66 13.74
(10.96)  (0.80) (-0.71)  (7.01)  (1.88)  (0.06)

0.05 2.41 0.48 0.66 20.78 -0.45 1.27 0.50 -2.93 0.66 15.87
(4.72)  (0.55) (-0.96) (2.49) (2.86) (-2.71)

0.1 2.07 1.61 0.66 19.69 -0.15 0.81 0.51 -2.23 0.66 15.94
(3.48) (2.34) (—0.29) (1.25) (352) (—1.82)

0.15 3.67 1.58 0.66 19.85 0.61 0.72 0.46 -3.51 0.66 13.30
(4.80)  (1.88) (1.60)  (1.13)  (3.50) (-3.35)

0.25 4.50 3.26 0.66 25.44 0.69 0.71 0.68 -3.86 0.66 15.61
(415) (234) (135) (085) (437) (-283)

Table 2: Estimated coeflicients. Prices of risk of simple 3-factor and full 5-factor model estimated
on monthly data of 30 Fama-French equal-weighted industry portfolios sampled between July 1927 and
November 2017. Model is estimated for various values of thresholds given by 7, . Market price of risk
is imposed to be equal to the average market return.

can even outperform GDAS model which is a 5-factor model. For higher values of 7, RMSPE
of our simple model exceeds RMSPE of GDA5 model suggesting that indeed extreme risks of
the assets are priced factor.

Estimated parameters of the full model can be found in the right panel of Table 2l We ob-
serve that significant determinants of the risk are short tail risk and long extreme volatility risk,
both significantly priced across portfolios with expected signs. Tail risk is more significant for
lower values of 7 meaning that dependence between market return and portfolio return during
extremely negative events is a significantly determinant of risk premium. On the other hand,
long-run extreme volatility risk is significantly priced across all values of 7, but becomes more
prominent for higher values of the quantile. We can deduce that price of long-run risk of |Bansal
and Yaron| (2004)) is hidden in this coefficient. Coefficients of the prices of risk for long tail risk
and short extreme volatility risk posses negative sign, which may seem counterintuitive. This
may suggests that investors are extremely averse to long-run dependence between extremely
negative returns and high volatility but at the same time exposure to the extreme volatility
risk in the short run is desirable as the prices will adjust to the market turmoil quickly. Tail
risk in the long run for lower quantiles is also negative but the coefficients are not significant.

In Figure [1, we compare performance of our QS models, QS05 (7, = 0.05) and QS10
(7r,, = 0.10), with various other models. It is notable that CAPM, and DR1 model completely
fail to price the portfolios, better fit and lower RMSPE is obtained by GDA3 and GDA5
models. Finally, the best fit is provided by our QS models since returns lie closer to the 45
degree line. Right panel of Figure [2| depicts performance of the QS model against market
thresholds given by 7 quantile of market distribution. We observe better performance of our
model in comparison to GDA5 model for all threshold values below 30% market quantile, and
generally very good performance for low values of threshold suggesting that extreme risks are
significant determinants of risk premium.

6.5 Disentangling model performance

We will answer the question whether the performance of our model is driven by the quantile
decomposition of the risk only, or the frequency decomposition brings a significant improvement
over the simple specification. To do that, we employ horse race between betas from the Simple
model and betas from the Full model, and assess the significance of the prices of risk for given
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CAPM, RMSPE = 50.45 DR1, RMSPE = 49.08 GDA3, RMSPE = 18.18
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Figure 1: Predicted returns. Plots of predicted versus actual returns for competing models estimated on
monthly data of 30 Fama-French equal weighted industry portfolios.

(a) Simple model (b) Full model

RMSPE
RMSPE

Figure 2: RMSPE for simple and full model estimated on monthly data of 30 Fama-French equal weighted
industry portfolios for various values of threshold given by 7 quantile of market returns. Horizontal line represents
RMSPE of GDA5 model.
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Tail market risk Extreme volatility risk

Tr  ATEOXDR O ALR XCAPM U RMSPE AEVE - ZEVE O AEVE S XCAPM - RMSPE

0.01 031  0.15 0.90 0.66 14.62 3.85  -0.01  -3.58 0.66 21.35
(0.41)  (2.05)  (1.45) (2.45)  (-0.05)  (-2.99)

0.05 053  0.74 0.73 0.66 20.14 0.17 043  -3.41 0.66 17.70
(0.18)  (1.05)  (0.35) (0.04)  (0.80)  (-0.78)

01 309 071  -164 0.66 19.34 -3.75 0.98 0.73 0.66 16.18
(0.93) (0.92) (-0.59) (-0.94)  (2.15)  (0.20)

0.15 803 014  -572 0.66 16.12 -8.88 1.38 4.47 0.66 13.30
(2.20) (0.21) (-1.75) (-217)  (4.40)  (1.15)

0.25 642 158  -4.43 0.66 20.63 -1.09 1.00  -3.06 0.66 16.63
(1.27)  (2.24) (-0.97) (-0.19)  (2.80)  (-0.55)

Table 3: Estimated coefficients from the horse race estimation. Prices of risk of simple 3-factor models
also including the simple betas for the respective risks estimated on monthly data of 30 Fama-French
equal-weighted industry portfolios sampled between July 1927 and November 2017. Model is estimated
for various values of thresholds given by 7,. . Market price of risk is imposed to be equal to the average
market return.

betas based on their t-statistics. We will run the regression separately for the tail market risk
betas and extreme volatility risk betas.

The results can be seen in Table[B|and they clearly indicate that the frequency decomposition
of risk is a valuable dimension to explore. First, for the TR model we observe that, especially
for the lowest quantile, i.e. 7. = 0.01, frequency decomposed measures outperform the simple
measure of tail market risk. For the models given by the higher quantiles, we observe ambiguous
results and cannot clearly decide whether the performance is more driven by the quantile
definition of risk only. Moreover, the values of the coefficients (both simple and full model)
vary significantly probably because of the correlation between these measures. In that case,
we argue that the frequency decomposition is valuable as it is not decisively outperformed by
the simple quantile measure. Moreover, the best performance of the model is achieved for
Trm = 0.01 and in that case the long- and short-term betas drive out the simple beta.

Second, the results of the EVR model are less indecisive. For the low values of the quantiles,
the decomposition into horizons is outperformed by the simple measure of extreme volatility
risk. On the other hand, with increasing value of quantile, we can see that disentangling the
risk into long and short horizon brings a valuable information and moreover, the performance
improves in comparison to the low values of 7, .

6.6 GDA and QS measures of risk

In this subsection, we compare the performance of our model with the GDA5 model of [Farago
and Tédongap| (2017). To do that, we construct horse race regressions between their measures of
risk and ours. We compare risk measures associated with market return and market volatility
increments separately. The aim of this analysis is to decide which measures of risk better
capture the notion of extreme risks associated with risk premium.

The results are depicted in Table [4] In case of tail market risk, we see that GDA5 measures
of risk (Ap and Awp) do not drive out our measures of risk for any value of 7, . This clearly
suggests that our measures are better in capturing the asymmetric risk priced in the cross-
section of assets.

In case of volatility risk, we see from Table [4] that the situation is pretty much the same
as in the case of tail market risk. Especially, the price of risk for long-term EVR betas stays
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strong over all values of quantile, and GDA5 measures of volatility risk remain insignificant in
all of the cases.

All the results suggest that our model brings an improvement in terms of identifying form
of asymmetric risk which is priced in the cross-section of asset returns.

Tail market risk Extreme volatility risk

Trom Ap Awp  ARE TR AGAPM RMSPE Ax Axp  ApYER - ZEBVE  A\CAPM - RMSPE

0.01 -0.03 0.04 -0.14 0.89 0.66 12.42 2.73 -1.12 0.17 -0.84 0.66 22.26
(-0.69) (0.12) (-0.97) (4.66) (1.21) (-0.57) (1.85) (-1.30)

0.05 -0.02 0.14 -0.14 1.25 0.66 17.08 -1.73 1.36 0.48 -3.72 0.66 17.44
(-0.36) (0.36) (-0.39) (2.28) (-0.87) (0.86) (4.54) (-2.83)

0.1 0.01 0.28 0.33 0.98 0.66 17.28 -1.98 1.34 0.63 -3.22 0.66 16.07
(0.19) (0.72) (0.71) (1.41) (-1.07)  (0.89) (5.77) (-2.43)

0.15 -0.02 -0.03 0.93 1.01 0.66 16.17 0.07 -0.51 0.78 -3.69 0.66 14.21
(-0.45) (-0.07) (2.40) (1.30) (0.05) (-0.42) (7.02) (-3.32)

0.25 -0.03 0.04 1.02 0.66 0.66 16.90 1.56 -1.10 0.85 -4.14 0.66 16.34
(-0.44) (0.10) (2.09) (0.72) (0.96) (-0.79) (5.42) (-2.89)

Table 4: Estimated coefficients from the horse race estimation between QS measures of risk and GDA5
measures of risk. Prices of risk of 3-factor models including respective GDA5 measures of risk estimated
on monthly data of 30 Fama-French equal-weighted industry portfolios sampled between July 1927 and
November 2017. Model is estimated for various values of thresholds given by 7, . Market price of risk
is imposed to be equal to the average market return.

6.7 Robustness checks

As robustness check, we first report results based on 30 Fama-French industry portfolio data
which are value weighted. Results are summarized in Appendix We report estimated
coefficients for both simple and full model, RMSPE for continuum of 7., and comparison with
competing models. We also conduct the same analysis with volatility being computed from
daily data as a realized volatility for each month in the sample. It is obvious from estimated
simple models that both tail market risk and extreme volatility risk are priced in cross-section.
Estimated full models suggest that short tail risk is the driving force of aggregated tail risk,
and although coefficients for long extreme volatility risk are not significant, they posses the
right sign and are numerically close to their counterparts computed on volatility from GARCH
model. We argue that this is due to highly non-smoothed nature of the volatility computed as
a sum over respective months. On the other hand, EVR is consistently priced using the Simple
3-factor model. This seems natural as the realized volatility poses non-smoothed nature and
the frequency decomposition is not so effective as in the case of smoothed volatility estimates
as in the case of GARCH model.

In Appendix [D] we perform the same analysis on 25 Fama-French portfolios sorted on size
and book-to-market. We report results based on both equal and value weighted portfolios, and
volatility is computed using GARCH model and as realized volatility from daily data. In the
case of models with volatility computed from GARCH model, our model performs comparable to
GDAJ5 model but slightly worse, but outperforms all the other competing models, and moreover
all the features observed in the case of 30 industry portfolios are present in this case, also, with
values of the coefficients being similar. In the case of volatility computed from daily data, our
model outperforms all the competing models including GDA5 model.

As an another robustness check for the TR betas, in the first stage regression, we standardize
the returns of both market and portfolio returns using estimated volatility and estimate the
TR betas using these transformed series, and the second stage regression remains the same.
Volatility is estimated for each time series separately using GARCH(1,1) model for simplicity
reasons. This robustness check aims to show that the betas do not solely capture the common
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Simple model Full model

Tr  ATHRNBVE S \CAPM - RMSPE AL DR AOnE NEVE S \CAPM RMSPE

0.01 011 024 0.03 1.02 -0.02 016 003 026 0.03 1.02
(3.50)  (2.66) (-0.81)  (3.14) (2.10) (2.19)

0.05 0.6  0.28 0.03 1.01 -0.01 019 003 028 0.03 1.02
(3.84)  (4.05) (-027)  (223) (213) (1.32)

01 020 033 0.03 1.07 -0.02 024 003 019 0.03 1.04
(4.34)  (4.75) (-0.35)  (3.00) (2.61)  (0.90)

015 0.22  0.46 0.03 1.25 -0.02 027 005  0.02 0.03 1.15
(3.85)  (5.43) (-0.39)  (3.46) (3.75)  (0.09)

025 027  1.01 0.03 1.73 011 040 006  0.59 0.03 1.37
(3.37)  (7.50) (-158)  (4.19) (4.21)  (1.39)

Table 5: Estimated coeflicients. Prices of risk of Simple 3-factor and Full 5-factor model estimated on
daily data of 30 Fama-French equal-weighted industry portfolios sampled between July 1926 and March
2019. Model is estimated for various values of thresholds given by 7. .. Market price of risk is imposed
to be equal to the average market return.

trend in volatility present in both market and portfolio returns. Results of this analysis are
captured in Table We observe that, especially for the long-term TR betas, the coefficients
remain significant even after this standardization procedure.

6.8 Estimation on daily data

We estimate our Simple and Full model using daily data, also. First, we estimate our models
on 30 Fama-French equal-weighted industry portfolios and compare the results with the com-
peting models. We know that the performance of asset pricing models, in most of the cases, is
substantially worse when working with data with frequency higher than one month and some
of them are even useless in this case (e.g., CAPM model). We want show that this is not the
case of our models and that the models perform better in this case than the other models

Estimated parameters of our Simple and Full model are summarized in Table [} We can
see that the coefficients for Simple model are significant through all the quantiles but the best
performance is achieved for low values of 7,,,. The comparison between our models and the
other is depicted in Figure [3| and based on RMSPE, our model predicts the returns the best
among all the models in our investigation. Performance of the model in relation to 7, is
captured in Figure [l We can see that our models achieve better performance that the GDA5
model for low values of 7, .

In the Appendix [E], we report also estimates of the models on daily data of 25 Fama-French
equal weighted portfolios sorted on size and book-to-market. We choose this dataset for the
analysis because our models in the robustness check procedure perform relatively worst on
this dataset when compared to the GD5 model. So, to see whether this also holds for the
daily data, we compare all the competing models on this dataset. The estimated coefficients
of the Simple 3-factor and Full 5-factor model are reported in Table From the comparisons
between the competing models depicted in Figures and we can see that our models
provide a significantly better fit to the daily data, and the Full 5-factor model achieves better
performance for all values of 7.

To summarize, we can see that the both in terms of coefficient significancy and relative model
performance, our models can provide a good fit to the daily data, which is quite uncommon
among asset pricing models. This results only confirms our hypothesis that the extreme risks
are priced in the cross-section of asset returns.
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Figure 3: Predicted returns. Plots of predicted versus actual returns for competing models estimated on daily
data of 30 Fama-French equal-weighted industry portfolios.
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Figure 4: RMSPE for simple and full model estimated on daily data of 30 Fama-French equal-weighted industry
portfolios. Horizontal line represents RMSPE of GDA5 model.
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7 Conclusion

We have shown that extreme risks are priced in cross-section of asset returns. In the paper, we
distinguish between tail market risk and extreme volatility risk. Tail market risk is characterized
by the dependence between highly negative market and asset events. Extreme volatility risk
is defined as cooccurrence of extremely high increases of market volatility and highly negative
asset returns. Negative events are derived from distribution of market returns and its respective
quantile is used for determining threshold values for computing quantile cross-spectral betas.
We define two empirical models for testing associated risk premium. Simple model, which
does not take into consideration frequency aspect, confirms that investors require premium for
bearing both tail market risk and extreme volatility risk. Full model further identifies that
premium for tail market risk is mostly featured in its short-term component, and premium for
extreme volatility risk is mostly associated with its long-term component.

In order to consistently estimate the model, data with long enough history has to be em-
ployed. But if the data are available, our model is able to outperform competing models and its
performance is best for low threshold values suggesting that investors require risk premium for
holding assets susceptible to extreme risks. Moreover, our models can perform very well even
on the daily data, which is not common for asset pricing models.
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A Estimation of quantile cross-spectral betas

Estimation of QS betas defined in our paper is based on the smoothed quantile cross-periodograms
studied in Barunik and Kley| (2015)). For a strictly stationary time series Xo j,..., Xpn—1,j, we
define I{F,, ;(X;;) < 7} = [{Ryy; < nr} where F, j(z) = n~ ' 3.0 I{X;; < 2} is the em-
pirical distribution function of X; ; and R, ; denotes the rank of X; ; among Xq;,..., X1 ;.
We have seen that the cornerstone of quantile cross-spectral beta is quantile cross-spectral
density defined in Equation Its population counterpart is called rank-based copula cross-

periodogram, CCR-periodogram, and is defined as

D (wim,m) = %dQR(wm)ng(—w;@) (68)
where
) n—1 n—1
@ op(w;T) =Y H{F (X)) < vye ™ =Y HRpy; <nrye ™, 7€[0,1].  (69)
t=0 t=0

As discussed in Barunik and Kley| (2015)), CCR~periodogram is not a consistent estimator of
quantile cross-spectral density. Consistency can be achieved by smoothing CCR-periodogram
across frequencies. Following Barunik and Kley| (2015)), we employ the following

n—1

Z Wy (w — 27r3/n)I£f}%2(27rs/n, T1,72) (70)
s=0

2T

Gﬁ’él (w;T1,m2) = o

where W, is defined in Section 3 of Barunik and Kley| (2015)). Estimator of quantile cross-
spectral beta is defined as

AZL{}%Z(M;TLTQ) = (v ) (71)

Consistency of the estimator can be proven using exactly same logic as in Theorem 3.4 in
Barunik and Kley| (2015)) by replacing quantile coherency with quantile cross-spectral beta.
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Robustness checks

B.1 Realized volatility

Simple model Full model

Trm  ATR O ABVE S \CAPM  RMSPE  ALE - ATR - AEVE O ABVE S \CAPM - RMSPE

001 1.02 043 0.66 12.94 -0.08  0.85 0.07 0.55 0.66 12.30
(5.36)  (3.67) (-0.48)  (3.66) (0.46)  (1.87)

005 1.22 057 0.66 18.66 -0.21 1.40 0.42 0.11 0.66 18.20
(2.12)  (2.67) (-0.38)  (2:22) (0.98)  (0.17)

01 072 0091 0.66 16.28 0.05 0.80 0.25 0.54 0.66 16.43
(1.18)  (4.58) (0.09) (1.01) (0.57)  (0.73)

015 159  0.91 0.66 15.80 0.73 0.70  -007 087 0.66 15.41
(2.05)  (4.67) (1.64)  (0.75)  (-0.15)  (1.03)

0.25 132 143 0.66 15.84 0.23 1.02 0.49 0.45 0.66 15.27
(1.65)  (7.64) (0.41)  (1.15)  (1.56)  (0.87)

Table 6: Estimated coefficients. Prices of risk of simple 3-factor and full 5-factor model estimated on
monthly data of 30 Fama-French equal weighted industry portfolios sampled between July 1927 and
November 2017. Model is estimated for various values of thresholds given by 7, . Market price of risk
is imposed to be equal to the average market return. Volatility is computed as realized volatility from
daily data.

(a) Simple model (b) Full model

RMSPE
RMSPE

Figure 5: RMSPE for simple and full model estimated on monthly data of 30 Fama-French equal weighted
industry portfolios for various values of threshold given by 7 quantile of market returns. Horizontal line represents
RMSPE of GDA5 model. Volatility is computed as realized volatility from daily data.
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Figure 6: Predicted returns. Plots of predicted versus actual returns for competing models estimated on
monthly data of 30 Fama-French equal weighted industry portfolios. Volatility is computed as realized volatility
from daily data.
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B.2 Value weighted portfolios

Simple model Full model

Trn  ATE  \EVRE  \OAPM  RMSPE ATR \TR ~ \EVR \EVE \CAPM RMSPE

0.01 1.36 -0.50 0.66 16.72 -0.03 1.06 0.06 -0.34 0.66 16.52
(9.88) (-1.01) (-0.15)  (6.17)  (0.34) (-0.73)

0.05 2.21 0.29 0.66 15.65 -0.12 2.12 0.18 0.62 0.66 14.92
(5.58)  (0.57) (-0.27)  (5.25) (1.22) (0.67)

0.1 1.69 1.77 0.66 19.84 -0.54 1.93 0.39 -0.57 0.66 18.01
(2.84)  (3.09) (-1.11)  (3.16) (3.51) (-0.37)

0.15 1.79 3.13 0.66 19.56 0.05 1.42 0.36 0.32 0.66 18.09
(3.10)  (4.09) (0.12) (2.00) (2.95) (0.18)

0.25 2.37 3.93 0.66 28.48 0.08 1.40 0.57 -2.39 0.66 18.19
(2.33)  (2.52) (0.17) (1.85)  (4.88) (-1.71)

Table 7: Estimated coefficients. Prices of risk of simple 3-factor and full 5-factor model estimated
on monthly data of 30 Fama-French value weighted industry portfolios sampled between July 1927 and
November 2017. Model is estimated for various values of thresholds given by 7, . Market price of risk
is imposed to be equal to the average market return.

(a) Simple model (b) Full model

RMSPE
RMSPE

Figure 7: RMSPE for simple and full model estimated on monthly data of 30 Fama-French value weighted
industry portfolios for various values of threshold given by 7 quantile of market returns. Horizontal line represents
RMSPE of GDA5 model.
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Figure 8: Predicted returns. Plots of predicted versus actual returns for competing models estimated on
monthly data of 30 Fama-French value weighted industry portfolios.
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B.3 Value weighted portfolios and realized volatility

Simple model Full model

Trn  ATR  \EVR \CAPM RMSPE AR LR AEVE \EVE  \CAPM  RMSPE

0.01 1.12 0.11 0.66 16.87 0.22 0.33 -0.32 1.09 0.66 15.01
(4.14)  (0.71) (0.81) (0.99) (-1.41) (2.53)

0.05 2.31 0.04 0.66 15.73 -0.22 2.15 0.23 0.05 0.66 15.08
(4.87)  (0.21) (-0.44)  (4.23) (0.69) (0.10)

0.1 1.36 0.56 0.66 18.91 -0.84 2.44 0.73 -0.42 0.66 17.53
(2.28) (3.65) (-1.41)  (2.92) (1.42)  (-0.46)

0.15 1.40 0.71 0.66 18.35 0.09 1.44 0.22 0.39 0.66 18.07
(2.43) (4.78) (0.15) (1.62) (0.38) (0.36)

0.25 0.94 1.18 0.66 17.79 -0.10 1.42 0.43 0.41 0.66 17.31
(1.44) (7.75) (-0.21)  (1.55) (1.10) (0.60)

Table 8: Estimated coefficients. Prices of risk of simple 3-factor and full 5-factor model estimated
on monthly data of 30 Fama-French value weighted industry portfolios sampled between July 1927 and
November 2017. Model is estimated for various values of thresholds given by 7, . Market price of risk
is imposed to be equal to the average market return. Volatility is computed as realized volatility from
daily data.

(a) Simple model (b) Full model

RMSPE
RMSPE

Figure 9: RMSPE for simple and full model estimated on monthly data of 30 Fama-French value weighted
industry portfolios for various values of threshold given by 7 quantile of market returns. Horizontal line represents
RMSPE of GDA5 model. Volatility is computed as realized volatility from daily data.
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Figure 10: Predicted returns. Plots of predicted versus actual returns for competing models estimated on
monthly data of 30 Fama-French value weighted industry portfolios. Volatility is computed as realized volatility
from daily data.
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C Results for 25 F-F portfolios sorted on size and book-to-
market

C.1 Equal weighted portfolios

Simple model Full model

Tr  ATR  ABVE  )\CAPM RMSPE ALR AR \EVE A\BUE  \CAPM  RMSPE

0.01 1.81 -0.05 0.66 28.28 -0.25 0.86 0.38 0.20 0.66 22.80
(5.14) (-0.05) (-0.72) (1.99) (1.42) (0.27)

0.05 3.66 0.10 0.66 21.15 -0.30 2.84 0.32 -1.93 0.66 20.60
(5.40) (0.13) (-0.60) (1.90) (1.85)  (-1.30)

0.1 -0.09 3.52 0.66 21.97 0.53 -0.23 0.21 6.12 0.66 21.25
(-0.10) (4.59) (0.87) (-0.15)  (1.35) (1.90)

0.15 0.32 4.80 0.66 22.64 -0.39 1.04 0.40 6.58 0.66 22.17
(0.25) (3.93) (-0.41) (0.42) (1.80) (2.39)

0.25 -2.46 13.08 0.66 22.16 -1.49 -0.39 0.92 11.29 0.66 19.12
(-1.31) (4.58) (-1.91) (-0.17) (6.22) (3.57)

Table 9: Estimated coefficients. Prices of risk of simple 3-factor and full 5-factor model estimated on
monthly data of 25 Fama-French equal weighted portfolios sorted on size and book-to-market sampled
between July 1927 and November 2017. Model is estimated for various values of thresholds given by
Tr., - Market price of risk is imposed to be equal to the average market return.

(a) Simple model (b) Full model

RMSPE
RMSPE

Figure 11: RMSPE for simple and full model estimated on monthly data of 25 Fama-French equal weighted
portfolios sorted on size and book to market for various values of threshold given by 7 quantile of market returns.
Horizontal line represents RMSPE of GDA5 model.
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Figure 12: Predicted returns. Plots of predicted versus actual returns for competing models estimated on
monthly data of 25 Fama-French equal weighted portfolios sorted on size and book to market.
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C.2 Realized volatility

Simple model Full model

Tr  ATR NEVE S ZCAPM - RMSPE  ATE - ATE L AEVRNBVES \CAPM RMSPE

0.01 0.58 0.67 0.66 24.41 -0.25 1.18 0.40 -0.19 0.66 22.64
(1.16) (2.81) (-0.71)  (1.63) (1.23)  (-0.32)

0.05 3.00 0.18 0.66 20.93 -0.16 3.42 0.00 0.73 0.66 20.77
(2.69) (0.69) -0.26 (2.18) (0.00) (0.65)

0.1 -0.32 1.01 0.66 23.55 1.46 -3.41 -0.96 2.43 0.66 22.03
(-0.28)  (3.92) (1.50)  (-1.41) (-1.01) (1.49)

0.15 1.00 0.91 0.66 23.49 -1.39 4.03 1.46 -1.22 0.66 21.66
(0.83) (3.56) (-1.47)  (1.63) (2.07)  (-0.89)

0.25 0.54 1.28 0.66 23.88 -1.42 2.79 1.79 -1.75 0.66 20.59
(0.36) (3.86) (-1.73)  (1.30) (2.68)  (-1.45)

Table 10: Estimated coefficients. Prices of risk of simple 3-factor and full 5-factor model estimated on
monthly data of 25 Fama-French equal weighted portfolios sorted on size and book-to-market sampled
between July 1927 and November 2017. Model is estimated for various values of thresholds given by
Tr.,- Market price of risk is imposed to be equal to the average market return. Volatility is computed
as realized volatility from daily data.

(a) Simple model (b) Full model

RMSPE
RMSPE

Figure 13: RMSPE for simple and full model estimated on monthly data of 25 Fama-French equal weighted
portfolios sorted on size and book to market for various values of threshold given by 7 quantile of market returns.
Horizontal line represents RMSPE of GDA5 model. Volatility is computed as realized volatility from daily data.
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C.3 Value weighted portfolios

Simple model Full model

frn  ATR  \EVR \CAPM RMSPE AR NTR . A\EVE \BUE \CAPM  RMSPE

0.01 1.59 0.74 0.66 24.39 -0.45 0.58 0.50 0.41 0.66 18.81
(5.18) (0.92) (-1.51)  (1.43) (2.44) (0.68)

0.05 2.90 0.84 0.66 21.56 -0.87 0.57 0.59 -2.69 0.66 19.25
(2.38) (0.70) (-2.02)  (0.40) (3.55)  (-1.74)

0.1 -1.55 4.04 0.66 18.40 -0.03 -3.03 0.51 -2.21 0.66 16.89
(-1.93)  (6.67) (-0.05) (-2.54) (4.70) (-0.87)

0.15 -1.89 5.98 0.66 20.02 -0.81 -1.25 0.55 4.87 0.66 19.32
(-1.65)  (5.57) (-1.08) (-0.82) (3.46) (1.56)

0.25 -0.32 8.54 0.66 24.33 -1.26 -0.58 0.86 3.69 0.66 19.55
(-0.26)  (4.38) (-1.59)  (-0.38)  (5.59) (1.47)

Table 11: Estimated coefficients. Prices of risk of simple 3-factor and full 5-factor model estimated on
monthly data of 25 Fama-French value weighted portfolios sorted on size and book-to-market sampled
between July 1927 and November 2017. Model is estimated for various values of thresholds given by
Tr., - Market price of risk is imposed to be equal to the average market return.

(a) Simple model (b) Full model

RMSPE
RMSPE

Figure 15: RMSPE for simple and full model estimated on monthly data of 25 Fama-French value weighted
portfolios sorted on size and book to market for various values of threshold given by 7 quantile of market returns.
Horizontal line represents RMSPE of GDA5 model.
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Figure 16: Predicted returns. Plots of predicted versus actual returns for competing models estimated on
monthly data of 25 Fama-French value weighted portfolios sorted on size and book to market.

41



C.4 Value weighted portfolios and realized volatility

Simple model Full model

frn  ATR  \EVR \CAPM RMSPE AR NTR . A\EVE \BUE \CAPM  RMSPE

0.01 0.34 0.68 0.66 21.38 -0.68 1.67 0.84 -0.94 0.66 15.49
(0.63) (2.83) (-3.02) (3.23) (4.18)  (-2.27)

0.05 1.31 0.49 0.66 20.74 -0.86 0.21 0.52 0.39 0.66 19.83
(0.81) (1.54) (-1.47)  (0.14) (1.08) (0.47)

0.1 -2.53 1.30 0.66 17.72 0.05 -2.96 0.18 0.80 0.66 17.06
(-2.87)  (7.06) (0.07)  (-2.31) (0.29) (0.76)

0.15 -1.47 1.23 0.66 19.44 -1.43 0.52 1.60 -1.47 0.66 16.68
(-1.42)  (5.85) (-2.10)  (0.36) (2.88) (-1.49)

0.25 -1.80 1.59 0.66 18.59 -1.42 -0.37 1.26 -0.57 0.66 15.86
(-1.79)  (7.02) (-2.22)  (-0.29) (2.71) (-0.67)

Table 12: Estimated coefficients. Prices of risk of simple 3-factor and full 5-factor model estimated on
monthly data of 25 Fama-French value weighted portfolios sorted on size and book-to-market sampled
between July 1927 and November 2017. Model is estimated for various values of thresholds given by
Tr.,- Market price of risk is imposed to be equal to the average market return. Volatility is computed
as realized volatility from daily data.

(a) Simple model (b) Full model

RMSPE
RMSPE

Figure 17: RMSPE for simple and full model estimated on monthly data of 25 Fama-French equal weighted
portfolios sorted on size and book to market for various values of threshold given by 7 quantile of market returns.
Horizontal line represents RMSPE of GDA5 model. Volatility is computed as realized volatility from daily data.
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Figure 18: Predicted returns. Plots of predicted versus actual returns for competing models estimated on

monthly data of 25 Fama-French value weighted portfolios sorted on size and book to market.

computed as realized volatility from daily data.
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D Results for the standardized returns

Trm  Aiong AR A9APM T RMSPE

0.01 0.82 050 0.66 16.55
(2.64)  (1.19)

0.05 2.01 1.12 0.66 30.02
(2.37)  (0.87)

01 091 254 0.66 23.94
(2.00) (3.34)

015 241  0.42 0.66 23.40
(6.05)  (0.38)

025 238  0.67 0.66 27.63
(4.48)  (0.43)

Table 13: Estimated parameters of the TR 3-factor model. Betas are estimated on 30 Fama-French

equal weighted standardized portfolios and market returns.

For each series, GARCH(1,1) model is

estimated and returns are divided by the estimated conditional volatility.
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E Daily data: esults for 25 F-F portfolios sorted on size and
book-to-market

E.1 Equal weighted portfolios

Simple model Full model

Try  ATR O NBVE . \CAPM - RMSPE AR ATE . APVE S ABVE S ACAPM - RMSPE

0.01 0.31 -0.20 0.03 2.34 -0.03 0.28 0.00 0.42 0.03 1.95
(2.29)  (-0.73) (-0.75)  (2.36)  (0.20)  (1.35)

0.05 0.29 0.02 0.03 2.56 -0.00 0.12 -0.01 1.21 0.03 2.17
(2.99) (0.17) (-0.03)  (0.57)  (-0.50)  (2.87)

0.1 0.28 0.12 0.03 2.60 -0.01 0.21 -0.01 1.29 0.03 2.21
(3.01)  (0.83) (-0.07)  (0.69) (-0.54) (2.23)

0.15 0.31 0.19 0.03 2.47 0.11 0.10 -0.03 0.86 0.03 2.15
(3.42)  (1.24) (0.51)  (0.40) (-1.47)  (1.04)

0.25 0.31 0.70 0.03 2.24 0.08 0.18 -0.02 1.10 0.03 2.07
(3.26)  (3.17) (0.40) (1.05) (-1.62) (0.88)

Table 14: Estimated coefficients. Prices of risk of Simple 3-factor and Full 5-factor model estimated
on daily data of 25 Fama-French equal-weighted portfolios sorted on size and book-to-market. Model is
estimated for various values of thresholds. Market price of risk is imposed to be equal to the average
market return.

RMSPE

(a) Simple model

(b) Full model

RMSPE

Figure 19: RMSPE for simple and full model estimated on daily data of 30 Fama-French equal weighted

industry portfolios for various values of threshold given by 7 quantile of market returns. Horizontal line represents
RMSPE of GDA5 model.
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Figure 20: Predicted returns. Plots of predicted versus actual returns for competing models estimated on
daily data of 30 Fama-French equal weighted industry portfolios.
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