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Abstract: 

This paper introduces residual shape risk as a new subclass of energy commodity 

risk. Residual shape risk is caused by insufficient liquidity of energy forward market 

when retail energy supplier has to hedge his short sales by a non-exible standard 

baseload product available on wholesale market. Because of this inflexibility energy 

supplier is left with residual unhedged position which has to be closed at spot 

market. The residual shape risk is defined as a difference between spot and forward 

prices weighted by residual unhedged position which size depends on the shape of 

customers' portfolio of a given retail energy supplier. For empirical evaluation of 

residual shape risk we use a real portfolio of a leading natural gas retail supplier in 

the Czech Republic over the period 2016-2017. The size of residual shape risk in our 

example corresponds approximately to 1 percent of profit margin of natural gas retail 

supplier.  
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1 Introduction

A liberalization of the European gas markets under the Directive 2003/55/EC (EC 2003)

led to a fragmentation of natural gas supply chain. One of many consequences of this

“unbundling” process (Stern & Rogers 2017) is a current move towards the situation

when company supplying the retail customers is not able to purchase natural gas directly

from its parent company, but it has to purchase gas on the open market. However the

granularity of monthly baseloads available on the open market does not allow for perfect

hedging of daily deliveries of natural gas to final consumers. This introduces a new source

of commodity risk into natural gas markets. In this paper we therefore conceptualize

this new subclass of commodity risk, which we call residual shape risk (RSR), and we

empirically evaluate it on a real portfolio of a leading natural gas retail supplier in the

Czech Republic.

The evaluation of RSR requires modelling of prices of evaluated commodity, in our

application natural gas. The literature (Baum et al. 2018; Benth et al. 2008; Borovkova

& Mahakena 2015; Brix et al. 2018; Cao et al. 2018; Gomez-Valle et al. 2017a;b; Hsu

et al. 2017; Mason & Wilmot 2014; Mishra & Smyth 2016; Safarov & Atkinson 2017)

shows that the gas prices and energy commodities in general have quite complex price

distribution as compared to financial assets. Gas prices commonly depart from normality

by exhibiting heavy tails and a leptokurtic shape (Benth et al. 2008). They also exhibit

jumps (Cao et al. 2018; Mason & Wilmot 2014), a time-varying volatility (Baum et al.

2018; Brix et al. 2018), and a mean reversion (Brix et al. 2018; Hsu et al. 2017). Moreover,

they are affected by many other factors like storage, weather, seasonality and political

events and decisions (Gomez-Valle et al. 2018).

As our financial risk metrics we use Value-at-Risk (VaR) and Expected Shortfall

(ES). VaR is the financial loss that is not exceeded with probability 1 − α, where α is

the confidence level. For discussion of VaR in the energy markets risk management see

Andriosopoulos & Nomikos (2015). While VaR is a standard financial measure used by

Basel II and Basel III financial regulatory framework, its limitation is that it does not
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provide any indication of how much may be lost if extreme tail events happen. Therefore

it is usually complemented by a computation of Expected Shortfall, which is also alterna-

tively known as Conditional Value at Risk (CVaR). ES (CVaR) measures the average of

worst losses. The ES at level α is the expected return of a portfolio in α percent of worst

cases (Baum et al. 2018). Obviously, for the computation of VaR and ES the selection of

appropriate distribution is crucial (Hung et al. 2008; Khindanova & Atakhanova 2002).

In the rest of this paper we firstly define RSR and explain its calculation in the

section 2. Then we continue with description of data and empirical evaluation of RSR

on Czech natural gas market in the section 3. In the section 4 we summarize our results

and conclude.

2 Conceptualization of Residual Shape Risk

2.1 Definition of Residual Shape Risk

As already mentioned before, the residual shape risk stems from insufficient liquidity of

wholesale products for hedging shaped sales. Thus, it can be represented for natural gas

markets as a weighted difference between forward and spot price of natural gas where

the weight is the deviation of the daily volume around the volume hedged at the forward

market. In the empirical section of this paper, we use volumetric hedging. It means

that the volume purchased at forward market is an average volume in the period which

corresponds to a length of standard future product. In the Czech market, which we use

in the empirical section, the shortest standard product, which can be traded on forward

market, is one month. Thus, we evaluate the RSR against a deviation of daily volumes

from average volumes in particular months. Hence we define the RSR as

RSRp =

N∑
t=1

(Vt − Vt)(St − Ft)

N∑
t=1

Vt

, (1)

where index p denotes particular profile with a length of N . Vt is forecasted consump-
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tion volume in a day t. Vt is the average volume bought on monthly forward product,

i.e monthly baseload. The second part of the product is a difference of spot price at

delivery St and forward price Ft. We divide the expression by the total volume of the

profile in order to obtain profit or loss per MWh of an energy commodity. The forward

price Ft is a weighted price of standard products consequently purchased and sold on

forward market when shaping the profile. We shape the profile successively as individual

products become liquid. Thus, we start by a purchase of year baseload, followed by a sale

of summer and purchase of winter baseload. Since we are dealing with a retail supply of

an energy commodity, we always want to have an average volume in the corresponding

period, i.e. we hedge the profile volume neutral. The sum of residual positions is zero.

We repeat this algorithm as individual blocks become liquid until we hedge profile by

monthly baseloads. Hence, we obtain a forward price for every day t which is a weighted

price of these successive purchases and sales on the forward market.

We determine the RSR as a profit and loss distribution. This means that positive

value of the RSR is actually loss. Whenever additional volume has to be purchased on

the spot market and the spot price is higher then the forward price was, loss occurs. This

means that in formula (1) Vt > Vt and St > Ft. Similarly, when both inequalities are

opposite, i.e. when there is a long position in the particular gas day and the weighted

forward price is higher than the spot price, the loss occurs again. Loosely speaking, given

the higher realized spot price, higher volume was purchased on the forward market than

it should have been. Contrary, whenever these two differences have opposite sign a gain

is incurred. For example, the residual position was purchased for the spot price that was

lower than the forward price.

We derive forward prices as expected spot prices at delivery. Hence, we expect the

difference between them to be zero. Nevertheless, the RSR will not be zero in general.

One would have to hedge the profile value neutral against expected spot prices. As we

will use volumetric hedge, we do not expect the loss distribution to have exactly zero

mean. Lastly, to determine the size of this risk we use Monte Carlo simulation of spot

prices. In this way the hedge strategy described above is realized on simulated price paths
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to obtain the RSR loss distribution. We employ conventional five percent Value at Risk

measure along with the Expected Shortfall, which captures the tail distribution better.

2.2 Calculation of Residual Shape Risk

First step of the RSR estimation is to model spot prices of an evaluated commodity, in

our case natural gas. We follow approach suggested in Benth et al. (2008). We model

the spot price dynamics with Ornstein-Uhlenbeck process using a sum of Gaussian and

two compound Poisson processes to create a more complex jump mixed diffusion process.

This induces desired leptokurtic shape for price innovations. As a second step, forward

prices are then derived as expected spot prices at delivery using characteristics of spot

price processes. In the third step we choose an appropriate risk evaluation metrics and

apply it to particular consumer profile.

2.3 Spot Model

A general form of geometric stochastic process for spot prices S(t) (Benth et al. 2008) is

lnS(t) = ln Λ(t) +
m∑
i=1

Xi(t) +
n∑
j=1

Yj(t), (2)

where, for i = 1, . . . ,m,

dXi(t) = (µi(t)− αi(t)Xi(t))dt+

p∑
k=1

σik(t)dBk(t), (3)

and, for j = 1, . . . , n,

dYj(t) = (δj(t)− βj(t)Yj(t))dt+ ηj(t)dIj(t). (4)

Ij(t) = γj(t) +

∫ t

0

∫
|z|<1

zÑj(dz, du) +

∫ t

0

∫
|z|≥1

zNj(dz, du) (5)

The term Λ(t) in the first equation represents continuously differentiable deterministic

seasonal function. The coefficients µi, αi, σik, δj, βj and ηj are all continuous functions.
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µi and δj are means to which Ornstein-Uhlenbeck (OU) processes Xi(t) and Yj(t) revert.

Equations 3 and 4 represent normal and jump part of the price process, respectively.

The model further assumes that Bk(t) are p independent Brownian motions. Ij(t) is a

pure jump semimartingale independent increment (II) process. As the model contains n

Ij(t) processes, it is again assumed that theses processes are independent of each other.

Each process can be represented by its associated random jump measure Nj(dt, dz) by

the Lévy-Kintchine representation (5).

For the subsequent analysis we assume m = n = p = 1, i.e. we have one normal and

one jump OU process with one Brownian motion. Further we assume to have constant

speeds of mean reversion common for the diffusion B(t) and the jump I(t) part. This

is an extension to the Schwartz one-factor model (Schwartz 1997) by including jumps.

Hence, the model reduces to

lnS(t) = ln Λ(t) +X(t) + Y (t), (6)

with OU processes X(t) and Y (t) following dynamics

dX(t) = −αX(t)dt+ σdB(t), (7)

and

dY (t) = −αY (t)dt+ dI(t). (8)

The process of logarithmic prices (6) has dynamics

d lnS(t) = d ln Λ(t)− (lnS(t)− ln Λ(t))dt+ σdB(t) + dI(t). (9)

2.4 Forward Model

A price of gas futures settled during the delivery period is

F (t, τ1, τ2) = EQ[

∫ τ2

τ1

re−ru

e−rτ1 − e−rτ2
S(u)du | Ft]. (10)
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The price of a contract settled in the end of the delivery period is

F (t, τ1, τ2) = EQ[

∫ τ2

τ1

1

τ2 − τ1
S(u)du | Ft]. (11)

Simple weight function can be introduced to describe both options. Consider weight

function ŵ(u), which is equal to one when the futures contract is settled in the end of

the delivery and to exp(−ru) when the contract is settled continuously. In our case we

use daily granularity. Further, let define function

w(u, s, t) =
ŵ(u)∫ t

s
ŵ(v)dv

, (12)

where 0 ≤ u ≤ s < t. The function w(u, s, t) = 1/(t − s) when ŵ(u) = 1. In the

continuous settlement case

w(u, s, t) =
re−ru

e−rs − e−rt
.

Such defined function integrates to unity and hence, we can describe the general

relation between spot and futures price as

F (t, τ1, τ2) = EQ[

∫ τ2

τ1

w(u, τ1, τ2)S(u)du | Ft]. (13)

Benth et al. (2008) show that the forward price is given as

f(t, τ) = Λ(τ)Θ(t, τ, 0) exp(e−α(τ−t)X(t) + e−α(τ−t)Y (t)) (14)

where Θ(t, τ, 0) is given as

ln Θ(t, τ, 0) = ψ(t, τ,−ie−α(τ−t)) +
1

2
σ2

∫ τ

t

(e−α(τ−u))2du, (15)

with ψ(−ic) being the logarithm of the moment generating function of increment

processes Y (t), also called a cumulant function. The integral in the second part of the

expresion represents cumulant function for Brownian motion though. The zero in the
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function Θ(t, τ, 0) means we are deriving expectation with market price of risk equal to

zero, thus under equivalent measure P. The expression in (14) can be rewritten then as

f(t, τ) = Λ(τ)Θ(t, τ, 0)

(
S(t)

Λ(t)

)e−α(τ−t)
. (16)

Let assume now for simplicity that n = 0 in the spot model specification (2), thus the

dynamics in spot prices are completely driven by the Wiener process. Then under the

assumption of zero market price of risk, the dynamics of forward price is

df(t, τ)

f(t, τ)
= e−α(τ−t)σdB(t). (17)

3 Empirical Evaluation

3.1 Data

For the purpose of our empirical analysis we choose the Czech OTE price index. It is a

daily index, which represents country-wide price of natural gas at a particular gas day

and we treat it as a spot price index as the gas day is the lowest granularity of the Czech

natural gas market. The OTE index is derived as a weighted average of trades executed

on the Intra-Day Gas market, where weights are volumes of particular trades.

The time series ranges between 1.1.2016 and 31.12.2017. It consists of 731 daily

observations. The data were downloaded from the web page of the market operator the

OTE. These data are published every day and they are publicly available1. Summary

statistics of observed natural gas prices are presented in the Table 1.

Further, we employ data about consumers portfolio of a leading Czech gas retail sup-

plier for a period between 1.1.2016 and 31.12.2017. It is used as a consumption profile

for the purpose of our analysis. The profile consists of initial forecasts of consumption

for households and small entrepreneurs. These forecasts are made using so-called stan-

dardized load profiles (SLP). SLP represents typical shape of annual consumption for

1Data available at OTE web page http://www.ote-cr.cz/statistika/rocni-zprava.

8

http://www.ote-cr.cz/statistika/rocni-zprava


particular group of customers. It predicts customers consumption based on expected

temperatures and days in a week. These diagrams are thoroughly described in Novak

et al. (2017). Our profile consists of mixture of different types of SLPs.

Table 1: Data Summary - Index OTE

Statistic N Mean St. Dev. Min Max

S 731 15.930 2.580 11.180 23.030

In order not to disclose a size of the portfolio we scale the volume to unity according

to (18):

cd =
Vd
N∑
d=1

Vd

. (18)

We do this for both years. Thus, for each day we obtain a value that represents percentage

of total year consumption on that day.

3.2 Model Estimation

This section describes consecutive steps we take in order to appropriately estimate our

model. We start with an analysis of an observed gas spot prices, where we obtain their

distributional properties. Based on the analysis we fit a jump mixed diffusion process,

which we use for the Monte Carlo (MC) simulation of spot and forward prices afterwards.

Lastly, we use these simulations for an evaluation of the RSR over customer portfolio of

a real company.

3.2.1 Spot Price Analysis

First, we look at a development of logarithmic spot prices. As there are no negative

prices in our sample, we can take logarithm of every price. Logarithmic prices are chosen

deliberately in order to impose geometric nature of the model, which restricts simulation

to generate non-negative prices. The development of logarithmic spot prices is presented

in the Figure 1. From the visual inspection of the plot, we expect the price to follow
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some kind of seasonality and trend. It is a common feature of energy prices to exhibit

some periodicity, natural gas in particular. As it is plentifully used for heating it tends

to be more expensive in the winter when a demand increases.

Figure 1: Time series of logarithmic spot price.

We also check for outliers as they would affect fitted cyclical and mean function. To

detect possible outliers we look at the differenced time series. In our case such series

becomes series of log returns. The Figure 2 shows histogram of this series along with

a fitted normal density curve. It is visually clear that the data are non-normal. The

Shapiro-Wilk test confirms this by rejecting null hypothesis of normal distribution with p-

value zero. The histogram shows leptokurtic shape, i.e. higher probability of observation

close to mean and heavier tails than normal distribution. This is a common feature of

energy prices (Dukhanina et al. 2018; Hsu et al. 2017).

In order to determine whether the observation is an outlier we adopt approach de-

scribed in Benth et al. (2008). An observation is deemed to be outlying when it is lower

than Q1−3× IQR, or greater than Q3 + 3× IQR, where Q1 and Q3 are lower and upper

quartile, respectively. The IQR is interquartile range, defined as difference between the

upper and the lower quartile. Following this rule six observation were found to be out-
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Figure 2: Histogram of log-returns with a fitted normal density curve.

lying. Hence, we replaced them with an average of preceding and following observation.

The mean function is then estimated on this new trimmed time series.

There are few evident cycles to search for in the energy sector. As mentioned above we

expect to find some form of yearly cycle, which represents an inclination of gas wholesale

prices to grow in the winter and stay lower in the summer. However, we make use of the

Fourier transform to precisely determine all possible cycles in the data. Following this

approach, two signals were found. Firstly, the most important cycle was determined to

be yearly as expected. Secondly, we found cycle with half year periodicity. The second

cycle could be attributed to injecting of natural gas into underground storages during

summer. Storage companies incur some additional costs when they have to turn over

the flow in storage, i.e. to switch between injecting and withdrawing. Such situation

can happen during high temperature days when there is a high demand for electricity to

power air-conditioners and gas fired power plants have to be switched on. Hence, it can

cause temporal increase in spot prices. We use relationship defined in the equation (19)

for modelling trend and seasonal components of spot prices.
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lnΛ(t) = a0 + a1t+ a2cos(2πt/365)) + a3cos(2πt/182.5) (19)

The linear time trend is often added to energy price series as measure of inflation in

price level. The cosines of year and half year component coincide in winter making the

yearly cycle approximately 3 times stronger than the other one. The coefficients in the

mean level function were estimated by running an OLS regression of the logarithmic spot

prices on transformed time variables as specified in the seasonal function lnΛ(t) described

by equation (19). The results are presented in the Table 2. All estimates have p-value

zero to several decimals, i.e. all are highly significant. We also estimated the effect of

quarterly and weekly cycles, however their appeared to be insignificant. The fit of mean

level function on logarithmic spot price is shown in the Figure 3.

Table 2: Estimated coefficients of the mean level function

Estimate Std. Error t value Pr(>|t|)
â0 2.566 0.006 412.289 0
â1 0.001 0.00001 35.167 0
â2 0.105 0.004 23.928 0
â3 0.056 0.004 12.666 0

By subtracting the mean level function from the original time series of logarithmic

spot prices we obtain detrended and deseasonalized prices, which are ready for subsequent

analysis. The resulting series is presented in the Figure 4.

Further, when we look at the histogram of returns of this “detrended” series in the Fig-

ure 5, we see that it still departs from normality in a leptokurtic way. The Shapiro-Wilk

normality test rejects the null hypothesis of normal distribution at one percent signifi-

cance level. If we assume that the spot prices follow the geometric Brownian motion, then

any test should reject null hypothesis of stationarity as the discrete time approximation

of the Brownian motion is the AR(1) process with coefficient equal to unity, i.e. a random

walk. Hence, we apply the Dickey-Fuller test to deseasonalized log prices which tests null

hypothesis of unit root. The test yields statistic of −3.898. It corresponds to rejection
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Figure 3: Fitted mean level function on logarithmic prices.

Figure 4: Detrended and deseasonalized logarithmic spot prices.
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Figure 5: Histogram of log returns from detrended spot prices.

of the null at roughly one percent confidence level. Also, the result of the test suggests

that the autoregression coefficient is less then one. This behaviour is expected from the

mean-reverting process. Therefore, we continue with an analysis of the autocorrelation

function (ACF) and the partial autocorrelation function (PACF).

Clearly, the ACF of deseasonalized logarithmic spot prices reveals that the underlying

process has long memory. The ACF is plotted in the Figure 6. Further, the PACF

indicates that the prices follow AR(1) process as one can see in the Figure 7. Thus, we

continue with model defined as

zt = ρzt−1 + et (20)

where the et is assumed to be an i.i.d. process.

The data have daily granularity, thus we shift from a continuous to a discrete time.

Then we let Z(t) = X(t) + Y (t). Therefore Z(t) = lnS(t)− ln Λ(t). From the dynamics

of OU processes X(t) and Y (t) defined in equations 7 and 8 we have

dZ(t) = −αZ(t)dt+ σdB(t) + dI(t). (21)
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Figure 6: The ACF of deseasonalized logarithmic spot prices with 95
% confidence bounds.

To achieve discrete approximation we add Z(t) to both side of the equation and we

get daily increments as

Z(t) ≈ (1− α)Z(t− 1) + σ∆B(t) + ∆I(t). (22)

Note that ∆B(t) is a daily increment of Brownian motion i.e. B(t) − B(t − 1).

Similarly, ∆I(t) in an increment of the jump process I(t)− I(t− 1). Both increments of

Brownian motion and general Lévy process are i.i.d. sequences of random variable. Hence,

their sum σ∆B(t) + ∆I(t) is also an i.i.d. Then we see that our discrete approximation

corresponds to the AR process in (20) with ρ = 1− α and et = σ∆B(t) + ∆I(t).

Hence, we continue by fitting AR(1) model on deseasonalized logarithmic spot prices

Z(t), defined in the equation (22), to determine speed of mean reversion. Thus, the

estimated speed of mean reversion is

α̂ = 1− ρ̂ = 1− 0.955 = 0.045.
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Figure 7: The PACF of deseasonalized logarithmic spot prices with
95 % confidence bounds.

Table 3: Fitted AR(1) model.

Dependent variable:

ρ̂ 0.955∗∗∗

(0.011)

Log Likelihood 1,647.015
σ2 0.001
Akaike Inf. Crit. −3,290.029

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Hence, the spot prices revert rather slowly towards the seasonal level. The fitted

AR(1) model is presented in the Table 3. Finally we look at the distribution of obtained

residuals. Their histogram is depicted in the Figure 8 along with fitted normal distribution

density curve. We see that the increment process indeed reveals leptokurtic shape. The

Shapiro-Wilk test rejects the null hypothesis of normally distributed errors with p-value

equal to zero to several decimals. Therefore, we try to account for non-normal features

of residuals by decomposing them into a mixed diffusion process.

Figure 8: The histogram of obtained residuals from AR(1) model fit
with normal density curve.

3.2.2 Residuals as a Jump Mixed Diffusion Process

Now we decompose residuals into two separate processes: a Gaussian process and a jump

process. We choose the window size of 16 days for estimating instantaneous volatility

as recommended in Lee & Mykland (2007). The test indicates six jumps at five percent

significance level. The comparison of jumps with series of residuals is presented in the

Figure 9. Indeed we estimated jumps at places where one would expect them. However,

when we look at the series of residuals, there are observations which look more like jumps
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than like normal innovations. For instance, the second estimated jump is followed by a

return of approximately the same negative size. It is not determined to be jump at any

choice of K not even at ten percent significance level, though.

Figure 9: Residuals (top) and estimated jumps (bottom) following
Lee & Mykland (2007).

Therefore we apply different jump detection approach suggested by Clewlow & Strick-

land (2000). Under this alternative approach 20 jumps are detected. The recursive fil-

tering algorithm determines observation to be a jump when it deviates more than three

standard deviations from the mean and replaces it with a median of the sample then. The

procedure is repeated until no new jumps are found. In our case the algorithm converges

after five iterations. The estimated jumps are presented in the Figure 10. Using this

(Clewlow & Strickland 2000) approach we are able to eliminate large jumps that follow

one after another. It is primarily appreciable in the beginning of the series.
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Figure 10: Residuals (top) and estimated jumps (bottom) following
Clewlow & Strickland (2000).
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We estimate standard deviation of filtered residuals after every iteration. The esti-

mates are presented in the Table 4 along with number of detected jumps. After last

iteration the estimated standard deviation becomes estimate of the σ from the normal

part of the stochastic process. The σ̂ is 0.0204. Our estimate is approximately five times

lower than estimated value of 0.1 for the National Balancing Point (NBP) day ahead

prices in Steele (2010).

Hence, the Czech market appears to be calmer. It may be due to the fact that the UK

has relatively limited gas storage capacity compared to the Czech Republic. The Czech

storage capacity ranks among the highest in Europe. Total storage capacity represents

approximately 40 percent of total annual gas consumption in the Czech Republic. More-

over, withdrawal capacity of Czech gas storages should cover higher demand during days

with low temperatures (Zaplatilek 2015). Therefore the lack of extreme price movements

at the Czech market may be given by this high gas storage capacity.

Table 4: Summary of the jump filtering algorithm.

Iteration Detected jumps Std. deviation

1 11 0.0218
2 17 0.0208
3 19 0.0205
4 20 0.0204
5 20 0.0204

The arrival of a new information which causes price to jump is usually modelled as a

compound Poisson process. Before we define such process, it is convenient to look at the

distribution of jump sizes. In literature they are often assumed to come from the normal

distribution. However, when we look at the histogram of estimated jump sizes depicted

in the Figure 11, it looks that the normal distribution might not be a good choice in

our case. Benth et al. (2008) propose to look at positive and negative jumps separately.

Their histograms are presented in the Figure 12. Indeed, the histograms suggest that the

exponential distribution may fit the data better. Therefore, we define Lévy process I(t)

rather as a sum of two jump process as
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I(t) = I+(t) + I−(t). (23)

Hence, we have two compound Poisson processes defined as

I±(t) =

N±(t)∑
k=1

J±k , (24)

where N±(t) are Possion processes with intensities λ±. The sequences J±k are assumed

to be exponentially distributed i.i.d. random variables which represent jump sizes with

average size m±J . Thus, J±k ∼ Exp( 1
m±
J

).

Table 5: Estimated jump sizes and intensities.

Estimate Positive jumps Negative jumps

λ̂ 0.0151 0.0123
m̂J 0.087 0.0865

The estimated parameters of the Lévy process defined in the equation 24 are summa-

rized in the Table 5. Out of 20 jumps, 11 turned out to be positive, thus the estimated

intensity of the positive jump arrival is slightly higher than the negative one. Still, the

intensities are almost the same and imply that approximately five negative and positive

jumps arrive during the year. The parameters of assumed exponential distributions for

jump sizes were estimated with use of maximum likelihood approach. We have to mul-

tiply negative jumps by -1 as the exponential distribution is defined only on positive

numbers. Estimated average jump size is slightly higher for positive jumps.

Further, we derive a cumulant function of the jump process. This is convenient

for pricing forwards. Let have a Poisson process N(t) with intensity λ. Then general

compound Poisson process is defined as

L(t) =

N(t)∑
i=1

Xi,

where Xi is a sequence of i.i.d. random variables independent of N(t). Such process
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Figure 11: Histogram of estimated jump sizes.

is a Lévy process with cumulant function given as

ψ(θ) = λ(eψX(θ) − 1), (25)

where ψX(θ) is a cumulant function of Xi (Benth et al. 2008). Hence, we have to find

cumulant function of the process which describes jump sizes first. The cumulant function

ψX(θ) evaluated at −i becomes the natural logarithm of the moment generating function

of random variable Xi. Let Xi be exponentially distributed with parameter κ 2. The

moment generating function of Xi is given as

MX(t) =
κ

κ− t
, t < κ. (26)

Hence, the cumulant function of Xi for θ ∈ R is

ψX(θ) = ln(
κ

κ− iθ
). (27)

2We use here κ as the parameter of the exponential distribution instead of a common λ in order not
to confuse it with the Poisson process.
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Figure 12: Histogram of estimated jump sizes.
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Let make a connection to the jump process assumed by our model. The jump sizes

J±k are exponentially distributed with parameters 1
m±
J

. For calculation of forward prices

we evaluate cumulant function at −iz for z ∈ R. Therefore, we derive ψ(−iz) which

becomes the logarithm of the moment generating function. Hence,

ψJ±(−iz) = ln(

1
m±
J

1
m±
J

− z
) = − ln(1−m±J z). (28)

Then we input this expression into the formula (25) to derive cumulant function of

the jump process

ψI±(−iz) = λ±(e− ln(1−m±
J z) − 1) = λ±

(
1

1−m±J z
− 1

)
, (29)

where λ± is intensity of the compound Poisson process assumed for new information

arrival.

3.2.3 Forwards Price

Forward contracts can be priced given expected spot price at delivery adjusted by price

of risk by taking expectation in equation (10). To derive prices of corresponding futures

contracts that deliver energy over a specified period, averages of forwards with delivery

within this period have to be calculated. Having estimated all desired coefficients of the

spot dynamics, we are able to price yearly, quarterly, and monthly gas futures contracts

now.

We derive forward prices for errors represented as the mixed jump diffusion process.

The futures contracts are assumed to be settled at the end of the delivery period, i.e.

we let w̃(u) = 1 in 12. Then with price of market risk equal to zero the price of futures

contracts becomes

F (t, τ1, τ2) =
1

τ2 − τ1

∫ τ2

τ1

f(t, u)du. (30)

The forward price f(t, τ) is given as
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f(t, τ) = Λ(τ)Θ(t, τ, 0)

(
S(t)

Λ(t)

)e−α(τ−t)
. (31)

For the mixed jump diffusion process the ln Θ(t, τ, 0) function is defined as

ln Θ(t, τ, 0) =

∫ τ

t

1

2
σ2z2 + λ+

(
1

1−m+
J z
− 1

)
+ λ−

(
1

1−m−J z
− 1

)
du (32)

where z = e−α(τ−u).

We are able to derive futures contract price with any finite delivery period in any time

t now.

3.2.4 Consumption Profiles

Finally, as we constructed a model for forward and spot prices, we are able to evaluate the

RSR. Obviously, we need some consumption profile from which the residual position can

be derived because the RSR depends on the shape of the profile. Hence, the real shape

of Czech leading natural gas selling firm portfolio is used here. The portfolio consists of

forecasted households consumption between years 2016 and 2017. We scale the shape of

the portfolio to unity in order not to reveal its size as this information is confidential. It

is not a problem because we evaluate the RSR per MWh, so just the shape is crucial for

our calculations. We will refer to this portfolio as a profile from now on.

We hedge the profile with standard baseload products. Prices of these products were

referred to as futures prices in the previous sections. The Table 6 presents all relevant

gas futures contracts available at the Power Exchange Central Europe (PXE) throughout

years 2016 and 2017. It provides the start and the end of the delivery, a length, and

a liquidity for every product. We also present the first day when the product can be

traded, i.e. becomes liquid. The time ranges between 0 and 731. When a product is

liquid in time 0 it means it became liquid before the beginning point of our time horizon

(January 1, 2016). We relate the time notation with respect to start of the hedging

strategy. Thus, we start to hedge one day before the first delivery day. We do this for

simplicity of the algorithm. However, one can start earlier. For instance, when the yearly
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baseloads become liquid as these products are traded longest time before the delivery.

Our strategy is to re-hedge in the first day when shorter product becomes liquid. These

days correspond to days in the column adj first day. The residual position derived from

the consumption profile is depicted in the Figure 13.

Figure 13: The residual position derived from consumption profile.
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Table 6: Summary of liquid wholesale standard produts - futures.

Product Type Length Start End liquid Ahead adj first day

M1-16 M 31 1 31 92 0
M2-16 M 29 32 60 92 0
M3-16 M 31 61 91 90 0
M4-16 M 30 92 121 91 1
M5-16 M 31 122 152 90 32
M6-16 M 30 153 182 92 61
M7-16 M 31 183 213 91 92
M8-16 M 31 214 244 92 122
M9-16 M 30 245 274 92 153
M10-16 M 31 275 305 92 183
M11-16 M 30 306 335 92 214
M12-16 M 31 336 366 91 245
M1-17 M 31 367 397 92 275
M2-17 M 28 398 425 92 306
M3-17 M 31 426 456 90 336
M4-17 M 30 457 486 90 367
M5-17 M 31 487 517 89 398
M6-17 M 30 518 547 92 426
M7-17 M 31 548 578 91 457
M8-17 M 31 579 609 92 487
M9-17 M 30 610 639 92 518
M10-17 M 31 640 670 92 548
M11-17 M 30 671 700 92 579
M12-17 M 31 701 731 91 610
Q1-16 Q 91 1 91 365 0
Q2-16 Q 91 92 182 366 0
Q3-16 Q 92 183 274 366 0
Q4-16 Q 92 275 366 366 0
Q1-17 Q 90 367 456 366 1
Q2-17 Q 91 457 547 365 92
Q3-17 Q 92 548 639 365 183
Q4-17 Q 92 640 731 365 275

Sum-16 S 183 91 273 548 0
Win-16 S 182 274 455 548 0
Sum-17 S 183 456 638 548 0
Cal-16 Y 366 1 366 730 0
Cal-17 Y 365 367 731 731 0
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3.2.5 RSR Results

As a final step, we evaluate the RSR by Monte Carlo simulation. We derive 25,000

simulations of spot price paths defined by discrete version of formula 2:

S(t) = Λ(t) exp(Z(t)) (33)

where

Z(t) = (1− α)Z(t− 1) + σ∆B(t) + ∆I+(t) + ∆I−(t) (34)

and Λ(t) is exponential of function defined in equation 19.

The calculations were made in the R Studio with seed 1. Once realizations of spot

prices are derived, the algorithm “walks” through the hedge strategy path 25,000 times

while storing a result of the RSR costs after every path calculated by expression 1. The

calculation takes about one hour of computer processing unit time. The simulated RSR

profit and loss per MWh distribution is presented in Figure 14.

Figure 14: The simulated RSR profit and loss per MWh with jump
mix-diffusion errors.

The Table 7 shows descriptive statistics of simulated RSR profit and loss distributions.
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The VaR and the ES are 0.013 and 0.016 EUR/MWh respectively. The ES for mixed-

diffusion process is approximately 0.1 percent of average spot prices in our sample, which

is 15.93 EUR/MWh. However the important benchmark for retail energy supplier is not

a price but his profit margin. Under an assumption of 10 percent profit margin, we obtain

the RSR for ES on the level of approximately 1 percent of profit margin.

Table 7: Statistics of simulated RSR distributions.

Statistic mixed diffusion process

mean 0.000
st. dev. 0.007
V aR0.05 0.013
ES0.05 0.016

We should take into account that an energy supply is extremely competitive business

everywhere, including Czech Republic. Almost every half a year some Czech gas supply

company is going bankrupt. The Czech market operator OTE a.s. registered 69 natural

gas suppliers by the end of May 2018 3. It appears that margins are low and probably a

lot of companies operate close to zero economic profit. In such environment the supplier

should be aware even about relatively low risk like the RSR, as we estimated. Neverthe-

less, a trading activity on energy markets grows every year and energy markets become

more linked up. For instance, during hot summer when people switch on air conditioners

and there is low water levels in hydro power pumped plants additional capacity has to be

added into the system. This capacity is usually covered by gas fired power plants, which

can be dispatched quickly. Hence, a higher demand for an electricity may cause higher

demand for a natural gas and affect prices accordingly. Moreover, the power sector shifts

towards more volatile, decentralized, renewable power sources. Naturally, it affects elec-

tricity prices, but it may also affect natural gas prices. Usually extreme energy prices are

positively correlated with extreme weather conditions. With the climate change, natural

gas spot prices may become more volatile. Hence, the RSR may become more relevant

3Suppliers with more then 100 points of delivery - http://www.ote-cr.cz/statistika/mesicni-zprava-
plyn/pocty-opm-dodavatelu
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in the near future.

4 Conclusions

As a result of European energy sector liberalization activities at the energy supplier

business, the last unit in energy supply chain, became close to activities of portfolio

managers and traders on the financial markets. Moreover, as the market introduces

more standard products including financial futures, wholesale energy markets become

attractive for speculative traders. In a such environment, the energy managers had to

adopt risk measuring metrics usually used in the financial sector. With a growing use

of flat baseload products used for hedging of prices of short sales to final consumers the

difference of forward and spot prices weighted by volume the residual position, which

we term residual shape risk (RSR), appeared as a new concept which was missing in

the previous more integrated gas markets. While we introduce, motivate and illustrate

the RSR on the natural gas market, this concept may be applied for similar energy

commodities too.

In order to evaluate RSR, first the dynamics of natural gas spot prices is estimated

and subsequently forward prices are derived as expected spot prices at delivery using

characteristics of the underlying spot pricess process. The RSR is then evaluated on an

appropriate shape (profile) of retail energy supplier portfolio. Using volumetric hedge by

hedging the profile with standard products that are liquid in a given time, the profit and

loss distribution caused by the RSR is obtained. This distribution is derived by Monte

Carlo simulation of spot price paths and by applying the volumetric hedging strategy on

them. As a last step five percent VaR and ES financial risk metrics for these distributions

are obtained.

In our illustrative example of RSR for leading Czech natural gas retail supplier we

obtained VaR and ES values of 0.013 and 0.016 EUR/ MWh, respectively. This means

that even when looking at the tail of the distribution, we do not predict loss higher than 2

Euro cents per MWh in extreme cases. This risk approximately corresponds to 1 percent

30



of profit margin of natural gas retail supplier. This means that while it is not negligible

risk, it is definitely not of a first order of importance for natural gas supplier and it does

not call for a need to change current business policies and practices.

Since the Czech natural gas spot prices have lower volatility than British National

Balancing Point (NBP) prices our empirical results are conservative in the sense of leading

to a low value of RSR. In the environment with more volatile energy spot prices RSR

would be higher and therefore more important for business decision making, possibly

leading to changes in hedging practices. In particular with the increased RSR, the value

neutral hedging, leading to zero expected value of RSR, could be more attractive to

energy suppliers than currently used volumetric hedging.

References

Andriosopoulos, K. & N. Nomikos (2015): “Risk management in the energy markets

and Value-at-Risk modelling: A hybrid approach.” The European Journal of Finance

21(7): pp. 548–574.

Baum, C. F., P. Zerilli, & L. Chen (2018): “Stochastic volatility and leverage effect in

energy markets: Evidence from high frequency data with VaR and CVaR risk analysis.”

Boston College Working Paper in Economics 952, Boston College, Chestnut Hill, MA

02467 USA.

Benth, F. E., J. S. Benth, & S. Koekebakker (2008): Stochastic modelling of elec-

tricity and related markets, volume 11. World Scientific.

Borovkova, S. & D. Mahakena (2015): “News, volatility and jumps: The case of

natural gas futures.” Quantitative Finance 15(7): pp. 1217–1242.

Brix, A. F., A. Lunde, & W. Wei (2018): “A generalized Schwartz model for energy

spot prices — estimation using a particle MCMC method.” Energy Economics 72: pp.

560–582.

31



Cao, W., S. B. Guernsey, & S. C. Linn (2018): “Evidence of infinite and finite jump

processes in commodity futures prices: Crude oil and natural gas.” Physica A: Statis-

tical Mechanics and its Applications 502: pp. 629 – 641.

Clewlow, L. & C. Strickland (2000): Energy Derivatives: Pricing and Risk Man-

agement. Lacima Group, 1st edition.

Dukhanina, E., F. Leveque, & O. Massol (2018): “Policy measures targeting a more

integrated gas market: Impact on prices and arbitrage activity.” Presentation at The

6th International Symposium on Environment Energy and Finance Issues (ISEFI).

EC (2003): “Directive 2003/55/EC of the European Parliament and of the Council of

26 June 2003 concerning common rules for the internal market in natural gas and

repealing Directive 98/30/EC.”

Gomez-Valle, L., Z. Habibilashkary, & J. Martinez-Rodriguez (2017a): “The

jump size distribution of the commodity spot price and its effect on futures and option

prices.” Abstract and Applied Analysis 2017: p. Article 3286549.

Gomez-Valle, L., Z. Habibilashkary, & J. Martinez-Rodriguez (2017b): “A new

technique to estimate the risk-neutral processes in jump-diffusion commodity futures

models.” Journal of Computational and Applied Mathematics 309: pp. 435–441.

Gomez-Valle, L., Z. Habibilashkary, & J. Martinez-Rodriguez (2018): “A mul-

tiplicative seasonal component in commodity derivative pricing.” Journal of Compu-

tational and Applied Mathematics 330: pp. 835–847.

Hsu, C.-C., A.-S. Chen, S.-K. Lin, & T.-F. Chen (2017): “The affine styled-facts price

dynamics for the natural gas: Evidence from daily returns and option prices.” Review

of Quantitative Finance and Accounting 48(3): pp. 819–848.

Hung, J.-C., M.-C. Lee, & H.-C. Liu (2008): “Estimation of Value-at-Risk for energy

commodities via fat-tailed GARCH models.” Energy Economics 30(3): pp. 1173–1191.

32



Khindanova, I. & Z. Atakhanova (2002): “Stable modeling in energy risk manage-

ment.” Mathematical Methods of Operations Research (ZOR) 55(2): pp. 225–245.

Lee, S. S. & P. A. Mykland (2007): “Jumps in financial markets: A new nonparametric

test and jump dynamics.” The Review of Financial Studies 21(6): pp. 2535–2563.

Mason, C. & N. Wilmot (2014): “Jump processes in natural gas markets.” Energy

Economics 46(S1): pp. S69–S79.

Mishra, V. & R. Smyth (2016): “Are natural gas spot and futures prices predictable?”

Economic Modelling 54(C): pp. 178–186.

Novak, J., M. Jirina, & M. Benesova (2017): “Popis TDD modelu verze 3.8.” Tech-

nical Report V-1254, Institute of Computer Science, Academy of Sciences of the Czech

Republic, Pod Vodarenskou Vezi 2, 182 07 Prague, Czech Republic.

Safarov, N. & C. Atkinson (2017): “Natural gas storage valuation and optimiza-

tion under time-inhomogeneous exponential Levy processes.” International Journal of

Computer Mathematics 94(11): pp. 2147–2165.

Schwartz, E. S. (1997): “The Stochastic Behavior of Commodity Prices: Implications

for Valuation and Hedging.” The Journal of Finance 52(3): pp. 923–973.

Steele, D. (2010): Modelling spot and forward prices for energy companie. Thesis,

Department of Mathematics VU University - Faculty of Science, Amsterdam.

Stern, J. & H. Rogers (2017): “The evolution of European gas pricing mechanisms.” In

M. Hafner & S. Tagliapietra (editors), “The European Gas Markets: Challenges

and Opportunities,” pp. 359–391. Palgrave Macmillan.

Zaplatilek, J. (2015): “Vnitrni trh s plynem podle energeticke legislativy EU.” In

“Uvod do liberalizovane energetiky,” pp. 34 – 42. Praha: Asociace energetickych man-

azeru, 1st edition.

33



 

IES Working Paper Series 

 

2018  
1. Karel Janda, Martin Strobl: Smoking Czechs: Modeling Tobacco Consumption and 

Taxation 

2. Karel Janda, Michaela Koscova: Photovoltaics and the Slovak Electricity Market 
3. Simona Malovana, Dominika Kolcunova, Vaclav Broz: Does Monetary Policy 

Influence Banks' Perception of Risks? 

4. Karolina Vozkova: Why Did EU Banks Change Their Business Models in Last Years 
and What Was the Impact of Net Fee and Commission Income on Their 
Performance? 

5. Jan Malek, Lukas Recka, Karel Janda: Impact of German Energiewende on 
Transmission Lines in the Central European Region 

6. David Svacina: Devaluation with Exchange rate Floor in a Small Open Economy 

7. Ladislav Kristoufek: Are the Crude Oil Markets Really Becoming More Efficient 
over Time? Some New Evidence 

8. Karel Janda, Zuzana Lajksnerova, Jakub Mikolasek: A General Equilibrium Model 
of Optimal Alcohol Taxation in the Czech Republic 

9. Nicholas Tyack, Milan Scasny: Estimating the Value of Crop Diversity 
Conservation Services Provided by the Czech National Programme for 
Agrobiodiversity 

10. Laure de Batz: Financial Impact of Regulatory Sanctions on French Listed 
Companies 

11. Matej Opatrny: Extent of Irrationality of the Consumer: Combining the Critical 
Cost Eciency and Houtman Maks Indices 

12. Mojmir Hampl, Tomas Havranek: Foreign Capital and Domestic Productivity in 
the Czech Republic 

13. Miroslav Palansky: The Value of Political Connections in the Post-Transition 
Period: Evidence from the Czech Republic 

14. Karel Janda: Earnings Stability and Peer Selection for Indirect Valuation 

15. Ondrej Tobek, Martin Hronec: Does the Source of Fundamental Data Matter? 

16. Stefan Schmelzer, Michael Miess, Milan Scasny, Vedunka Kopecna: Modelling 
Electric Vehicles as an Abatement Technology in a Hybrid CGE Model 

17. Barbora Malinska, Jozef Barunik: Volatility Term Structure Modeling Using 
Nelson-Siegel Model 

18. Lubomir Cingl, Vaclav Korbel: Underlying Motivations For Rule-Violation Among 
Juvenile Delinquents: A Lab-in-the-Field  Experiment 

19. Petr Jansky, Marek Sedivy: Estimating the Revenue Costs of Tax Treaties in 
Developing Countries 

20. Yao Wang, Zdenek Drabek, Zhengwei Wang: The Predicting Power of Soft 
Information on Defaults in the Chinese P2P Lending Market 

21. Matej Kuc: Cost Efficiency of European Cooperative Banks 



 

22. Dominika Kolcunova, Tomas Havranek: Estimating the Effective Lower Bound for 
the Czech National Bank’s Policy Rate 

23. Petr Jansky, Markus Meinzer, Miroslav Palansky: Is Panama Really Your Tax 
Haven? Secrecy Jurisdictions and the Countries They Harm 

24. Petr Jansky, Marek Sedivy: How Do Regional Price Levels Affect Income 
Inequality? Household-Level Evidence from 21 Countries 

25. Mojmir Hampl, Tomas Havranek: Central Bank Capital as an Instrument of 
Monetary Policy 

26. Petr Pleticha: Entrepreneurship in the Information Age: An Empirical Analysis of 
the European Regions  

27. Tereza Palanska: Measurement of Volatility Spillovers and Asymmetric 
Connectedness on Commodity and Equity Markets 

28. Eva Hromadkova, Oldrich Koza, Petr Polak and Nikol Polakova: The Bank Lending 
Survey 

29. Martin Gregor: Electives Shopping, Grading Competition, and Grading Norms 
30. Lubos Hanus, Lukas Vacha: Time-Frequency Response Analysis of Monetary 

Policy Transmission 

31. Matej Opatrny: The Impact of Agricultural Subsidies on Farm Production: A 
Synthetic Control Method Approach 

32. Karel Janda, Ladislav Kristoufek: The Relationship Between Fuel, Biofuel and Food 
Prices: Methods and Outcomes 

33. Karel Janda, Jakub Kourilek: Residual Shape Risk on Czech Natural Gas Market 
 
 
 
 
 
 
 
 
 
 

All papers can be downloaded at: http://ies.fsv.cuni.cz 

                                                           

 

    Univerzita Karlova v Praze, Fakulta sociálních věd 

Institut ekonomických studií [UK FSV – IES]  Praha 1, Opletalova 26 

E-mail : ies@fsv.cuni.cz             http://ies.fsv.cuni.cz 

http://ies.fsv.cuni.cz/
mailto:IES@Mbox.FSV.CUNI.CZ

	1 Introduction
	2 Conceptualization of Residual Shape Risk
	2.1 Definition of Residual Shape Risk
	2.2 Calculation of Residual Shape Risk
	2.3 Spot Model
	2.4 Forward Model

	3 Empirical Evaluation
	3.1 Data
	3.2 Model Estimation
	3.2.1 Spot Price Analysis
	3.2.2 Residuals as a Jump Mixed Diffusion Process
	3.2.3 Forwards Price
	3.2.4 Consumption Profiles
	3.2.5 RSR Results


	4 Conclusions
	Bibliography

